
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Disturbance-based Discretization, Differentiable IDS Channel,
and an IDS-Correcting Code for DNA Storage

Anonymous Authors1

Abstract
Insertion, deletion, and substitution (IDS) error-
correcting codes have garnered increased atten-
tion with recent advancements in DNA stor-
age technology. However, a universal method
for designing tailored IDS-correcting codes
across varying channel settings remains under-
explored. We present an autoencoder-based ap-
proach, THEA-code, aimed at efficiently gen-
erating IDS-correcting codes for complex IDS
channels. In the work, a disturbance-based dis-
cretization is proposed to discretize the features
of the autoencoder, and a simulated differentiable
IDS channel is developed as a differentiable al-
ternative for IDS operations. These innovations
facilitate the successful convergence of the au-
toencoder, producing channel-customized IDS-
correcting codes that demonstrate commendable
performance across complex IDS channels, par-
ticularly in the realistic DNA storage channel.

1. Introduction
DNA storage, a method that uses the synthesis and sequenc-
ing of DNA molecules for information storage and retrieval,
has attracted significant attention (Church et al., 2012; Gold-
man et al., 2013; Grass et al., 2015; Erlich & Zielinski, 2017;
Organick et al., 2018; Dong et al., 2020; Chen et al., 2021;
El-Shaikh et al., 2022; Welzel et al., 2023).

Due to the involvement of biochemical procedures, the DNA
storage pipeline can be viewed as an insertions, deletions, or
substitutions (IDS) channel (Blawat et al., 2016) over 4-ary
sequences with the alphabet {A,T,G,C}. Consequently,
an IDS-correcting encoding/decoding method plays a key
role in DNA storage.

However, despite the existence of excellent combinatorial

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

IDS-correcting codes (Varshamov & Tenenholtz, 1965; Lev-
enshtein, 1965; Sloane, 2000; Mitzenmacher, 2009; Cai
et al., 2021; Gabrys et al., 2023; Bar-Lev et al., 2023), ap-
plying them in DNA storage remains challenging. The
IDS channel in DNA storage is more complex than those
studied in previous works, with factors such as inhomoge-
neous error probabilities across error types, base indices,
and even sequence patterns (Hirao et al., 1992; Press et al.,
2020; Blawat et al., 2016; Cai et al., 2021; Hamoum et al.,
2021). Additionally, most of the aforementioned combinato-
rial codes focus on correcting either a single error or a burst
of errors, whereas multiple independent errors within the
same DNA sequence are common in DNA storage.

Given the complexity of the IDS channel, we leverage
the universality of deep learning methods by employing a
heuristic end-to-end autoencoder (Baldi, 2012) as the foun-
dation for an IDS-correcting code. This approach enables
researchers to train customized codes tailored to various IDS
channels through a unified training procedure, rather than
manually designing specific combinatorial codes for each
IDS channel setting, many of which remain unexplored.

To realize this approach, two novel techniques are devel-
oped, which we believe offer greater contributions to the
communities than the code itself.

Firstly, the discretization effect of applying disturbance in
a non-generative model is investigated in this work. It is
observed that introducing disturbance to the logistic feature
forces the non-generative model to reduce the disturbance
caused indeterminacy by producing more confident logits,
thereby achieving discretization. This aligns with the dis-
crete codewords of an error-correcting code (ECC) in this
work, and provides an alternative approach for bridging the
gap between continuous models and discrete applications.

Secondly, a differentiable IDS channel using a transformer-
based model (Vaswani et al., 2017) is developed. The non-
differentiable nature of IDS operations presents a key chal-
lenge for deploying deep learning models that rely on gra-
dient descent training. To tackle this, a model is trained in
advance to mimic the IDS operations according to a given
error profile. It can serve as a plug-in module for the IDS
channel and is backpropagable within the network. This dif-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

THEA-Code: an IDS-Correcting Code for DNA Storage

ferentiable IDS channel has the potential to act as a general
module for addressing IDS or DNA-related problems us-
ing deep learning methods. For instance, researchers could
build generative models on this module to simulate the bio-
chemical processes involved in manipulating biosequences.

Overall, this work implements a heuristic end-to-end autoen-
coder as an IDS-correcting code, referred to as THEA-Code.
The encoder maps the source DNA sequence into a longer
codeword sequence. After introducing IDS errors to the
codeword, a decoder network is employed to reconstruct the
original source sequence from the codeword. During the
training of this autoencoder, disturbance-based discretiza-
tion is applied to the codeword sequence to produce one-hot-
like vectors, and the differentiable IDS channel serves as a
substitute for conventional IDS channel, enabling gradient
backpropagation.

To the best of our knowledge, this work presents the first
end-to-end autoencoder solution for an IDS-correcting code.
It introduces the disturbance-based discretization, and pro-
poses the first differentiable IDS channel. It is also the
first universal method for designing tailored IDS-correcting
codes across varying channel settings. Experiments across
multiple complex IDS channels, particularly in the realistic
DNA storage channel, demonstrate the effectiveness of the
proposed THEA-Code.

2. Related Works
Many established IDS-correcting codes are rooted in the
Varshamov-Tenengolts (VT) code (Varshamov & Tenen-
holtz, 1965; Levenshtein, 1965), including (Calabi & Hart-
nett, 1969; Tanaka & Kasai, 1976; Sloane, 2000; Cai et al.,
2021; Gabrys et al., 2023). These codes often rely on rigor-
ous mathematical deduction and provide firm proofs for their
coding schemes. However, the stringent hypotheses they use
tend to restrict their practical applications. Heuristic IDS-
correcting codes for DNA storage, such as those proposed
in (Pfister & Tal, 2021; Yan et al., 2022; Maarouf et al.,
2022; Welzel et al., 2023), usually incorporate synchro-
nization markers (Sellers, 1962; Srinivasavaradhan et al.,
2021; Haeupler & Shahrasbi, 2021), watermarks (Davey
& Mackay, 2001), or positional information (Press et al.,
2020) within their encoded sequences. Recently, directly
correcting errors in retrieved DNA reads without sequence
reconstruction has been investigated, demonstrating promis-
ing performance (Welter et al., 2024).

In recent years, deep learning methods have found increas-
ing applications in coding theory (Ibnkahla, 2000; Simeone,
2018; Akrout et al., 2023). Several architectures have been
employed as decoders or sub-modules of conventional codes
on the AWGN channel. In (Cammerer et al., 2017), the au-
thors applied neural networks to replace sub-blocks in the

conventional iterative decoding algorithm for polar codes.
Recurrent neural networks (RNN) were used for decoding
convolutional and turbo codes (Kim et al., 2018). Both
RNNs and transformer-based models have served as be-
lief propagation decoders for linear codes (Nachmani et al.,
2018; Choukroun & Wolf, 2022; 2023; 2024b;a;c). Hyper-
graph networks were also utilized as decoders for block
codes in (Nachmani & Wolf, 2019). Despite these advance-
ments, end-to-end deep learning solutions remain relatively
less explored. As mentioned in (Jiang et al., 2019), direct
applications of multi-layer perceptron (MLP) and convo-
lutional neural network (CNN) are not comparable to con-
ventional methods. To address this, the authors in (Jiang
et al., 2019) used deep models to replace sub-modules of
a turbo code skeleton, and trained an end-to-end encoder-
decoder model. Similarly, in (Makkuva et al., 2021), neural
networks were employed to replace the Plotkin mapping for
the Reed-Muller code. Both of these works inherit frame-
works from conventional codes and utilize neural networks
as replacements for key modules. In (Balevi & Andrews,
2020), researchers proposed an autoencoder-based inner
code with one-bit quantization for the AWGN channel. Con-
fronting challenges arising from quantization, they utilized
interleaved training on the encoder and decoder.

