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Abstract

Attention-based models dominate sequence transduction, yet in medical time-series1

datasets they often misallocate focus to irrelevant regions while missing critical2

context. We present EvidenceMoE, a Mixture-of-Experts architecture that assigns3

experts based on prior physics knowledge and refines their outputs through an4

Evidential Dirichlet feedback mechanism providing per-expert reliability scores.5

In our work on fluorescence lifetime-guided cancer surgery, we assigned expert6

models to relevant time-series segments encoding tumor depth and microenviron-7

ment based tumor delineation knowledge from physics (i.e., the radiative transport8

equation for photon propagation in tissue), rather than learned only from data.9

Unlike other prior models that address either depth (e.g., Fluorescence LiDAR)10

or fluorescence decay (fluorescence lifetime or FLI for drug–target binding), Ev-11

idenceMoE jointly captures both within a unified framework, achieving errors12

as low as 0.030 NRMSE for depth and 0.074 NRMSE for FLI on simulated and13

experimental datasets, closely matching ground-truth measurements.14

1 Introduction15

Fluorescence-guided surgery (FGS) enhances intraoperative tumor visualization, enabling surgeons16

to achieve more precise resections while sparing healthy tissue (1; 2). Despite its promise, current17

FGS systems face two fundamental limitations. First, intensity-based imaging alone often fails to18

delineate tumor boundaries accurately, as fluorescence accumulation can occur passively and generate19

misleading signals (3; 4). Second, it provides only 2D surface fluorescence intensity map, leaving20

surgeons without information about tumor depth (tumor location beneath the tissue surface) (5).21

A natural solution to the first limitation is fluorescence lifetime imaging (FLI), which leverages22

fluorescence decay information rather then intensity alone to robustly distinguish specific molecular23

interactions from nonspecific probe accumulation (6; 7; 8). However, FLI being indirect compu-24

tational imaging method requires time-resolved fluorescence images acquisition following solving25

ill-posed inverse problems, resulting in computationally expensive pipelines that limit it’s clinical26

translation (9; 10). To address the second limitation, fluorescence detection and ranging (FLiDAR)27

has been proposed for depth estimation (11; 12). In ideal conditions, where scattering and absorption28

are absent or known, FLiDAR can localize fluorescence probes with high accuracy. Yet, in real29

surgical environments, biological tissue introduces highly variable scattering and absorption, severely30

degrading performance unless prior knowledge of optical properties is provided (13; 5; 11; 8).31

In this work, we demonstrate that time-resolved fluorescence sequences alone contain sufficient32

information to jointly infer both depth and lifetime without requiring any auxiliary measurements33

of tissue optical properties. Our approach builds on the physics of photon transport in scattering34

media (biological tissues), where different temporal regions of the fluorescence decay sequence35

encode distinct aspects of the underlying tissue–fluorophore interaction (14; 12). By learning to36
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attend selectively to these physics-relevant regions, our model achieves accurate depth localization37

and robust lifetime estimation in complex tissue environments, paving the way toward clinically38

viable FGS systems with depth-resolved molecular contrast.39

Figure 1: End-to-end EvidenceMoE Workflow for FLiDAR-based Tumor Lifetime and Depth
Estimation. (a) A laser excites the fluorescent tumor target, and the resulting photons are captured
by a time-resolved camera to generate temporal decay images. (b) These images are processed by
physics-guided experts that specialize on early photon arrivals for depth, late decay dynamics for
lifetime, and the full signal for global context. (c) Within the EvidenceMoE architecture, evidential
critics assess expert reliability and provide corrections, while the decider fuses these pathways into
final robust estimates of tumor depth and fluorescence lifetime. (d) The framework is validated on a
tissue-mimicking phantom with inclusions at varying depths.

Herein, we introduce a Physics-guided Mixture-of-Experts (MoE) architecture (15; 16), where expert40

roles are pre-defined using knowledge from photo-physics rather than learned from data. Each expert41

generates a prediction, which is evaluated and corrected by an evidence-based critic serving as an42

internal quality assessor. This reduces expert domination (17) and allows a Decider Network to43

intelligently fuse these reviewed contributions into a final, reliable estimate of depth and lifetime44

(Figure 1). Note that “physics-guided” here is distinct from physics-informed approaches.45

The principal contributions of this work are:46

1. A direct framework for jointly estimating fluorescence depth and lifetime from raw time-resolved47

fluorescence image sequences without requiring tissue optical properties.48

2. An uncertainty-aware inference scheme using evidential Dirichlet correction to quantify model49

reliability.50

3. A Mixture-of-Experts architecture leveraging the knowledge from photon transport equation to51

attend to temporal segments, with adaptive fusion for FLiDAR inference.52

2 Model Architecture53

Our proposed EvidenceMoE framework is designed to jointly estimate the fluorescence probe depth54

and fluorescence lifetime directly from raw time-resolved fluorescence image sequences. The55

framework targets biological samples in which the fluorescent inclusion is located at depths of 1–556

mm beneath the tissue surface. Subsequent subsections will provide descriptions of the specialized57

expert networks, the Evidence-Based Dirichlet Critics (EDCs), and the Decider network.58
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2.1 High-Level Overview and Signal Flow59

EvidenceMoE model, illustrated in Figure 1 (c), processes an input time-resolved fluorescence images60

through a sequence of specialized, interconnected modules. Each input signal is represented as a61

vector x ∈ RL, where L denotes the total number of discrete time bins capturing the temporal62

distribution of detected photons for the respective pixel.63

Expert pathways The framework utilizes three parallel expert pathways, each tailored to different64

aspects of the signal: (1) an Early Expert Ee, (2) a Late Expert El, and (3) a Global Expert Eg . Each65

pathway is specialized to extract information from distinct temporal regions of the fluorescence decay66

and to produce auxiliary predictions.67

Critic pathways Each expert is paired with a dedicated critic that evaluates the reliability of the68

expert’s auxiliary prediction, quantifies uncertainty, and generates a corrective residual, to account69

for the stochasticity inherent in photon transport and signal noise in scattering media.70

Decider network The final module adaptively fuses corrected expert predictions, critic-derived quality71

scores, and global contextual features of entire signal into a single robust estimate of fluorescence72

depth and lifetime.73

2.2 Physics-Guided Mixture-of-Experts: Temporal Specialization74

Our proposed MoE architecture leverages the understanding that early-arriving photons in the75

FLiDAR images are predominantly correlated with the target depth, whereas the decay characteristics76

of the later portion of the time-resolved images are more significantly influenced by the material’s77

intrinsic fluorescence lifetime. Consequently, each expert network processes a designated portion of78

the input (cf. Figure 1(b)).79

Architecture details Each expert shares a common backbone, as detailed in Appendix C: 1D80

convolutional layers to capture local temporal features, a transformer encoder to model long-range81

dependencies, an attention pooling mechanism to extract a compact feature vector ϕk ∈ RH , and82

multi-layer perceptron (MLP) head generates the final prediction yaux,k.83

2.3 Evidence-Based Dirichlet Critics (EDCs)84

Each EDC is paired with a specific expert and receives a rich input representation that includes both85

the expert’s pooled internal feature vector and its auxiliary prediction. These are concatenated into a86

single input vector, allowing the critic to consider both the latent activations and initial predictions87

when evaluating reliability.88

Architecture details. Given an expert’s pooled features and auxiliary prediction, concatenated as89

zk = concat(ϕk, yaux,k) where zk ∈ RH+Dk , the critic applies a shared MLP backbone followed by90

two heads. The first, an evidence head, that estimates the parameters {αk,d, βk,d} of independent91

Beta distributions, modeling the uncertainty associated with each output dimension. The second, a92

correction head, produces a residual vector ∆k ∈ RDk , which is used to refine the expert’s auxiliary93

output.94

Critic score. In the absence of direct supervision, training the evidence head requires a proxy for an95

expert’s prediction quality. For each dimension d, the target score is given by96

qtarget
k,d =

1

1 + κ · MAEk,d
with MAEk,d =

1

N

N∑
i=1

∣∣∣y(i)aux,k,d − y
(i)
true,k′,d

∣∣∣ , (1)

where N represents the batch size and κ is a scaling hyperparameter controlling sensitivity. This97

formulation enables the critic to learn a continuous notion of reliability directly grounded in the98

expert’s observed performance.99

3 Decider Network: Adaptive and Informed Fusion100

The Decider architecture (F , parameterized by θF ), illustrated in Figure 1 (c), consists of a gating101

mechanism and a fusion layer.102

Architecture details. The network employs a gating mechanism that assigns dynamic weights103

to the early, late, and global experts through a two-layer MLP with sigmoid activation: w =104

