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Abstract— Multi-Agent Path Finding (MAPF), which focuses
on finding collision-free paths for multiple robots, is crucial for
applications ranging from aerial swarms to warehouse automa-
tion. Solving MAPF is NP-hard so learning-based approaches
for MAPF have gained attention, particularly those leveraging
deep neural networks. Nonetheless, despite the community’s
continued efforts, all learning-based MAPF planners still rely
on decentralized planning due to variability in the number of
agents and map sizes. We have developed the first centralized
learning-based policy for MAPF problem called RAILGUN.
RAILGUN is not an agent-based policy but a map-based
policy. By leveraging a CNN-based architecture, RAILGUN
can generalize across different maps and handle any number
of agents. We collect trajectories from rule-based methods to
train our model in a supervised way. In experiments, RAILGUN
outperforms most baseline methods and demonstrates great
zero-shot generalization capabilities on various tasks, maps and
agent numbers that were not seen in the training dataset.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) is an NP-hard prob-
lem [1], [2] which focuses on finding collision-free paths
for multiple agents to move from start locations to their
goal locations in a known environment while optimizing a
specified cost function. This problem could be adapted to
many realistic scenarios from aerial swarms to warehouse
automation which are multi-billion dollar industries. Many
algorithms have been proposed to solve this problem or its
variants, such as Conflict-Based Search (CBS) [3], M∗ [4],
LaCAM [5] and MAPF-LNS2 [6].

As neural networks demonstrate their powerful capabilities
in various fields of computer science [7], [8], [9], learning-
based MAPF solvers have also garnered significant atten-
tion [10]. Currently, all learning-based MAPF solvers adopt
decentralized approaches, where each agent takes surround-
ing local information as input, typically represented as a
field-of-view (FOV). These decentralized policies determine
each agent’s action, either simultaneously or sequentially,
at the current timestep based on the agent’s FOV input.
Many decentralized methods have been proposed, such as
PRIMAL [11], MAPPER [12], MAGAT [13], SCRIMP [14],
and MAPF-GPT [15]. These methods primarily rely on
imitation learning (IL) and reinforcement learning (RL) and
often incorporate additional components, such as inter-agent
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communication, to enhance performance. It is important
to note these approaches focus on individual agents and
attempt to generate actions based on agent-specific features,
which typically do not include global state information.
Furthermore, as features are based on the agent itself, these
approaches inherently allow the number of agents to vary.

On the other hand, centralized approaches bring several
benefits, such as the ability to coordinate the movements
of multiple agents. However, the literature lacks centralized
MAPF algorithms that are learning-based, since it is chal-
lenging to train a centralized neural network that can handle
variability in both the number of agents and map sizes.

We present the first centralized learning-based method for
MAPF, called RAILGUN, which generates actions based
on maps rather than individual agents. The core idea of
RAILGUN is to generate a directed graph in which each
node has exactly one outgoing edge at every timestep. This
design enables our method to handle any number of agents
on the map. Additionally, we use a convolutional neural
network (CNN) as the model backbone which produces
outputs of the same dimensions as the input features. This
allows RAILGUN to accommodate maps of varying sizes.
In summary, our contributions are as follows:

• We propose the first centralized learning-based MAPF
algorithm, RAILGUN, which generates actions for map
grid cells rather than for individual agents.

• We design a CNN-based network enabling RAILGUN
to handle maps of different sizes.

• Through experiments in diverse test settings, we demon-
strate that RAILGUN, trained on data from one map
type, generalizes effectively to new types of maps
and testing scenarios, and outperforms most baseline
methods in POGEMA [16] benchmark.

II. PROBLEM DEFINITION

The MAPF problem is defined as follows: Let I =
{1, 2, · · · , N} denote a set of N agents. G = (V,E)
represents an undirected graph, where each vertex v ∈ V
represents a possible location of an agent in the workspace,
and each edge e ∈ E is a unit-cost edge between two vertices
that moves an agent from one vertex to the other. In this
paper, we focus on 2D grid maps with connections in four
directions. Self-loop edges are also allowed, which represent
“wait-in-place” actions. Each agent i ∈ I has a start location
si ∈ V and a goal location gi ∈ V . It also holds that si ̸= sj
and gi ̸= gj when i ̸= j ∀i, j ∈ I . Our task is to plan a
collision-free path for each agent i from si to gi.



