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Abstract

We consider the problem of multiclass transductive online learning when the
number of labels can be unbounded. Previous works by Ben-David et al. [1997]
and Hanneke et al. [2023b] only consider the case of binary and finite label spaces,
respectively. The latter work determined that their techniques fail to extend to the
case of unbounded label spaces, and they pose the question of characterizing the
optimal mistake bound for unbounded label spaces. We answer this question by
showing that a new dimension, termed the Level-constrained Littlestone dimension,
characterizes online learnability in this setting. Along the way, we show that
the trichotomy of possible minimax rates of the expected number of mistakes
established by Hanneke et al. [2023b] for finite label spaces in the realizable setting
continues to hold even when the label space is unbounded. In particular, if the
learner plays for T ∈ N rounds, its minimax expected number of mistakes can
only grow like Θ(T ), Θ(log T ), or Θ(1). To prove this result, we give another
combinatorial dimension, termed the Level-constrained Branching dimension, and
show that its finiteness characterizes constant minimax expected mistake-bounds.
The trichotomy is then determined by a combination of the Level-constrained
Littlestone and Branching dimensions. Quantitatively, our upper bounds improve
upon existing multiclass upper bounds in Hanneke et al. [2023b] by removing the
dependence on the label set size. In doing so, we explicitly construct learning
algorithms that can handle extremely large or unbounded label spaces. A key and
novel component of our algorithm is a new notion of shattering that exploits the
sequential nature of transductive online learning. Finally, we complete our results
by proving expected regret bounds in the agnostic setting, extending the result of
Hanneke et al. [2023b].

1 Introduction

Imagine you are a famous musician who has released K ∈ N songs. You are now on tour visiting
T ∈ N cities worldwide based on the pre-specified plan, each with unique musical preferences that
you have some understanding of. At each city, you can perform only one song in your concert,
and following each performance, the audience provides feedback indicating their preferred song
from your repertoire. Your goal is to select the song that aligns with the majority’s taste in each
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city to maximize satisfaction. How can you effectively select songs to ensure the highest audience
satisfaction across most cities having minimal assumptions?

The above example and similar real-world situations, where entities operate according to a possibly
adversarially chosen pre-specified schedule, can be formulated in a framework called Multiclass
Transductive Online Learning. Formally, in this setting, an adversary plays a repeated game against
the learner over some T ∈ N rounds. Before the game begins, the adversary selects a sequence of T
instances (x1, . . . , xT ) ∈ X T from some non-empty instance space X (e.g. images) and reveals it
to the learner. Subsequently, during each round t ∈ {1, . . . , T}, the learner predicts a label ŷt ∈ Y
from some non-empty label space Y (e.g. categories of images), the adversary reveals the true label
yt ∈ Y , and the learner suffers the 0-1 loss, namely 1{ŷt ̸= yt}. Importantly, the label space Y
is not required even to be countable; we assume only standard measure theoretic properties for it.
Following the well-established frameworks in learning theory, given a concept class C ⊆ YX of
functions c : X → Y , the goal of the learner is to minimize the number of mistakes relative to the
best-fixed concept in C. If there exists c ∈ C such that c(xt) = yt for all t ∈ {1, . . . , T}, we say we
are in the realizable setting, and otherwise in the agnostic setting. We briefly note that if the learner’s
predictions are randomized, we focus on the expected value of the mentioned objective.

In this paper, our main contribution is algorithmically answering the following question in the
multiclass transductive online learning framework:

Given a concept class C ⊆ YX , what is the minimum expected number of mistakes achievable by a
learner against any realizable adversary?

For the special case of binary classification (|Y| = 2), this question was first considered by Ben-David
et al. [1997] and then later fully resolved by Hanneke et al. [2023b]. Additionally, Hanneke et al.
[2023b] considered the case where |Y| > 2, but did not resolve this question when Y is unbounded.
In fact, the bounds by Hanneke et al. [2023b] break down even when |Y| ≥ 2T . As a result, Hanneke
et al. [2023b] posed the characterization of the minimax expected number of mistakes in the multiclass
setting with an infinite label set as an open question, which we resolve in this paper.

1.1 Online Learning and Multiclass Classification

In this work, we study transductive online learning framework, where the adversary reveals the entire
sequence of instances (x1, . . . , xT ) to the learner before the game begins. In the traditional online
learning framework, the sequence of instances (x1, . . . , xT ) are revealed to the learner sequentially,
one at a time. That is, on round t ∈ {1, . . . , T}, the learner would have only observed x1, . . . , xt.
The celebrated work of Littlestone [1988] introduced this framework for binary classification and
quantified the best achievable number of mistakes against any realizable adversary for a concept class
C ⊆ {0, 1}X in terms of a combinatorial parameter called the Littlestone dimension. Later, the work
of Ben-David et al. [2009] showed that the Littlestone dimension of a concept class C ⊆ {0, 1}X
continues to quantify the expected relative mistakes (i.e expected regret) for the mentioned framework
in the more general agnostic setting. More recently, Daniely et al. [2012] and Hanneke et al. [2023a]
extended these results to multiclass online learning in the realizable and agnostic settings, respectively.
See Section A for more details.

In traditional online classification, there are two sources of uncertainty: one associated with the
sequence of instances, and the other with respect to the true labels. Ben-David et al. [1997] initiated
the study of transductive online classification with the aim of understanding how exclusively label
uncertainty impacts the optimal number of mistakes. Furthermore, removing the uncertainty with
respect to the instances can significantly reduce the optimal number of mistakes. For example, for the
concept class of halfspaces in the realizable setting, the optimal number of mistakes grows linearly
with the time horizon T in the traditional online binary classification framework, while only growing
as Θ(log T ) in the transductive online binary classification framework. So, it is natural to reduce the
optimal number of mistakes or extend learnable classes whenever we have additional assumptions.
Notably, Ben-David et al. [1997] initially called this setting “offline learning”, but it was later renamed
“Transductive Online Learning” by Hanneke et al. [2023b] due to its close resemblance to transductive
PAC learning [Vapnik and Chervonenkis, 1974, Vapnik, 1982, 1998]. See Section A for more details.

While Ben-David et al. [1997] and Hanneke et al. [2023b] mainly focused on binary classification, in
this work, we focus on the more general multiclass classification setting. Natarajan and Tadepalli
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[1988], Natarajan [1989] and Daniely et al. [2012] initiated the study of multiclass prediction within
the foundational PAC framework and traditional online framework, respectively. More recently,
following the work by [Brukhim et al., 2021], there has been a growing interest in understanding
multiclass learning when the size of the label space is unbounded, including Hanneke et al. [2023c,a],
Raman et al. [2023]. This interest is driven by several motivations. Firstly, guarantees for the
multiclass setting should not inherently depend on the number of labels, even when it is finite.
Secondly, in mathematics, concepts involving infinities often provide cleaner insights. Thirdly,
insights from this problem might also advance understanding of real-valued regression problems
[Attias et al., 2023]. Finally, on a practical front, many crucial machine learning tasks involve
classification into extremely large label spaces. For instance, in image object recognition, the number
of classes corresponds to the variety of recognizable objects, and in language models, the class count
expands with the dictionary size. See Section A for more details.

1.2 Main Results and Techniques

In the following subsection, we present an overview of our main findings along with a summary of
our proof techniques.

1.2.1 Realizable Setting

In the realizable setting, we assume that the sequence of labeled instances (x1, y1), . . . , (xT , yT ),
played by the adversary, is consistent with at least one concept in C. Here, our objective is to minimize
the well-known notion of the expected number of mistakes. We provide upper and lower bounds on
the best achievable worst-case expected number of mistakes by the learner as a function of T and C,
which we denote by M⋆(T, C).
Hanneke et al. [2023b] established a trichotomy of rates in the case of binary classification. That is,
for every C ⊆ {0, 1}X , we have that M⋆(T, C) can only grow like Θ(T ), Θ(log T ), or Θ(1); where
the Littlestone and Vapnik-Chervonenkis (VC) dimensions of C characterize the possible rate. In this
work, we extend this trichotomy to the multiclass classification setting, even when Y is unbounded.
To do so, we introduce two new combinatorial parameters, termed the Level-constrained Littlestone
dimension and Level-constrained Branching dimension.