3. Disturbance-based Discretization
In this work, it is observed that introducing disturbance
to the categorical distribution feature produced by a non-
generative model causes the feature to resemble a one-hot
vector. Intuitively, the non-generative model may attempt to
reduce the indeterminacy introduced by the distrubance by
generating more confident logits.

Let x be the logits that produce the probabilities π =
{π1, π2, . . . , πk} via the softmax function,

πi =
expxi∑k
j=1 expxj

, i = 1, 2, . . . , k. (1)

In this work, the non-generative disturbance is introduced
to π by sampling from the Gumbel distribution (Gumbel,
1935). It follows the same formula as the Gumbel-Softmax,
which has been widely used in generative models for gen-
erating samples (Jang et al., 2017; Maddison et al., 2017;
Huijben et al., 2023). Specifically, the non-generative dis-
turbance is applied to x using the following formula:

GS(x)i =
exp ((xi + gi)/τ)∑k
j=1 exp ((xj + gj)/τ)

, i = 1, 2, . . . , k,

(2)
where g1, g2, . . . , gk are i.i.d. samples drawn from the Gum-
bel distribution G(0, 1) and τ is the temperature that con-
trols the entropy.

Applying GS(x) in a non-generative model is found to

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

THEA-Code: an IDS-Correcting Code for DNA Storage

induce the model to produce more confident logits x and,
consequently, probabilities π that resemble one-hot vectors,
as stated in Theorem 3.1.
Theorem 3.1. By introducing disturbance to a non-
generative autoencoder’s feature logits x via GS(x), the
autoencoder, upon non-trivial convergence, produces confi-
dent logits x, resulting in one-hot-like probabilities π.

Brief proof: For simplicity, the binary case is considered
as an example, with the temperature set to τ = 1. Let
x = (x1, x2) represent the logits outputted by the upstream
model, and let y = GS(x) denote the Gumbel-Softmax of
x, where

yi =
exp(xi + gi)

exp(x1 + g1) + exp(x2 + g2)
, i = 1, 2. (3)

Let L = f(y1, y2) be the optimization target of the model,
which represents the composite function of the downstream
model and the loss function.

The partial derivative of the optimization target with respect
to x1 is calculated using the chain rule:

∂L
∂x1

=
∂f

∂y1

∂y1
∂x1

+
∂f

∂y2

∂y2
∂x1

= y1y2

(
∂f

∂y1
− ∂f

∂y2

)
. (4)

The calculations for x2, y2 are analogous to those for x1, y1
and are omitted here and in the following text. It is known
that a model converges to a local minimum has a zero gra-
dient, thus according to Equation (4), when the model con-
verges, either y1, y2 or

∣∣∣ ∂f∂y1 − ∂f
∂y2

∣∣∣ should be zero or less
than a minimal value ϵ.

Consider the case where
∣∣∣ ∂f∂y1 − ∂f

∂y2

∣∣∣ < ϵ. Noting that
y2 = 1− y1, the partial derivative of L with respect to y1 is
given by∣∣∣∣ ∂L∂y1

∣∣∣∣ = ∣∣∣∣ ∂f∂y1 +
∂f

∂y2

∂y2
∂y1

∣∣∣∣ = ∣∣∣∣ ∂f∂y1 − ∂f

∂y2

∣∣∣∣ < ϵ. (5)

Since y1 is calculated by sampling a random variable as
described in Equation (3), either y1 remains constant with
respect to different gi, or Equation (5) holds for a variable
yi, in which case the downstream model degenerates into a
trivial model, as its optimization target becomes insensitive
to different inputs. The partial derivative of y1 with respect
to g1 is

∂y1
∂g1

= y1y2. (6)

If y1 is not sensitive to g1, either y1 or y2 should be zero or
less than a minimal value ϵ.

All the above cases indicate that the converged model should
have either y1 or y2 less than ϵ. Taking y1 < ϵ1 as an
example, it can be reformulated as

1

y1
= 1 + exp(x2 − x1 + g2 − g1) > M1, (7)

where M1 = 1/ϵ1. Since g1, g2 independently follow
the Gumbel distribution G(0, 1), whose probability density
function (PDF) is

fG(0,1)(x) = exp(−x) exp(− exp(−x)), (8)

the distribution of g2 − g1 can be calculated by convolution,
resulting in a logistic distribution Logistic(0, 1) with PDF

fLogistic(0,1)(x) =
exp(−x)

(1 + exp(−x))2
. (9)

Thus, the probability of 1/y1 being greater than M1 = 1/ϵ1
is

Pg2−g1

(
1

y1
> M1

)
= 1− M1 − 1

exp(x2 − x1) + (M1 − 1)
.

(10)
Letting this probability be greater than 1 − ϵ2, the x1, x2
should follow the restriction

exp(x2 − x1) > (M1 − 1)(M2 − 1), (11)

whereM2 = 1/ϵ2. This indicates that the upstream network
should produce confident logits x, as applying softmax to x
results in

π1 =
expx1

expx1 + expx2
<

1

(M1 − 1)(M2 − 1) + 1

<
2

M1M2
= 2ϵ1ϵ2, (12)

when ϵ1 + ϵ2 < 0.5.

Based on the above analysis, it can be inferred that a con-
verged model using the disturbance of Equation (2) on its
feature x instead of the vanilla softmax will constrain the
logits x to produce one-hot-like probability vectors.

4. Differentiable IDS Channel on 3-Simplex ∆3

It is evident that the operations of insertion and deletion
are not differentiable. Consequently, a conventional IDS
channel, which modifies a sequence by directly applying
IDS operations, hinders gradient propagation and cannot be
seamlessly integrated into deep learning-based methods.

Leveraging the logical capabilities inherent in transformer-
based models, a sequence-to-sequence model is employed
to simulate the conventional IDS channel. Built on deep
models, this simulated IDS channel is differentiable. In
the following discussion, we use the notation CIDS(·, ·) to
represent the Conventional IDS channel, and DIDS(·, ·; θ)
for the simulated Differentiable IDS channel. The simulated
channel is trained independently before being integrated
into the autoencoder, whose learned parameters remain fixed
during the optimization of the autoencoder.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

THEA-Code: an IDS-Correcting Code for DNA Storage

As the model utilizes probability vectors rather than discrete
letters, we need to promote conventional IDS operations
onto the 3-simplex ∆3, where ∆3 is defined as the collection
4-dimentional probability vectors

∆3 = {π|πi ≥ 0,

4∑
i=1

πi = 1, i = 1, 2, 3, 4}. (13)

For a sequence of probability vectors C =
(π1,π2, . . . ,πk), where each πi is an element from
the simplex ∆3, the IDS operations are promoted as
follows.

Insertion at index i involves adding a one-hot vector repre-
senting the inserted symbol from the alphabet {A,T,G,C}
before index i. Deletion at index i simply removes the
vector πi from C. For substitution, the probability vec-
tor πi is rolled by corresponding offsets for the three
types of substitutions (type-1, 2, 3). For example, apply-
ing a type-1 substitution at index i rolls the original vec-
tor πi = (πi1, πi2, πi3, πi4) into (πi4, πi1, πi2, πi3). It is
straightforward to verify that the promoted IDS operations
degenerate to standard IDS operations when the probability
vectors are constrained to a one-hot representation.

