
Under review as submission to TMLR

SafeOR-Gym: A Benchmark Suite for Safe Reinforcement
Learning Algorithms on Practical Operations Research Prob-
lems

Anonymous authors
Paper under double-blind review

Abstract

Most existing safe reinforcement learning (RL) benchmarks focus on robotics and control
tasks, offering limited relevance to high-stakes domains that involve structured constraints,
mixed-integer decisions, and industrial complexity. This gap hinders the advancement and
deployment of safe RL in critical areas such as energy systems, manufacturing, and supply
chains. To address this limitation, we present SafeOR-Gym, a benchmark suite of nine
operations research (OR) environments tailored for safe RL under complex constraints. Each
environment captures a realistic planning, scheduling, or control problems characterized by
cost-based constraint violations, planning horizons, and hybrid discrete-continuous action
spaces. The suite integrates seamlessly with the Constrained Markov Decision Process
(CMDP) interface provided by OmniSafe. We evaluate several state-of-the-art safe RL
algorithms across these environments, revealing a wide range of performance: while some
tasks are tractable, others expose fundamental limitations in current approaches. SafeOR-
Gym provides a challenging and practical testbed that aims to catalyze future research in
safe RL for real-world decision-making problems.

1 Introduction

Real-world reinforcement learning (RL) applications often demand that agents respect strict safety require-
ments at all times. Safe reinforcement learning (Garcıa & Fernández, 2015; Gu et al., 2022) addresses
this need by maximizing long-term rewards while satisfying safety constraints. In contrast to standard
RL, which might treat safety violations as mere negative rewards, safe RL explicitly enforces constraints
throughout training and deployment. This capability is vital in safety-critical domains such as autonomous
driving, robotics, and power systems, where an agent’s actions can lead to irreversible damage or hazards
if constraints such as speed limits, stability margins, or resource capacities are violated. The formalism
of constrained Markov decision processes (CMDPs) (Altman, 2021) provides a natural framework for such
problems, requiring the learned policy to remain within a set of safe outcomes at all times. In practice,
safe RL algorithms incorporate cost signals or penalties for unsafe behavior and aim to ensure constraint
satisfaction during both learning and execution. This paradigm has gained traction as a cornerstone for
deploying RL in high-stakes environments.

Progress in safe RL has been accelerated by the development of specialized libraries and benchmark suites. A
prominent example is OmniSafe (Ji et al., 2024), an open-source infrastructure designed specifically for safe
RL research. OmniSafe offers a unified, modular framework with built-in support for constraint handling
and a comprehensive collection of constrained RL algorithms. Notably, it extends the standard OpenAI
Gym interface by supporting constrained Markov decision processes (CMDPs), enabling explicit modeling
of safety constraints through cost signals. These capabilities make OmniSafe and similar frameworks highly
valuable for evaluating safe RL methods in a standardized and extensible setting. However, despite advances
in algorithms and software infrastructure, the diversity and realism of benchmark environments tailored for
safe RL remain limited.

1

Under review as submission to TMLR

Most existing RL benchmarks were not designed with safety constraints in mind. Classic control tasks
and popular continuous control domains such as CartPole, Pendulum, and MuJoCo locomotion simulations
(Todorov et al., 2012; Brockman et al., 2016) offer simple dynamics with no explicit safety constraints.
Crucially, these environments rarely involve the mixed discrete–continuous decision-making or constraints
that characterize real operational problems. Even specialized safe RL environment suites focus primarily
on robotic control and do not capture the structured complexity of industrial decision problems. This gap
in benchmarks makes it challenging to rigorously evaluate how well safe RL algorithms would perform on
realistic, safety-critical tasks that involve complex constraints and decision structures.

Operations research (OR) problems (Rardin & Rardin, 1998) present an appealing opportunity to fill this
gap. OR encompasses a broad class of decision-making tasks with rich combinatorial structure, explicit
constraints, and often long planning horizons. These problems inherently require balancing long-term ob-
jectives with immediate feasibility and safety. For instance, planning the operation of an energy storage
system demands making multi-year investments and dispatch decisions that remain robust to short-term
operational constraints and rare events(Ramanujam & Li, 2025; Li et al., 2022). In general, OR formulations
like scheduling, resource allocation, and supply chain management force agents to respect resource capac-
ities, timing deadlines, and logical constraints at every step, exactly the kind of requirements safe RL is
meant to handle. Moreover, OR problems frequently arise in safety-critical domains such as energy systems,
transportation, supply chains, and chemical process operations. In these settings, violating a constraint such
as overloading a network, missing a maintenance schedule, running a process outside safe limits, etc., can
lead to severe real-world consequences. The structured nature and practical relevance of OR tasks make
them well-suited as benchmark environments to stress-test safe RL algorithms on realistic problems that go
beyond the toy examples commonly used.

We introduce SafeOR-Gym, a benchmark suite for safe reinforcement learning that features a diverse set
of operations research environments spanning industrial planning and real-time control. The suite includes
nine environments with varying structures, time horizons, and decision complexities.

In summary, this work makes the following contributions:

1. We develop a suite of nine OR-based benchmark environments tailored for safe RL, addressing the
need for more realistic and structured evaluation tasks.

2. We release Gym-compatible implementations of these environments with native integration into the
OmniSafe framework, enabling out-of-the-box use of constraint-handling algorithms.

3. We evaluate the environments using several on-policy algorithms in OminiSafe and discuss the
current limitations of existing safe RL algorithms in solving highly constrained OR problems.

2 Related Work

Standard RL benchmarks, such as the OpenAI Gym toolkit (Brockman et al., 2016) with classic control
and MuJoCo-based continuous control tasks, have been foundational for evaluating reinforcement learning
algorithms. However, they typically lack built-in safety constraints or the structured decision-making found
in operations research (OR) problems. Most environments are designed as simplified tasks with minimal
realism or constraints.

To address the need for safety-aware evaluation, specialized benchmark libraries have emerged. OpenAI’s
Safety Gym (Ray et al., 2019) introduced a set of environments that simulate continuous control tasks
with hazards, cost signals, and explicit safety constraints. More recently, the Safety Gymnasium (Ji et al.,
2023) suite has extended this idea to include both single- and multi-agent safety-critical environments. The
OmniSafe (Ji et al., 2024) framework further consolidates these contributions by integrating a variety of
safe RL environments and algorithms into a unified and modular platform. It supports constraint-handling
algorithms, constrained policy optimization methods, and provides compatibility with Gym-style APIs.

In parallel, a growing body of work has focused on bringing OR and classical control problems into Gym-
compatible environments. OR-Gym (Hubbs et al., 2020) provides a library of OR formulations, such as

2

Under review as submission to TMLR

knapsack, bin packing, and supply chain management, as RL tasks, enabling comparison between RL policies
and traditional optimization techniques. PC-Gym (Bloor et al., 2024) and (Park et al., 2025) introduce
environments that model realistic chemical process dynamics, control disturbances, and enforce operational
safety. SustainGym (Yeh et al., 2023) contributes several sustainability-focused environments such as electric
vehicle charging and data center scheduling, which feature complex operational constraints, distribution
shifts, and hybrid discrete-continuous action spaces.

Despite these efforts, existing benchmarks for operations research problems exhibit important limitations.
Existing works are only compatible with standard Gymnasium environments, rather than the CMDP in-
terface required by frameworks like OmniSafe. They typically handle constraint violations by penalizing
the reward function, rather than modeling them as explicit cost signals. Furthermore, many environments
simplify or abstract away industrial complexity, limiting their utility for evaluating algorithms in realistic,
safety-critical scenarios. OR-Gym, for example, primarily consists of toy problems such as knapsack and bin
packing, which lack the structural and constraint richness of real-world applications. SustainGym centers
on sustainability-oriented problems, but does not incorporate the nonlinear nonconvex constraints in many
OR applications, such as those found in the blending problem. These gaps motivate the development of
a benchmark suite featuring rich, constrained, and practically relevant OR problems that can serve as a
rigorous testbed for safe RL algorithms. These comparisons are summarized in Table 1. A more detailed
comparison of the environments is show in Appendix C.