To define the Level-constrained Littlestone dimension, we first need to define the Level-constrained
Littlestone tree. A Level-constrained Littlestone tree is a Littlestone tree with the additional re-
quirement that the same instance has to label all the internal nodes across a given level. Then, the
Level-constrained Littlestone dimension is just the largest natural number d ∈ N, such that there exists
a shattered Level-constrained Littlestone tree T of depth d. To define the Level-constrained Branching
dimension, we first need to define the Level-constrained Branching tree. The Level-constrained
Branching tree is a Level-constrained Littlestone tree without the restriction that the labels on the two
outgoing edges are distinct. Then, the Level-constrained Branching dimension is then the smallest
natural number d ∈ N such that for every shattered Level-constrained Branching tree T , there exists
a path down T such that the number of nodes whose outgoing edges are labeled by different elements
of Y is at most d. The Level-constrained Littlestone dimension reduces to the VC dimension when
|Y| = 2. Additionally, the finiteness of the Level-constrained Branching and Littlestone dimension
coincide when |Y| = 2. Finally, we note that the Level-constrained Branching dimension is exactly
equal to the notion of rank in the work of Ben-David et al. [1997]. However, we believe it is simpler
to understated. Using the Level-constrained Littlestone and Branching dimension, we establish the
following trichotomy.

Theorem 1. (Trichotomy) Let C ⊆ YX be a concept class. Then, we have:

M⋆(T, C) ∈


Θ(1), if B(C) <∞.

Θ(log T ) if D(C) <∞ and B(C) =∞.
Θ(T ), if D(C) =∞.

Here, B(C) is Level-constrained Branching dimension, and D(C) is Level-constrained Littlestone
dimension defined in Section 2.

To prove the O(log T ) upper bound for binary online classification, Hanneke et al. [2023b] run the
Halving algorithm on the projection of C onto x1, ..., xT and use the Sauer–Shelah–Perles (SSP)
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lemma to bound the size of this projection by O(TVC(C)). However, this approach is not applicable
when Y is unbounded. For example, when C = {x 7→ n : n ∈ N} is the set of all constant functions
over N, the size of the projection of C onto even a single x ∈ X is infinity. Moreover, the mentioned
class can be learned with at most one number of mistakes. Thus, fundamentally new techniques
are required. To this end, we define a new notion of shattering which makes it possible to apply an
analog of the Halving algorithm. Additionally, while the proof of the O(1) upper bound in Hanneke
et al. [2023b] follows immediately from the guarantee of Standard Optimal Algorithm (SOA) by
Littlestone [1988], our O(1) upper bound in terms of the Level-constrained Branching dimension
requires a modification of the SOA. We complement our results by presenting matching lower bounds.
See Section 3 for more details.

In Section F, we provide a comprehensive comparison between our dimensions and existing multiclass
combinatorial complexity parameters.

1.2.2 Agnostic Setting

In the agnostic setting, we make no assumptions about the sequence (x1, y1), (x2, y2), . . . , (xT , yT )
played by the adversary. Here, our focus shifts to the well-established notion of expected regret,
which compares the expected number of mistakes made by the algorithm to that made by the best
concept in the concept class over the sequence. As in the realizable setting, we aim to establish
both upper and lower bounds on the optimal worst-case expected regret achievable by the learner,
expressed as a function of T and the concept class C, denoted by R⋆(T, C).
The prior work by Hanneke et al. [2023b] showed that in the case of binary classification, R⋆(T, C)
is Θ̃(

√
VC(C)T ) whenever VC(C) <∞ and Θ(T ) otherwise, where Θ̃ hides logarithmic factors in

T . Using the Level-constrained Littlestone dimension in hand, we extend these results to multiclass
classification.
Theorem 2. For every concept class C ⊆ YX and T ≥ D(C), we have the following:√

T D(C)
8

≤ R⋆(T, C) ≤
√

T D(C) log
( eT

D(C)

)
,

where D(C) is Level-constrained Littlestone dimension defined in Section 2.

Our results in the agnostic setting can be proved using core ideas in the proof of the agnostic results
from Ben-David et al. [2009], Hanneke et al. [2023a], and Hanneke et al. [2023b]. See Section E for
more details.

2 Preliminaries

2.1 Notation

Let X denote an example space and Y denote the label space. We make no assumptions about
Y , so it can be unbounded and even uncountable (e.g. Y = R). Following the work of Hanneke
et al. [2023a], if we consider randomized learning algorithms, the associated σ-algebra is of little
consequence, except that singleton sets {y} should be measurable. Let C ⊆ YX denote a concept
class. We abbreviate a sequence z1, ..., zT by z1:T . Moreover, we also define z<t := (z1, . . . , zt−1)
and z≤t := (z1, . . . , zt). Finally for n ∈ N, we let [n] := {1, ..., n}.

2.2 Transductive Online Classification

In the transductive online classification setting, a learner A plays a repeated game against an adver-
sary over T rounds. Before the game begins, the adversary picks a sequence of labeled instances
(x1, y1), ..., (xT , yT ) ∈ (X ×Y)T and reveals x1:T to the learner. Then, in each round t ∈ [T ], using
x1:T and y1:t−1, the learner makes a potentially randomized prediction A(xt) ∈ Y . Finally, the
adversary reveals the true label yt, and the learner suffers the loss 1{A(xt) ̸= yt}. Given a concept
class C ⊆ YX , the goal of the learner is to output predictions such that its expected regret,

RA(T, C) := sup
(x1,y1),...,(xT ,yT )

(
E

[
T∑

t=1

1{A(xt) ̸= yt}

]
− inf

c∈C

T∑
t=1

1{c(xt) ̸= yt}

)
,
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is small. Moreover, we define R⋆(T, C) := infA RA(T, C), where the infimum is taken over all
transductive online algorithms. We say that a concept class is transductive online learnable in the
agnostic setting if R⋆(T, C) = o(T ).

If the learner is guaranteed to observe a sequence of examples labeled by some concept c ∈ C,
then we say we are in the realizable setting, and the goal of the learner is to minimize its expected
cumulative mistakes

MA(T, C) := sup
c∈C

sup
x1:T

E

[
T∑

t=1

1{A(xt) ̸= c(xt)}

]
.

Similarly, we define M⋆(T, C) := infA MA(T, C), and an analogous definition of transductive online
learnability in the realizable setting holds.

2.3 Combinatorial Dimensions

Combinatorial dimensions play an important role in providing a tight quantitative characterization
of learnability in learning theory. In this section, we review existing combinatorial dimension in
online classification and propose two new dimensions that help us establish the minimax rates for
transductive online classification. We start by defining the Littlestone dimension which characterizes
multiclass online learnability.

Definition 1 (Littlestone dimension). The Littlestone dimension of C, denoted L(C), is the largest
d ∈ N such that there exists sequences of functions {Xt}dt=1 where Xt : {0, 1}t−1 → X and
{Yt}dt=1 where Yt : {0, 1}t → Y such that for every σ ∈ {0, 1}d, the following holds:

(i) Yt((σ<t, 0)) ̸= Yt((σ<t, 1)) for all t ∈ [d].

(ii) ∃cσ ∈ C such that cσ(Xt(σ<t)) = Yt(σ≤t) for all t ∈ [d].

If for every d ∈ N, there exists sequences {Xt}dt=1 and {Yt}dt=1 satisfying (i) and (ii), we let
L(C) =∞.

On the other hand, in this paper, we show that a different dimension, termed the Level-constrained
Littlestone dimension, characterizes transductive online classification.

Definition 2 (Level-constrained Littlestone dimension). The Level-constrained Littlestone dimension
of C, denoted D(C), is the largest d ∈ N such that there exists a sequence of instances x1, .., xd ∈ X d

and a sequence of functions {Yt}dt=1 where Yt : {0, 1}t → Y , such that for every σ ∈ {0, 1}d, the
following holds:

(i) Yt((σ<t, 0)) ̸= Yt((σ<t, 1)) for all t ∈ [d].

(ii) ∃cσ ∈ C such that cσ(xt) = Yt(σ≤t) for all t ∈ [d].

If for every d ∈ N, there exist sequences {xt}dt=1 and {Yt}dt=1 satisfying (i) and (ii), we let D(C) =
∞.