Each action of agents, either waiting in place or moving
to an adjacent vertex, takes one time unit. Let vit ∈ V be the
location of agent i at timestep t. Let πi = [vi0, v

i
1, ..., v

i
T i ]

denote a path of agent i from its start location vi0 to its
target viT i . We assume that agents rest at their targets after
completing their paths, i.e., vit = viT i ,∀t > T i. The cost of
agent i’s path is T i. We refer to the path with the minimum
cost as the shortest path.

We consider two types of agent-agent collisions. The first
type is vertex collision, where two agents i and j occupy the
same vertex at the same timestep. The second type is edge
collision, where two agents move in opposite directions along
the same edge simultaneously. We use (i, j, t) to denote a
vertex collision between agents i and j at timestep t or an
edge collision between agents i and j at timestep t to t+1.
The requirement of being collision-free implies the targets
assigned to the agents must be distinct from each other. We
use SoC (flowtime)

∑N
i=1 T

i as the cost function.
The objective of the MAPF problem is to find a set of

paths {πi | i ∈ I} for all agents such that, for each agent i:
1) Agent i starts from its start location (i.e., vi0 = si) and

stops at its target location gj (i.e., vit = gj ,∀t ≥ T i).
2) Every pair of adjacent vertices on path πi is connected

by an edge, i.e., (vit, v
i
t+1) ∈ E,∀t ∈ {0, 1, . . . , T i}.

3) {πi | i ∈ I} is collision-free.

III. RELATED WORK

A. Multi-Agent Path Finding (MAPF)

MAPF has been proved an NP-hard problem with optimal-
ity [2]. It has inspired a wide range of solutions for its related
challenges. Decoupled strategies, as outlined in [17], [18],
[19], approach the problem by independently planning paths
for each agent before integrating these paths. In contrast, cou-
pled approaches [20], [21] devise a unified plan for all agents
simultaneously. There also exist dynamically coupled meth-
ods [3], [22] that consider agents planning independently
at first and then together only when needed for resolving
agent-agent collisions. Among these, Conflict-Based Search
(CBS) algorithm [3] stands out as a centralized and optimal
method for MAPF, with several bounded-suboptimal variants
such as ECBS [23] and EECBS [24]. Some suboptimal
MAPF algorithms, such as Prioritized Planning (PP) [25],
[17], PBS [26], LaCAM [5] and their variant methods [27],
[6], [28] exhibit better scalability and efficiency. However,
these search-based algorithms always face the problem of
search space dimensionality explosion as the problem size
increases, making it difficult to produce a valid solution
within a limited time. Learning-based methods can overcome
the dimensionality issue by learning from large amounts of
data and addressing the trade-off between low-cost paths and
scalability.

B. Lifelong MAPF

Compared to the MAPF problem, Lifelong MAPF
(LMAPF) continuously assigns new target locations to agents
once they have reached their current targets. In LMAPF,
agents do not need to arrive at their targets simultaneously.

There are three main approaches to solving LMAPF: solving
the problem as a whole [29], using MAPF methods but
replanning all paths at each specified timestep [30], [31], and
replanning only when agents reach their current targets and
are assigned new ones [32], [33]. Some algorithms consider
the offline setting in LMAPF, where all tasks are known
in advance. Examples include CBSS [34], which applies
Traveling Salesman Problem (TSP) methods to plan task
orders, and a four-level hierarchical planning algorithm [35]
that incorporates MILP and CBS. However, these LMAPF
methods also face the same scalability problem as MAPF
methods.

C. Learning-based MAPF

Given the huge success of deep learning, many learning-
based MAPF methods have been proposed. Compared to
search-based algorithms, these methods can usually complete
planning in short time and automatically learn heuristic
functions. Some of these methods focus on modifying edge
weights in the map, such as the congestion model [36], which
is a data-driven approach that predicts agents’ movement
delays and uses these delays as movement costs, or On-
line GGO [37], which optimizes edge weights for Lifelong
MAPF. However, these methods split MAPF planning into
multiple stages, which can lead to a larger optimization
search space if one considers both edge-weight design and
the MAPF solver simultaneously.