Table 1: Comparison of Gym environments with operations research applications

(a) Environment class, constraints, and SafeRL compatibility

Work Env. Class Constraint Handling SafeRL

OR-Gym Gymnasium truncation, reward penalties ×
SustainGym Gymnasium truncation, reward penalties ×
SafeOR-Gym Gymnasium + CMDP truncation, reward penalties, explicit costs ✓

(b) problem size, constraint complexity, and application domains

Work Obs / Action (mean, max) Nonconvex Domain

OR-Gym (242, 2501) / (57, 200) × classical OR
SustainGym (79, 150) / (33, 72) × sustainable energy
SafeOR-Gym (86, 4280) / (32, 272) ✓ planning, power, chemical, scheduling

3 Environments

This section provides an overview of two illustrative examples of the environments in SafeOR-Gym. The
detailed descriptions of all the environments including the mathematical details, explanations, and illustrative
figures can be found in Appendix A.

3.1 Multiperiod Blending Problem (BlendingEnv)

Problem Description The multiperiod blending problem arises in industries such as refining and chemical
processing, where raw materials with different properties must be blended over time to produce saleable
products meeting strict quality constraints (Chen & Maravelias, 2020). In BlendingEnv, the agent decides
how much of each source stream to purchase, how to route flows through a network of blenders, and how
much product to sell at each time step. Safety constraints include property bounds on final products and

3

Under review as submission to TMLR

storage limits on inventories. The environment reflects operational complexities such as nonlinear blending
effects, capacity limits, and quality enforcement.

State Space The state includes current inventory levels of sources, blenders, and demand nodes; material
properties of blender; future availability of sources and product demand over a lookahead window, and the
current time step.

Action Space The action specifies: source stream purchase quantities; product sale quantities; flow rates
from source inventories to blenders, between blenders, and from blenders to product inventories.

Transition Dynamics Updates inventories using material balances; clips values to inventory bounds; up-
dates material properties in blenders based on flow composition; rolls forward source availability and demand
forecasts. The dynamics of mixing material properties involve nonlinear nonconvex constraints.

Cost The environment penalizes: violating inventory bounds; violating the no simultaneous “in-out” flow
rule for blenders; and producing out-of-spec blends.

Reward The reward includes: revenue from product sales; minus cost of purchasing source streams; minus
variable and fixed costs for flow operations.

3.2 Integrated Scheduling and Maintenance (SchedMaintEnv)

Problem Description The Integrated Scheduling and Maintenance environment models the daily operation
of compressors in an Air Separation Unit (ASU), where gaseous product demand must be met without
inventory buffers (Xenos et al., 2016). The agent must coordinate production and maintenance actions for
each compressor while optionally procuring external supply to satisfy demand. At each time step, the agent
decides the fraction of each compressor’s capacity to operate, whether to initiate maintenance, and how
much external product to purchase. Maintenance policies are constrained by compressor-specific conditions,
such as mean time to failure (MTTF), maintenance duration, and cooldown periods. Note that the machine
failures can also be uncertain. Safety arises from the need to avoid compressor breakdowns due to delayed
maintenance, premature maintenance interventions, or ramping during repair periods.

State Space The state includes: forecasted product demand and electricity prices over a fixed horizon;
compressor-level indicators for time since last maintenance, time remaining to complete maintenance, and
eligibility to enter maintenance.

Action Space The action at each time step consists of: a binary vector for maintenance decisions (schedule
or not); a continuous vector for compressor production rates; and a continuous external purchase action
representing the fraction of a predefined maximum external capacity.

Transition Dynamics Compressor state evolves based on maintenance initiation, progress, and cooldown
periods. Upate electricity prices and product demand follow forecasts. Maintenance eligibility resets once
a cooldown period has elapsed. The environment enforces repair continuity and halts production during
repair.

Cost The environment penalizes: early maintenance actions; failure to perform maintenance before MTTF;
ramping while under maintenance; and disruption of ongoing maintenance. Additionally, unmet or overmet
demand incurs a penalty proportional to the deviation from forecast.

Reward The agent receives a negative reward equal to the total cost incurred: production cost (based on
power price and compressor load), external purchase cost.

4 Implementation, Compatibility, and Extensibility

All environments are implemented on top of the Gymnasium API (Brockman et al., 2016), with an additional
Constrained Markov Decision Process (CMDP) wrapper (Ji et al., 2024). This wrapper consists of fewer
than 50 lines of code but provides compatibility with Safe RL algorithms that explicitly handle constraints.
While OmniSafe is used as the primary reference implementation due to its breadth and active development,

4

Under review as submission to TMLR

SafeOR-Gym can be adapted to other Safe RL libraries with only minimal modifications, since most Safe
RL algorithms are CMDP-based and rely on Gymnasium as the base environment class.

Each environment in SafeOR-Gym is initialized with a small illustrative instance, but the underlying data
structures are independent of any specific problem setup. Instance-specific parameters such as network
topologies, renewable generation profiles, or equipment characteristics are stored in external JSON files. This
separation of code and data makes it straightforward to create new problem instances or modify existing ones
by editing the JSON inputs, without altering the environment code. As a result, stochastic elements such
as randomized demand realizations or sampled renewable generation profiles can be introduced naturally by
providing alternative data inputs.

Although the present work focuses on deterministic environments, SafeOR-Gym is designed to accommodate
stochasticity and non-stationarity. This is particularly important for real-world OR problems, which often
involve renewable generation variability, equipment failures, or evolving market conditions. As a demonstra-
tion, we extended the maintenance scheduling environment to incorporate random machine failures, produc-
ing SchedMaintEnv-v1, a stochastic variant of the original deterministic environment (SchedMaintEnv-v0).
Importantly, this extension was achieved by inheriting the original environment rather than reimplementing
it from scratch, underscoring the ease of extending SafeOR-Gym to uncertainty-aware benchmarks. In this
work, we focus primarily on deterministic environments because most existing safe RL algorithms already
face substantial challenges in solving even deterministic OR problems with complex constraints, which will
be shown in section 5. Demonstrating these limitations in a controlled deterministic setting helps establish
a clear baseline before introducing additional sources of uncertainty.

5 Experiments

We evaluate a suite of safe reinforcement learning (RL) algorithms across multiple environments subject
to safety constraints. Each experiment involves one or more deterministic case studies, designed to test
algorithmic robustness and generalization. In addition, we also include SchedMaintEnv-v1, a stochastic
variant of the original deterministic environment (SchedMaintEnv-v0). We adopt the CMDP formulation
used in the OmniSafe package (Ji et al., 2024). We adapt the safe RL algorithms in OmniSafe, which
supports parallelized training and evaluation via its Experimental Grid feature. The safe RL algorithms
tested include Constrained Policy Optimization (CPO) (Achiam et al., 2017), the Lagrangian version of
trust regions policy optimization (TRPOLag) (Ray et al., 2019), Penalized Proximal Policy Optimization
(P3O) (Zhang et al., 2022), Constraint Rectified Policy Optimization (OnCRPO) (Xu et al., 2021), the
Lagrangian version of Deep Deterministic Policy Gradient (DDPGLag) (Lillicrap et al., 2019), First Order
Constrained Optimization in Policy Space (FOCOPS) (Zhang et al., 2020), PID version of SACLag (SACPID)
(Stooke et al., 2020), and the Lagrangian version of Soft Actor-Critic (SAC) algorithm (SACLag) (Haarnoja
et al., 2018). All the experiments were conducted on AWS servers using g4dn.xlarge instances equipped
with NVIDIA T4 GPUs, providing sufficient computational resources for training and evaluation of all the
algorithms. The training times for the various algorithms across different experiments are provided in the
supplementary material.

5.1 Results and Discussion

We benchmark each algorithm’s performance across environments during both training and evaluation. Fig-
ure 1 presents the average reward and cost per training epoch, with shaded regions indicating one standard
deviation around the mean. Table 2 summarizes evaluation results, averaged over 10 episodes, for a represen-
tative subset of experiments and environments. The standard deviation of the evaluation rewards and costs
is generally small in the deterministic environments, indicating consistent performance in the deterministic
environments.