The Littlestone and Level-constrained Littlestone dimensions can also be defined in terms of complete
binary trees. A Littlestone tree T of depth d is a complete binary tree of depth d where the internal
nodes are labeled by elements of X and for every internal node, its two outgoing edges are labeled by
distinct elements in Y . Such a tree is shattered by C if for every root-to-leaf path σ ∈ {0, 1}d, there
exists a concept cσ ∈ C consistent with the sequence of instance-label pairs obtained by traversing
down T along σ. The Littlestone dimension is then the largest d ∈ N for which there exists a
shattered Littlestone tree of depth d. From this perspective, the functions {Xt}dt=1 and {Yt}dt=1
in Definition 1 provide the labels on the internal nodes and the outgoing edges of T respectively.
Analogously, a Level-constrained Littlestone tree is simply a Littlestone tree with the additional
requirement that the instances labeling the internal nodes are the same across each level. In Definition
2, x1 labels all the internal nodes on level one, x2 labels all the internal nodes on level two, and
so forth. The functions {Yt}dt=1 provide the labels on the outgoing edges of a Level-constrained
Littlestone tree. Then, the Level-constrained Littlestone dimension is the largest d ∈ N for which
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there exists a shattered Level-constrained Littlestone tree of depth d. We will use the function-based
and tree-based definitions of these dimensions interchangeably.

Moreover, we show that the Level-constrained Branching dimension characterizes when constant
minimax rates are possible in transductive online classification.
Definition 3 (Level-constrained Branching dimension). The Level-constrained Branching dimension
of C, denoted B(C), is the smallest p ∈ N such that for every d ∈ N, every sequence of instances
x1, .., xd ∈ X d, and every sequence of functions {Yt}dt=1 where Yt : {0, 1}t → Y:
∀σ ∈ {0, 1}d,∃cσ ∈ C such that cσ(xt) = Yt(σ≤t) for all t ∈ [d]

=⇒ argmin
σ∈{0,1}d

d∑
t=1

1{Yt((σ<t, 0)) ̸= Yt((σ<t, 1))} ≤ p.

If no such p ∈ N exist, we let B(C) =∞.

For a given path σ ∈ {0, 1}d, we refer to
∑d

t=1 1{Yt((σ<t, 0)) ̸= Yt((σ<t, 1))} as the branching
factor of the path. In terms of trees, a Level-constrained Branching tree is a Level-constrained
Littlestone tree without the restriction that the labels on the outgoing edges of any internal node need
to be distinct. Given a path in such a tree, the branching factor of a path counts the number of nodes in
the path whose two outgoing edges are labeled by distinct labels in Y . Finally, the Level-constrained
Branching dimension can be equivalently defined as the smallest p ∈ N such that every shattered
Level-constrained Branching tree T of depth d ∈ N must have at least one path with branching factor
at most p.

The following proposition, whose proof is in Appendix B, establishes the relationship between the
three dimensions.
Proposition 1. For every C ⊆ YX , we have that D(C) ≤ B(C) ≤ L(C).

We also compare our dimensions to other existing dimensions in multiclass learning in Section F.

3 A Trichotomy in the Realizable Setting

We start by establishing upper and lower bounds on the minimax expected number of mistakes in the
realizable setting in terms of the Level-constrained Littlestone dimension and the Level-constrained
Branching dimension.
Theorem 3 (Mistake bound). For every concept class C ⊆ YX , we have
1

2
min

{
max

{
D(C), ⌊log T ⌋ ·1[B(C) =∞]

}
, T
}
≤ M⋆(T, C) ≤ min

{
B(C),D(C) log

(
eT

D(C)

)
, T

}
.

One can trivially upper bound M⋆(T, C) by L(C). However, by Proposition 1, our upper bound in
terms of B(C) is sharper. We can also infer from the proof in Section 3.3 that when T is large enough
(namely T ≫ 2B(C)), the lower bound in the realizable setting is also B(C)

2 .

Given Theorem 3, we immediately infer a trichotomy in minimax rates.
Corollary 1 (Trichotomy). For every concept class C ⊆ YX , we have

M⋆(T, C) =


Θ(1), if B(C) <∞.

Θ(log T ) if D(C) <∞ and B(C) =∞.
Θ(T ), if D(C) =∞.

Proof. (of Corollary 1) When B(C) < ∞, Theorem 3 gives that 1
2 D(C) ≤ M⋆(T, C) ≤ B(C) for

T ≥ D(C). When B(C) = ∞ but D(C) < ∞, Theorem 3 gives that 1
2 ⌊log T ⌋ ≤ M⋆(T, C) ≤

D(C) log
(

eT
D(C)

)
for ⌊log T ⌋ ≥ D(C). Finally, when D(C) = ∞, Theorem 3 gives that T

2 ≤
M⋆(T, C) ≤ T .

The remainder of this Section is dedicated to proving Theorem 3. The proof of the lowerbound
D(C)/2 follows from standard techniques, so we defer it to Appendix C.
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3.1 Proof of Upperbound B(C)

Proof. Fix n ∈ N, a sequence of instances x1:n := (x1, . . . , xn) ∈ Xn, a sequence of functions
Y1:n = (Y1, . . . , Yn) such that Yt : {0, 1}n → Y , and set of concepts V ⊆ C. If ∀σ ∈ {0, 1}n,
there exists cσ ∈ V such that cσ(xt) = Yt(σ≤t) for all t ∈ [n], then define B(V, x1:n, Y1:n) :=
argminσ∈{0,1}n

∑n
t=1 1{Yt((σ<t, 0)) ̸= Yt((σ<t, 1)). Otherwise, define B(V, x1:n, Y1:n) := 0.

Recall that we can represent x1:n and Y1:n with level-constrained trees T of depth n. With the
tree representation, B(V, x1:n, Y1:n) := 0 if V does not shatter T . If T is shattered by V , then
B(V, x1:n, Y1:n) is the minimum branching factor across all the root-to-leaf paths in T . Recall that
the branching factor of a path is the number of nodes in this path whose left and right outgoing
edges are labeled by two distinct elements of Y . In this proof, we work with an instance-dependent
complexity measure of V ⊆ C defined as

B(V, x1:n) := sup
Y1:n

B(V, x1:n, Y1:n).

We now define a learning algorithm that obtains the claimed mistake bound of B(C). Fix a time
horizon T ∈ N, and let x1:T = (x1, x2, . . . , xT ) denote the sequence of instances revealed by the
adversary. Initialize V1 := C. For every t ∈ {1, . . . , T}, if we have {c(xt) : c ∈ Vt} = {y},
then predict ŷt = y. Otherwise, define V y

t = {c ∈ Vt : c(xt) = y} for all y ∈ Y , and predict
ŷt = argmaxy∈Y B(V y

t , xt+1:T ). Finally, the learner receives a feedback yt ∈ Y , and updates
Vt+1 ← V yt

t . When t = T , the sequence xT+1:T is null and we define ŷT = argmaxy∈Y B(V y
T ).

For this learning algorithm, we prove that

B(Vt+1, xt+1:T ) ≤ B(Vt, xt:T )− 1{yt ̸= ŷt}. (1)

Rearranging and summing over t ∈ [T ] rounds, we obtain:

T∑
t=1

1{yt ̸= ŷt} ≤
T∑

t=1

(
B(Vt, xt:T )− B(Vt+1, xt+1:T )

)
= B(V1, x1:T )− B(VT+1, xT+1:T )

≤ B(V1, x1:T ) ≤ B(C)

The equality above follows because the sum telescopes. The final inequality follows be-
cause V1 = C and the level-constrained branching dimension of C is defined as B(C) =
supT∈N supx1:T∈XT B(C, x1:T ).

We now prove inequality (1). There are two cases to consider: (a) yt = ŷt and (b) yt ̸= ŷt. Starting
with (a), let yt = ŷt. Recall that B(Vt+1, xt+1:T ) = B(V yt

t , xt+1:T ). Since c(xt) = yt for all
h ∈ V yt

t , we must have B(V yt

t , xt+1:T ) ≤ B(V yt

t , xt:T ). Finally, using the fact that V yt

t ⊆ Vt, we
have B(V yt

t , xt:T ) ≤ B(Vt, xt:T ). This establishes (1) for this case.

Moving to (b), let yt ̸= ŷt. Note that we must have B(Vt, xt:T ) > 0. Otherwise, if B(Vt, xt:T ) = 0,
then we have {c(xt) : c ∈ Vt} = {y}. So, by our prediction rule, we cannot have yt ̸= ŷt under
realizability. To establish (1), we want to show that B(Vt+1, xt+1:T ) < B(Vt, xt:T ). Suppose, for
the sake of contradiction, we instead have B(Vt+1, xt+1:T ) ≥ B(Vt, xt:T ). Then, let us define
d := B(Vt+1, xt+1:T ). If d = 0, then our proof is complete because 0 ≤ B(Vt, xt:T )− 1{yt ̸= ŷt}.
Assume that d > 0 and recall that Vt+1 = V yt

t . By definition of B(V yt

t , xt+1:T ) and its equivalent
shattered-trees representation, there exists a level-constrained tree Tyt of depth T − t whose internal
nodes are labeled by xt, . . . , xT and is shattered by V yt

t . Moreover, every path down Tyt
has

branching factor ≥ d.