Most other methods focus on the solver side, using im-
itation learning (IL), reinforcement learning (RL), or both.
One early learning-based method for MAPF is PRIMAL [11]
which is trained by RL and IL. It is a decentralized algorithm
that relies on an FOV around an agent to generate the
actions of that agent. MAPF-GPT [15] is a GPT-based
model for MAPF problems, trained by IL on a large dataset.
Other approaches incorporate communication mechanisms
in a decentralized manner, such as GNN [38] and MA-
GAT [13], which employ Graph Neural Networks (GNNs)
for communication, and SCRIMP [14], which uses a global
communication mechanism based on transformers.

However, all existing learning-based solvers focus on the
agents themselves, forcing researchers to design features
of agents. This makes it challenging, if not impossible, to
develop a centralized policy that can handle varying numbers
of agents and map sizes. Our method is the first centralized
MAPF solver to overcome the challenge of feature design
and to integrate edge-weight design ideas [39], [40] into a
neural-network-based solver.

IV. METHOD

In this section, we introduce our RAILGUN method. First,
we discuss why it is difficult to design a learning algorithm
for centralized MAPF where policies are agent-based. When
focusing on generating actions based on agent features, we
need to provide a neural network with at least the agent’s start
location, goal location, and additional features, amounting
to k scalar variables (k ≥ 4) for one agent. Then the
total number of features is at least kN . Consider that the
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Fig. 1: RAILGUN Inference Overview: On the left side, there is one current state along with all related input features of size (n,m, 1).
These features are then stacked along the last channel to construct the input feature Fin of size (n,m, k). In this example, we have n = 2,
m = 4, and k = 4. On the right side, the input feature Fin is fed into a CNN-based neural network, which outputs action probabilities
Fout of size (n,m, 5). We sample from Fout to obtain actual actions and then apply the corresponding actions to each agent.
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Fig. 2: This is an example of how an agent-based solution relates
to a series of specialized graphs. The upper-left figure illustrates a
testcase we aim to solve, along with a graph where green nodes and
orange edges represent map connectivity. The other figures show a
valid MAPF solution for this testcase, where agent 1 should yield
to agent 2. At each timestep, each node in the connectivity graph
has only one outgoing edge. Here, we draw edges only for nodes
occupied by agents, as the outgoing edge for other nodes could be
any of the available edges.

maximum number of agents could be N = |V | ≈ nm, where
n and m are the 2D map dimensions. If we want to handle
all possible numbers of agents on a specific map, the total
feature size would be knm. This dependence on map size
means that we cannot create a policy to cover all different
maps if we construct the features agent by agent. That is why
there is no centralized learning-based solver and all learning-
based MAPF solvers adopt a decentralized approach with a
limited FOV for each agent [11], [12], [13], [14], [15].

Our insight is that in a valid MAPF solution, there will
be no collision, which means there can be at most one agent
in each map grid cell in each timestep. At any timestep,
each agent chooses one of the five edges of its grid cell as
its action. Therefore, if we remove all edges that the agents
do not use at each timestep, we find that a valid MAPF
solution can be viewed as a series of specialized graphs. As
shown in Figure 2, these specialized graphs have exactly one
edge in every occupied grid cell. Once such a directed graph
is given, no MAPF solver is needed, as there is only one

possible transition at each timestep. The sequence of these
specialized graphs then constitutes a valid MAPF solution.

After converting the agent-based solution into a repre-
sentation as a series of specialized graphs, we use a CNN
network to address the challenge of generating these special-
ized graphs and generalizing across different maps, which we
discussed in the previous paragraphs. In this paper, we use
standard U-Net architecture [41] for RAILGUN, where the
input feature is Fin with size (n,m, k) and the output feature
is Fout with size (n,m, 5). Here, k represents the number
of feature channels based on the feature design, and (n,m)
represents the map size. As for network structure and feature
selection, please refer to Appendix.