Optimal reward of the environments: One of the advantages of benchmarking safe RL algorithms
using environments based on deterministic opeartions research problems is that state-of-the-art optimization
solvers such as Gurobi (Gurobi Optimization, LLC, 2025) can be used to solve the nonconvex problems
to global optimality while strictly enforcing all the constraints. The optimal reward from the optimization

5

Under review as submission to TMLR

solvers can be seen as the “ground truth” of the envrionments, shown in the first column of Table 2. The
optimal reward of SchedMaintEnv-v1 is obtained by assuming a “perfect information” lookahead using the
Gurobi solver, which provide a theoretical upper bound of the optimal expected reward.

Evaluation Criteria: To evalute the safe RL algorithms, for each environment, we identify the best-
and worst-performing algorithms using a systematic selection criterion. In the table, values highlighted
in green correspond to the evaluation reward and cost of the best-performing algorithms, and values in
red indicate those of the worst-performing algorithms. This subset of results is chosen to illustrate key
behavioral differences among algorithms and to highlight environment-specific challenges that affect learning
and generalization. Results for additional case studies are included in Appendix B.

To identify representative high-performing and low-performing algorithms in each environment, we adopt a
structured two-stage selection procedure based on evaluation cost and reward. This design reflects the fact
that reward and cost can differ substantially in magnitude and interpretation, making direct aggregation
into a single scalar metric undesirable.

We first restrict attention to algorithms whose evaluation cost is comparable to the minimum observed cost in
the given environment, thereby excluding methods with clearly excessive constraint violations. Specifically,
an algorithm is retained if its evaluation cost lies either within a multiplicative tolerance of five times the
minimum cost or within an additive tolerance of 25 cost units from the minimum. When the minimum cost
is zero, all algorithms with evaluation cost below a fixed tolerance of 25 are treated as effectively feasible.
Among this feasibility-filtered subset, the algorithm achieving the highest evaluation reward is selected as
the representative best-performing method for that environment.

To identify representative failure or low-performance cases, we first check for the presence of an algorithm
whose evaluation cost is substantially larger than all others. If an algorithm’s cost exceeds both ten times
and 100 units more than the second-highest cost, it is directly selected as the worst-performing algorithm,
reflecting extreme constraint violation. In the absence of such a clear outlier, we consider the subset of
algorithms whose evaluation costs lie within the three highest unique cost values and select the algorithm with
the lowest evaluation reward. This criterion highlights algorithms that either violate constraints most severely
or perform poorly despite high constraint costs. The numerical tolerances in this procedure are empirical,
environment-driven thresholds. Importantly, these specific values are not unique, and other reasonable
tolerances could be used for the same purpose. We expect that modest perturbations of the thresholds
produced similar qualitative conclusions and rarely changed the identity of the selected best- and worst-
performing algorithms.

We also consider a gap significant if the absolute difference between training and evaluation results exceeds
100, and the relative difference (calculated as the absolute gap divided by the magnitude of the training
result) exceeds 30%. When the magnitude of the training result is less than 0.1, only the absolute difference
is considered. The training result refers to the average episode reward from the final epoch. Additionally,
we say an algorithm solves an environment to reasonable optimality if it consistently achieves reasonably
high rewards (less than or equal to 35% gap with the optimal reward) while maintaining low costs below and
upto a threshold of 25, allowing for a small number of constraint violations. All the calculations are done
based on the average evaluation reward and cost.

5.1.1 Environments with reasonable performance

The following environments illustrate scenarios in which at least one algorithm successfully trains a policy
that yields a reasonably high rewards with low associated cost:

• InvMgmtEnv: This case study involves a multi-echelon inventory network comprising one market,
one retailer, two distributors, three producers, and two raw-material suppliers, connected via eleven
reorder routes and governed by one-period lead times. Each episode spans 30 days, and training
is performed with 10 episodes per epoch. P3O exhibits a significant gap between training and
evaluation costs and SACPID exhibits a significant gap between training and evaluation rewards.

6

Under review as submission to TMLR

• SchedMaintEnv-v0: We consider an air separation unit with three compressors and optional
external product purchases to compensate for maintenance downtime. The planning horizon is 30
days, and each episode is 31 days long. Training is conducted using 25 episodes per epoch. A
significant gap between training and evaluation costs is observed for P3O and FOCOPS.

• SchedMaintEnv-v1: We consider a similar setup to the SchedMaintEnv-v0. We include uncer-
tainty in the environment by incorporating random machine failures. Training is conducted using
25 episodes per epoch. We observe a significant gap between training and evaluation costs for P3O
and FOCOPS. We also find that the performance of most algorithms in this stochastic environment
closely matches their behavior in the deterministic counterpart, likely due to the underlying physics
of the environment. However, a subset of algorithms shows elevated evaluation standard deviations,
reflecting the inherent stochasticity of the environment.

• UCEnv: This example considers a single-bus unit commitment power system with five generators
operating over a 24-hour horizon, with hourly updates to demand forecasts and generator states.
Training is done with 100 episodes per epoch. A significant gap between training and evaluation
costs is observed for SACLag.

• GridStorageEnv: This case study includes a three-bus network with transmission limits of 80MW,
120MW (de-energized under wildfire risk), and 90MW; one generator per bus rated at 100MW,
90MW, and 80MW; and batteries sized 1.0, 1.2, and 0.8 p.u. respectively. The horizon spans 24
hours, with perfect charging, discharging, and carry-over efficiency. Experiments were run with 10
episodes per epoch. We observe a significant gap between training and evaluation costs for SACPID
and SACLag.

5.1.2 Environments not trained to reasonable optimality

The following environments presented significant challenges during training, preventing the agents from
learning reasonably optimal policies.

• BlendingEnv: The case study includes 2 input streams, 2 output streams, 2 quality properties, 4
blenders, and 6 time periods per episode with the prop strategy used to handle infeasible actions.
No flow is allowed between 2 of the blenders. Experiments were run with 100 episodes per epoch.
A significant gap is observed between training and evaluation for costs in P3O and FOCOPS, and
for rewards in P3O, DDPGLag and SACLag. As shown in Figure 1f, some algorithms exhibit
considerable oscillations in both reward and cost over training epochs. This instability may be
attributed to the highly non-convex nature of the underlying optimization problem and the resulting
non-smooth feasible action space, which makes consistent policy improvement more difficult.

• RTNEnv: This case study includes 3 raw materials, 2 intermediates, 2 products, 3 tasks, 3 pieces of
equipment, and 2 utilities. The planning horizon spans 30 time periods with fixed product demands.
Training used 128 episodes per epoch. As shown in Figure 1g, both reward and cost exhibit slow
learning across all algorithms. This sluggish progress may be attributed to the combination of
non-convexities introduced by integer-based constraints such as task-equipment assignments and
equipment availability and the indirect, time-coupled linear constraints that the action space must
satisfy. The presence of temporal dependencies, material balances, and combinatorial task scheduling
further compounds the difficulty of policy learning in these environments.

• STNEnv: This case study builds on the same network as RTNEnv but includes extended task-to-
equipment mappings and product-specific processing times. To enable comparison with RTNEnv,
mappings were kept unique. The planning horizon and demand profiles remain unchanged. Ex-
periments were run with 128 episodes per epoch. TRPOLag performs the best, while OnCRPO
performs the worst. Similar to RTNEnv, both reward and cost exhibit slow learning across all
the algorithms in STNEnv, likely due to a similar combination of non-convexities introduced by
integer-based constraints and the indirect linear constraints imposed on the action space.