Next, as ŷt = argmaxy∈Y B(V y
t , xt+1:T ), we further have B(V ŷt

t , xt+1:T ) ≥ B(V yt

t , xt+1:T ) ≥ d.
Thus, there exists another level-constrained tree Tŷt

of depth T − t whose internal nodes are labeled
by xt, . . . , xT , that is shattered by V ŷt

t , and every path down Tŷt
has branching factor ≥ d. Finally,

consider a new tree T with root-node labeled by xt, the left-outgoing edge from the root node is
labeled by yt, and the right outgoing edge is labeled by ŷt. Moreover, the subtree following the
outgoing edge labeled by yt is Tyt , and the subtree following the outgoing edge labeled by ŷt is
Tŷt . Since both Tyt and Tŷt are valid level-constrained trees each with internal nodes labeled by
xt+1, . . . , xT , the newly constructed tree T is a also a level-constrained trees of depth T − t + 1
with internal nodes labeled by xt, . . . , xT . In addition, as Tyt and Tŷt are shattered by V yt

t and
V ŷt

t respectively, the tree T must be shattered by V yt

t ∪ V ŷt

t . Finally, as every path down each
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sub-trees Tyt and Tŷt has branching factor ≥ d and yt ̸= ŷt, every path of T must have branching
factor ≥ d + 1. This shows that B(V yt

t ∪ V ŷt

t , xt:T ) ≥ d + 1. And since V yt

t ∪ V ŷt

t ⊆ Vt, we
have d+ 1 ≤ B(V yt

t ∪ V ŷt

t , xt:T ) ≤ B(Vt, xt:T ) by monotonicity. This contradicts our assumption
that d := B(Vt+1, xt+1:T ) ≥ B(Vt, xt:T ). Therefore, we must have B(Vt+1, xt+1:T ) < B(Vt, xt:T ).
This establishes (1), completing our proof.

3.2 Proof of Upperbound D(C) log
(

eT
D(C)

)
Proof. Fix the time horizon T ∈ N and let x1:T := (x1, ..., xT ) ∈ X T be the sequence of T instances
revealed to the learner at the beginning of the game. We say a subsequence x′

1:n := (x′
1, ..., x

′
n),

preserving the same order as in x1:T , is shattered by V ⊆ C if there exists a sequence of functions
{Yt}nt=1, where Yt : {0, 1}t → Y , such that for every σ ∈ {0, 1}n, we have that

(i) Yt(σ<t, 0) ̸= Yt(σ<t, 1) for all t ∈ [n],

(ii) ∃cσ ∈ V such that cσ(xt) = Yt(σ≤t) for all t ∈ [n].

For every V ⊆ C, let S(V ) be the number of subsequences of x1:T shattered by V . In addition, for
every (x, y) ∈ X × Y , let V(x,y) := {c ∈ V : c(x) = y}. Consider the following online learner. At
the beginning of the game, the learner initializes V 1 = C. Then, in every round t ∈ [T ], the learner
predicts ŷt ∈ argmaxy∈Y S(V t

(xt,y)
), receives yt ∈ Y , and updates V t+1 ← V t

(xt,yt)
.

For this learning algorithm, we claim that

S(V t+1) ≤ max
{
1{yt = ŷt},

1

2

}
S(V t)

for every round t ∈ [T ]. This implies the stated mistake bound since S(C) ≤
∑D(C)

i=0

(
T
i

)
≤(

eT
D(C)

)D(C)
and the learner can make at most log(S(C)) mistakes before S(V t) = 1. We now prove

this claim by considering the case where ŷt = yt and ŷt ̸= yt separately.

Let t ∈ [T ] be a round where ŷt = yt. Then, S(V t+1) ≤ S(V t) since V t+1 = V t
(xt,yt)

⊆ V t. Now,
let t ∈ [T ] be a round where ŷt ̸= yt. We need to show that S(V t+1) ≤ 1

2 S(V
t). For any V ⊆ C,

let Sh(V ) be the set of all subsequences of x1:T that are shattered by V . Then, for any subsequence
q ∈ Sh(V t), only one of the following properties must be true:

(1) q /∈ Sh(V t
(xt,yt)

) and q /∈ Sh(V t
(xt,ŷt)

),

(2) q ∈ Sh(V t
(xt,yt)

)∆Sh(V t
(xt,ŷt)

),

(3) q ∈ Sh(V t
(xt,yt)

) ∩ Sh(V t
(xt,ŷt)

),

where ∆ denotes the symmetric difference. For every i ∈ {1, 2, 3}, let Shi(V t) ⊆ Sh(V t) be the
subset of Sh(V t) that satisfies property (i). Note that Sh(V t) =

⋃3
i=1 Sh

i(V t) and {Shi(V t)}3i=1

are pairwise disjoint. Therefore, {Shi(V t)}3i=1 forms a partition of Sh(V t). For each i ∈ {1, 2, 3},
we compute how many elements of Shi(V t) we drop when going from Sh(V t) to Sh(V t+1). We can
then upperbound |Sh(V t

(xt,yt
)| = S(V t+1) by lower bounding |Sh(V t) \ Sh(V t+1)|, the number of

elements we drop across all of the subsets {Shi(V t)}3i=1 when going from V t to V t+1.

Starting with i = 1, observe that for every q ∈ Sh1(V t), we have that q /∈ Sh(V t
(xt,yt)

). Therefore,
|Sh1(V t) ∩ Sh(V t

(xt,yt)
)| = 0, implying that we drop all the elements from Sh1(V t) when going

from Sh(V t) to Sh(V t+1).

For the case where i = 2, note that Sh(V t
(xt,yt)

),Sh(V t
(xt,ŷt)

) ⊆ Sh(V t) and S(V t
(xt,ŷt)

) ≥
S(V t

(xt,yt)
), where the latter inequality is true by the definition of the prediction rule. Moreover, using
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the fact that {Shi(V t)}3i=1 forms a partition of Sh(V t), we can write

S(V t
(xt,ŷt)

) = |Sh3(V t)|+ |Sh2(V t) ∩ Sh(V t
(xt,ŷt)

)|

and
S(V t

(xt,yt)
) = |Sh3(V t)|+ |Sh2(V t) ∩ Sh(V t

(xt,yt
)|.

Since S(V t
(xt,ŷt)

) ≥ S(V t
(xt,yt)

), we get that |Sh2(V t) ∩ Sh(V t
(xt,ŷt)

)| ≥ |Sh2(V t) ∩

Sh(V t
(xt,yt)

)|. This implies that |Sh2(V t) ∩ Sh(V t
(xt,yt)

)| ≤ 1
2 |Sh

2(V t)| since
(
Sh2(V t) ∩

Sh(V t
(xt,ŷt)

)
)
∪
(
Sh2(V t) ∩ Sh(V t

(xt,yt)
)
)
= Sh2(V t) and

(
Sh2(V t) ∩ Sh(V t

(xt,ŷt)
)
)
∩
(
Sh2(V t) ∩

Sh(V t
(xt,yt)

)
)
= ∅. Thus, we drop at least half the elements from Sh2(V t) when going from Sh(V t)

to Sh(V t+1).

Finally, consider when i = 3. Fix a q ∈ Sh3(V t). We claim that x1, ..., xt /∈ q. This is because every
c ∈ V t outputs yj on xj for all j ≤ t−1. In addition, xt /∈ q because q ∈ Sh(V t

(xt,yt)
)∩Sh(V t

(xt,ŷt)
)

and every concept in V t
(xt,yt)

and V t
(xt,ŷt)

outputs yt and ŷt on xt respectively. Thus, the sequence
xt ◦ q, obtained by concatenating xt to the front of q, is a valid subsequence of x1:T . Since
ŷt ̸= yt, we also have that xt ◦ q is shattered by V t. Using the fact that xt ◦ q /∈ Sh(V t

(xt,yt)
) and

xt ◦ q /∈ Sh(V t
(xt,ŷt)

), gives that xt ◦ q ∈ Sh1(Vt). Since our choice of q was arbitrary, this implies
that for every q ∈ Sh3(Vt), there exists a subsequence q′ = xt ◦ q ∈ Sh1(V t), ultimately giving that
|Sh1(V t)| ≥ | Sh3(V t)|.
To complete the proof, we lowerbound the total number of dropped elements when going from
Sh(V t) to Sh(V t+1) by

|Sh(V t) \ Sh(V t
(xt,yt)

)| ≥ |Sh1(V t)|+ |Sh
2(V t)|
2

≥ |Sh
1(V t)|
2

+
|Sh2(V t)|

2
+
|Sh3(V t)|

2

=
|Sh(V t)|

2
=

S(V t)

2
.