σ(Wg2 · ReLU(Wg1ugate + bg1) + bg2), where (Wg1, bg1,Wg2, bg2) are learnable parameters within105

F that determine the relative influence of each expert branch. The gated expert contributions are106

computed as ygated = [yaux,e · we, yaux,l · wl, yaux,g,d · wg, yaux,g,l · wg] ∈ RDexperts and concatenated107

with the decider feature ϕg . This combined vector is passed through a linear fusion layer to produce108

the raw 2D output: yraw = Hfus(concat(ygated, ϕg); θF ). Finally, the raw output yraw is transformed109

via a tanh activation to yield the final predictions for depth yd and fluorescence lifetime yl.110
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4 Empirical Studies111

This section details empirical validation of the EvidenceMoE framework, highlighting the critical112

role of physics-guided temporal segmentation for accurate depth and lifetime measurement while113

managing photon stochasticity using EDCs. We evaluate the framework using both simulated datasets114

and experimental phantom data. For simulation studies, datasets were partitioned into 80% training,115

20% validation, and 100 test samples. Data generation is explained in detail in Appendix D, briefly to116

generate realistic FLiDAR data, we leveraged Monte Carlo (MC) simulation, a robust methodology117

for simulating photon transport in scattering biological tissues (18; 19), using the Monte Carlo118

eXtreme (MCX) tool (19) following established workflows (20; 21; 22).119

Performance of the Full EvidenceMoE Framework. In the evaluation of our proposed Evi-120

denceMoE model, we set the hyperparameter κ = 2 (see Equation 1) while training the EDCs.121

This parameter influences how prediction errors are translated into the target quality scores that122

the EDCs learn to predict. Our choice of κ = 2 was made to ensure a balanced and interpretable123

relationship between error and quality, where, for example, a 20% prediction error yields around a124

70% quality score. As reported in Table 2 (row Full model (κ = 2)), this framework demonstrates125

strong performance. The accuracy of these estimations is further illustrated in Figure 2, demon-126

strating lifetime predictions (Figure 2 b) exhibit high precision, closely aligning with the ground127

truth. While depth predictions (Figure 2 a) also show strong agreement, they display a slightly larger128

spread compared to lifetime; yet, the maximum depth errors remain small, around 0.07 cm (0.7129

mm), indicating a high degree of accuracy. Notably, the predicted depth quality scores (Figure 2130

c) average around 95%, while the lifetime quality scores (Figure 2 d) average around 96.5%. This131

observation suggests the slightly higher quality scores for lifetime correspond with its marginally132

better predictive precision compared to depth, underscoring the utility of the EDC-generated quality133

scores in reflecting prediction reliability. Beyond overall performance metrics, we conduct targeted134

evaluations and ablation studies (see subsection D.3) to validate that each architectural component135

performs its intended function according to our design principles.136

Leveraging Prior Knowledge from Physics for Expert Assignment The physics-guided design137

assigns each expert to distinct temporal segments of the FLiDAR signal: the Early expert focuses138

on initial photon arrivals (depth), while the Late Expert targets later decay characteristics (lifetime).139

Attention maps from each expert, visualized in Figure 3, confirm this specialization: the depth140

focused expert emphasizes the signal’s rising edge, while the fluorescence lifetime focused expert141

concentrates on the falling edge, validating that each expert captures specific features relevant to its142

task.143

The Challenge of Stochasticity. Accurate parameter estimation from FLiDAR signals in scattering144

media is complicated by the inherent stochasticity of photon transport, which introduces significant145

noise and variability. To explicitly account for the varying uncertainty in the expert output, het-146

eroscedastic loss was also used in isolated experts, our results (Table 2, Heteroscedastic experts only)147

show that this approach converges more slowly, requiring ∼500 epochs versus 70 for EvidenceMoE,148

and yields lower performance on depth estimation (D.NRMSE: 0.036 vs. 0.030). This demonstrates149

that, without dynamic expert assessment and fusion, basic uncertainty prediction alone is insuf-150

ficient to address the intricacies of FLiDAR signal analysis, motivating our more comprehensive151

EvidenceMoE architecture.

Figure 2: Performance results of EvidenceMoE model152

Experimental Validation. To bridge the gap between simulation and real-world application, we153

conducted experimental validation using a tissue-mimicking phantom The phantom was fabricated154
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from 1% agar to replicate tissue structure, with intralipid incorporated to induce scattering properties155

analogous to biological tissue. Five capillary tubes, filled with a 10 µM concentration of the near-156

infrared fluorophore Alexa Fluor 700 (AF700), were embedded within the phantom. The tubes157

were arranged in a stepwise depth configuration, with each subsequent tube placed 1 mm deeper158

than the last, creating a controlled ground truth for depth assessment as shown in Figure 1 (d). Our159

model achieved depth estimation errors ≤ 0.09 cm and lifetime errors ≤ 0.13 ns across all inclusions160

(Table 1). Using optical coherence tomography (OCT) as a validation benchmark for depth, we161

confirmed that our method could localize all five buried inclusions, whereas OCT itself visualized162

only the shallowest target within it’s limit of 2mm resolution in highly scattering media.

Tube Number Predicted Depth Actual Depth Lifetime*
1 0.11 cm ± 0.05 0.09 cm 0.87 ns ± 0.03
2 0.18 cm ± 0.06 0.17 cm 0.87 ns ± 0.02
3 0.26 cm ± 0.08 0.27 cm 0.87 ns ± 0.02
4 0.37 cm ± 0.09 0.37 cm 0.88 ns ± 0.03
5 0.53 cm ± 0.11 0.47 cm 0.88 ns ± 0.06

*While the manufacturer’s reported lifetime for Alexa Fluor 700 dye is ≈ 1 ns in solution (23), in
scattering media, with a traditional least squares solver estimating it at 0.9 ns.

Table 1: Experimental validation results of EvidenceMoE framework on tissue-mimicking phantom
with stepwise depth configuration.

163 Implementation for Real-Time Inference. To evaluate its clinical feasibility, the EvidenceMoE164

framework was benchmarked on an NVIDIA H100 GPU with 80GB of HBM3 memory. The model165

processed a full 500×250 pixel frame in 1.375 seconds. Crucially, practical applications like tumor166

imaging often focus on a smaller region of interest (approximately 1/4 of the total field of view), which167

reduces latency to a sub-second timeframe suitable for near real-time feedback. This performance168

confirms a viable pathway for deploying the framework on dedicated hardware to support low-latency,169

uncertainty-aware surgical guidance.170

5 Conclusion and Discussion171

In this work, we introduced EvidenceMoE, a Mixture-of-Experts architecture that integrates physics-172

based prior knowledge with sequential data learning for time-resolved fluorescence imaging. Through173

ablation studies and validation on both Monte Carlo simulations and tissue-mimicking phantom174

experiments, we showed that EvidenceMoE achieves accurate depth and lifetime estimation. Notably,175

it could locate fluorescence probes at depths up to 5 mm in experimental scattering media, surpassing176

the ≈ 2mm limit of established optical methods such as Optical Coherence Tomography. These177

results highlight the clinical translation potential of EvidenceMoE for fluorescence-guided surgery,178

where precise depth and molecular information are essential for reliable tumor delineation and179

resection. In a nutshell, EvidenceMoE combines photophysics knowledge with Mixture-of-Experts180

learning to deliver accurate depth and lifetime estimates in time-resolved fluorescence imaging,181

enabling clinically translatable guidance. Moving forward, we will extend our study to ex vivo and182

in vivo samples to capture the complexity of biological tissues, and pursue embedded hardware183

implementations to satisfy real-time surgical constraints. This work represents a step toward depth-184

resolved, lifetime-enabled fluorescence imaging in the operating room, bridging physics, machine185

learning, and clinical needs.186
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NeurIPS Paper Checklist311

The checklist is designed to encourage best practices for responsible machine learning research,312