7

Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000
Epoch

2000

1500

1000

500

0

500

1000

Re
wa

rd
 (×

10
1)

0 500 1000 1500 2000 2500 3000
Epoch

0

1000

2000

3000

4000

5000

6000

Co
st

 (×
10

2)

(a) InvMgmtEnv

0 200 400 600 800
Epoch

1750

1500

1250

1000

750

500

250

Re
wa

rd

0 200 400 600 800
Epoch

0

200

400

600

800

1000

1200

Co
st

 (×
10

1)

(b) SchedMaintEnv-v0

0 200 400 600 800
Epoch

1750

1500

1250

1000

750

500

250

Re
wa

rd

0 200 400 600 800
Epoch

0

200

400

600

800

1000

1200
Co

st
 (×

10
1)

(c) SchedMaintEnv-v1

0 100 200 300 400 500
Epoch

8000

7000

6000

5000

4000

3000

2000

Re
wa

rd
 (×

10
2)

0 100 200 300 400 500
Epoch

0

500

1000

1500

2000

Co
st

(d) UCEnv

0 1000 2000 3000
Epoch

1600

1400

1200

1000

800

600

Re
wa

rd
 (×

10
2)

0 1000 2000 3000
Epoch

0

200

400

600

800

1000

1200

Co
st

 (×
10

2)

(e) GridStorageEnv

0 500 1000 1500 2000
Epoch

0

500

1000

1500

Re
wa

rd

0 500 1000 1500 2000
Epoch

0

1000

2000

3000

4000

5000

6000

Co
st

 (×
10

1)

(f) BlendingEnv

0 5 10 15 20 25
Epoch

0

100

200

300

Re
wa

rd

0 5 10 15 20 25
Epoch

0

20

40

60

80

Co
st

(g) RTNEnv

0 5 10 15 20 25
Epoch

0

100

200

300

Re
wa

rd

0 5 10 15 20 25
Epoch

0

20

40

60

80

Co
st

(h) STNEnv

CPO DDPGLag OnCRPO P3O TRPOLag FOCOPS SACPID SACLag Best

Figure 1: Training curves showing the average reward and cost per episode over training epochs across all
case studies.

5.1.3 Discussion: Algorithm based performance analysis

We report how frequently each algorithm satisfies safety constraints across environments, as feasibility is a
prerequisite for meaningful performance comparison. We also report how often each algorithm exhibits strong
or weak behavior and how frequently it achieves reasonable optimality, without implying a total ordering
among methods. These results are summarized in Table 3 and are computed from average evaluation rewards
and costs.

To explain the results in Table 3, we group the evaluated methods according to two primary design di-
mensions that strongly influence performance in constrained reinforcement learning: (i) the data regime
and update style (on-policy trust-region versus off-policy replay-based actor–critic), and (ii) the mechanism
used to enforce safety constraints (primal constrained updates, Lagrangian dual variables, or adaptive penal-

8

Under review as submission to TMLR

Table 2: Evaluation results for 10 episodes

Optimal CPO DDPGLag
Environment Reward Reward Cost Reward Cost

InvMgmtEnv 11265.97 7303.2 0 -4858.26 0
SchedMaintEnv-v0 -1221.85 -1283.96 29.59 -1700.98 11675.99
SchedMaintEnv-v1 -1226.96 -1240.39 7.88 -1700.98 11675.99
UCEnv -197258 -236553 5.56 -337153 108
GridStorageEnv -54173 -95198.2 0.02 -118704 120440
BlendingEnv 1800 0 190 0 32763.44
RTNEnv 363.78 -31.37 71 -47.76 84
STNEnv 363.78 -36.76 71 -10.38 84

OnCRPO P3O
Environment Reward Cost Reward Cost
InvMgmtEnv 7598.66 0 1499.21 0
SchedMaintEnv-v0 -1277.08 25.56 -1187.52 751.82
SchedMaintEnv-v1 -1244.07±1.49 103.21 -1178.95±1.29 938.5±10.61
UCEnv -236989 8.55 -556101 0
GridStorageEnv -90589.6 0.02 -111255 0.02
BlendingEnv 0.03 200 0.04 270.08
RTNEnv -33.04 71 -31.7 71
STNEnv -37.01 71 -30.83 73

TRPOLag FOCOPS
Environment Reward Cost Reward Cost
InvMgmtEnv 7198.26 0 -6434.03 0
SchedMaintEnv-v0 -1272.61 19.85 -1142.69 616.14
SchedMaintEnv-v1 -1217.24 21.35 -1188.19±4.27 962.3±37.61
UCEnv -218334 9.19 -220312 0
GridStorageEnv -90265.5 0.02 -126974 0.03
BlendingEnv 0.03 190 0.01 180.22
RTNEnv -12.16 71 -19.56 73
STNEnv -11.34 71 -28.79 73

SACPID SACLag
Environment Reward Cost Reward Cost
InvMgmtEnv 5555.74 0 -14386.99 0
SchedMaintEnv-v0 -274.46 11461.29 -274.46 11461.29
SchedMaintEnv-v1 -524.05 8600.12±31.62 -274.46 11521.29±51.64
UCEnv -221922 41.68 -298228 153.06
GridStorageEnv -100407 2122.38 -68690.5 0.03
BlendingEnv 225.31 33101.34 523.75 33596.83
RTNEnv -14.7 83 -14.7 80
STNEnv -14.7 81 -14.7 81

9

Under review as submission to TMLR

Table 3: Summary of performance of algorithms

Frequency of Frequency of Frequency of Frequency of
Algorithm feasibility reasonable optimality being best being worst

CPO 4 2 0 0
DDPGLag 1 0 1 6
OnCRPO 3 2 1 0
P3O 3 0 1 1
TRPOLag 5 3 4 0
FOCOPS 3 1 0 0
SACPID 1 0 0 0
SACLag 2 1 1 1

ties/controllers). This categorization allows us to explain the observed feasibility, optimality, and failure
patterns in a principled manner.

On-policy trust-region methods: Algorithms that rely on on-policy data and conservative trust-region
updates, namely CPO, TRPOLag, and FOCOPS, exhibit the most reliable safety behavior overall. As
shown in Table 3, these methods achieve comparatively high feasibility frequencies and, notably, none of them
appear as the worst-performing algorithm in any environment. This robustness can be attributed to the use
of fresh on-policy trajectories for both reward and cost estimation, combined with explicit constraints on
policy updates that prevent abrupt changes leading to constraint violations. However, the same conservatism
also limits reward maximization, explaining why CPO and FOCOPS rarely achieve the best performance
despite their stable feasibility profiles.

Within this class, TRPOLag stands out as the strongest performer, achieving the highest feasibility fre-
quency, the highest frequency of reasonable optimality, and the most frequent best-performing outcomes.
This dominance arises from its hybrid structure: trust-region constraints provide stability, while adaptive La-
grangian penalties allow the algorithm to relax conservatism when constraint estimates are reliable, yielding
superior reward-safety trade-offs.

On-policy switching and penalty-based PPO variants: OnCRPO and P3O both build upon PPO-
style updates but differ in how constraints are handled. OnCRPO employs an explicit switching mechanism
between reward-optimizing and cost-minimizing objectives, while P3O incorporates adaptive penalty terms
into the reward objective. As reflected in the table, both methods achieve moderate feasibility and occa-
sionally attain best performance, but with greater variability than trust-region methods. OnCRPO never
appears as the worst-performing algorithm, suggesting that its rectification mechanism effectively prevents
catastrophic failures. In contrast, P3O appears both as best and worst, highlighting the sensitivity of
penalty-based approaches to the dynamics of penalty adaptation and delayed constraint feedback.

Off-policy Lagrangian actor–critic methods: Off-policy methods that combine replay buffers with
Lagrangian constraint handling—DDPGLag and SACLag—exhibit the most pronounced instability. De-
spite sharing a primal–dual formulation with TRPOLag, these algorithms rely on replayed data for cost
estimation, which can introduce significant distribution mismatch between the policy and constraint sig-
nals. This effect is most evident for DDPGLag, which has the lowest feasibility frequency and appears
as the worst-performing algorithm in the majority of environments. SACLag shows somewhat improved
behavior due to stochastic policies and entropy regularization, but still exhibits only moderate feasibility
and occasional failure cases.

Controller-based constraint enforcement: Finally, SACPID represents a controller-based approach
in which constraint violations are regulated through PID feedback rather than explicit optimization of a
constrained objective. As shown in Table 3, this approach results in low feasibility and no best-performing

10

Under review as submission to TMLR

outcomes, indicating that PID-based penalty adaptation may be insufficiently responsive or robust across
heterogeneous environments.