C

p

differentiable
DIDS(·, ·; θ)

conventional
CIDS(·, ·)

ĈDIDS

ĈCIDS

Figure 1: The differentiable IDS channel. The ĈDIDS and
ĈCIDS are generated by the differentiable and conventional
IDS channels, respectively. Optimizing the difference be-
tween ĈDIDS and ĈCIDS trains the differentiable channel.

As illustrated in Figure 1, both the conventional IDS chan-
nel CIDS and the simulated IDS channel DIDS take the
sequence C of probability vectors and an error profile p
as their inputs. The error profile consists of a sequence
of letters that record the types of errors encountered while
processing C. Complicated IDS channels can be deduced
by specifying the rules for generating error profiles. The
probability sequence C is expected to be modified by the
simulated IDS channel to ĈDIDS = DIDS(C,p; θ) ac-
cording to the error profile p in the upper stream of Fig-
ure 1. In the lower stream, the sequence C is modified as
ĈCIDS = CIDS(C,p) with respect to the error profile p
using the previously defined promoted IDS operations.

To train the model DIDS(·, ·; θ), the Kullback–Leibler di-
vergence (Kullback, 1997) of ĈDIDS from ĈCIDS can be

utilized as the optimization target

LKLD(ĈDIDS, ĈCIDS) =
1

k

∑
i

π̂TiCIDS log
π̂iCIDS

π̂iDIDS
.

(14)
By optimizing Equation (14) on randomly generated proba-
bility vector sequences C and error profiles p, the param-
eters θ of the differentiable IDS channel are trained to θ̂.
Following this, the model DIDS(·, ·; θ̂) simulates the con-
ventional IDS channel CIDS(·, ·). The significance of such
an IDS channel lies in its differentiability. Once optimized
independently, the parameters of the IDS channel are fixed
for downstream applications. In the following text, we use
DIDS(·, ·) to refer to the trained IDS channel for simplicity.

In practice, the differentiable IDS channel is implemented as
a sequence-to-sequence model, employing one-layer trans-
formers for both its encoder and decoder1. The model takes
a padded vector sequence and error profile, whose embed-
dings are concatenated along the feature dimension as its
input. To generate the output, that represents the sequence
with errors, learnable position embedding vectors are uti-
lized as the queries (omitted from Figure 1).

5. THEA-Code
5.1. Framework

The flowchart of the proposed code is illustrated in Fig-
ure 2. Based on the principles of DNA storage, which
synthesizes DNA molecules of fixed length, the proposed
model is designed to handle source sequences and code-
words of constant lengths. Essentially, the proposed method
encodes source sequences into codewords; the IDS channel
introduces IDS errors to these codewords; and a decoder is
employed to reconstruct the sink sequences according to the
corrupted codewords.

Let fen(·;ϕ) denote the encoder, where ϕ represents the en-
coder’s parameters. The source sequence s is first encoded
into the codeword c = fen(s;ϕ) by the encoder2, where
the codeword c is obtained using Equation (2) during the
training phase and argmax during the testing phase. Next,
a random error profile p is generated, which records the
positions and types of errors that will occur on codeword c.
Given the error profile p, the codeword c is transformed into
the corrupted codeword ĉ = DIDS(c,p; θ̂) by the simulated
differentiable IDS channel, implemented as a sequence-to-
sequence model with trained parameters θ̂. Finally, a de-

1Here, the encoder and decoder refer specifically to the mod-
ules of the sequence-to-sequence model, not the modules of the
autoencoder. We trust that readers will be able to distinguish
between them based on the context.

2For simplicity, we do not distinguish between notations for
sequences represented as letters, one-hot vectors, or probability
vectors in the following text.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

THEA-Code: an IDS-Correcting Code for DNA Storage

coder fde(·;ψ) with parameters ψ decodes the corrupted
codeword ĉ back into the sink sequence ŝ = fde(ĉ;ψ).

Following this pipeline, a natural optimization target is the
cross-entropy loss

LCE(ŝ, s) = −
∑
i

∑
j

1j=si log ŝij , (15)

which evaluates the reconstruction disparity of the source
sequence s by the sink sequence ŝ.

However, merely optimizing such a loss function will not
yield the desired outcomes. While the encoder and decoder
of an autoencoder typically collaborate on a unified task
in most applications, in this work, we expect them to fol-
low distinct underlying logic. Particularly, when imposing
constraints to enforce greater discreteness in the codeword,
the joint training of the encoder and decoder resembles a
chicken-and-egg dilemma, where the optimization of each
relies on the other during the training phase.

5.2. Auxiliary reconstruction of source sequence by the
encoder

To address the aforementioned issue, we introduce a supple-
mentary task exclusively for the encoder, aimed at initializ-
ing it with some foundational logical capabilities. Inspired
by the systematic code which embed the input message
within the codeword, a straightforward task for the encoder
is to replicate the input sequence at the output, ensuring that
the model preserves all information from its input without
reduction. With this in mind, we incorporate a reconstruc-
tion task into the encoder’s training process.

In practice, the encoder is designed to output a longer se-
quence, which is subsequently split into two parts: the code-
word representation c and a auxiliary reconstruction r of the
input source sequence, as shown in Figure 2. The auxiliary
reconstruction loss is calculated using the cross-entropy loss
as

LAux(r, s) = −
∑
i

∑
j

1j=si log rij , (16)

which quantifies the difference between the reconstruction
r and the input sequence s.

Considering that the auxiliary loss may not have negative
effects on the encoder for its simple logic, we don’t use
a separate training stage for optimizing the LAux. The
auxiliary loss defined in Equation (16) is incorporated into
the overall loss function and applied consistently throughout
the entire training phase.

5.3. The encoder and decoder

In this approach, both the encoder and decoder are imple-
mented using transformer-based sequence-to-sequence mod-

els. Each consists of (3+3)-layer transformers with sinu-
soidal positional encoding. The embedding of the DNA
bases is implemented through a fully connected layer with-
out bias to ensure compatibility with probability vectors.
Learnable position index embeddings are employed to query
the outputs.

5.4. Training phase

The training process is divided into two phases. Firstly, the
differentiable IDS channel is fully trained by optimizing

θ̂ = argmin
θ

LKLD(ĈDIDS, ĈCIDS) (17)

on randomly generated codewords c and profiles p. Once
the differentiable IDS channel is trained, its parameters are
fixed. The remaining components of the autoencoder are
then trained by optimizing a weighted sum of Equation (15)
and Equation (16),

ϕ̂, ψ̂ = argmin
ϕ,ψ

LCE(ŝ, s) + µLAux(r, s), (18)

where µ is a hyperparameter representing the weight of the
auxiliary reconstruction loss. The autoencoder is trained on
randomly generated input sequences s and profiles p.

5.5. Testing phase

In the testing phase, the differentiable IDS channel is re-
placed with the conventional IDS channel. The process
begins with the encoder mapping the source sequence s
to the codeword c in the form of probability vectors. An
argmax function is then applied to convert c into a discrete
letter sequence, removing any extra information from the
probability vectors. Next, the conventional IDS operations
are performed on ĉ = CIDS(c,p) according to a randomly
generated error profile p. The one-hot representation of ĉ
is then passed into the decoder, which reconstructs the sink
sequence ŝ. Finally, metrics are computed to measure the
differences between the original source sequence s and the
reconstructed sink sequence ŝ, providing an evaluation of
the method’s performance.