As an example shown in Figure 1, to encode an agent’s
current location as a feature, we construct a tensor Fcur with
size (n,m, 1). In this tensor, Fcur[i][j] = idx if the agent
idx is at position (i, j) in the map; otherwise, Fcur[i][j] = 0.
Stacking all such feature tensors along the last dimension
forms Fin with size (n,m, k). Fout[i][j] represents the
probability distribution over all possible actions at grid cell
position (i, j). We use 5 channels because each agent can
take one of up to five different actions at each timestep. Thus,
if an agent is located at grid cell (i, j), its action probabilities
are stored in Fout[i][j].

V. EXPERIMENTS & RESULTS

A. Training and Testing Settings

We use POGEMA [16] benchmark to test our method.
POGEMA includes several different metrics, allowing a fair
multi-fold comparison. For data collection, our training data
is primarily generated by LaCAM-v1 [5]. The model is
trained with cross-entropy loss and a batch size of 256.
We utilize the AdamW optimizer [42] with β values set
to (0.9, 0.999) and a weight decay of 10−3. The training
process achieves convergence in only six hours, leveraging
the power of four NVIDIA A100 GPUs.

For training data, we randomly generate 180 maze maps
with 32× 32 size, each with varying obstacle densities and
maze shape. For each map, we randomly generate {2, 5, 20,
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40, 60} MAPF scenarios with {16, 32, 64, 96, 128} agents
respectively, for a total of 127 scenarios for each map. We
use LACAM-v1 [5] to compute the reference paths for all
scenarios as the training data.

All experiments were conducted on a system running
Ubuntu 22.04.1 LTS equipped with an AMD Intel i9-12900K
CPU, 128GB RAM and NVIDIA RTX 3080. For the testing
phase, the POGEMA benchmark provides a total of 3,376
test cases featuring six different types of maps shown in
Figure 5, varying numbers of agents, and different map sizes.

B. Testing Results

Figure 3 presents the performance metrics for RAILGUN
and the baseline methods. The learning-based methods in-
clude VDN [43], QPLEX [44], SCRIMP [14], IQL [45],
QMIX [46], DCC [47], MAMBA [48], Switcher [49], Fol-
lower [50], and MATS-LP [51]. All these baseline methods
are decentralized methods. LaCAM-v3 [28] and RHCR [52]
serve as the search-based algorithm baselines in MAPF and
LMAPF problems.

In Figure 3, we observe that RAILGUN achieves high
scores across all six metrics and delivers the best perfor-
mance in four metrics compared to other learning-based
methods. RAILGUN attains the highest score in the Scala-
bility metric because it generates specific directed graphs at
each timestep, ensuring that runtime depends only on map
size rather than the number of agents in theory. However,
even though RAILGUN outperforms or matches the scores
of other learning-based methods in most areas, it still ex-
hibits a significant gap with LaCAM in SoC-related metrics.
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This outcome is expected, as RAILGUN is trained on data
generated by LaCAM-v1, and LaCAM-v1 is not designed
to achieve the best SoC performance. Mimicking LaCAM-
v1 is the top priority of RAILGUN rather than producing a
valid solution with the lowest SoC. RAILGUN also achieves
good results in LMAPF task which is a zero-shot task for
RAILGUN shown in Appendix.

Figure 4 presents detailed CSR (see caption) and SoC.
Even for unseen maps (Cities-tiles) and larger agent num-
bers (192 and 256), RAILGUN outperforms other learning-
based methods, achieving up to 60% CSR. This also shows
RAILGUN’s strong zero-shot generalization ability in new
maps and new agent numbers. Furthermore, we observe that
DCC attains a better SoC, despite having a lower CSR. This
indicates that in DCC, only a few agents fail to reach their
goal locations and the path lengths are shorter than those
produced by RAILGUN, highlighting that generating valid
solutions is a higher priority for RAILGUN.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose the first centralized learning-
based method, RAILGUN, for the MAPF problem. We found
that, rather than predicting actions for individual agents,
predicting edge directions for each map grid cell overcomes
the difficulties associated with variable input feature dimen-
sions. This finding allows RAILGUN to employ a CNN-
based architecture capable of handling maps of any size
and any number of agents. In our experiments, RAILGUN
demonstrates strong performance across all six metrics in the
POGEMA benchmark. Furthermore, its excellent generaliza-
tion abilities enable it to handle unseen maps, varying agent
numbers, and even other tasks such as the LMAPF problem.
In future work, we plan to collect higher-quality data to train
RAILGUN as a foundation model and apply RL with a task-
specific cost function to fine-tune RAILGUN on specific
tasks, agent numbers, and map shapes, thereby improving
solution quality and success rate in real-world applications.
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VII. APPENDIX