Summary: Overall, the results indicate a clear hierarchy across algorithm types: on-policy trust-region
methods dominate in feasibility and robustness, Lagrangian formulations enable strong performance when
paired with conservative updates, and off-policy and penalty/controller-based methods exhibit higher variance
and more frequent failures. These trends highlight the central role of data freshness and update conservatism
in stable constrained reinforcement learning.

Training–evaluation gaps: While training–evaluation gaps are observed for several algorithms in specific
environments, the nature of these gaps differs across algorithm classes. For off-policy Lagrangian methods
such as DDPGLag and SACLag, replay-based updates can introduce distribution mismatch between policy
and constraint estimates, leading to discrepancies in both reward and feasibility at evaluation time. Penalty-
based methods such as P3O may exhibit gaps due to delayed or unstable penalty adaptation, particularly in
environments with sharp feasibility boundaries. In contrast, on-policy primal constrained methods such as
FOCOPS and CPO maintain consistently high feasibility, and any observed training–evaluation differences
primarily reflect conservative policy updates that limit reward improvement rather than failures in constraint
satisfaction. As a result, these gaps do not undermine the algorithm-type trends reported here, which are
driven by evaluation-time feasibility and reward trade-offs.

6 Conclusions and Future Directions

We presented SafeOR-Gym, a suite of nine operations research environments tailored to benchmark safe RL
algorithms in complex, realistic settings. These environments introduce structured constraints, mixed-integer
decisions, and discrete-continuous actions, going beyond the scope of conventional safe RL benchmarks.
While existing algorithms can solve some tasks, they perform poorly on problems involving mixed-integer
variables or nonlinear, nonconvex constraints. These limitations point to broader challenges in applying safe
RL to industrial domains.

To bridge this gap, future research can pursue several promising directions. One avenue is to broaden the
benchmark environments to cover uncertainty and multiagent interactions, which are central to many oper-
ations research applications. Another direction is to extend the benchmark beyond traditional optimization-
based solutions. For example, we have shown how the classical base-stock reorder policy can serve as a
heuristic baseline for the inventory management environment in Appendix B.3. Developing heuristics that
can observe the nontrivial constraints for operations research problems is an ongoing research direction.
In this spirit, SafeOR-Gym could be enriched with algorithms drawn from unified framework of sequential
decision-making proposed by Powell (2022).

Finally, SafeOR-Gym highlights fundamental limitations of current safe RL approaches that require sus-
tained research. Safe RL methods often fail when problem structures involve nonconvex or mixed-integer
constraints, raising questions about their robustness and reliability in safety-critical domains. Algorithms
like CPO require sensitive hyperparameter tuning to balance performance and feasibility, suggesting that
automated approaches to constraint-aware parameter selection could reduce manual overhead and improve
reproducibility. Moreover, current methods often rely on penalty-based formulations or post-hoc projection,
which cannot guarantee feasibility. Recent work on action-constrained RL (Hung et al., 2025) points toward
approaches that can enforce hard safety constraints directly during action selection. Another promising
direction lies in encoding safety constraints within neural network architectures themselves, for instance
through differentiable constraint satisfaction layers (Chen et al., 2024) that enforce feasibility by design.

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Doina

Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 22–31, 2017.

11

Under review as submission to TMLR

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Maximilian Bloor, José Torraca, Ilya Orson Sandoval, Akhil Ahmed, Martha White, Mehmet Mercangöz,
Calvin Tsay, Ehecatl Antonio Del Rio Chanona, and Max Mowbray. PC-Gym: Benchmark Environments
for Process Control Problems. arXiv preprint arXiv:2410.22093, 2024. doi: 10.48550/arXiv.2410.22093.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Hao Chen, Gonzalo E. Constante Flores, and Can Li. Physics-informed neural networks with hard lin-
ear equality constraints. Computers & Chemical Engineering, 189:108764, 2024. ISSN 0098-1354. doi:
https://doi.org/10.1016/j.compchemeng.2024.108764. URL https://www.sciencedirect.com/science/
article/pii/S0098135424001820.

Yifu Chen and Christos T. Maravelias. Preprocessing algorithm and tightening constraints for multiperiod
blend scheduling: cost minimization. Journal of Global Optimization, 77(3):603–625, Jul 2020. ISSN
1573-2916. doi: 10.1007/s10898-020-00882-3. URL https://doi.org/10.1007/s10898-020-00882-3.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A review of
safe reinforcement learning: Methods, theory and applications. arXiv preprint arXiv:2205.10330, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL https://www.gurobi.com.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/haarnoja18b.html.

Zhouchun Huang and Qipeng Phil Zheng. A multistage stochastic programming approach for preventive
maintenance scheduling of GENCOs with natural gas contract. European Journal of Operational Research,
287(3):1036–1051, 2020. doi: 10.1016/j.ejor.2020.03.036.

Christian D. Hubbs, Hector D. Perez, Owais Sarwar, Nikolaos V. Sahinidis, Ignacio E. Grossmann, and
John M. Wassick. OR-Gym: A Reinforcement Learning Library for Operations Research Problems. arXiv
preprint arXiv:2008.06319, 2020. doi: 10.48550/arXiv.2008.06319.

Wei Hung, Shao-Hua Sun, and Ping-Chun Hsieh. Efficient action-constrained reinforcement learning via
acceptance-rejection method and augmented mdps. arXiv preprint arXiv:2503.12932, 2025. URL https:
//arxiv.org/abs/2503.12932.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yifan Zhong,
Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learning benchmark.
Advances in Neural Information Processing Systems, 36:18964–18993, 2023.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang, Yiran Geng,
Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe reinforcement learning
research. Journal of Machine Learning Research, 25(285):1–6, 2024.

Bernard Knueven, James Ostrowski, and Jean-Paul Watson. On mixed-integer programming formulations
for the unit commitment problem. INFORMS Journal on Computing, 32(4):857–876, 2020. doi: 10.1287/
ijoc.2019.0944.

Can Li, Antonio J Conejo, Peng Liu, Benjamin P Omell, John D Siirola, and Ignacio E Grossmann. Mixed-
integer linear programming models and algorithms for generation and transmission expansion planning of
power systems. European Journal of Operational Research, 297(3):1071–1082, 2022.

12

https://www.sciencedirect.com/science/article/pii/S0098135424001820
https://www.sciencedirect.com/science/article/pii/S0098135424001820
https://doi.org/10.1007/s10898-020-00882-3
https://www.gurobi.com
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/2503.12932
https://arxiv.org/abs/2503.12932

Under review as submission to TMLR

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. 2019. URL https:
//arxiv.org/abs/1509.02971.

Constantinos C Pantelides. Unified frameworks for optimal process planning and scheduling. In Proceedings
on the second conference on foundations of computer aided operations, pp. 253–274, 1994.

Joonsoo Park, Hyein Jung, Jong Woo Kim, and Jong Min Lee. Reinforcement learning for process control:
Review and benchmark problems. International Journal of Control, Automation and Systems, 23(1):1–40,
2025.

Hector D Perez, Christian D Hubbs, Can Li, and Ignacio E Grossmann. Algorithmic approaches to inventory
management optimization. Processes, 9(1):102, 2021.

Gabriel Pesántez, Wilian Guamán, José Córdova, Miguel Torres, and Pablo Benalcazar. Reinforcement
learning for efficient power systems planning: A review of operational and expansion strategies. Energies,
17(9), 2024. ISSN 1996-1073. doi: 10.3390/en17092167. URL https://www.mdpi.com/1996-1073/17/9/
2167.

Ryan Piansky, Georgia Stinchfield, Alyssa Kody, Daniel K Molzahn, and Jean-Paul Watson. Long dura-
tion battery sizing, siting, and operation under wildfire risk using progressive hedging. arXiv preprint
arXiv:2404.12296, 2024.

Warren B. Powell. Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential
Decisions. John Wiley & Sons, Inc., Hoboken, New Jersey, first edition edition, 2022. ISBN 9781119815068.
doi: 10.1002/9781119815068.