Since the sequences are randomly generated from an enor-
mous pool of possible terms, the training and testing sets
are separated using different random seeds. For example, in
the context of this work, the source sequence is a 100-long
4-ary sequence, providing 1.6 × 1060 possible sequences.
Given this vast space, sets of randomly generated sequences
using different seeds are unlikely to overlap.

6. Experiments and Ablation Study
Commonly used methods for synthesizing DNA molecules
in DNA storage pipelines typically yield sequences of

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

THEA-Code: an IDS-Correcting Code for DNA Storage

s

source

Encoder

r

auxiliary reconstruction

c

codeword

GS

p
random error profile

Differentiable
IDS

Channel

ĉ

corrupted
codeword

Decoder
ŝ

sink

Figure 2: The flowchart of THEA-Code, including the encoder, the pretrained IDS channel, and the decoder. All of these
modules are implemented using transformer-based models.

lengths ranging from 100 to 200 (Welter et al., 2024). In this
study, we choose the number 150 as the codeword length,
aligning with these established practices. Unless explicitly
stated otherwise, all the following experiments adhere to the
default setting: source sequence length ℓs = 100, codeword
length ℓc = 150, auxiliary loss weight µ = 1, and the error
profile is generated with a 1% probability of errors occurring
at each position, with insertion, deletion, and substitution
errors equally likely.

To evaluate performance, the nucleobase error rate (NER) is
employed as a metric, analogous to the bit error rate (BER),
but replacing bits with nucleobases. For a DNA sequence s
and its decoded counterpart ŝ, the NER is defined as

NER(s, ŝ) =
#{si ̸= ŝi}

#{si}
. (19)

The NER represents the proportion of nucleobase errors
corresponding to base substitutions in the source DNA se-
quence. It’s worth noting that these errors can be post-
corrected using a mature conventional outer code.

The source code is uploaded at https://anonymous.
4open.science/r/THEACode, and will be made pub-
licly accessible upon the manuscript’s publication.

6.1. Effects of the disturbance-based discretization

The ablation study on utilizing the disturbance-based dis-
cretization was conducted analyzing the discreteness of the
codewords. During training, the entropy of the codewords

H(π) = −
k∑
i=1

πi log πi (20)

was recorded. This entropy measures the level of discrete-
ness in the codewords. Lower entropy implies a distribution
that is closer to a one-hot style probability vector, which
indicates greater discreteness. In addition to entropy, two
other metrics were also recorded, as they are the reconstruc-
tion loss LCE and the NER. The results, plotted in Figure 3,
compare the default disturbance setting (Gumbel-Softmax)
against a vanilla softmax approach.

(a) Gumbel-Softmax

(b) vanilla softmax

Figure 3: The reconstruction loss, codeword entropy, and
validation NER comparing the Gumbel-Softmax setting
against a vanilla softmax approach. 5 runs were recorded.

The first column of Figure 3 indicates that using disturbance
marginally increases the reconstruction loss LCE in the con-
tinuous mode, which is expected since Gumbel-Softmax
introduces additional noise into the system. When compar-
ing the average entropy H of the learned codeword, apply-
ing disturbance-based discretization significantly reduces
the entropy, suggesting that the codewords behave more
like one-hot vectors. The NER is calculated in the discrete
mode by replacing the softmax with an argmax operation
on the codewords. The third column clearly shows that
when codewords are closer to a one-hot style, the model is
more consistent between the continuous and discrete modes,
leading to better performance during the testing phase.

The hyperparameter optimization of the Gumbel-Softmax
temperature τ is presented in Appendix B.

6.2. Performance with different channel settings

The code rate is the proportion of non-redundant data in
the codeword, calculated by dividing the source length ℓs
by the codeword length ℓc. We explored variable source
lengths ℓs while keeping the codeword length ℓc = 150
fixed. The results in Table 1 reveal a trend that the NER
increases from 0.09% to 2.81% as the code rate increases
from 0.33 to 0.83.

6

https://anonymous.4open.science/r/THEACode
https://anonymous.4open.science/r/THEACode


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

THEA-Code: an IDS-Correcting Code for DNA Storage

Table 1: The testing NER for different source lengths ℓs.

ℓs 50 75 100 125
code rate 0.33 0.50 0.67 0.83

NER(%) 0.09 0.46 1.06 2.81

By applying an outer conventional ECC to address the re-
maining NER, which is a common technique in DNA stor-
age (Press et al., 2020; Pfister & Tal, 2021; Yan et al., 2022;
Welzel et al., 2023), a complete solution for DNA storage is
achieved. Here, the IDS-correcting code is focused.

By controlling the generation process of the error profile
p for different channel settings, we can evaluate whether
THEA-Code learns channels’ attributes and produces cus-
tomized codes based on the models’ performance.

Results on IDS channels with position related errors.
Along with the default setting, where error rates are position-
insensitive (denoted as Hom), two other IDS channels pa-
rameterized by ascending (Asc) and descending (Des) error
rates along the sequence are considered3. The Asc channel
has error rates increasing from 0% to 2% along the sequence,
with the average error rate matching that of the default set-
ting Hom. The Des channel follows a similar pattern but
has decreasing error rates along the sequence.

To verify that the proposed method customizes codes for
different channels, cross-channel testing was conducted,
with the results shown in Table 2. The numbers in the matrix
represent the NER of a model trained with the channel of
the row and tested on the channel of the column.

Table 2: The testing NER across different channels. Each
entry represents the NER of a model trained (resp. tested)
on the channel specified by the row (resp. column) header.

NER(%) Asc Hom Des

Asc 0.90 1.46 2.09
Hom 1.03 1.15 1.30
Des 1.72 1.32 1.01

The diagonal of Table 2 shows the results of the model
trained and tested with a consistent channel, suggesting that
the learned THEA-Code exhibits varying performance de-
pending on the specific channel configuration. The columns
of Table 2 suggest that, for each testing channel, models
trained with the channel configuration consistently achieve
the best performance among the three channel settings. Con-
sidering the Hom channel is a midway setting between Asc
and Des, the first and third columns (and rows) show that
the more dissimilar the training and testing channels are, the

3These settings simplify DNA storage channels, as a DNA
sequence is marked with a 3’ end and a 5’ end. Some researchers
believe that the error rate accumulates towards the sequence end
during synthesis (Meiser et al., 2020).

worse the model’s performance becomes, even though the
overall error rates are the same across the three channels.
These findings verify that the deep learning-based method
effectively customizes codes for specific channels, which
could advance IDS-correcting code design into a more fine-
grained area.

Results on IDS channels with various IDS error rates.
IDS channels with larger error probabilities were also tested.
The experiments were extended to include channels with
error probabilities in {0.5%, 1%, 2%, 4%, 8%, 16%}, with
results listed in Table 3.

It is suggested that models trained on channels with higher
error probabilities exhibit compatibility with channels with
lower error probabilities. In most cases, models trained and
tested on similar channels achieve better performance.

Table 3: The testing NER across different IDS error proba-
bilities. The row and column headers correspond to channels
configured with respective probabilities of errors. Each en-
try represents the NER of a model trained (resp. tested) on
the channel specified by the row (resp. column) header.