A. Model Architecture

We use U-Net as our model backbone mainly due to
its success in diffusion models and its ability to output
feature maps that are the same size as inputs. We employ the
standard U-Net architecture, which consists of a total of five
layers. The encoder begins with an initial layer containing 64
channels. At each subsequent layer, the number of channels
is doubled while the size of the feature maps is halved. In
the decoder, this process is reversed, with the number of
channels halved and the spatial resolution doubled at each
layer. Notably, bilinear interpolation is not employed in the
decoder; instead, we use deconvolution as in original U-Net.
At the final layer, the number of channels is reduced to 5,
corresponding to the maximum number of possible actions.
We should also note that since U-Net uses CNN layers in the
encoder, which progressively reduce the spatial dimensions
of the feature maps, there is a minimum required input size
to ensure valid downsampling operations. For small maps,
padding is needed. The resulting RAILGUN model contains
approximately 30 million FP32 parameters.

B. Feature Selection

As shown in Figure 1, we construct the input features
from multiple components. We employ five types of features:
the map, current locations, goal locations, cost-to-goal, and
gradients of cost-to-goal (the last feature is not shown in
Figure 1 due to space constraints). For the map feature, we
use 1 to represent non-traversable grid cells and 0 to repre-
sent traversable grid cells. For the current and goal locations,
we use the agent’s index to indicate which agent occupies
a grid cell; otherwise, the grid cell is set to 0. We also
attempted encoding agent indices as binary vectors; however,
this produces excessively large input features, rendering the
model too large to train.

We also use the precomputed shortest path cost as the
cost-to-goal feature for each agent which is a widely used
feature in learning-based methods, as shown in Figure 1.
The gradients of the cost-to-goal, represents the potential
direction of next action, are determined by the changes of
the cost-to-goal distances. Specifically, we define the changes
in cost-to-goal distances from an agent’s current cell (i, j) to
its adjacent cells as δleft, δright, δup, δdown. δ < 0 indicates that
the agent is approaching the goal location; vice versa. The
resulting direction, denoted by gij = (∆xij ,∆yij), consists
of horizontal and vertical components. For the horizontal
component, ∆xij is computed as shown below:

∆xij =



0 if δleft ≥ 0 and δright ≥ 0,

1 if δleft ≥ 0 and δright < 0,

−1 if δleft < 0 and δright ≥ 0,

random(±1) if δleft < 0 and δright < 0,

and similarly for the vertical component.

(a) Maze (b) Random (c) Warehouse

(d) Puzzle (e) Cities-tiles (f) Cities

Fig. 5: Examples of POGEMA-tested maps. The six met-
rics—Performance, Coordination, Scalability, Cooperation, OOD,
and Pathfinding—are evaluated on the following map sets: Maze,
Random, Maze, Random, Warehouse, Puzzle, Cities-tiles, and
Cities. Note that Cities-tiles are 64×64 areas selected from larger
Cities maps with dimensions of 256×256.

C. POGEMA Test

POGEMA use six metrics, namely, Performance, Coordi-
nation, Scalability, Coopeartion, Out-of-Distribution (OOD)
and Pathfinding. The relevant equations are as follows:

Performance =


SoCbest/SoC if MAPF solved
0 if MAPF not solved

throughput
throughputbest

if LMAPF

OOD/Cooperation =


SoCbest/SoC if MAPF solved
0 if MAPF not solved

throughput
throughputbest

if LMAPF

Performance, OOD and Cooperation metrics primarily eval-
uate solution quality and success rate on different maps.
SoCbest represents the best SoC performance achieved
among all tested algorithms.