The number of remaining elements is then S(V t+1) = |Sh(V t
(xt,yt)

)| = |Sh(V t)| − | Sh(V t) \
Sh(V t

(xt,yt)
)| ≤ 1

2 S(V
t), as needed.

We end this section by noting that the algorithm in the proof of Theorem 3 can be made conservative
(i.e. does not update when it is correct) with the same mistake bound. This conservative-version of
the realizable learner will be used when proving regret bounds in the agnostic setting (see Section E).

3.3 Proof of Lowerbound ⌊log T⌋
2 1[B(C) =∞]

If B(C) =∞, then for every q ∈ N, Definition 3 guarantees the existence of d ∈ N, a sequence of
instances x1, . . . , xd, and a sequence of functions Y1, . . . , Yd where Yt : {0, 1}t → Y such that the
following holds: (i) ∀σ ∈ {0, 1}d, there exists cσ ∈ C such that cσ(xt) = Yt(σ≤t) (ii) ∀σ ∈ {0, 1}d,
we have

∑d
t=1 1{Yt((σ<t, 0)) ̸= Yt((σ<t, 1))} ≥ q. Equivalently, there exists a shattered level-

constrained branching tree T of depth d with internal nodes labeled by instances x1, . . . , xd such
that every path down the tree T has ≥ q branching factor. Recall that the branching factor of a path is
the number of nodes in the path whose two outgoing edges are labeled by two distinct elements of
Y . We say that an internal node has branching if the left and right outgoing edges from the node are
labeled by two distinct elements of Y .

Without loss of generality, we will assume that the T guaranteed by Definition 3 has the following
properties: (a) every path in T has exactly q branching factor and (b) T is symmetric along its
non-branching nodes– that is, for every node in T that has no branching, the subtrees on its left and
right outgoing edges are identical. There is no loss in generality because given T without property
(a), we can traverse down every path in T , and once the path has branching factor q, label all the
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subsequent outgoing edges down the path by a concept in C that shatters any completion of that path.
For property (b), if any non-branching node has two different subtrees, then replace the right subtree
with the left subtree. Given such tree T , let BN(T ) denote the number of levels in T with at least
one branching node. The following Lemma, whose proof can be found in Appendix D, provides an
upperbound on BN(T ).
Lemma 1. Let T be any level-constrained branching tree shattered by C such that: (a) every path in
T has exactly q ∈ N branching and (b) for every node in T without branching, the subtrees on its
left and right outgoing edges are identical. Then, BN(T ) ≤ 2q − 1.

Given this Lemma, we now prove the claimed lowerbound of ⌊log T⌋
2 1[B(C) = ∞]. Assume

B(C) =∞ and take q = ⌊log T ⌋. Definition 3 guarantees the existence of shattered Level-constrained
branching tree T that satisfies property (a) and (b) specified in Lemma 1. Next, Lemma 1 implies
that BN(T ) ≤ 2⌊log T⌋ − 1 ≤ T − 1. Let d be the depth T and S ⊆ {1, . . . , d} be the levels in
T with at least one branching node. By definition, we have |S| = BN(T ) ≤ T − 1. Recall that
T can be identified by a sequence of instances x1, . . . , xd and a sequence of functions Y1, . . . , Yd

where Yt : {0, 1}t → Y for every t ∈ [d]. For any path σ ∈ {0, 1}d down T , the set {Yt(σ≤t)}dt=1
gives the labels along this path. Moreover, as all the branching on T occurs on levels in S, we
have

∑d
t=1 1{Yt((σ<t, 0)) ̸= Yt((σ<t, 1))} =

∑
t∈S 1{Yt((σ<t, 0)) ̸= Yt((σ<t, 1))} = ⌊log T ⌋

for every path σ ∈ {0, 1}d.

We now specify the stream to be observed by the learner A. Draw σ ∼ Uniform({0, 1}d) and
consider the stream {(xt, Yt(σ≤t))}t∈S . Repeat (xm, Y (σ≤m)) for remaining T − |S| timepoints,
where m is the largest index in set S. Since this stream is a sequence of instance-label pairs along
the path σ in the shattered tree T , there exists a cσ ∈ C consistent with the stream. However, using
similar arguments as in the proof of the lowerbound D(C)/2, we can establish

E

[
T∑

t=1

1{A
(
xt

)
̸= Yt(σ≤t)}

]

≥ E

[∑
t∈S

1{A
(
xt

)
̸= Yt(σ≤t)}

]

≥ 1

2
E

[∑
t∈S

1
{
Yt((σ<t, 0)) ̸= Yt

(
(σ<t, 1)

)}]

=
1

2
⌊log T ⌋.

This completes our proof of lower bound.

4 Discussion

In this paper, we study the problem of multiclass transductive online learning with possibly arbitrary
label space. In the realizable setting, we establish a trichotomy in the possible minimax rates of
the expected number of mistakes. Furthermore, we show near-tight upper and lower bounds on the
optimal expected regret in the agnostic setting. Along the way, we introduce two new combinatorial
complexity parameters, called the Level-constrained Littlestone dimension and the Level-constrained
Branching dimension.

Finally, we highlight some future directions of this work. First, can we extend our results to settings
such as transductive online learning under bandit feedback, list transductive online learning, and
transductive online real-valued regression? Moreover, as our shattering technique is general, can we
use similar ideas to establish the possible minimax rates of the number of mistakes in the self-directed
and the best-order settings initially studied in [Ben-David et al., 1995, 1997]?
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A Related Work

Online Learning. Online learning has been a subject of study for more than half a century. Moreover,
the seminal work by Littlestone [1988] initiated this line of research within the computer science
community. Since that pivotal contribution, online learning has been explored in various settings,
from learning under the bandit feedback Daniely et al. [2011], Daniely and Helbertal [2013], Long
[2017], Geneson [2021], Raman et al. [2023], Hanneke and Yang [2023] to quantum settings
Aaronson et al. [2018], Mohan and Tewari [2023]. Furthermore, it is also linked to a broad set of
problems, such as differential privacy, highlighted in studies by Alon et al. [2019], Bun et al. [2020],
Alon et al. [2022]. Further, given its fundamental nature, it is not surprising that online learning has
found numerous practical applications.

Transductive and other Online Learning Frameworks. The concept of the transductive learning
model traces its origins to seminal works by Vapnik Vapnik and Chervonenkis [1974], Vapnik [1982,
1998], where it was explored within the PAC learning framework. Subsequently, Ben-David et al.
[1997] initiated the study of this model under the umbrella of online learning, referring to it as
“offline learning”. They utilizes a notion of rank based dimension to prove their results. Notably, as
we mentioned in the introduction, our Level-constrained Branching dimension is exactly equal to
their rank based dimension. A significant advancement came recently with the work of Hanneke
et al. [2023b]. Furthermore, other conceptually related models have also been rigorously studied, as
seen in works by Goldman and Sloan [1994], Ben-David et al. [1995], Ben-David and Eiron [1998],
Devulapalli and Hanneke [2024]. These studies notably include the self-directed online learning
framework, which allows the learning algorithm to select the next instance for prediction from the
remaining set of instances in each round, and additionally, the best order, which allows the learner
(instead of an adversary) to select the order at the beginning of the game.

Multiclass Classification. A substantial volume of theoretical research has been conducted on
various aspects of multiclass classification, as demonstrated by studies Natarajan and Tadepalli
[1988], Natarajan [1989], Ben-David et al. [1992], Haussler and Long [1995], Rubinstein et al.
[2006], Daniely et al. [2011, 2012], Daniely and Shalev-Shwartz [2014], Brukhim et al. [2021].
Despite this extensive body of work, a combinatorial characterization of multiclass classification
with an infinite number of classes under Valiant’s PAC learning framework in the realizable setting
remained open until recently. In pursuit, the seminal paper by Brukhim et al. [2022] provided a
combinatorial characterization in the mentioned setting. A key innovation in this breakthrough was
the utilization of list learners. This dimension also serves to characterize the agnostic variant of this
problem David et al. [2016]. For standard multiclass online learning with potentially unbounded
label space, Daniely et al. [2011] presented a characterization for the realizable setting. Building on
this, Hanneke et al. [2023a] extended Ben-David et al. [2009] technique to the agnostic setting with
infinite label space. Notably, a similar trend can also be observed in the online learning under bandit
feedback in the work of Daniely et al. [2011] followed by Raman et al. [2023].