NER(%) 0.5% 1% 2% 4% 8% 16%

0.5% 0.68 1.59 4.26 11.67 26.87 45.61
1% 0.52 1.15 2.9 8.12 21.19 41.03
2% 0.67 1.43 3.16 7.79 18.7 36.89
4% 1.25 1.76 2.88 5.53 12.39 28.31
8% 2.74 3.24 4.30 6.62 12.2 25.41

16% 11.57 11.93 12.61 14.4 17.22 25.51

Results on realistic IDS channels. We also conducted
experiments using IDS channels that more closely resemble
realistic IDS channels in DNA storage. A memory channel
was proposed in (Hamoum et al., 2021), relying on statistical
data obtained via Nanopore sequencing. It models the IDS
errors based on the k-mers of sequences and adjacent edits.
In this work, we utilize the publicly released trained memory
channel from (Hamoum et al., 2021), filtering out apperent
outlier sequences with Levenshtein distance greater than 20.
This simulated channel is referred to as MemSim.

In practice, a DNA sequence c is input into MemSim to pro-
duce the output sequence ĉ from the channel. By comparing
c and ĉ, an error profile p is inferred. Using the sequence c
and the error profile p in the procedure depicted in Figure 2,
an IDS-correcting code customized for MemSim is trained.

For comparison, two simple channels, partially aligned with
MemSim, were also considered. The overall IDS error rate
for MemSim is 10.36%, with the proportions of insertion,
deletion, and substitution being 1.66%, 5.31%, and 3.38%,
respectively. We refer to the context-free channel with these
specific error proportions as channel C253. Channel C111
is defined as having the same overall IDS error rate 10.36%,
but with equal proportions of insertion, deletion, and substi-

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

THEA-Code: an IDS-Correcting Code for DNA Storage

Table 4: The testing NER across different channels including C111, C253, and MemSim, under varying code rates. Each
entry represents the NER of a model trained (resp. tested) on the channel specified by the row (resp. column) header.

r = 0.33 r = 0.50 r = 0.67

NER(%) C111 C253 MemSim C111 C253 MemSim C111 C253 MemSim

C111 2.28 3.02 15.9 7.60 8.77 24.85 15.19 16.96 34.46
C253 2.73 2.93 17.3 9.15 9.13 25.09 16.87 16.90 32.86

MemSim 5.60 6.64 1.55 14.78 16.62 6.11 24.89 25.91 12.02

Table 5: The testing error rates compared with established code through channels including C111, C253, and MemSim,
under varying code rates.

r = 0.33 r = 0.50 r = 0.67

C111 C253 MemSim C111 C253 MemSim C111 C253 MemSim

Cai 17.01 17.52 72.74 29.00 29.57 74.40 40.12 42.62 73.90
DNA-LM 32.24 37.33 60.13 45.32 51.13 64.27 56.34 60.22 68.72
HEDGES 3.21 4.56 29.42 27.22 27.79 99.56 54.35 55.66 99.62

THEA-Code 2.28 2.93 1.55 7.60 9.13 6.11 15.19 16.90 12.02

tution. It is evident that MemSim is the closest approxima-
tion to a realistic channel, followed by C253, while C111
deviates the most from a realistic channel.

The results across channels, including C111, C253, and
MemSim, are presented in Table 4. The results suggest that
THEA-Code performs better when the model is trained on
the same channel used for testing. Specifically, for the real-
istic channel, codes trained on the simpler channels C253
and C111 fail to deliver satisfactory results. Overall, THEA-
Code trained and tested with MemSim achieves the best
results, demonstrating that the proposed model significantly
benefits from customizing the code for the realistic channel.

6.3. Comparison experiments

Table 6: The testing error rates compared with different
established codes, through the default 1% IDS channel.

code rate 0.33 0.50 0.6 0.67 0.75 0.83

Cai 0.44 1.00 - 2.53 - 8.65
DNA-LM 0.55 1.03 - 2.29 - 7.43
HEDGES 0.28 0.25 0.65 - 3.43 -

THEA-Code 0.09 0.46 - 1.06 - 2.81

Comparison experiments were conducted against prior
works include: the combinatorial code from (Cai et al.,
2021), the segmented code method DNA-LM from (Yan
et al., 2022), and the efficient heuristic method HEDGES
from (Press et al., 2020).

Such methods are typically designed to operate under dis-
crete, fixed configurations, making it challenging to align
them within the same setting. We made every effort to align
these methods, and present a subset of the comparison re-
sults in Table 6, which is tested through the default 1% error
channel. Detailed configurations and results across multiple
channels are provided in Appendix A.

Table 6 demonstrates the effectiveness of the proposed
method. The performance of THEA-Code and HEDGES
outperform the other methods by a large margin. At lower
code rates, THEA-Code achieves a comparable error rate
to HEDGES. At higher code rates, the proposed method
outperforms HEDGES, achieving a lower error rate at a
higher code rate, specifically 2.81% error rate at 0.83 code
rate for THEA-Code v.s. 3.43% error rate at 0.75 code rate
for HEDGES.

Comparison through the realistic channel. We also com-
pared these codes across the channels C111, C253, and
MemSim introduced in Section 6.2, all of which have an
overall channel error rate of 10.36%. Specifically, MemSim
simulates the IDS channel derived from Nanopore sequenc-
ing.

The results are illustrated in Table 5. It can be observed that
high-error-rate channels severely degrade the performance
of compared codes, while the proposed THEA-Code out-
performs them by a significant margin. Moreover, the com-
pared codes, lacking the ability to adapt to specific channels,
show a noticeable decline in performance as the channel
transitions from the simpler C111/C253 to the more realistic
MemSim. In contrast, THEA-Code leverages customized
channel-specific designs, achieving the best performance on
MemSim across all three channels.

6.4. More experiments in the Appendices

The gradients analysis of the differentiable IDS channel,
with regard to the input sequence and the profile sequence,
are presented in Appendix C. Ablation studies on the aux-
iliary reconstruction loss are presented in Appendix D, in-
cluding the optimization of the loss weight µ and different
auxiliary patterns. The complexity analysis and time con-
sumption are presented in Appendix E.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

THEA-Code: an IDS-Correcting Code for DNA Storage

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, Error-Correcting Code, and DNA
Storage. There are many potential societal consequences
of our work, none which we feel must be specifically high-
lighted here.

References
Akrout, M., Feriani, A., Bellili, F., Mezghani, A., and Hos-

sain, E. Domain generalization in machine learning mod-
els for wireless communications: Concepts, state-of-the-
art, and open issues. IEEE Communications Surveys &
Tutorials, 2023.

Baldi, P. Autoencoders, unsupervised learning, and deep
architectures. In Proceedings of ICML workshop on unsu-
pervised and transfer learning, pp. 37–49. JMLR Work-
shop and Conference Proceedings, 2012.

Balevi, E. and Andrews, J. G. Autoencoder-based error
correction coding for one-bit quantization. IEEE Transac-
tions on Communications, 68(6):3440–3451, 2020. doi:
10.1109/TCOMM.2020.2977280.

Bar-Lev, D., Etzion, T., and Yaakobi, E. On the size of balls
and anticodes of small diameter under the fixed-length
levenshtein metric. IEEE Transactions on Information
Theory, 69(4):2324–2340, 2023. doi: 10.1109/TIT.2022.
3227128.

Blawat, M., Gaedke, K., Hütter, I., Chen, X.-M., Turczyk,
B., Inverso, S., Pruitt, B. W., and Church, G. M. Forward
error correction for DNA data storage. Procedia Com-
puter Science, 80:1011 – 1022, 2016. ISSN 1877-0509.
International Conference on Computational Science 2016,
ICCS 2016, 6-8 June 2016, San Diego, California, USA.