Scalability =
runtime(agents1)/runtime(agents2)

|agents1|/|agents2|

Coordination = 1− # of collisions
|agents| × episode_length

Pathfinding =

{
SoC/SoCbest

0 if path not found

Scalability is the ratio of algorithm runtimes with different
agent numbers with |agent1| < |agent2|, providing a measure
of how the algorithm’s runtime scales as the agent number
changes and higher is better. Coordination focuses on in-
valid action frequency produced by learning-based methods.
Pathfinding indicates the ability of learning-based methods
to find the shortest path for a single agent.

D. Additional Testing Results

In Table I, we present the CSR, SoC, and Makespan
metrics (see caption) of different algorithms for the Ware-
house map. We observe a similar pattern where RAILGUN



CSR SoC (x1000) Makespan

Algorithm
Agents 32 64 96 128 160 192 32 64 96 128 160 192 32 64 96 128 160 192

LaCAM 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.97 3.00 4.07 5.16 6.32 55.34 58.50 60.50 61.59 62.77 64.04
RAILGUN 1.00 0.98 0.75 0.23 0.02 - 1.16 2.79 5.33 8.93 12.77 17.18 60.32 76.34 105.36 124.14 127.70 -

DCC 0.95 0.86 0.73 0.12 - - 1.10 2.62 4.88 7.82 11.08 14.85 66.06 88.09 111.23 126.75 - -
SCRIMP 0.83 0.17 - - - - 1.31 3.24 6.97 11.96 16.17 20.32 85.48 122.55 - - - -
MAMBA - - - - - - 2.78 7.06 11.29 15.49 19.58 23.81 - - - - - -

IQL - - - - - - 4.08 8.15 12.24 16.34 20.45 24.56 - - - - - -
VDN - - - - - - 3.55 7.44 11.73 16.00 20.21 24.40 - - - - - -
QMIX - - - - - - 3.67 7.56 11.64 15.85 20.06 24.28 - - - - - -

QPLEX - - - - - - 3.79 7.68 11.69 15.82 20.03 24.24 - - - - - -

TABLE I: MAPF Scores on Warehouse: Makespan is the latest agent arrival time. Bold text represents the best score except for LaCAM.
“-” represents 0 in CSR and 128 in Makespan.
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Fig. 6: LMAPF: RAILGUN still have good zero-shot LMAPF per-
formace in Pathfinding, Coordination, Cooperation and Scalability
just training on MAPF dataset.

achieves a higher CSR score but a lower SoC compared
to DCC. However, when considering Makespan, RAILGUN
outperforms DCC. This indicates that RAILGUN is capable
of finding relatively short solutions. As Makespan reflects the
latest arrival time, many agents arriving before the last ones
contribute to a higher SoC. This may be due to congestion
situations, where many agents have a dead lock, and RAIL-
GUN requires additional time to resolve the congestion. For
LMAPF, as shown in Figure 7, RAILGUN’s throughput score
is better than those of VDN, IQL, and MAMBA. Although
it does not achieve the best throughput score overall, its
scalability is impressive. Figure 7 also demonstrates that as
the number of agents increases, the average runtime per agent
decreases.

As shown in Figure 6, when testing on LMAPF, a com-
pletely zero-shot task for RAILGUN, RAILGUN achieves
only moderate scores in throughput-related metrics since
none of the training data was optimized for throughput.
However, this zero-shot test also demonstrates RAILGUN’s
strong generalization ability across different tasks. RAIL-
GUN also attains high scores in Pathfinding, Coordination,
and Scalability. These strengths and weaknesses suggest that,
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Fig. 7: LMAPF Throughput and Scalability Performance on Cities-
tiles: Scalability is calculated by previous average per agent runtime
divide by current one.

although RAILGUN’s overall solution quality remains an
issue, it can produce valid solutions in a diverse set of
scenarios. Thus, we believe using a dataset optimized for
the cost function of interest, combined with applying a task-
specific reward function for fine-tuning via RL after the SL
process, will help improve the overall solution quality.
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