B Proof of Proposition 1

Let C ⊆ YX be any concept class. To see that D(C) ≤ B(C), note that if D(C) = d, there exists a
Level-constrained Littlestone tree T of depth d with branching factor d. Thus, it must be the case
that B(C) ≥ d.

To prove that B(C) ≤ L(C), it suffices to show that for every shattered Level-constrained Branching
tree T with branching factor n ∈ N, there exists a shattered Littlestone tree of depth n. In particular,
we will prove via induction the following claim: if T is a Level-constrained Branching tree with
branching factor n shattered by some C′ ⊆ C, then there exists a Littlestone tree T ′ of depth n
shattered by C′.
For the base case let T be a Level-constrained Branching tree with branching factor 1 shattered
by some C′ ⊆ C. Without loss of generality (see Lemma 1), suppose that branching occurs on the
root node of T . Then, it is clear that just the root node of T along with its two outgoing edges is a
Littlestone tree of depth 1 shattered by C′.
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Now for the induction step, suppose the induction hypothesis is true for some n ≤ B(C) − 1. Let
T be a Level-constrained Branching tree with branching factor n+ 1 shattered by C′ ⊆ C. Again,
without loss of generality, suppose branching occurs on the root node of T . Let T0 and T1 be the left
and right subtrees of T respectively shattered by C′0 ⊂ C′ and C′1 ⊂ C′ respectively. Then, note that
T0 and T1 must both have a branching factor exactly n. Then, by the induction hypothesis, there exist
Littlestone trees T ′

0 and T ′
1 of depth n shattered by C′0 and C′1 respectively. Since branching occurs at

the root node, the tree T ′ obtained by keeping the root node and its two outgoing edges of T , but
replacing T0 and T1 with T ′

0 and T ′
1 respectively, is a Littlestone tree of depth n + 1 shattered by

C′0 ∪ C′1 ⊆ C′.

C Proof of Lowerbound D(C)
2

Proof. Fix a transductive online learner A. We will construct a randomized, hard realizable stream
such that the expected number of mistakes made byA is at least D(C)

2 . Using the probabilistic method
then gives the stated lowerbound.

Let d := D(C). Then, by Definition 2, there exists a sequence of instances x1, .., xd ∈ X d and a
sequence of functions {Yt}dt=1 where Yt : {0, 1}t → Y such that for every σ ∈ {0, 1}d, the following
holds:

(i) Yt(σ<t, 0) ̸= Yt(σ<t, 1) for all t ∈ [d].

(ii) ∃cσ ∈ C such that cσ(xt) = Yt(σ≤t) for all t ∈ [d].

Let σ ∼ {0, 1}d a denote bitstring of length d sampled uniformly at random and consider the
stream (x1, Y1(σ≤1)), ..., (xd, Yd(σ≤d)). By the definition, there exists a concept cσ ∈ C such that
cσ(xt) = Yt(σ≤t) for all t ∈ [d]. Moreover, observe that

E

[
d∑

t=1

1{A(xt) ̸= Yt(σ≤t)}

]
=

d∑
t=1

E
[
1{A

(
xt

)
̸= Yt(σ≤t)}

]
=

d∑
t=1

E
[
E
[
1
{
A
(
xt

)
̸= Yt

(
(σ<t, σt)

)} ∣∣∣σ<t

] ]
≥ 1

2

d∑
t=1

E
[
E
[
1
{
Yt

(
(σ<t, 0)

)
̸= Yt

(
(σ<t, 1)

)} ∣∣∣σ<t

]]
=

1

2
E

[
d∑

t=1

1
{
Yt((σ<t, 0)) ̸= Yt

(
(σ<t, 1)

)}]
=

d

2
.

where the first inequality follows from the fact that σt ∼ Uniform({0, 1}). This completes the
proof.

D Proof of Lemma 1

Proof. (of Lemma 1) If depth(T ) ≤ 2q − 1, the claim holds trivially. So, we assume depth(T ) >
2q − 1. We now proceed by induction on q. For the base case q = 1, let T denote a level-constrained
tree of depth(T ) > 1 shattered by C that satisfies property (a) and (b) specified in Lemma 1. First,
consider the case where the root node of T has branching. Since every path in T can have exactly 1
branching, there can be no further branching in T . Next, consider the case when the root node of T
is not the branching node and ℓ is the first level in T with branching. There must be 2ℓ−1 nodes in
this level, henceforth denoted by {vi}2

ℓ−1

i=1 . Moreover, denote Tvi to be the corresponding subtree
in T with vi as the root node. Since T satisfy property (b) and there are no branching nodes before
level ℓ, the subtrees {Tvi}2

ℓ−1

i=1 must be identical. Since all subtrees {Tvi}2
ℓ−1

i=1 have branching on the
root node, there can be no further branching in these subtrees beyond the root node. Therefore, there
cannot be any other levels ℓ′ > ℓ in T with branching node. This establishes that ℓ is the only level in
T with at least one branching node. In either case, we have BN(T ) ≤ 1 = 2q − 1.
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Assume that Lemma 1 is true for some q = n ∈ N. We now establish Lemma 1 for q = n + 1.
To that end, let T be a level-constrained tree with branching factor q = n + 1 shattered by C that
satisfies (a) and (b). Let ℓ ≥ 1 be the first level in T with at least one branching node, and {Ti}2

ℓ−1
i=1

be all the subtrees with its root node being a node on level ℓ. As argued in the base case, all these
subtrees must be identical. Thus, branching occurs on the same set of levels on all these subtrees,
which implies that BN(T ) = BN(Ti) for all i ∈ [2ℓ−1]. Let T 0

1 and T 1
1 denote the left and right

subtree following the two outgoing edges from the root node of T1. Since, there is branching on the
root-node of T1, we must have BN(T1) ≤ 1 + BN(T 0

1 ) + BN(T 1
1 ). For each i ∈ {0, 1}, the subtree

T i
1 is a level-constrained tree shattered by C that satisfies properties (a) and (b) for q = n. Using the

inductive concept, we have BN(T i
1 ) ≤ 2n − 1 for i ∈ {0, 1}. Therefore, combining everything

BN(T ) = BN(T1) ≤ 1 + BN(T 0
1 ) + BN(T 1

1 ) ≤ 1 + 2n − 1 + 2n − 1 = 2n+1 − 1.

This completes our induction step.

E Minimax Rates in the Agnostic Setting

We go beyond the realizable setting, and establish the minimax regret in the agnostic setting in terms
of the Level-constrained Littlestone dimension.

Theorem 4 (Regret bound). For every concept class C ⊆ YX and T ≥ D(C), we have√
T D(C)

8
≤ R⋆(T, C) ≤

√
T D(C) log

( eT

D(C)

)
.

We note that the upper- and lower-bounds in Theorem 4 are only off only by a factor logarithmic in
T . We leave it as an open question to establish a matching upper- and lower-bounds.

Proof. (of upper bound in Theorem 4) To prove the upper bound, we will use the agnostic-to-
realizable reduction from Hanneke et al. [2023a] to convert our realizable learner in Section 3.2 to
an agnostic learner with the claimed upper bound on expected regret. By Theorem 4 in [Hanneke
et al., 2023a], any conservative deterministic learner A with mistake bound M can be converted into

an agnostic learner with expected regret at most
√
T M log

(
eT
M

)
. Although the proof by Hanneke

et al. [2023a] only coverts the conservative Standard Optimal Algorithm to an agnostic learner,
the arguments are general enough such that the conversion can be adapted for any conservative
deterministic mistake-bound learner. By Theorem 3 and the proof in Section 3.2, there exists a
conservative deterministic realizable learner with mistake bound at most D(C) log

(
eT

D(C)

)
. Using the

realizable-to-agnostic conversion from Theorem 4 in [Hanneke et al., 2023a] with the conservative-
version of the realizable learner in Section 3.2 gives an agnostic learner with expected regret at
most √√√√√T D(C) log

( eT

D(C)

)
log

(
eT

D(C) log
(

eT
D(C)

)) ≤√T D(C) log
( eT

D(C)

)
,

completing the proof.

Proof. (of lower bound in Theorem 4) Our proof of lower bound is identical to the lower bound for
the binary setting proved in [Hanneke et al., 2023b, Theorem 6.1], which is just a simple adaptation
of standard lower bound technique from [Ben-David et al., 2009]. Thus, we only outline the sketch
of the proof here.