Cai, K., Chee, Y. M., Gabrys, R., Kiah, H. M., and Nguyen,
T. T. Correcting a single indel/edit for DNA-based data
storage: Linear-time encoders and order-optimality. IEEE
Transactions on Information Theory, 67(6):3438–3451,
2021.

Calabi, L. and Hartnett, W. A family of codes for the
correction of substitution and synchronization errors.
IEEE Transactions on Information Theory, 15(1):102–
106, 1969.

Cammerer, S., Gruber, T., Hoydis, J., and Ten Brink, S.
Scaling deep learning-based decoding of polar codes via
partitioning. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pp. 1–6. IEEE, 2017.

Chen, W., Han, M., Zhou, J., Ge, Q., Wang, P., Zhang, X.,
Zhu, S., Song, L., and Yuan, Y. An artificial chromosome

for data storage. National Science Review, 8(5):nwab028,
02 2021. ISSN 2095-5138. doi: 10.1093/nsr/nwab028.

Choukroun, Y. and Wolf, L. Error correction code trans-
former. In Koyejo, S., Mohamed, S., Agarwal, A., Bel-
grave, D., Cho, K., and Oh, A. (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 38695–
38705. Curran Associates, Inc., 2022.

Choukroun, Y. and Wolf, L. Denoising diffusion error cor-
rection codes. In The Eleventh International Conference
on Learning Representations, 2023.

Choukroun, Y. and Wolf, L. A foundation model for error
correction codes. In The Twelfth International Conference
on Learning Representations, 2024a.

Choukroun, Y. and Wolf, L. Deep quantum error correc-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 64–72, 2024b.

Choukroun, Y. and Wolf, L. Learning linear block error
correction codes. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024c.

Church, G. M., Gao, Y., and Kosuri, S. Next-generation
digital information storage in DNA. Science, 337(6102):
1628–1628, 2012.

Davey, M. and Mackay, D. Reliable communication over
channels with insertions, deletions, and substitutions.
IEEE Transactions on Information Theory, 47(2):687–
698, 2001. doi: 10.1109/18.910582.

Dong, Y., Sun, F., Ping, Z., Ouyang, Q., and Qian, L. DNA
storage: research landscape and future prospects. Na-
tional Science Review, 7(6):1092–1107, 01 2020. ISSN
2095-5138. doi: 10.1093/nsr/nwaa007.

El-Shaikh, A., Welzel, M., Heider, D., and Seeger, B. High-
scale random access on DNA storage systems. NAR
Genomics and Bioinformatics, 4(1):lqab126, 01 2022.
ISSN 2631-9268. doi: 10.1093/nargab/lqab126.

Erlich, Y. and Zielinski, D. DNA Fountain enables a robust
and efficient storage architecture. Science, 355(6328):
950–954, 2017.

Gabrys, R., Guruswami, V., Ribeiro, J., and Wu, K. Beyond
single-deletion correcting codes: Substitutions and trans-
positions. IEEE Transactions on Information Theory, 69
(1):169–186, 2023. doi: 10.1109/TIT.2022.3202856.

Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeP-
roust, E. M., Sipos, B., and Birney, E. Towards practical,
high-capacity, low-maintenance information storage in
synthesized DNA. Nature, 494(7435):77–80, 2013. doi:
10.1038/nature11875.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

THEA-Code: an IDS-Correcting Code for DNA Storage

Grass, R. N., Heckel, R., Puddu, M., Paunescu, D., and
Stark, W. J. Robust chemical preservation of digital
information on DNA in silica with error-correcting codes.
Angewandte Chemie International Edition, 54(8):2552–
2555, 2015. doi: 10.1002/anie.201411378.

Gumbel, E. J. Les valeurs extrêmes des distributions statis-
tiques. In Annales de l’institut Henri Poincaré, volume 5,
pp. 115–158, 1935.

Haeupler, B. and Shahrasbi, A. Synchronization strings
and codes for insertions and deletions—a survey. IEEE
Transactions on Information Theory, 67(6):3190–3206,
2021.

Hamoum, B., Dupraz, E., Conde-Canencia, L., and Lavenier,
D. Channel model with memory for dna data storage
with nanopore sequencing. In 2021 11th International
Symposium on Topics in Coding (ISTC), pp. 1–5. IEEE,
2021.

Hirao, I., Nishimura, Y., Tagawa, Y.-i., Watanabe, K., and
Miura, K.-i. Extraordinarily stable mini-hairpins: Elec-
trophoretical and thermal properties of the various se-
quence variants of d (gcfaaagc) and their effect on dna
sequencing. Nucleic acids research, 20(15):3891–3896,
1992.

Huijben, I. A. M., Kool, W., Paulus, M. B., and van
Sloun, R. J. G. A review of the gumbel-max trick
and its extensions for discrete stochasticity in machine
learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):1353–1371, 2023. doi:
10.1109/TPAMI.2022.3157042.

Ibnkahla, M. Applications of neural networks to digital
communications–a survey. Signal Processing, 80(7):
1185–1215, 2000.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations, 2017.

Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., and
Viswanath, P. Turbo autoencoder: Deep learning based
channel codes for point-to-point communication channels.
In Advances in Neural Information Processing Systems,
pp. 2754–2764, 2019.

Kim, H., Jiang, Y., Rana, R. B., Kannan, S., Oh, S., and
Viswanath, P. Communication algorithms via deep learn-
ing. In International Conference on Learning Represen-
tations, 2018.

Kullback, S. Information theory and statistics. Courier
Corporation, 1997.

Levenshtein, V. I. Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet Physics. Doklady,
10:707–710, 1965.

Maarouf, I., Lenz, A., Welter, L., Wachter-Zeh, A., Rosnes,
E., and i Amat, A. G. Concatenated codes for multiple
reads of a dna sequence. IEEE Transactions on Informa-
tion Theory, 69(2):910–927, 2022.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In International Conference on Learning Rep-
resentations, 2017.

Makkuva, A. V., Liu, X., Jamali, M. V., Mahdavifar, H.,
Oh, S., and Viswanath, P. Ko codes: inventing nonlinear
encoding and decoding for reliable wireless communica-
tion via deep-learning. In International Conference on
Machine Learning, pp. 7368–7378. PMLR, 2021.

Meiser, L. C., Koch, J., Antkowiak, P. L., Stark, W. J.,
Heckel, R., and Grass, R. N. Dna synthesis for true
random number generation. Nature communications, 11
(1):5869, 2020.

Mitzenmacher, M. A survey of results for deletion chan-
nels and related synchronization channels. Probability
Surveys, 6(none):1 – 33, 2009. doi: 10.1214/08-PS141.

Nachmani, E. and Wolf, L. Hyper-graph-network decoders
for block codes. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

Nachmani, E., Marciano, E., Lugosch, L., Gross, W. J.,
Burshtein, D., and Be’ery, Y. Deep learning methods
for improved decoding of linear codes. IEEE Journal
of Selected Topics in Signal Processing, 12(1):119–131,
2018. doi: 10.1109/JSTSP.2017.2788405.

Organick, L., Ang, S. D., Chen, Y.-J., Lopez, R., Yekhanin,
S., Makarychev, K., Racz, M. Z., Kamath, G., Gopalan, P.,
Nguyen, B., et al. Random access in large-scale DNA data
storage. Nature Biotechnology, 36(3):242–248, 2018.