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove313

the checklist: The papers not including the checklist will be desk rejected. The checklist should314

follow the references and follow the (optional) supplemental material. The checklist does NOT count315

towards the page limit.316

Please read the checklist guidelines carefully for information on how to answer these questions. For317

each question in the checklist:318

• You should answer [Yes] , [No] , or [NA] .319

• [NA] means either that the question is Not Applicable for that particular paper or the320

relevant information is Not Available.321

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).322

The checklist answers are an integral part of your paper submission. They are visible to the323

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it324

(after eventual revisions) with the final version of your paper, and its final version will be published325

with the paper.326

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.327

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a328

proper justification is given (e.g., "error bars are not reported because it would be too computationally329

expensive" or "we were unable to find the license for the dataset we used"). In general, answering330

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we331

acknowledge that the true answer is often more nuanced, so please just use your best judgment and332

write a justification to elaborate. All supporting evidence can appear either in the main paper or the333

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification334

please point to the section(s) where related material for the question can be found.335

IMPORTANT, please:336

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",337

• Keep the checklist subsection headings, questions/answers and guidelines below.338

• Do not modify the questions and only use the provided macros for your answers.339

1. Claims340

Question: Do the main claims made in the abstract and introduction accurately reflect the341

paper’s contributions and scope?342

Answer: [Yes]343

Justification: The abstract and introduction accurately state the problem of FLiDAR signal344

analysis in scattering media. These claims match the experimental results provided later in345

the paper, in the empirical results section, specifically the ablation studies sections.346

Guidelines:347

• The answer NA means that the abstract and introduction do not include the claims348

made in the paper.349

• The abstract and/or introduction should clearly state the claims made, including the350

contributions made in the paper and important assumptions and limitations. A No or351

NA answer to this question will not be perceived well by the reviewers.352

• The claims made should match theoretical and experimental results, and reflect how353

much the results can be expected to generalize to other settings.354

• It is fine to include aspirational goals as motivation as long as it is clear that these goals355

are not attained by the paper.356

2. Limitations357

Question: Does the paper discuss the limitations of the work performed by the authors?358

Answer: [Yes]359

Justification: Future work needed for ex vivo/in vivo validation; current validation limited to360

simulated data and phantom experiments.361
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Guidelines:362

• The answer NA means that the paper has no limitation while the answer No means that363

the paper has limitations, but those are not discussed in the paper.364

• The authors are encouraged to create a separate "Limitations" section in their paper.365

• The paper should point out any strong assumptions and how robust the results are to366

violations of these assumptions (e.g., independence assumptions, noiseless settings,367

model well-specification, asymptotic approximations only holding locally). The authors368

should reflect on how these assumptions might be violated in practice and what the369

implications would be.370

• The authors should reflect on the scope of the claims made, e.g., if the approach was371

only tested on a few datasets or with a few runs. In general, empirical results often372

depend on implicit assumptions, which should be articulated.373

• The authors should reflect on the factors that influence the performance of the approach.374

For example, a facial recognition algorithm may perform poorly when image resolution375

is low or images are taken in low lighting. Or a speech-to-text system might not be376

used reliably to provide closed captions for online lectures because it fails to handle377

technical jargon.378

• The authors should discuss the computational efficiency of the proposed algorithms379

and how they scale with dataset size.380

• If applicable, the authors should discuss possible limitations of their approach to381

address problems of privacy and fairness.382

• While the authors might fear that complete honesty about limitations might be used by383

reviewers as grounds for rejection, a worse outcome might be that reviewers discover384

limitations that aren’t acknowledged in the paper. The authors should use their best385

judgment and recognize that individual actions in favor of transparency play an impor-386

tant role in developing norms that preserve the integrity of the community. Reviewers387

will be specifically instructed to not penalize honesty concerning limitations.388

3. Theory assumptions and proofs389

Question: For each theoretical result, does the paper provide the full set of assumptions and390

a complete (and correct) proof?391

Answer: [NA]392

Justification: The mathematical equations provided describe the model architecture, loss393

functions, and evaluation metrics rather than theoretical propositions.394

Guidelines:395

• The answer NA means that the paper does not include theoretical results.396

• All the theorems, formulas, and proofs in the paper should be numbered and cross-397

referenced.398

• All assumptions should be clearly stated or referenced in the statement of any theorems.399

• The proofs can either appear in the main paper or the supplemental material, but if400

they appear in the supplemental material, the authors are encouraged to provide a short401

proof sketch to provide intuition.402

• Inversely, any informal proof provided in the core of the paper should be complemented403

by formal proofs provided in appendix or supplemental material.404

• Theorems and Lemmas that the proof relies upon should be properly referenced.405

4. Experimental result reproducibility406

Question: Does the paper fully disclose all the information needed to reproduce the main ex-407

perimental results of the paper to the extent that it affects the main claims and/or conclusions408

of the paper (regardless of whether the code and data are provided or not)?409

Answer: [Yes]410

Justification: Section 4 provides experimental setup; Sections 8-9 detail model architecture411

and training methodology; Monte Carlo data generation fully described; GitHub implemen-412

tation provided.413

Guidelines:414
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• The answer NA means that the paper does not include experiments.415

• If the paper includes experiments, a No answer to this question will not be perceived416

well by the reviewers: Making the paper reproducible is important, regardless of417

whether the code and data are provided or not.418

• If the contribution is a dataset and/or model, the authors should describe the steps taken419

to make their results reproducible or verifiable.420

• Depending on the contribution, reproducibility can be accomplished in various ways.421

For example, if the contribution is a novel architecture, describing the architecture fully422

might suffice, or if the contribution is a specific model and empirical evaluation, it may423

be necessary to either make it possible for others to replicate the model with the same424

dataset, or provide access to the model. In general. releasing code and data is often425

one good way to accomplish this, but reproducibility can also be provided via detailed426

instructions for how to replicate the results, access to a hosted model (e.g., in the case427

of a large language model), releasing of a model checkpoint, or other means that are428

appropriate to the research performed.429

• While NeurIPS does not require releasing code, the conference does require all submis-430

sions to provide some reasonable avenue for reproducibility, which may depend on the431

nature of the contribution. For example432

(a) If the contribution is primarily a new algorithm, the paper should make it clear how433

to reproduce that algorithm.434

(b) If the contribution is primarily a new model architecture, the paper should describe435

the architecture clearly and fully.436

(c) If the contribution is a new model (e.g., a large language model), then there should437

either be a way to access this model for reproducing the results or a way to reproduce438

the model (e.g., with an open-source dataset or instructions for how to construct439

the dataset).440

(d) We recognize that reproducibility may be tricky in some cases, in which case441

authors are welcome to describe the particular way they provide for reproducibility.442

In the case of closed-source models, it may be that access to the model is limited in443

some way (e.g., to registered users), but it should be possible for other researchers444

to have some path to reproducing or verifying the results.445

5. Open access to data and code446

Question: Does the paper provide open access to the data and code, with sufficient instruc-447

tions to faithfully reproduce the main experimental results, as described in supplemental448

material?449

Answer: [Yes]450

Justification: The implementation of EvidenceMoE is publicly available on GitHub.451

(https://anonymous.4open.science/r/EvidenceMoE-4728/)452

Guidelines:453

• The answer NA means that paper does not include experiments requiring code.454

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/455

public/guides/CodeSubmissionPolicy) for more details.456

• While we encourage the release of code and data, we understand that this might not be457

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not458

including code, unless this is central to the contribution (e.g., for a new open-source459

benchmark).460

• The instructions should contain the exact command and environment needed to run to461

reproduce the results. See the NeurIPS code and data submission guidelines (https:462

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.463

• The authors should provide instructions on data access and preparation, including how464

to access the raw data, preprocessed data, intermediate data, and generated data, etc.465