Let d = D(C). Consider a sequence of instances {x⋆
1, . . . , x

⋆
d} ⊂ X and a sequence of functions

{Yi}di=1 that is shattered by C according to Definition 2. Pick the largest odd number k ∈ N such that
kd ≤ T . First, the adversary reveals the instances {x1, . . . , xT } such that xt = x⋆

1 for t = 1, . . . , k,
followed by xt = x⋆

2 for t = k + 1, . . . , 2k, and so forth. If T > kd, take xt = x⋆
d for all t > kd.

As for labels, the adversary will first sample (σ1, σ2, . . . , σT ) ∈ Uniform({0, 1}T ). Then, for
t = 1, . . . , k, the labels are selected as yt = Y1(σt). For t = k + 1, . . . , 2k, the labels are selected as
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yt = Y2((σ̄1, σt)), where σ̄1 = 1

{∑k
t=1 1[σ1 = 0] <

∑k
t=1 1[σ1 = 1]

}
is the majority bit in the

first block t = 1, . . . , k. One can define yt for all t > 2k analogously. For this stream, the label yt is
essentially equivalent to the bit σt ∈ {0, 1}. Therefore, following the exact same arguments as in
[Hanneke et al., 2023b, Theorem 6.1] establishes the lower bound of

√
Td/8. This completes the

sketch of our proof.

Remark 1. Let k ∈ N be the number of classes. Let C ⊆ {1, 2, . . . , k}X be a concept class. It is
notable that for small number of classes k (i.e. k << 2(logT )2), the Natarajan bound that can be
proved using the technique of Hanneke et al. [2023b] can be smaller than the upper bound in terms
of the Level-constrained Littlestone dimension. However, for large k (i.e. k >> 2(logT )2 ), our upper
bound in terms of D(C) can be better.

F Comparisons to Existing Combinatorial Dimensions

In this section, we compare the Level-constrained Littlestone dimension 2 and the Level-constrained
Branching dimension 3 to existing combinatorial dimensions in multiclass learning.

F.1 Existing Combinatorial Dimensions

Definition 4 (i-neighbour). Let f, g ∈ Yd for some d ∈ N. For every i ∈ [d], we say that f and g are
i-neighbours if fi ̸= gi and ∀j∈[d]\{i} fj = gj .

Definition 5 (DS dimension Daniely and Shalev-Shwartz [2014]). Let C ⊆ YX be a concept class.
Let S ∈ X d be a sequence for some d ∈ N. We say that S is DS-shattered by C, if there exists
F ⊆ C, |F | < ∞ such that for all f ∈ {g | g ∈ Yd, ∃g∈F ∀i∈[d] gi = f(Si)} and for all i ∈ [d],
f has at least one i-neighbor. The DS dimension of C, denoted DS(C), is the maximal size of a
sequence S ∈ X d for some d ∈ N that is DS-shattered by C.
Definition 6 (Graph dimension). Let C ⊆ YX be a concept class. Let S ⊆ X . We say that S is
G-shattered by C, if there exists an f : S → Y such that for every T ⊆ S there is a g ∈ C such that:

∀x∈T g(x) = f(x) and ∀x∈S−T g(x) ̸= f(x)

The graph dimension of C, denoted G(C), is the maximal cardinality of a set S ⊆ X that is G-shattered
by C.
Definition 7 (Natarajan Threshold dimension). Let C ⊆ YX be a concept class. Let S ∈ X d be a
sequence for some d ∈ N. We say that S is NT-shattered by C, if there exist f, g : [d]→ Y such that
∀i∈[d] f(i) ̸= g(i), and there exists

(
c0, c1, c2, . . . , cd

)
∈ Cd+1 such that for every i ∈ [d+1], j ∈ [d]:

ci−1(Sj) =

{
f(j), j < i

g(j), j ≥ i

The Natarajan Threshold dimension of C, denoted NT(C), is the maximal size of a sequence S ∈ X d

for some d ∈ N that is NT-shattered by C.

F.2 Comparison

It is easy to show that for every concept class C ⊆ YX , its Natarajan dimension is always less than or
equal to its DS dimension. Moreover, the work of Brukhim et al. [2022] demonstrated there exists a
concept class C ⊆ YX for which the Natarajan dimension is 1 but DS(C) =∞. Here, we show that
for every concept class C ⊆ YX , its DS dimension is always less than equal to its Level-constrained
Littlestone dimension. Furthermore, we demonstrate there exists a concept class C′ ⊆ YX such that
DS(C′) = 1 but D(C′) =∞. These two results are shown in Proposition 2.
Proposition 2. For every concept class C ⊆ YX , we have: DS(C) ≤ D(C). Moreover, there exists a
concept class C′ ⊆ YX such that DS(C′) = 1 but D(C′) =∞.

Proof. First, we prove that for every concept class C ⊆ YX , we have: DS(C) ≤ D(C). Let C ⊆ YX

be a concept class such that DS(C) is finite. Subsequently, we show that we can construct a Level-
constrained Littlestone tree T of depth DS(C), which is shattered by C. Thus, DS(C) ≤ D(C).
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Let S ∈ XDS(C) be a sequence of instances, which is DS-shattered by C. We show that we can
construct a Level-constrained Littlestone tree T of depth DS(C), having members of S as its nodes in
order with the first member being its root and so on, which is shattered by C. To show the construction,
we use induction. If DS(C) = 1, it is clear that we can construct a Level-constrained Littlestone
tree T of depth 1, which is shattered by C. This is because there must be two concepts in C, which
disagree on one member of S. We assume that if DS(C) = d, we can construct a Level-constrained
Littlestone tree T of depth d, having members of S as its nodes in order with the first member
being its root and so on, which is shattered by C, where S ∈ X d is a sequence of size d witnessing
DS(C) = d. Now, we prove that if DS(C) = d+ 1, we can construct a Level-constrained Littlestone
tree T of depth d + 1, having members of S as its nodes in order with the first member being its
root and so on, which is shattered by C, where S ∈ X d+1 is a sequence of size d + 1 witnessing
DS(C) = d + 1. Let F ⊂ C be a set witnessing DS(C) = d + 1. Take any two distinct concepts
c1, c2 ∈ F . Define F ′ as follows: F ′ := {f | f ∈ F, f(S1) = c1(S1)}. In addition, define F ′′ as
follows: F ′′ := {f | f ∈ F, f(S1) = c2(S1)}. Observe that

(
S2, S3, . . . , Sd+1

)
and F ′ can witness

DS(C) ≥ d. Similarly, observe that
(
S2, S3, . . . , Sd+1

)
and F ′′ can witness DS(C) ≥ d. Now, we set

the root of T as S1 and branches with c1(S1) and c2(S1) labels. Based on the inductive assumption
combined with the facts that we mentioned, we can complete the construction of Level-constrained
Littlestone tree T of depth DS(C), having members of S as its nodes in order with the first member
being its root and so on, which is shattered by C.

Finally, we note that if DS(C) =∞, as we can do the construction for every depth d ∈ N, we should
have D(C) =∞.

Second, we prove that there exists a concept class C′ ⊆ YX such that DS(C′) = 1 but D(C′) =∞.
To show this, we use our next proposition, namely 3, combined with the well-known fact that for
every C ⊆ YX , we have: DS(C) ≤ G(C).

Next, we show there that exists a concept class C ⊆ YX such that G(C) = 1 and D(C) = ∞. On
the other hand, we also prove the existence of a concept class C ⊆ YX such that G(C) = ∞ and
D(C) = 1. These two results, shown in Proposition 3, imply that the Level-constrained Littlestone
dimension and the Graph dimension are not comparable. Moreover, our first claim has an interesting
consequence. In particular, it illustrates that having a finite Level-constrained Littlestone dimension is
not necessary for having a bounded size sample compression scheme. This follows from the fact that
having finite Graph dimension is sufficient for having a bounded size sample compression scheme
[David et al., 2016]. We also remark that for every concept class C ⊆ YX , its DS dimension is always
less than or equal to its Graph dimension.

Proposition 3. There exists a concept class C ⊆ YX such that G(C) = 1 and D(C) =∞. Moreover,
there exists a concept class C′ ⊆ YX such that G(C′) =∞ and D(C′) = 1.

Proof. First, we prove the second claim. To show that, we rely on Example 1 in Hanneke et al.
[2023a]. In particular, they showed there exists a concept class C′ ⊆ YX such that G(C′) =∞ and
L(C′) = 1. As we know D(C′) ≤ L(C), we conclude there exists a concept class C′ ⊆ YX such that
G(C′) =∞ and D(C′) = 1.