Pfister, H. D. and Tal, I. Polar codes for channels with
insertions, deletions, and substitutions. In 2021 IEEE
International Symposium on Information Theory (ISIT),
pp. 2554–2559, 2021. doi: 10.1109/ISIT45174.2021.
9517755.

Press, W. H., Hawkins, J. A., Jones, S. K., Schaub, J. M.,
and Finkelstein, I. J. HEDGES error-correcting code
for DNA storage corrects indels and allows sequence
constraints. Proceedings of the National Academy of
Sciences, 117(31):18489–18496, 2020. doi: 10.1073/
pnas.2004821117.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

THEA-Code: an IDS-Correcting Code for DNA Storage

Sellers, F. Bit loss and gain correction code. IRE Transac-
tions on Information Theory, 8(1):35–38, 1962.

Simeone, O. A very brief introduction to machine learning
with applications to communication systems. IEEE Trans-
actions on Cognitive Communications and Networking, 4
(4):648–664, 2018.

Sloane, N. J. On single-deletion-correcting codes. Codes
and designs, 10:273–291, 2000.

Srinivasavaradhan, S. R., Gopi, S., Pfister, H. D., and
Yekhanin, S. Trellis bma: Coded trace reconstruction
on ids channels for dna storage. In 2021 IEEE Inter-
national Symposium on Information Theory (ISIT), pp.
2453–2458. IEEE, 2021.

Tanaka, E. and Kasai, T. Synchronization and substitu-
tion error-correcting codes for the levenshtein metric.
IEEE Transactions on Information Theory, 22(2):156–
162, 1976.

Varshamov, R. R. and Tenenholtz, G. A code for correcting
a single asymmetric error. Automatica i Telemekhanika,
26(2):288–292, 1965.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Guyon, I., Luxburg, U. V., Ben-
gio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 30, pp. 5998–6008. Curran Associates,
Inc., 2017.

Welter, L., Sokolovskii, R., Heinis, T., Wachter-Zeh, A.,
Rosnes, E., et al. An end-to-end coding scheme for dna-
based data storage with nanopore-sequenced reads. arXiv
preprint arXiv:2406.12955, 2024.

Welzel, M., Schwarz, P. M., Löchel, H. F., Kabdullayeva,
T., Clemens, S., Becker, A., Freisleben, B., and Heider,
D. DNA-Aeon provides flexible arithmetic coding for
constraint adherence and error correction in DNA storage.
Nature Communications, 14(1):628, 2023.

Yan, Z., Liang, C., and Wu, H. A segmented-edit error-
correcting code with re-synchronization function for
DNA-based storage systems. IEEE Transactions on
Emerging Topics in Computing, pp. 1–13, 2022. doi:
10.1109/TETC.2022.3225570.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

THEA-Code: an IDS-Correcting Code for DNA Storage

A. Comparison Experiments
To evaluate the effectiveness of the proposed methods, we conducted comparison experiments against three prior works,
which are:

• a combinatorial code that can correct single IDS errors over a 4-ary alphabet from Cai (Cai et al., 2021);

• a segmented method for correcting multiple IDS errors, called DNA-LM from (Yan et al., 2022);

• a well-known, efficient heuristic method, called HEDGES, from a DNA storage research (Press et al., 2020).

These methods typically offer only a few discrete, fixed configurations. We made efforts to align their settings as closely as
possible. For Cai’s combinatorial code, the code rates are fixed based on the code lengths. In our experiments on Cai, only
the code rates are matched, with the code length determined according to the code rate4. For DNA-LM, we maintained the
codeword length around 150, adjusting the number of segments to match code rates. For HEDGES, only binary library
is publicly available, and it supports fixed code rates in {0.75, 0.6, 0.5, 1/3, 0.25, 1/6}. HEDGES’ inner code was tested
independently for comparison. We list all the source lengths ℓs, codeword lengths ℓc, and code rate r used in the experiments
in Table 7.

Table 7: The testing configurations for the comparison experiments. Each cell includes the code rate, message length, and
code length. The settings are tried to be aligned, except the Cai configuration has a code length that does not align with 150,
and HEDGES uses fixed code rates of 0.60 and 0.75, which are not aligned.

r1 = ℓs1/ℓc1 r2 = ℓs2/ℓc2 r3 = ℓs3/ℓc3 r4 = ℓs4/ℓc4

Cai 0.33=7/21 0.50=16/32 0.67=32/48 0.83=85/102
DNA-LM 0.34=50/148 0.51=77/152 0.68=96/142 0.84=124/148
HEDGES 0.34=52/155 0.50=76/152 0.60=92/153 0.75=115/155

THEA-Code 0.33=50/150 0.50=75/150 0.67=100/150 0.83=125/150

The experiments were conducted on the default IDS channel with 1% error probability, as well as its variations, Asc and
Des, introduced in Section 6.2. The results is illustrated in Figure 4. The experiments handled failed corrections by directly
using the corrupted codeword as the decoded message.

Figure 4: The error rates of the comparison experiments. Results for Cai, DNA-LM, HEDGES, and THEA-Code are shown
across Hom, Asc, and Des channels, with respect to their code rates.

The results for Cai’s method indicate that directly applying classical combinatorial codes to a 1% IDS error probability
channel with a codeword length of 150 is impractical. The observed error rates are high, even though these values

4It is important to note that code length plays a critical role in these experiments, as longer codewords are more likely to encounter
multiple errors that cannot be corrected. Thus, Cai’s performance here is just a baseline statistic of multi-errors with respect to the length,
and performance may degrade with increased length.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

THEA-Code: an IDS-Correcting Code for DNA Storage

were obtained with shorter code lengths than 150. The segmented method with sync markers in DNA-LM supports a
codeword length of 150 and can correct multiple errors across different segments. However, it also exhibits a high error rate,
indicating a nonnegligible likelihood of multi-errors occurring within the same segment. For HEDGES, while the results
are commendable, the code rate is restricted to a limited set of fixed values. The results of THEA-Code demonstrate the
effectiveness of the proposed method. At lower code rates, THEA-Code achieves a comparable error rate to HEDGES. At
higher code rates, the proposed method outperforms HEDGES, achieving a lower error rate at a higher code rate, specifically
2.81% error rate at 0.83 code rate for THEA-Code v.s. 3.43% error rate at 0.75 code rate for HEDGES.

B. Optimization of Hyperparameter Temperature τ in the Gumbel-Softmax Formula
To examine the impact of different temperature values τ in Equation (2), experiments were conducted with various settings
of τ ∈ {0.25, 0.5, 1, 2, 4, 8}. Since the disturbance-based discretization is designed to encourage greater discretization of
the codeword, the codeword entropy H, as defined in Equation (20), and the validation NER were tracked throughout the
training phase

As shown in Figure 5, lower temperature (τ = 0.25) has an effect in discretization, but result in unstable and poor model
performance, while higher temperatures (τ ∈ {2, 4, 8}) lead to both poor discretization and high NER.

C. Gradients to the Differentiable IDS Channel
To investigate whether the simulated IDS channel back-propagates the gradient reasonably, the channel output ĉ = DIDS(c)
is modified by altering one base to produce ĉ′. The absolute values of the gradients of L(ĉ, ĉ′) with respect to the input c
after back-propagation are presented in Figure 6. For instance, subfigure del(+3) indicates that the IDS channel modifies c
to ĉ by performing a deletion at index 0. The output ĉ is then manually modified by applying a substitution at position +3.
The gradients of L(ĉ, ĉ′) with respect to c are plotted over the window [−2,+6].