Asha Ramanujam and Can Li. A tutorial on multi-time scale optimization models and algorithms. arXiv
preprint arXiv:2502.20568, 2025.

Ronald L Rardin and Ronald L Rardin. Optimization in operations research, volume 166. Prentice Hall
Upper Saddle River, NJ, 1998.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforcement
Learning. 2019.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143. PMLR, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109.

Dionysios P. Xenos, Georgios M. Kopanos, Matteo Cicciotti, and Nina F. Thornhill. Operational optimization
of networks of compressors considering condition-based maintenance. Computers & Chemical Engineering,
84:117–131, 2016. doi: 10.1016/j.compchemeng.2015.08.008.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement learning with
convergence guarantee. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11480–
11491, 2021.

Christopher Yeh, Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen,
Mohammad Mehdi Hosseini, Azarang Golmohammadi, Yuanyuan Shi, et al. Sustaingym: Reinforcement
learning environments for sustainable energy systems. Advances in Neural Information Processing Systems,
36:59464–59476, 2023.

Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Xueqian Wang, Bo Yuan, and Dacheng Tao. Penal-
ized proximal policy optimization for safe reinforcement learning. In Lud De Raedt (ed.), Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 3744–3750.
International Joint Conferences on Artificial Intelligence Organization, 2022.

13

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://www.mdpi.com/1996-1073/17/9/2167
https://www.mdpi.com/1996-1073/17/9/2167

Under review as submission to TMLR

Qi Zhang, Ignacio E. Grossmann, Clara F. Heuberger, Arul Sundaramoorthy, and Jose M. Pinto. Air
separation with cryogenic energy storage: Optimal scheduling considering electric energy and reserve
markets. AIChE Journal, 61(5):1547–1558, 2015. doi: 10.1002/aic.14730.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space. Advances
in Neural Information Processing Systems, 33:15338–15349, 2020.

A Problem Environment Description

A.1 Resource Task Network Environment (RTNEnv)

A.1.1 Overview

The Resource Task Network (RTN) (Pantelides, 1994) is a mathematical modeling framework used for plant
scheduling problems. It optimally schedules a set of interdependent production tasks executed on equipment,
which transform reactants into products via intermediates. The full set of reactants, intermediates, products,
and equipment are collectively referred to as resources. Products are produced to fulfill time-varying demand
while minimizing operational costs. The RTNEnv simulates this system in discrete time, where the agent
chooses task batch sizes at each timestep and observes the resulting state transitions, constraint violations,
and rewards. The schematic of RTN has been illustrated in 2

A.1.2 Problem Setup

The RTN is defined over a finite time horizon T . Reactants, intermediates, products, equipment, tasks, and
utilities are defined as follows:

• Reactants: Consumable raw materials that can be ordered (at a cost).

• Intermediates: Internally produced and consumed materials. Cannot be ordered or sold.

• Products: Final deliverables with external demand and associated revenue and penalty structures.

• Equipments: Units required for task execution. Each is consumed when a task starts and returned
after the task completes.

• Tasks: Tasks produce a subset of resources from another distinct subset of resources using a subset
of equipments after a specified time period.

• Utilities: Time-varying operational costs incurred per unit utility consumed by tasks.

• Demand: Defined only for products, specifying dp,t at each timestep t.

Sets

• R: All resources (reactants, intermediates, products, equipment)

• Rreact: Reactants

• Rint: Intermediates

• Rprod: Products

• Requip: Equipments

• Rpend ⊂ Rint ∪Rprod ∪Requip: Resources which are produced/replenished.

• I: Tasks

14

Under review as submission to TMLR

Figure 2: Schematic of RTN and STN: Solid lines in both RTN and STN represent the flow of material
through the network. Other inventory levels are included in the state vector. The dashed lines in STN from
equipments to tasks represent the choices available where the highlighted lines show the choice taken. The
actions are scaled as described in the transition dynamics subsection.

• Ki ⊂ Requip: Equipment used by task i

• U : Utilities

• Ui ⊂ U : Utilities consumed by task i

Parameters

• T : Time horizon

• τi: Processing time of task i

• τmax = max
i

τi : Maximum processing time.

• V min
i , V max

i : Batch size bounds for task i

• X0
r , Xmin

r , Xmax
r : Initial and bounded inventories for resource r

• νi,r: Stoichiometric coefficient of resource r in task i

• costr: Unit cost of ordering reactant r

• pricep: Unit price of product p

• dp,t: Demand for product p at time t

• uu,t: Cost of utility u at time t

• λsanit: Sanitization penalty coefficient

• I[·]: Indicator function

• ⊕ : vector concatenation

15

Under review as submission to TMLR

A.1.3 State Space

At timestep t, the agent observes:

• Inventory vector Xt ∈ R|R| : Inventory of all resources.

• Pending outputs pt ∈ Rτmax×|Rpend| : Intermediates and products which will be delivered in upcoming
timesteps.

• Future demand fdt ∈ RT ×|Rprod| : Demand of all products from timestep t to T , post-padded with
0s to maintain consistent shapes.

A.1.4 Action Space

The action at ∈ [−1, 1]|I| is scaled to batch sizes via:

ascaled
i,t = ai,t + 1

2 · (V max
i − V min

i) + V min
i

For numerical stability, any |ai,t| ≤ 10−3 is set to 0.

A.1.5 Transition Dynamics

At each step:

1. Sanitize Action: Prevent resource violations and enforce equipment availability by calculating the
maximum inventory available for a resource, maximum batch size that can be processed based on
inventory levels, and clipping between the batch size bounds accordingly.

bi,r,t = max(0, Xr,t −Xmin
r)

|νi,r|
bi,t = min

r
bi,r,t

aclip
i = 0 if bi,t < V min

i

afinal
i,t =

{
0, if ∃e ∈ Ki with Xe,t = 0
aclip

i , otherwise

2. Inventory Update: Consumes the inputs to a task immediately.

Xr,t+1 = Xr,t +
∑

i

min(νi,r, 0) · afinal
i,t

3. Pending Outputs: Add outputs of a task to the pending output buffer and update inventory of
resources that are being delivered in the next timestep.

Xr,t+1 = Xr,t + pt,r,0

pt = pt−1,r,1:τmax ⊕
∑

i

max{νi,r, 0} · afinal
i,t

(1)

4. Inventory Enforcement: Ensures inventory bounds are not violated. A part of the cost is calcu-
lated based on this. Refer to A.1.6.

Xr,t+1 = min(Xmax
r , max(Xmin

r , Xr,t+1))

16

Under review as submission to TMLR

A.1.6 Cost Function

The total cost at each timestep t is given by:

Ct = C lb
t + Cub

t + Ceq
t + λsanitC

sanit
t

• Bound Violation: Penalizes the resource inventory going out of bounds. (Reactants going below
lower bounds are assumed to imply ordering of reactants).

C lb
t =

∑
r∈Rint∪Rprod

I[Xr,t < Xmin
r]

Cub
t =

∑
r∈R

I[Xr,t > Xmax
r]

• Equipment Feasibility Cost: Penalizes execution of tasks when any required equipment is un-
available.

Ceq
t =

∑
i

∑
e∈Ki

I[afinal
i,t > 0] · I[Xe,t < 1]

• Sanitization Cost: Penalizes deviations between the raw and final actions due to constraint han-
dling.

Csanit
t =

∑
i

∣∣afinal
i,t − ascaled

i,t

∣∣
A.1.7 Reward Function

The total reward at each timestep t is:

Πt = Πrev
t −Πutil

t −Πunmet
t −Πorder

t

• Revenue: Earned by fulfilling product demand, constrained by available inventory.

Πrev
t =

∑
p∈Rprod

min(Xp,t −Xmin
p , dp,t) · pricep

• Unmet Demand Penalty: Penalizes unmet product demand at 1.5× product price.

Πunmet
t = 1.5 ·

∑
p∈Rprod

max(dp,t − (Xp,t −Xmin
p), 0) · pricep

• Reactant Ordering Cost: Charged when reactant inventory drops below zero (interpreted as
external procurement)

Πorder
t =

∑
r∈Rreact

max(−Xr,t, 0) · costr

• Utility Cost: Incurred from executing tasks using utilities.