• The authors should provide scripts to reproduce all experimental results for the new466

proposed method and baselines. If only a subset of experiments are reproducible, they467

should state which ones are omitted from the script and why.468
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• At submission time, to preserve anonymity, the authors should release anonymized469

versions (if applicable).470

• Providing as much information as possible in supplemental material (appended to the471

paper) is recommended, but including URLs to data and code is permitted.472

6. Experimental setting/details473

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-474

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the475

results?476

Answer: [Yes]477

Justification: We detail our experimental setup in Section 3.4 and Appendix, including data478

splits , optimizer, learning rates, batch sizes, epoch schedules, hyperparameter selection479

criteria, and evaluation protocols for both training and testing .480

Guidelines:481

• The answer NA means that the paper does not include experiments.482

• The experimental setting should be presented in the core of the paper to a level of detail483

that is necessary to appreciate the results and make sense of them.484

• The full details can be provided either with the code, in appendix, or as supplemental485

material.486

7. Experiment statistical significance487

Question: Does the paper report error bars suitably and correctly defined or other appropriate488

information about the statistical significance of the experiments?489

Answer: [Yes]490

Justification: We report each result accompanied by its standard deviation.491

Guidelines:492

• The answer NA means that the paper does not include experiments.493

• The authors should answer "Yes" if the results are accompanied by error bars, confi-494

dence intervals, or statistical significance tests, at least for the experiments that support495

the main claims of the paper.496

• The factors of variability that the error bars are capturing should be clearly stated (for497

example, train/test split, initialization, random drawing of some parameter, or overall498

run with given experimental conditions).499

• The method for calculating the error bars should be explained (closed form formula,500

call to a library function, bootstrap, etc.)501

• The assumptions made should be given (e.g., Normally distributed errors).502

• It should be clear whether the error bar is the standard deviation or the standard error503

of the mean.504

• It is OK to report 1-sigma error bars, but one should state it. The authors should505

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis506

of Normality of errors is not verified.507

• For asymmetric distributions, the authors should be careful not to show in tables or508

figures symmetric error bars that would yield results that are out of range (e.g. negative509

error rates).510

• If error bars are reported in tables or plots, The authors should explain in the text how511

they were calculated and reference the corresponding figures or tables in the text.512

8. Experiments compute resources513

Question: For each experiment, does the paper provide sufficient information on the com-514

puter resources (type of compute workers, memory, time of execution) needed to reproduce515

the experiments?516

Answer: [Yes]517

Justification: NVIDIA H100 GPU with 80GB HBM3 memory; processing time 1.375518

seconds for 500×250 pixel frame (Section 4).519
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Guidelines:520

• The answer NA means that the paper does not include experiments.521

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,522

or cloud provider, including relevant memory and storage.523

• The paper should provide the amount of compute required for each of the individual524

experimental runs as well as estimate the total compute.525

• The paper should disclose whether the full research project required more compute526

than the experiments reported in the paper (e.g., preliminary or failed experiments that527

didn’t make it into the paper).528

9. Code of ethics529

Question: Does the research conducted in the paper conform, in every respect, with the530

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?531

Answer: [Yes]532

Justification:533

Guidelines:534

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.535

• If the authors answer No, they should explain the special circumstances that require a536

deviation from the Code of Ethics.537

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-538

eration due to laws or regulations in their jurisdiction).539

10. Broader impacts540

Question: Does the paper discuss both potential positive societal impacts and negative541

societal impacts of the work performed?542

Answer: [Yes]543

Justification: Section 5 discusses clinical translation potential for fluorescence-guided544

surgery; addresses improved tumor delineation while acknowledging need for in vivo and ex545

vivo validation.546

Guidelines:547

• The answer NA means that there is no societal impact of the work performed.548

• If the authors answer NA or No, they should explain why their work has no societal549

impact or why the paper does not address societal impact.550

• Examples of negative societal impacts include potential malicious or unintended uses551

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations552

(e.g., deployment of technologies that could make decisions that unfairly impact specific553

groups), privacy considerations, and security considerations.554

• The conference expects that many papers will be foundational research and not tied555

to particular applications, let alone deployments. However, if there is a direct path to556

any negative applications, the authors should point it out. For example, it is legitimate557

to point out that an improvement in the quality of generative models could be used to558

generate deepfakes for disinformation. On the other hand, it is not needed to point out559

that a generic algorithm for optimizing neural networks could enable people to train560

models that generate Deepfakes faster.561

• The authors should consider possible harms that could arise when the technology is562

being used as intended and functioning correctly, harms that could arise when the563

technology is being used as intended but gives incorrect results, and harms following564

from (intentional or unintentional) misuse of the technology.565

• If there are negative societal impacts, the authors could also discuss possible mitigation566

strategies (e.g., gated release of models, providing defenses in addition to attacks,567

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from568

feedback over time, improving the efficiency and accessibility of ML).569

11. Safeguards570
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Question: Does the paper describe safeguards that have been put in place for responsible571

release of data or models that have a high risk for misuse (e.g., pretrained language models,572

image generators, or scraped datasets)?573

Answer: [NA]574

Justification: The model and data, as described, do not fall into the category of high-risk575

assets like large pretrained language models or image generators, nor does it involve scraped576

datasets that might pose inherent safety or privacy risks requiring specific release safeguards.577

The primary concern would be the scientific validity and interpretation of the model’s578

outputs, which is addressed through the general research methodology and validation.579

Guidelines:580

• The answer NA means that the paper poses no such risks.581

• Released models that have a high risk for misuse or dual-use should be released with582

necessary safeguards to allow for controlled use of the model, for example by requiring583

that users adhere to usage guidelines or restrictions to access the model or implementing584

safety filters.585

• Datasets that have been scraped from the Internet could pose safety risks. The authors586

should describe how they avoided releasing unsafe images.587

• We recognize that providing effective safeguards is challenging, and many papers do588

not require this, but we encourage authors to take this into account and make a best589

faith effort.590

12. Licenses for existing assets591

Question: Are the creators or original owners of assets (e.g., code, data, models), used in592

the paper, properly credited and are the license and terms of use explicitly mentioned and593

properly respected?594

Answer: [Yes]595

Justification: We credit the original creators of all external assets and provide full reference596

details for each.597

Guidelines:598

• The answer NA means that the paper does not use existing assets.599

• The authors should cite the original paper that produced the code package or dataset.600

• The authors should state which version of the asset is used and, if possible, include a601

URL.602

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.603

• For scraped data from a particular source (e.g., website), the copyright and terms of604

service of that source should be provided.605

• If assets are released, the license, copyright information, and terms of use in the606

package should be provided. For popular datasets, paperswithcode.com/datasets607

has curated licenses for some datasets. Their licensing guide can help determine the608

license of a dataset.609

• For existing datasets that are re-packaged, both the original license and the license of610

the derived asset (if it has changed) should be provided.611

• If this information is not available online, the authors are encouraged to reach out to612

the asset’s creators.613

13. New assets614

Question: Are new assets introduced in the paper well documented and is the documentation615

provided alongside the assets?616

Answer: [Yes]617

Justification: We accompany our new assets with full documentation: Appendix details the618

code modules and usage instructions for the EvidenceMoE framework, while the simulated619

dataset format, experimental data parameters, generation parameters, and data splits were620

specified; additionally, a structured README in the released repository covers installa-621

tion and licensing.622
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Guidelines:623

• The answer NA means that the paper does not release new assets.624

• Researchers should communicate the details of the dataset/code/model as part of their625

submissions via structured templates. This includes details about training, license,626

limitations, etc.627

• The paper should discuss whether and how consent was obtained from people whose628

asset is used.629

• At submission time, remember to anonymize your assets (if applicable). You can either630

create an anonymized URL or include an anonymized zip file.631

14. Crowdsourcing and research with human subjects632

Question: For crowdsourcing experiments and research with human subjects, does the paper633

include the full text of instructions given to participants and screenshots, if applicable, as634

well as details about compensation (if any)?635

Answer: [NA]636

Justification: This research does not involve crowdsourcing experiments or direct research637

with human subjects for data collection or experimentation. The FLiDAR data used for638

validation was generated through Monte Carlo simulations, as described in Section 4.1.639

Guidelines:640

• The answer NA means that the paper does not involve crowdsourcing nor research with641

human subjects.642

• Including this information in the supplemental material is fine, but if the main contribu-643

tion of the paper involves human subjects, then as much detail as possible should be644

included in the main paper.645

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,646

or other labor should be paid at least the minimum wage in the country of the data647

collector.648

15. Institutional review board (IRB) approvals or equivalent for research with human649

subjects650

Question: Does the paper describe potential risks incurred by study participants, whether651

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)652

approvals (or an equivalent approval/review based on the requirements of your country or653

institution) were obtained?654

Answer: [NA]655

Justification: The paper does not involve research with human subjects.656

Guidelines:657

• The answer NA means that the paper does not involve crowdsourcing nor research with658

human subjects.659

• Depending on the country in which research is conducted, IRB approval (or equivalent)660

may be required for any human subjects research. If you obtained IRB approval, you661

should clearly state this in the paper.662

• We recognize that the procedures for this may vary significantly between institutions663