Second, we prove that there exists a concept class C ⊆ YX such that G(C) = 1 and D(C) = ∞.
Let T be an infinite depth rooted perfect binary tree so that all of its levels and edges are labeled by
distinct elements. The definition of such a tree is similar to Definition 1.7 in the work of Bousquet
et al. [2021]. Let X be the elements on the levels of T and Y be the elements on the edges of T . Also,
define the concept class C ⊆ YX as follows: C only contains all concepts consistent with a branch of
T . Thus, clearly, we have: D(C) =∞. Now, we show that G(C) = 1. We prove this by contradiction.
Assume G(C) ≥ 2. Thus, there exist S = (x1, x2) ⊂ X of size 2 and f : S → Y witnessing the
fact that G(C) = 2. Without loss of generality, we assume that x1 is above x2 in T . Using the
fact that the edges of T are labeled with distinct elements of Y , there cannot exist both c1 ∈ C and
c2 ∈ C such that c1(x1) = f(x1), c1(x2) = f(x2), c2(x1) ̸= f(x1), and c2(x2) = f(x2). This is a
contradiction, thus G(C) = 1.

It is well-known that for every concept class C ⊆ YX , its Littlestone dimension is always less than
equal to its sequential graph dimension. Moreover, the work of Hanneke et al. [2023a] demonstrated
there exists a concept class C ⊆ YX such that L(C) = 1 and SG(C) = ∞. Here, we show that for
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every concept class C ⊆ YX , its Level-constrained Branching dimension is always less than equal to
its Littlestone dimension. Furthermore, we demonstrate that there exists a concept class C′ ⊆ YX

such that B(C′) ≤ 2 and L(C′) =∞. These two results are shown in Proposition 4.

Proposition 4. For every concept class C ⊆ YX , we have: B(C) ≤ L(C). Moreover, there exists a
concept class C′ ⊆ YX such that B(C′) ≤ 2 and L(C′) =∞.

Proof. The proof of the following claim: for every concept class C ⊆ YX , we have that B(C) ≤ L(C)
is given by Proposition 1. Therefore, we focus on showing that there exists a concept class C′ ⊆ YX

such that B(C′) ≤ 2 and L(C′) = ∞. Let T be an infinite depth rooted perfect binary tree so that
all of its nodes are labeled by distinct elements, all of its left edges are labeled by 0, and all of its
right edges are labeled by 1. The definition of such a tree is similar to Definition 1.7 in the work
of Bousquet et al. [2021]. Let X be the elements on the nodes of T . Also, define the concept class
C′ as follows: C′ contains only the concepts consistent with a branch of T . Further, each of these
concepts predicts a unique label for all instances outside its associated branch. In addition, define Y
as the union of {0, 1} and all unique labels used in the definition of C′. Thus, we have: L(C′) =∞.
Now, we show that B(C′) ≤ 2. To prove this, we demonstrate that for every T ∈ N, we have:
infDeterministic A MA(T, C′) ≤ 2. As a result, we can then conclude that B(C′) ≤ 2.

To see why infDeterministic A MA(T, C′) ≤ 2 for every T ∈ N implies that B(C′) ≤ 2, suppose for the
sake of contradiction that B(C′) ≥ 3. So, there exists a Level-constrained Branching tree of depth
d ∈ N such that its branching factor is at least 3. Let T ′ = d. It is not hard to see that there exists a
sequence of instances of size T ′ such that for every deterministic learner, there exists a realizable
labeling of instances that forces the learner to make at least 3 mistakes over T ′ rounds. This leads to
a contradiction. Thus, we conclude that B(C′) ≤ 2.

We now construct a deterministic learner A such that MA(T, C′) ≤ 2 for every T ∈ N. Let T ∈ N.
Let SX T be the sequence chosen by the adversary at the beginning of the game. Also, let c⋆ ∈ C′
be the target concept chosen by the adversary. Further, let u be the root-to-leaf path in T associated
with the concept c⋆. In addition, for every i ∈ [T ], let vi be a root-to-leaf path in T containing first i
members of S, if it exists. Finally, let i⋆ be the smallest positive integer such that vi⋆ does not exist.
If i⋆ itself does not exist, let i⋆ = T + 1.

Our algorithm A predicts according to the {0, 1} labels associated with the path vi⋆−1 for the first
i⋆− 1 points in S. Furthermore, if the adversary ever reveals a unique label, we use its corresponding
c ∈ C′ to make predictions in all future rounds. For the i⋆’th member of S, if it exists, we predict
arbitrarily. To see that this algorithm makes at most 2 mistakes, we consider two cases. (1) If
i⋆ = T + 1, then our algorithm makes at most one mistake. In fact, our algorithm makes a mistake:
(a) if the adversary switches the label from a bit in {0, 1} to a unique label corresponding to the
target concept c⋆. (b) perhaps on the last instance. (2) Otherwise, the algorithm makes at most two
mistakes; the first mistake can be on round i⋆ − 1, and the second mistake can be on round i⋆, after
which the true c⋆ is known to the learner from its unique label. Indeed, if the adversary switches the
label from a bit in {0, 1} to a unique label corresponding to the target concept c⋆ before round i⋆ − 1,
we only make one mistake. This completes the proof.

Finally, the works of Shelah [1990], Hodges [1997] showed that the finiteness of the Littlestone
and Threshold dimensions coincide in the binary setting. Here, we show that this is not the case
between the Level-constrained Branching dimension and the Natarajan Threshold dimension. More
specifically, we show that for every concept class C ⊆ YX , its Level-constrained Branching dimension
is always greater than or equal to the log of its Natarajan Threshold dimension. However, we give
a concept class C′ ⊆ YX such that NT(C′) = 1 and B(C′) = ∞. These two results are shown in
Proposition 5. Notably, the lower bound of Hanneke et al. [2023b], based on the threshold dimension,
can be easily generalized to our setting for the Natarajan Threshold dimension.

Proposition 5. For every concept class C ⊆ YX , we have: log(NT(C)) ≤ B(C). Moreover, there
exists a concept class C′ ⊆ YX such that NT(C′) = 1 and B(C′) =∞.

Proof. First, we prove that for every concept class C ⊆ YX , we have: log(NT(C)) ≤ B(C). Let
C ⊆ YX be a concept class such that NT(C) = d for some d ∈ N. Let T = d. On the one hand, by
presenting the sequences of instances that are NT-shattered by C to the learner, we can use a similar
technique as [Hanneke et al., 2023b, Claim 3.4], to prove a lower bound of log(NT(C)) on M⋆(T, C).
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On the other hand, based on Section 3, we can prove an upper bound of B(C) on M⋆(T, C). Thus, we
have log(NT(C)) ≤ B(C).
Second, we prove that there exists a concept class C′ ⊆ YX such that NT(C′) = 1 and B(C′) =∞.
Let T be a rooted binary tree so that it has the following three properties: (1) all of its levels and
edges are labeled by distinct elements. (2) each level only contains one node with two children (3)
its branching factor is infinite. It is not hard to see that such a tree exists. The definition of such
a tree is similar to Definition 1.7 in the work of Bousquet et al. [2021]. Let X be the elements on
the levels of T and Y be the elements on the edges of T . Also, define the concept class C′ ⊆ YX

as follows: C′ only contains all concepts consistent with a branch of T . Thus, clearly, we have:
B(C′) =∞. Now, we show that NT(C′) = 1. We prove this by contradiction. Assume NT(C′) ≥ 2.
Then, there exist S = (x1, x2) ∈ X 2 and (c0, c1, c2) ∈ C′3 witnessing NT(C′) = 2. Without loss of
generality, we assume that x1 is above x2 in T . Based on our constriction of T , it is simple to see
that c0(x2) ̸= c1(x2) and c0(x2) ̸= c2(x2) and c1(x2) ̸= c2(x2). Thus, NT(C′) can not be even 2,
which completes our contradiction-based proof.
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paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we claim that we establish trichotomy of rates
in the multiclass transductive online learning in the realizable setting and near tight upper
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made in the paper.
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Discussion section.
Guidelines:
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Answer: [Yes]
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Theoretical result. Proposition 1 is proved in Appendix B. Theorem 1 is proved in Section 3,
Theorem 3 is proven in Section 3 and in Appendix C, and Lemma 1 is proved in Appendix
D. All theorems and lemmas are properly referenced.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our paper
conforms, in every respect, with the NeurIPS Code of Ethics. We have also made sure to
preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As this paper is completely theoretical in nature, there does not seem to be any
soceital impact of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is theoretical and poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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