Πutil
t =

∑
i

∑
j∈Ui

afinal
i,t · uj,t

A.1.8 Episode Termination

The episode ends when t = T . Truncation does not occur even under constraint violations.

17

Under review as submission to TMLR

A.2 State Task Network (STNEnv)

A.2.1 Overview

The State Task Network (STN) (Pantelides, 1994) is a mathematical modeling framework for short-term
production scheduling. It focuses on scheduling a set of production tasks on processing units, where each
task transforms material states over time. Unlike the RTN, which models resources more abstractly, the
STN emphasizes the evolution of material states through task execution and transfer between units. The
objective is to satisfy time-varying demand for final products while minimizing operational costs. The
STNEnv simulates this system in discrete time, where an agent selects task batch sizes on specific units at
each timestep and observes the resulting state transitions, constraint violations, and rewards. The schematic
of STN has been illustrated in 2

A.2.2 Problem Setup

The STN is defined over a finite time horizon T . Material states, processing units, tasks, and utilities are
defined as follows:

• Reactants: Consumable raw materials that can be externally procured at a cost. They serve as
initial inputs to tasks.

• Intermediates: Internally produced and consumed materials. They are used to link tasks within
the network. Intermediates cannot be purchased or sold externally.

• Products: Final deliverables for which external demand is specified. Products may generate revenue
if delivered on time and incur penalties if demand is unmet.

• Units: Processing equipment on which tasks are scheduled. Each unit can process at most one task
at a time and becomes available again after the task’s processing duration.

• Tasks: Operations that transform a subset of input states into a subset of output states on a des-
ignated unit. Each task has a fixed processing time, specific unit assignment, defined stoichiometry,
and utility consumption profile.

• Utilities: Operational resources (e.g., electricity, steam) with time-varying costs. Each task con-
sumes a fixed amount of utilities per unit batch size, incurring operational costs accordingly.

• Demand: Defined only for product states, specifying ds,t for state s at time t. Demand fulfillment
yields revenue, while shortages incur penalties.

Sets

• S: All material states (reactants, intermediates, products, equipments)

• Sreact ⊂ S: Reactants (raw materials)

• S int ⊂ S: Intermediates (internal materials)

• Sprod ⊂ S: Products (deliverables)

• E : Equipment units

• Spend ⊂ S int ∪ Sprod ∪ E : States that are produced (i.e., replenished by tasks)

• I: Tasks

• Ki ⊂ E : Set of units on which task i can be scheduled

• U : Utilities

• Ui ⊂ U : Utilities consumed by task i

18

Under review as submission to TMLR

Parameters

• T : Time horizon

• τi: Processing time of task i

• τmax = max
i

τi: Maximum processing time

• V min
i,e , V max

i,e : Batch size bounds for task i by using equipment e.

• X0
s , Xmin

s , Xmax
s : Initial and bounded inventories for state s

• νi,s: Stoichiometric coefficient of state s in task i (negative if consumed, positive if produced)

• costs: Unit cost of ordering reactant s ∈ Sreact

• pricep: Unit price of product p ∈ Sprod

• dp,t: Demand for product p at time t

• uu,t: Cost of utility u at time t

• λsanit: Sanitization penalty coefficient (for equipment reuse)

• I[·]: Indicator function

• ⊕ : vector concatenation

A.2.3 State Space

At timestep t, the agent observes:

• Inventory vector Xt ∈ R|S| : Inventory of all material states.

• Pending outputs pt ∈ Rτmax×|Spend| : Intermediates and products scheduled to be produced in future
timesteps due to ongoing tasks.

• Future demand fdt ∈ RT ×|Sprod| : Demand for all product states from timestep t to T , post-padded
with 0s to maintain consistent shapes.

A.2.4 Action Space

The action at ∈ [−1, 1]|I×E| represents a normalized matrix over task-equipment pairs and is scaled to batch
sizes via:

ascaled
i,e,t = ai,e,t + 1

2 · (V max
i,e − V min

i,e) + V min
i,e

For numerical stability, any |ai,e,t| ≤ 10−3 is set to 0.

A.2.5 Transition Dynamics

At each step:

1. Sanitize Action: Prevent state violations and enforce unit availability by calculating the maximum
available inventory for each input state, the maximum feasible batch size given current inventories,

19

Under review as submission to TMLR

and clipping between the allowed batch size bounds accordingly.

bi,s,t = max(0, Xs,t −Xmin
s)

|νi,s|
bi,t = min

s∈S:νi,s<0
bi,s,t

aclip
i,e,t = 0 if bi,t < V min

i,e

afinal
i,e,t =

{
0, if e /∈ Ki or Xe,t = 0
aclip

i,e,t, otherwise

2. Inventory Update: Immediately consumes the input states required by the activated tasks.

Xs,t+1 = Xs,t +
∑

e

∑
i

min(νi,s, 0) · afinal
i,e,t

3. Pending Outputs: Add the output states of tasks to the pending output buffer and update
inventories of materials delivered at the current timestep.

Xs,t+1 = Xs,t + pt,s,0

pt+1,s = pt,s,1:τmax ⊕
∑

e

∑
i

max(νi,s, 0) · afinal
i,e,t

(2)

4. Inventory Enforcement: Enforces inventory bounds to prevent overflow or underflow. Violations
of these bounds contribute to the constraint cost.

Xs,t+1 = min(Xmax
s , max(Xmin

s , Xs,t+1))

A.2.6 Cost Function

The total cost at each timestep t is given by:

Ct = C lb
t + Cub

t + Ceq
t + λsanitC

sanit
t

• Bound Violation: Penalizes material inventory going out of bounds. (Reactants going below their
lower bounds are interpreted as triggering procurement costs.)

C lb
t =

∑
s∈Sint∪Sprod

I[Xs,t < Xmin
s]

Cub
t =

∑
s∈S

I[Xs,t > Xmax
s]

• Equipment Feasibility Cost: Penalizes task executions on unavailable units.

Ceq
t =

∑
i

∑
e∈Ki

I[afinal
i,e,t > 0] · I[Xe,t < 1]

• Sanitization Cost: Penalizes deviation between scaled and final actions due to sanitization (in-
ventory or equipment infeasibility).

Csanit
t =

∑
i,e

∣∣afinal
i,e,t − ascaled

i,e,t

∣∣
20

Under review as submission to TMLR

A.2.7 Reward Function

The total reward at each timestep t is:

Πt = Πrev
t −Πutil

t −Πunmet
t −Πorder

t

• Revenue: Earned by fulfilling product demand, constrained by available inventory.

Πrev
t =

∑
p∈Sprod

min(Xp,t −Xmin
p , dp,t) · pricep

• Unmet Demand Penalty: Penalizes unmet product demand at 1.5× the product price.

Πunmet
t = 1.5 ·

∑
p∈Sprod

max(dp,t − (Xp,t −Xmin
p), 0) · pricep

• Reactant Ordering Cost: Incurred when reactant inventory falls below zero (interpreted as ex-
ternal procurement).

Πorder
t =

∑
s∈Sreact

max(−Xs,t, 0) · costs

• Utility Cost: Accrued from task executions that consume utilities, priced per unit usage and per
unit batch size.

Πutil
t =

∑
i,e

∑
j∈Ui

afinal
i,e,t · uj,t

A.2.8 Episode Termination

The episode ends when t = T . Truncation does not occur even under constraint violations.