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the664

guidelines for their institution.665

• For initial submissions, do not include any information that would break anonymity (if666

applicable), such as the institution conducting the review.667

16. Declaration of LLM usage668

Question: Does the paper describe the usage of LLMs if it is an important, original, or669

non-standard component of the core methods in this research? Note that if the LLM is used670

only for writing, editing, or formatting purposes and does not impact the core methodology,671

scientific rigorousness, or originality of the research, declaration is not required.672

Answer: [NA]673
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Justification: The core method development in this research focuses on the EvidenceMoE674

framework, a novel deep learning architecture for FLiDAR signal analysis. This research675

does not involve LLMs as any important, original, or non-standard components.676

Guidelines:677

• The answer NA means that the core method development in this research does not678

involve LLMs as any important, original, or non-standard components.679

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)680

for what should or should not be described.681
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A Principles of Time-Resolved FLiDAR, Photon Scattering, and Fluorescence682

Lifetime683

Fluorescence LiDAR (FLiDAR) is a specialized technique that extends LiDAR capabilities by684

analyzing light-induced fluorescence in scattering media, where LiDAR performance degrades685

by photon scattering. When photons from the laser pulse are absorbed by specific molecules686

(fluorophores) within the target material, these molecules transition to an excited electronic state.687

They subsequently relax to their ground state, partly by emitting photons, a process known as688

fluorescence (24; 7; 6). Time-resolved camera systems are designed to detect and temporally resolve689

this fluorescence emission. The characteristic rate at which the fluorescence intensity declines after690

excitation follows an exponential curve, and is termed the fluorescence lifetime (τ ). This lifetime is an691

intrinsic property of the fluorophore and is sensitive to its local chemical and structural environment692

(7; 24). Consequently, fluorescence lifetime serves as a useful contrast parameter with applications in693

biomedical diagnostics to differentiate tissue states (such as healthy or cancerous tissue (25)) or in694

environmental science for vegetation analysis (26).695

Accurately retrieving depth and fluorescence lifetime using FLiDAR in scattering media presents696

distinct challenges. Firstly, the laser pulse for excitation and basic ranging experiences scattering en697

route to the target (27; 28). Secondly, photons that are emitted by the target fluorophores will also698

propagate through the scattering medium to reach the time-resolved camera. During this transit, these699

fluorescence photons are subject to similar scattering processes. This additional scattering means that700

the temporal profile of the fluorescence decay, as recorded by the detector, is not solely governed701

by the intrinsic fluorescence lifetime of the molecule. Instead, the observed decay profile becomes702

a convolution of the intrinsic exponential decay with the temporal dispersion effects introduced by703

photon scattering within the medium.704

Therefore, the signal acquired by FLiDAR in such conditions is a composite, reflecting both the705

target’s range and its fluorescence decay properties, each distorted by scattering. Disentangling these706

convolved effects to estimate the true depth and the intrinsic fluorescence lifetime accurately requires707

sophisticated signal processing. Despite these complexities, specific temporal characteristics of the708

signal provide differential information:709

• Early photons: Early-arriving photons to the time-resolved camera, having statistically710

undergone fewer scattering events, correlate more strongly with the shortest path length to711

the target, thus primarily encoding depth information (14).712

• Late photons: The decay characteristics of the later portion of the signal are more signifi-713

cantly influenced by the fluorescence lifetime.714

B Background and Related Work715

Our proposed framework integrates concepts from Mixture-of-Experts, uncertainty quantification,716

and evidential reasoning, all applied to the specific challenges of interpreting time-resolved FLi-717

DAR images from scattering media. We briefly review these foundational areas and position our718

contributions within their context.719

B.1 Physics-Guided Inductive Biases for FLiDAR Temporal Segmentation720

With a finite training set, a model’s ability to generalize to new inputs depends on the preferences or721

assumptions it encodes, its inductive biases, which narrow the set of solutions consistent with the722

observed data(29). These inductive biases are the inherent assumptions within a model architecture723

that guide its learning process and ability to generalize from finite data (30). For complex data such as724

FLiDAR images from scattering media, where distinct temporal segments like early and late photon725

arrivals convey different physical information (14), the choice of inductive bias substantially impacts726

learning outcomes. An effective inductive bias guides the learning algorithm by incorporating domain727

knowledge about the signal, such as by structuring the model to process these physically meaningful728

segments differentially. This targeted approach constrains the hypothesis space, directing the model to729

focus on relevant features and relationships that align with known physical principles. Consequently,730

such guidance can lead to more efficient model training, including faster convergence and improved731

sample efficiency, as the model is steered away from learning spurious correlations, such as noise,732

ultimately enhancing its ability to interpret the underlying signal characteristics.733
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B.2 Mixture-of-Experts (MoE)734

Mixture-of-Experts (MoE) models (15; 16) implement a divide-and-conquer strategy by routing735

each input to a small subset of expert subnetworks via a gating network. In MoE, the gate selects736

experts through sparse routing to balance computation across the model. This paradigm has been737

applied to both multi-representation sensing and temporal forecasting. In LiMoE, features from738

range images, voxels, and point clouds are fused through an MoE layer for LiDAR perception in739

air (31). ME-ODAL applies MoE routing to 3D object detection in point clouds (32). Across these740

applications, expert specialization, where each expert learns a distinct function or handles a particular741

data subset, underpins model behavior (16).742

Existing temporal MoE methods process each sequence holistically, relying on auxiliary objectives743

(e.g., load balancing) to promote expert diversity and expecting the gate to infer segment relevance744

from raw inputs (33). Such approaches do not exploit known signal physics. Our Physics-guided745

MoE instead assigns one expert to each of the predefined temporal segments, reflecting the physics of746

photon transport. This segment-based assignment embeds an inductive bias: each expert models the747

dynamics specific to its interval.748

B.3 Limitations of Standard Uncertainty Quantification in Deep Learning749

The challenging nature of FLiDAR-based parameter estimation in scattering media, stemming from750

distorted and convolved signals, elevates the importance of providing reliable uncertainty estimates751

alongside deep learning predictions. Common approaches of uncertainty estimation include Monte752

Carlo Dropout (34), Deep Ensembles (35), and Bayesian Neural Networks (BNNs) (36). While753

effective, these methods can suffer from limitations (37): MC Dropout’s estimates may not always754

be well-calibrated; Deep Ensembles incur significant computational overhead during training and755

inference (35); and approximate inference in BNNs can be complex to implement and tune (38).756

Furthermore, these methods primarily capture aleatoric (data) uncertainty or epistemic (model)757

uncertainty (39; 40), but do not explicitly model the quality of a specific prediction based on input758

evidence and do not provide correction signals based on the uncertainty.759

B.4 Evidential Deep Learning760

Evidential Deep Learning (EDL) trains a deterministic network, for example, a stack of standard761

MLP layers, to output the parameters of a higher-order evidential distribution, rather than placing762

priors on weights as in BNNs with Bayesian layers (41; 42). Training of EDL models generally relies763

on loss functions that combine a negative log-likelihood term with regularizers (e.g. KL divergence764

to a noninformative prior or evidence penalties). Our Evidence-Based Dirichlet Critic (EDC) module765

acts as an evaluator for each expert. Inspired by actor-critic frameworks in reinforcement learning766

(43), though adapted for supervised regression, the critic assesses the actor’s (expert’s) output.767

C Detailed Model Architecture for Reproducibility768

C.1 Physics-Guided Mixture-of-Experts769

Figure 3: Visualization of Pooled Attention Weights Over Time for Both Depth and Lifetime Experts,
Computed Over a Batch Size of 512.
Each expert (Ek) k ∈ {e, l, g}, parameterized by θE = {θEe

, θEl
, θEg

}, shares a common internal770

architecture optimized for feature extraction, consisting of three main stages:771
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1. Hybrid CNN-Transformer Encoder: The input segment xk ∈Lk is initially processed772

by a sequence of 1D convolutional layers (kernel size K, with residual connections, Layer773

Normalization, and GELU activation). This allows the network to explicitly capture localized774

characteristics of the time resolved signal, such as:775

• The sharpness and timing of the initial rising edge related to photon arrival time (depth).776

• Local decay rates or changes in slope within short segments of the fluorescence tail777