It is suggested in Figure 6 that the proposed differentiable IDS channel back-propagates gradients reasonably. The gradients
shift by one base to the left (resp. right) when the IDS channel performs an insertion (resp. deletion) on c. When the IDS
channel operates c with a substitution, the gradients stay at the same index. This behavior demonstrates that the channel is
able to trace the gradients through the IDS operations. Specifically, in the case ins(+0), the channel-inserted base in ĉ at
idx is manually modified. As a result, no specific base in c has a connection to the manually modified base, leading to a
diminished gradient in this scenario.

C.1. More on the gradients to differentiable IDS channel

Above, we illustrated that the differentiable IDS channel can effectively trace gradients through the IDS operations. In this
section, we focus on evaluating the channel’s capability to recover the error profile through gradient-based optimization.

Given a codeword c, an empty profile p0 which defines the identity transformation of the IDS channel such that ĉ = c =
DIDS(c,p0), and a modified codeword ĉ′ which is produced by manually modifying c through an insertion, deletion, or
substitution at position idx, the gradients of L(ĉ, ĉ′) are computed with respect to both the input codeword c and the empty
profile p0. The average gradients, calculated over 100 runs, are plotted in Figure 7 with position idx aligned to 0.

In Figure 7, it is suggested that, when performing an insertion or deletion, the gradients with respect to the codeword are
distributed after the error position idx. This aligns with the fact that synchronization errors (insertions or deletions) can be
interpreted as successive substitutions starting from the error position, especially when the actual error profile is unknown.
When performing a substitution, the gradients naturally concentrate at the error position idx.

Regarding the empty profile, p0 = 0, the gradients also exhibit meaningful patterns. For an insertion, the substitution area
after idx is lighted by the gradients, supporting the view that an insertion can be seen as a sequence of substitutions if error
constraints are absent. Additionally, the insertion area of the profile is also lighted, which makes sense since an insertion
may also be interpreted as a series of substitutions followed by an ending insertion. For deletion errors, similar patterns
are observed: the gradients are distributed in the areas of substitutions and deletions after the error position idx, since the
deletion can also be viewed as a series of substitutions, or as several substitutions and an ending deletion. For substitution
errors, the gradients again concentrate at the error position idx, as substitutions do not cause sequence mismatches.

Utilizing energy constraints on the profile may be helpful for specific profile applications. In this work, only the gradients

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

THEA-Code: an IDS-Correcting Code for DNA Storage

(a) τ = 0.25 (b) τ = 0.5 (c) τ = 1

(d) τ = 2 (e) τ = 4 (f) τ = 8

Figure 5: The codeword entropy H and the validation NER for various choices of τ ∈ {0.25, 0.5, 1, 2, 4, 8}. Each curve in
the subfigures represents one of the 3 runs conducted in the experiment and is plotted against the training epochs.

with respect to the codeword participate in the training phase, the existing version of the simulated differentiable IDS
channel is assumed to be adequate.

D. Ablation Study on the Auxiliary Reconstruction Loss
D.1. Effects of the auxiliary reconstruction loss

Experiments with different choices of the hyperparameter µ were conducted, which are µ = 0 indicating the absence of the
auxiliary reconstruction loss, and µ ∈ {0.5, 1, 1.5} for different weights for the auxiliary loss. The validation NER and the

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

THEA-Code: an IDS-Correcting Code for DNA Storage

Figure 6: The averaged absolute gradients with respect to the input c over 100 runs. The corresponding IDS operations were
performed at an aligned index = 0 by the simulated differentiable IDS channel, the gradients were back-propagated from
position +k of the channel output ĉ. It is suggested that the gradients identify their corresponding position in the input:
+k − 1 for insertion, +k for substitution, and +k + 1 for deletion.

(a) insertion (b) deletion (c) substitution

Figure 7: The gradient distribution with respect to the input codeword and the empty profile, when the output codeword
is manually modified. The figures display the averaged gradients over 100 runs, visualizing how the gradients were
back-propagated in different cases of insertions, deletions, and substitutions in the output codeword.

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

THEA-Code: an IDS-Correcting Code for DNA Storage

(a) µ = 0 (b) µ = 0.5 (c) µ = 1 (d) µ = 1.5

Figure 8: The reconstruction loss LCE between the source and sink sequences, and the validation NER for various choices
of µ ∈ {0, 0.5, 1, 1.5}. Each curve in the subfigures represents one of the 5 runs conducted in the experiment and is plotted
against the training epochs.

reconstruction loss between source and sink sequences are plotted against the training epochs.

The first column of Figure 8 indicates that without the auxiliary loss, all 5 runs of the training fail, producing random output.
By comparing the first column with the other three, the effectiveness of introducing the auxiliary loss can be inferred. In the
subfigures corresponding to µ ∈ {0.5, 1, 1.5}, all the models converge well, and the NERs also exhibit a similar convergence.
This suggests the application of the auxiliary loss is essential, but the weight of this loss has minimum influence on the final
performance.

D.2. Auxiliary loss on patterns beyond sequence reconstruction

In Appendix D.1, the necessity of introducing a auxiliary reconstruction task to the encoder is verified. After these
experiments, a natural question arises: How about imparting the encoder with higher initial logical ability through a
more complicated task rather than replication? Motivated by this, we adopted commonly used operations from existing
IDS-correcting codes and attempted to recover the sequence from these operations using the encoder. In practice, we
employed the forward difference Diff(s), where

Diff(s)i = si − si+1 mod 4, (21)

the position information-encoded sequence Pos(s), where

Pos(s)i = si + i mod 4, (22)

and their combinations as the reconstructed sequences.

The evaluation NERs against training epochs are plotted in Figure 9 under different combinations of the identity mapping
I, Diff , and Pos. It is clear that the reconstruction of the identity mapping I outperforms Diff and Pos. Introducing the
identity mapping I to Diff and Pos helps improving the convergence of the model, but final results have illustrated that they
are still worse than simple applying the identify mapping I as the auxiliary task. These variations may be attributed to the
capabilities of the transformers in our setting or the disordered implicit timings during training.

E. Transformer, Complexity, and Time Consumption
Transformers (Vaswani et al., 2017), well-known deep learning architectures, rely on the attention mechanism. Each head of
a Transformer model processes features according to the following formula:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (23)

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

THEA-Code: an IDS-Correcting Code for DNA Storage

(a) I (b) Diff (c) Pos

(d) I + Diff (e) I + Pos

Figure 9: The validation NER against the training epochs with different choices of auxiliary reconstruction. The reconstructed
sequences are produced by combinations of the identity mapping I, Diff , and Pos, where + denotes sequence concatenating.

In this work, each layer comprises 16 attention heads with an embedding dimension 512, and a total of 3+ 3 attention layers
are used for the sequence-to-sequence model. Both the encoder and decoder are implemented as such sequence-to-sequence
models. For the differentiable IDS channel, a 1 + 1 layered sequence-to-sequence model is employed.

Since attention is calculated globally over the sequence in Equation (23), it has a complexity of O(n2). Without delving into
the many efficient transformer architectures, the time consumption was measured by decoding 1, 280, 000 codewords using
an RTX3090. The encoder, which shares the same structure, exhibits similar performance. The results are acceptable and
are presented in Table 8.

Table 8: Time consumption of decoding 1, 280, 000 codewords for each source length ℓs by an RTX3090.

ℓs = 50 ℓs = 75 ℓs = 100 ℓs = 125

time (s) 521.94 573.87 623.92 687.76

17