(lifetime).778

• The presence and shape of small secondary peaks or instrumental response function779

artifacts within the window.780

This extraction of local waveform motifs precedes the subsequent components. The output of781

the CNN block is then augmented with sinusoidal Positional Encoding before being passed782

to a multi-layer Transformer encoder. The Transformer utilizes self-attention mechanisms783

to model long-range temporal dependencies and contextual relationships across the entire784

input segment xk. The encoder outputs a sequence of refined feature vectors henc
k ∈Lk×H ,785

where H is the hidden dimension size.786

2. Pooling Layer (fk): To obtain a fixed-size representation from the variable-length output787

sequence of the encoder, an Attention Pooling mechanism is employed. This layer learns788

attention weights over the time steps of henc
k and computes a weighted sum, producing a789

single feature vector ϕk ∈H . This vector summarizes the relevant information from the790

expert’s input segment.791

ϕk = AttentionPool(henc
k ; θEk

) (2)

3. Auxiliary Prediction Head (hk): A small Multi-Layer Perceptron (MLP) with non-linear792

activation ( ReLU) maps the pooled feature vector ϕk to the expert’s specific auxiliary793

prediction yaux,k (dimension Dk = 1 for early/late, Dk = 2 for global).794

yaux,k = hk(ϕk; θEk
) (3)

Role of Global Expert Features: Beyond its auxiliary prediction yaux,g, the pooled feature vector795

ϕg from the global expert serves a dual purpose. It acts as the primary source of global context for796

the downstream fusion mechanism within the Final Decider Head, informing the gating decisions.797

C.2 Evidence-Based Dirichlet Critics (EDC)798

To assess the reliability of each expert’s auxiliary prediction and provide a mechanism for refinement,799

we employ a dedicated critic network Ck for each expert k ∈ {e, l, g}, parameterized by θC =800

{θCe
, θCl

, θCg
}. We adopt the Evidential Deep Learning (EDL) framework (42) to enable the critics801

to quantify uncertainty in their quality assessments.802

Critic Input Features: To enable an informed reliability assessment by the critic Ck, we provide803

it with an input representation zk. This input concatenates the pooled feature vector ϕk from the804

expert’s encoder (Equation 2) with the expert’s auxiliary prediction yaux,k (Equation 3):805

zk = concat(ϕk, yaux,k) (4)

Critic Architecture: Each critic Ck utilizes an identical architecture comprising a shared MLP806

backbone (bk) followed by two separate linear heads:807

1. Shared Backbone (bk): The concatenated input zk is processed by a shared MLP backbone,808

bk. A relatively shallow architecture (two layers) with moderate hidden dimensions [32,809

16] is employed to keep the critic computationally lightweight while providing sufficient810

capacity to extract relevant features from the input zk. The backbone outputs a shared latent811

feature representation hk ∈16.812

hk = bk(zk; θCk
) (5)

2. Evidence Head (evik): A dedicated linear layer, evik, maps the shared features hk to the813

raw evidence outputs ek ∈2×Dk (one positive and one negative evidence value per output814

dimension Dk of the corresponding expert).815

ek = evik(hk; θCk
) (6)

To ensure the parameters of the resulting Beta/Dirichlet distribution are strictly positive816

and greater than one (required for a well-defined distribution and stable calculation of817
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variance and KL divergence terms), the raw evidence is transformed using the softplus(x) =818

log(1 + ex) function followed by adding 1:819

αk,d = softplus(ek,pos,d) + 1 (7)
βk,d = softplus(ek,neg,d) + 1 (8)

For each dimension d = 1..Dk, where ek,pos and ek,neg are the corresponding slices of820

ek. The resulting αk,d, βk,d > 1 parameterize Dk independent Beta distributions. The821

total evidence Sk,d = αk,d + βk,d represents the precision or concentration parameter of822

the distribution, quantifying the amount of evidence gathered from the data supporting the823

quality prediction; a higher Sk,d indicates greater confidence (lower variance) in the quality824

estimate.825

3. Correction Head (corrk): A separate linear layer maps hk to the correction signal ∆k ∈Dk .826

∆k = corrk(hk; θCk
) (9)

The critic’s forward pass thus yields (αk, βk,∆k). The mean of the predicted Beta distribution serves827

as the point estimate for quality score qk:828

qk,d =
αk,d

αk,d + βk,d
(10)

These mean quality scores (specifically qe, ql, and the two components of qg, forming qfull ∈4) are829

utilized by the downstream decider head.830

C.3 Decider Network: Adaptive and Informed Fusion831

To synthesize the multiple, quality-assessed predictions from the expert pathways into a unified832

estimation of depth and lifetime, the EvidenceMoE architecture incorporates a Decider network. The833

Decider architecture F , illustrated in Figure 1 (c) consists of a gating mechanism and a fusion layer.834

Gating mechanism for dynamic expert weighting A core component of the Decider is a learned835

gating network G. The gate’s decision w is informed by a concatenation of the corrected auxiliary836

predictions, ugate = concat(yaux,k, ϕg, qfull), the global decider feature, and the full quality scores837

qfull, a vector containing the mean quality scores derived from the EDCs for all relevant output838

dimensions of the experts. The gating network G outputs gating weights, we, wl, and wg for early,839

late, and global experts respectively.840

w = σ(Wg2 · ReLU(Wg1ugate + bg1) + bg2) (11)

where (Wg1, bg1,Wg2, bg2) are learnable parameters within F . These weights determine the relative841

influence of each expert branch.842

Fusion and final prediction843

The gated expert contributions are concatenated with the decider feature ϕg:844

ygated = [yaux,e · we, yaux,l · wl, yaux,g,d · wg, yaux,g,l · wg] ∈ RDexperts (12)

This vector of gated expert contributions, ygated, is then concatenated with the ϕg and passed through845

a final fusion layer (Hfus), a linear layer, to produce the raw 2D output yraw ∈ R2:846

yraw = Hfus(concat(ygated, ϕg); θF ) (13)
Finally, this raw output yraw is transformed via an tanh activation to yield the final predictions for847

depth yd and fluorescence lifetime yl.848

C.4 Decider Head and Fusion Mechanism849

The final stage of the model is the Decider Head (F , parameterized by θF ), which performs a learned,850

context-aware fusion of the information streams originating from the three expert branches. This head851

utilizes a gating network (G) that processes the potentially corrected auxiliary predictions (yaux,k),852

the critics’ reliability estimates (qfull), and global contextual features (ϕg) to compute dynamic,853

input-dependent weights (w) for each expert branch. These weighted expert contributions are then854

combined with the global context in a subsequent fusion layer (Hfus) to generate the final, refined855

2D prediction yd, yl.856

Inputs to the Decider Head: The head receives three primary inputs per sample:857

1. Corrected Auxiliary Predictions (yaux): This is the set of auxiliary predictions from the858

experts, adjusted by the correction signals provided by the critics (Equation 9), yaux =859

{yaux,e ∈1, yaux,l ∈1, yaux,g ∈2}.860
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2. Decider Feature (ϕg): This is the pooled feature vector ϕg ∈H from the global expert’s861

encoder (Equation 2).862

3. Full Quality Scores (qfull): A vector containing the mean quality estimates derived from the863

Evidence Critics for all four quality dimensions: qfull = [qe, ql, qg,d, qg,l] ∈4 (Equation 10).864

Gating Network (G): The core of the fusion mechanism is a learned gating network G, designed865

to adaptively weight the contributions of the three expert branches based on the specific input866

characteristics. The gate’s decision is informed by the corrected predictions yaux, the global context867

ϕg , and the critics’ full quality assessments qfull. The combined input ugate is defined as:868

ugate = concat(yaux,k, ϕg, qfull) (14)
The gating network architecture consists of a two-layer MLP with a ReLU activation after the first869

layer and a final Sigmoid activation applied after the second layer (mapping to the 3 expert weights):870

w = σ(Wg2 · ReLU(Wg1ugate + bg1) + bg2) (15)
where σ(·) is the Sigmoid function, and (Wg1, bg1,Wg2, bg2) are learnable parameters within θF .871

Additionally, gating dropout may apply dropout to wg during training as a regularization technique.872

Applying Gates: The gating weights w modulate the corrected auxiliary predictions yaux,k:873

ygated,e = yaux,e · we (16)
ygated,l = yaux,l · wl (17)
ygated,g = yaux,g · wg (18)

Fusion Layer (Hfus): The gated expert contributions are concatenated with the decider feature ϕg874

and passed through a final linear fusion layer Hfus to produce the raw 2D output yraw:875

ygated_concat = [ygated,e, ygated,l, ygated,g] (19)
ufus = [ygated_concat, ϕdecider_fus] (20)
yraw = Hfus(ufus; θF ) (21)

D Training Methodology876

D.1 Realistic Data Generation877

For an AI model to perform reliably in real-world scenarios, especially in complex fields like medical878

imaging, it must be trained on data that closely mirrors experimental conditions. This section explains879

how we generated such realistic training data for our study on Fluorescence LiDAR (FLiDAR)880

in biological tissue. Our goal was to generate representative data that captures the nuances of881

how light travels through tissue and how our specific camera system detects it. The realistic data882

generation allows us to incorporate its experimentally determined Instrument Response Function883

(IRF), representing the system’s intrinsic temporal response to a laser pulse, and its documented noise884

profile into our data generation process (44; 45).885

This experimentally determined IRF represents the system’s intrinsic temporal response to a laser886

pulse, and we incorporate system’s documented noise profile into data generation flow. Using directly887

measured IRF is critical as it ensures that the temporal dispersion characteristics embedded in our888

simulated data faithfully replicate those of the imaging apparatus. Similarly, integrating the camera’s889

documented noise profile is essential for ensuring that our simulations’ stochastic variations and890

statistical fidelity of photon counts accurately reflect those of the physical sensor.891

Furthermore, to realistically model the complex interactions of light within the tissue, we utilized892

Monte Carlo (MC) simulations, a well-established and robust methodology in biomedical optics893

for simulating photon transport in scattering media (18; 19). Our simulations were performed894

using Monte Carlo eXtreme (MCX) (19), adopting a two-stage approach to generate time-resolved895

fluorescence signals. The MC data generation workflow is further detailed in (20; 21). Moreover,896

given that the noise profile of the specific time-resolved camera was also characterized and its897

parameters defined in the camera’s documentation, we introduced these system-specific noises898

(photon (shot) noise, dark counts, afterpulsing, and read noise) into the MCXLab-generated signals.899

By applying these characterized noise sources to the initial MCX simulation outputs and utilizing the900

noise-free and noise-integrated datasets, our training and validation procedures are grounded in data901

that realistically reflect the detector’s behavior.902
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D.2 Loss Function903

The model parameters, partitioned into expert (θE), critic (θC), and final head (θF ) groups, are904

concurrently trained by minimizing a composite, multi-component loss function Ltotal. This loss905

function is designed to achieve several simultaneous objectives: optimizing the final prediction906

accuracy (ypred), encouraging the experts to learn informative intermediate representations (ϕk) and907

generate reasonable auxiliary predictions (yaux,k), training the Evidence Critics to produce quality908

estimates (represented by αk, βk) and correction signals (∆k) that approximate the experts’ scaled909

residual errors (∆k ≈ (ytrue,k′ − yaux,k)/λdamp), and applying specific regularization terms (such910

as KL divergence for evidence and an evidence-weighted penalty for corrections). The overall loss is911

a weighted sum of these individual components:912

Ltotal = λpriLprimary + λauxLaux + λcrit_qLquality + λcorrLcorr + λpenLpenalty (22)
where the weights λ(·) are scalar hyperparameters controlling the relative importance of each term, as913

defined in the configuration. Each loss component is detailed below.914

Primary Loss (Lprimary): This is the main objective function driving the overall prediction task. It915

measures the discrepancy between the final fused prediction ypred ∈2 and the ground truth ytrue ∈2916

(containing depth and lifetime). We use the Mean Absolute Error (L1 loss):917

Lprimary = MAE(ypred, ytrue) =
1

Dout

Dout∑
j=1

Ebatch [|ypred,j − ytrue,j |] (23)

where Dout = 2 (depth and lifetime dimensions) and Ebatch denotes the expectation (mean) over the918

batch samples.919

Auxiliary Loss (Laux): To foster expert specialization and enhance training stability, an auxiliary loss920

term, Laux, provides direct supervision to each individual expert network Ek. This loss computes921

the L1 distance between the expert’s auxiliary prediction (yaux,e for depth, yaux,l for lifetime, yaux,g922

for both) and the corresponding ground truth targets (ytrue,k′ ). Enforcing this intermediate accuracy923

encourages each expert to learn representations directly relevant to its specific task domain (temporal924

segment and target variable).925

Laux =
1

Nexp

∑
k∈{e,l,g}

Ebatch[L1(yaux,k, ytrue,k′)] (24)

where Nexp = 3.926

Critic Quality Loss (Lquality): This loss component is responsible for training the evidence head927

parameters (α, β) of each Evidence Critic Ck. It employs the Evidential Deep Learning (EDL)928

formulation specifically to learn a calibrated predictive distribution (parameterized by αk, βk) over929

the quality score associated with the corresponding expert’s auxiliary prediction, yaux,k. The training930

objective aims to align the mean of this predicted distribution, qk = αk/(αk + βk), with a target931

quality score qgt,k derived from the expert’s actual error (Equation 26), while simultaneously using932

the evidential variance and KL divergence terms (Equations 27, 28) to ensure the distribution’s933

concentration (total evidence Sk = αk + βk) reflects the true uncertainty or reliability. The target934

quality qgt,k is calculated using the yaux,k:935

MAEk,d =
1

N

N∑
i=1

∣∣∣y(i)aux,k,d − y
(i)
true,k′,d

∣∣∣ (25)

qgt,k,d = (1 + κ · MAEk,d + ϵ)−1 (26)
where κ is the hyperparameter and ϵ prevents division by zero.936

The quality loss combines the Evidential Regression loss (Levi) and a KL divergence regularizer937

(LKL), summed over the four quality dimensions (k, d) corresponding to (early, depth), (late, lifetime),938
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(global, depth), (global, lifetime):939

Levi(α, β, qgt) = (qgt − α
α+β+ϵ )

2︸ ︷︷ ︸
MSE Term

+ αβ
(α+β+ϵ)2(α+β+1+ϵ)︸ ︷︷ ︸

Variance Term

(27)

LKL(α, β) = KL(Beta(α, β)||Beta(1, 1))
= lgamma(α+ β)− lgamma(α)− lgamma(β)

+ (α− 1)(𭟋(α)−𭟋(α+ β))

+ (β − 1)(𭟋(β)−𭟋(α+ β)) (28)

Lquality = Ebatch

∑
k,d

(
Levi(α

loss
k,d , βloss

k,d , qgt,k,d) + λKL max(0,LKL(α
loss
k,d , βloss

k,d ))
)
(29)

The Levi term drives the mean predicted quality towards the target while penalizing high confidence940

for incorrect predictions via the variance term. The LKL term regularizes the learned distribution,941

preventing collapse and encouraging uncertainty quantification. Gradients from Lquality only update942

critic parameters θC .943

Correction Loss (Lcorr): This loss component trains the correction head of each critic Ck to944

output a signal ∆k (Equation 9) that aims to reduce the error in the expert’s auxiliary prediction945

yaux,k. Specifically, it minimizes the Huber loss between the damped corrected prediction (yaux,k +946

λdamp∆k) and the ground truth target ytrue,k′ .947

Lcorr = Ebatch

 ∑
k∈{e,l,g}

Huber(yaux,k + λdamp∆k, ytrue,k′)

 (30)

This loss is calculated using the auxiliary predictions yaux,k and correction signals ∆k generated948

during the standard forward pass. Consequently, the gradients derived from Lcorr backpropagate to949

update both the critic parameters θCk
(through ∆k) and the expert parameters θEk

.950

Lcorr =
1

Nexp

∑
k∈{e,l,g}

Ebatch [Huber(yaux,k + λdamp∆k, ytrue,k′)] (31)

Evidence Penalty Loss (Lpenalty): To further regulate the correction mechanism and promote951

robustness, we use an evidence-weighted penalty term, Lpenalty. This loss component links the952

confidence of the critic’s quality assessment (as measured by the total evidence Sloss
k,d = αloss

k,d +βloss
k,d )953

to the magnitude of the correction signal ∆loss
k it proposes. The rationale is to discourage the critic954

from making large adjustments to the expert’s prediction when its own assessment of the expert’s955

quality is uncertain (i.e., when the evidence S is low). This is achieved by penalizing the squared L2956

norm of the correction signal, inversely weighted by the total evidence:957

Lpenalty = Ebatch

∑
k,d

γ
(∆loss

k,d )2

Sloss
k,d + ϵ

 (32)

where γ is the hyperparameter, the sum is over the relevant output dimensions (k, d), and ϵ ensures958

numerical stability. This loss is calculated using the parameters αloss, βloss,∆loss derived from the959

critic inputs (zlossk ), ensuring that its gradients only update the critic parameters θC . This evidence-960

aware regularization encourages more cautious corrections under uncertainty compared to standard961

L2 regularization on ∆k alone.962

D.2.1 Phased Training Strategy963

A three-phased training strategy was utilized to stabilize training.964

1. Phase 1 (Expert Pretraining): Initially, only the expert parameters (E) are trained for a set965

number of epochs (N1). Here, the primary learning signal comes from the auxiliary loss Laux966

(detailed in Appendix D) associated with each expert, while the critic (C) and decider (F )967

components remain frozen.968

2. Phase 2 (Critic and Decider Integration): In the second phase, the expert parameters (E) are969

frozen. The critic (C) and decider (F ) parameters are then trained for N2 epochs, utilizing the full970
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Table 2: Ablation studies for proposed model.
Configuration D.NRMSE ↓ D.AbsRel↓ D.RMSElog ↓ L.NRMSE(f) ↓ Q.Depth ↑ Q.Life ↑

Damping factor d = 0.5 0.032 ± 0.009 0.164 ± 0.160 0.170 ± 0.150 0.063 ± 0.023 0.954 ± 0.001 0.966 ± 0.007
Damping factor d = 1.0 0.034 ± 0.010 0.202 ± 0.240 0.189 ± 0.180 0.058 ± 0.018 0.952 ± 0.004 0.966 ± 0.006
Critic quality-loss λcq = 4 0.034 ± 0.011 0.150 ± 0.120 0.169 ± 0.130 0.071 ± 0.022 0.949 ± 0.003 0.962 ± 0.009
Phased training (1 / 6) 0.033 ± 0.009 0.171 ± 0.180 0.175 ± 0.150 0.064 ± 0.014 0.951 ± 0.002 0.964 ± 0.008
Phased training (5 / 15) 0.032 ± 0.008 0.153 ± 0.130 0.174 ± 0.140 0.058 ± 0.010 0.951 ± 0.003 0.962 ± 0.008
Phased training (3 / 8) 0.034 ± 0.009 0.153 ± 0.130 0.166 ± 0.130 0.059 ± 0.017 0.952 ± 0.002 0.968 ± 0.005
Phased training (10 / 10) 0.036 ± 0.013 0.198 ± 0.200 0.383 ± 0.520 0.083 ± 0.026 0.949 ± 0.000 0.963 ± 0.006
No evidential correction 0.035 ± 0.009 0.206 ± 0.240 0.193 ± 0.180 0.063 ± 0.018 0.951 ± 0.001 0.964 ± 0.007
No quality gating 0.032 ± 0.009 0.143 ± 0.110 0.167 ± 0.120 0.074 ± 0.028 0.950 ± 0.002 0.963 ± 0.009
No decider features 0.032 ± 0.006 0.160 ± 0.150 0.172 ± 0.140 0.077 ± 0.030 0.947 ± 0.001 0.959 ± 0.008
No decider fusion 0.034 ± 0.011 0.181 ± 0.180 0.179 ± 0.150 0.059 ± 0.015 0.953 ± 0.004 0.965 ± 0.006
No gating dropout 0.033 ± 0.007 0.169 ± 0.170 0.171 ± 0.150 0.072 ± 0.017 0.951 ± 0.001 0.961 ± 0.007
No phased training 0.031 ± 0.010 0.145 ± 0.120 0.159 ± 0.130 0.063 ± 0.023 0.948 ± 0.002 0.964 ± 0.008
Mean pooling 0.036 ± 0.010 0.170 ± 0.150 0.174 ± 0.140 0.069 ± 0.024 0.949 ± 0.006 0.968 ± 0.007
Heteroscedastic experts only 0.036 ± 0.011 0.139 ± 0.093 0.164 ± 0.110 0.063 ± 0.051 – –

Full model (κ = 2) 0.030 ± 0.007 0.140 ± 0.120 0.155 ± 0.120 0.074 ± 0.022 0.950 ± 0.003 0.965 ± 0.006

composite loss Ltotal (detailed in Appendix D) to learn how to evaluate the pre-trained experts971

and fuse their outputs.972

3. Phase 3 (Joint Training): Finally, all model parameters (E,C, F ) are jointly fine-tuned for the973

remaining N3 epochs using the complete loss function Ltotal. This phase incorporates a gradual974

unfreezing schedule for the expert learning rates.975

The specific number of epochs allocated to each phase (N1, N2, N3) was subject to variation in some976

experiments, as further detailed in the ablation studies (Table 2).977

D.3 Ablation Studies978

To evaluate the distinct contributions of its architectural elements and design choices, we conducted a979

series of ablation studies on the EvidenceMoE framework. These studies systematically assessed980

the impact of individual mechanisms on depth and lifetime estimation by creating model variants981

with specific components removed or altered. Key aspects investigated included the necessity of982

evidential correction, quality gating, decider features, and decider fusion. Additionally, we explored983

the influence of hyperparameter settings, phased training schedules, and pooling mechanisms. Each984

ablated configuration was evaluated on the same test dataset. Table 2 presents comprehensive ablation985

results for our primary model configuration with κ = 2, while Table 3 shows additional ablation986

studies conducted with κ = 8 to evaluate the sensitivity of our approach to this hyperparameter. The987

implementation of EvidenceMoE is publicly available on GitHub. 1.988

Table 3: Ablation study for κ = 8.

Configuration D.NRMSE ↓ D.AbsRel↓ D.RMSElog ↓ L.NRMSE(f) ↓ Q.Depth ↑ Q.Life ↑
Critic quality-loss λcq = 4 0.033 ± 0.011 0.146 ± 0.110 0.181 ± 0.130 0.058 ± 0.012 0.856 ± 0.025 0.900 ± 0.034
No evidential correction 0.036 ± 0.015 0.148 ± 0.100 0.182 ± 0.130 0.060 ± 0.011 0.859 ± 0.012 0.869 ± 0.044
No quality gating 0.033 ± 0.010 0.146 ± 0.110 0.176 ± 0.130 0.056 ± 0.012 0.868 ± 0.024 0.886 ± 0.031
No decider features 0.032 ± 0.011 0.146 ± 0.110 0.184 ± 0.130 0.067 ± 0.025 0.865 ± 0.014 0.892 ± 0.037
No decider fusion 0.035 ± 0.013 0.167 ± 0.160 0.182 ± 0.140 0.073 ± 0.015 0.828 ± 0.020 0.879 ± 0.022
Uniform gating 0.034 ± 0.010 0.157 ± 0.120 0.191 ± 0.150 0.066 ± 0.018 0.861 ± 0.021 0.879 ± 0.034
No gating dropout 0.041 ± 0.014 0.215 ± 0.180 0.373 ± 0.400 0.073 ± 0.022 0.865 ± 0.015 0.866 ± 0.029
No phased training 0.037 ± 0.015 0.181 ± 0.150 0.269 ± 0.260 0.076 ± 0.021 0.862 ± 0.007 0.890 ± 0.037
Mean pooling 0.034 ± 0.009 0.155 ± 0.130 0.173 ± 0.130 0.075 ± 0.027 0.818 ± 0.069 0.866 ± 0.058
No auxiliary MAE 0.037 ± 0.014 0.172 ± 0.130 0.234 ± 0.180 0.063 ± 0.018 0.850 ± 0.009 0.850 ± 0.034

Model trained with (κ = 8) 0.040 ± 0.013 0.216 ± 0.230 0.202 ± 0.180 0.055 ± 0.011 0.857 ± 0.023 0.896 ± 0.023
Full model (κ = 2) 0.030 ± 0.007 0.140 ± 0.120 0.155 ± 0.120 0.074 ± 0.022 0.950 ± 0.003 0.965 ± 0.006

1https://anonymous.4open.science/r/EvidenceMoE-4728/
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