A.3 Unit Commitment (UCEnv)

A.3.1 Overview

The unit commitment problem is one of the most widely used optimization problems in power systems,
aiming to minimize the operational costs of power generation over a specified planning horizon by determining
optimal decisions for switching power units on or off and managing power dispatch (Knueven et al., 2020).
These decisions must comply with safety requirements and fulfill various operational goals. In practice, the
unit commitment problem is solved in advance on a rolling basis, as future electricity demand is uncertain
and must be forecasted continually once new information becomes available. The growth of renewable energy
sources and fluctuations in the electricity markets further increase the uncertainties in demand forecasts.
Due to the size of power systems in the real world, solving the resulting MILP or MIQCP problem on time
can be prohibitively difficult. Therefore, the development of efficient solution methods that can respond to
frequent forecast updates is of significant interest. In this study, we formulate the unit commitment problem
as a CMDP and implement it as the environment UCEnv. To support safe sequential decision making in power
scheduling and dispatch, practical constraints, such as minimum up and down time, ramping constraints,
and reserve requirements, are incorporated into the environment. Given the complexity of unit commitment
problem, the environment is provided in two versions. The UCEnv-v0 version assumes a single-bus system,
while UCEnv-v1 requires an agent to take into account distributed power demands and power flows within a
transmission network.

A.3.2 Problem Setup

Sets

• G: the set of generators.

21

Under review as submission to TMLR

ω1,t

P1,t, u1,t P2,t, u2,t

P3,t, u3,t

P4,t, u4,t P5,t, u5,t

D1,t

ω1,t

ω2,t ω3,t

ω4,t

P1,t, u1,t

P2,t, u2,t P3,t, u3,t

P4,t, u4,t

P5,t, u5,t

D1,t

D2,t D3,t

D4,t

single-bus system 4-bus system

Figure 3: Schematic of UC in a single-bus system and 4-bus system at the time point t: Red lines indicate
power inflow and outflow. Black lines denote transmission lines. At each time point, forecast demands,
current power output, current voltage angle, current and previous on-off status (state) are used to infer the
power output, voltage angle, on-off status at the next time point (action).

• N : the set of buses.

• K: the set of transmission lines.

• Gn: the set of generators that is connected to the n bus.

• k(n): the from-bus for the kth transmission line.

• k(m): the to-bus for the kth transmission line.

• δ+(n): the set of transmission line for the to-bus n.

• δ−(n): the set of transmission line for the from-bus n.

Parameters

• (ai, bi, ci): quadratic, linear, and constant cost coefficients of power generation.

• Cv
i : startup cost coefficients.

• Cw
i : shutdown cost coefficients.

• UTi: minimum up time.

• DTi: minimum down time.

• RUi: ramp-up rate.

• RDi: ramp-down rate.

• SUi: start-up rate.

• SDi: shut-down rate.

22

Under review as submission to TMLR

• Pmax i: maximum power output.

• Pmin i: minimum power output.

• Θmax n: maximum voltage angle.

• Θmin n: minimum voltage angle.

• Fmax k: maximum transmission capacity.

• Fmin k: minimum transmission capacity.

• Dn,t; time-varying power demand.

• CLS : load shedding cost coefficient for failure to meet load.

• CR: reserve shortfall cost coefficient for failure to meet the reserve requirement.

• R: system-wide reserve requirement

A.3.3 State Space

The state st includes the following components:

• useq
i,t = [ui,t, uold

i,t] ∈ {0, 1}max(UTi,DTi)+1: a sequence of binary indicators about the on-off status of
the generator i ∈ G, where uold

i,t records the history in the most recent time periods before t, used to
track compliance with the up/down time. The dimension of this variable is

∑
i∈G(max(UTi, DTi) +

1).

• pi,t ∈ [Pmin i, Pmax i]: power output of the generator i ∈ G. The dimension of this variable is |G|.

• θn,t ∈ [Θmin n, Θmax n]: voltage angle of the bus n ∈ N . The dimension of this variable is |N |. In the
simpler version, UCEnv-v0, the environment is assumed to be a single-bus system where the voltage
angle is not considered.

• Dn,t+1:t+W ∈ RW
≥0: forecast demand of the bus n ∈ N with a window length of W . The dimension of

this variable is |N |×W . When the window extends beyond the episode horizon, it uses the forecast
demand from the following steps.

The full observation is flattened into a continuous vector space for reinforcement learning (RL) training.

A.3.4 Action Space

At each time step t, the agent takes the following actions at:

• ui,t+1 ∈ {0, 1}: on/off status of the generator i ∈ G. The dimension of this variable is |G|.

• pi,t+1 ∈ [Pmin i, Pmax i]: power output of the generator i ∈ G. The dimension of this variable is |G|.

• θn,t+1 ∈ [Θmin n, Θmax n]: voltage angle of the bus n ∈ N , where θ1,t+1 = 0 is always fixed as
reference. The dimension of this variable is |N | − 1.

These decision variables are initially normalized to a continuous action space at ∈ [−1, 1]n and then mapped
to their actual values within their bounds.

23

Under review as submission to TMLR

A.3.5 Transition Dynamics

Given the action at, the next state st+1 is computed as follows.

Intermeidate state, turn-on and turn-off status and sequence: First, we compute the intermediate
states vi,t+1, wi,t+1 as well as the sequences vseq

i,t+1 and wseq
i,t+1. These intermediate states serve as a practical

representation of whether a generator has recently been activated or deactivated, facilitating the subsequent
computation of costs, violations, and rewards.

vi,t+1 = max(0, ui,t+1 − ui,t)

wi,t+1 = −min(0, ui,t+1 − ui,t)

vseq
i,t+1 =

[
vi,t+1, vold

i,t [: −1]
]

wseq
i,t+1 =

[
wi,t+1, wold

i,t [: −1]
]

Check and repair on-off status Next, we check the feasibility of the on-off status. The first inequality
evaluates the minimum up-time constraint, ensuring the ith generator remains on for a specified number of
time periods, UTi, before shutdown. The second inequality evaluates the minimum down-time constraint,
which requires the ith generator to have a minimum off duration, DTi, before restart. These constraints
prevent excessive wear-and-tear resulting from frequent cycling. The violation indicates the power generator
that must be kept on and off, respectively. The values of ui,t+1 of the must-on generators (must-off generators)
are then corrected to 1 (0).

ur
i,t+1 =


1, if

∑
vseq

i,t+1 > ui,t+1

0, elif
∑

wseq
i,t+1 > 1− ui,t+1

ui,t+1, otherwise

Update sequence of on-off status : After checking and repairing the on-off status, their sequence is
updated:

ui,t+1 =
[
ur

i,t+1, uold
i,t [: −1]

]
Check and repair power output We proceed to check the violations of the ramping constraints. The first
inequality evaluates the ramp-up constraint, and the second inequality evaluates the ramp-down constraint.
These constraints impose limits on the rate at which a generator increases or decreases its output between
consecutive time steps, reflecting the physical capabilities of generators. The violation indicates the power
generation that must be kept within a tighter bound based on the repaired on-off status.

pr
i,t+1 =


pi,t + RUi · ui,t + SUi · vr

i,t+1, if pi,t+1 − pi,t > RUi · ui,t + SUi · vr
i,t+1

pi,t −RDi · ur
i,t+1 − SDi · wr

i,t+1, elif pi,t − pi,t+1 > RDi · ur
i,t+1 + SDi · wr

i,t+1
pi,t+1, otherwise

Update power output : The power output is then updated by multiplying it with its on-off status.

pi,t+1 = ur
i,t+1 · pr

i,t+1

Update voltage angle
θn,t+1 = θn,t+1

Intermeidate state, load unfulfillment and power reserve We compute the following intermediate
states to ease the computation of rewards.

fk,t+1 = Bk(θk(n),t+1 − θk(m),t+1)

24

Under review as submission to TMLR

f r
k,t+1 = max

(
min(Fmax k, fk,t+1), Fmin k

)
sn,t+1 = max

(
Dn,t+1 −

∑
i∈Gn

pi,t+1 −
∑

k∈δ+(n)

f r
k,t+1 +

∑
k∈δ−(n)

f r
k,t+1, 0

)
ri,t+1 = max

(
min(Pmax i · ui,t+1 − pi,t+1, RUi · ui,t + SUi · vi,t+1), 0

)
Although the power flow fk,t+1 is clipped for subsequent computation, the voltage angles θn,t+1 are not
repaired accordingly because future states are independent of θn,t+1 and they will not accumulate further
violations.

Demand forecast :
Dn,t+2:t+W +1 = forecast(Dn,t+1:t+W)

A.3.6 Cost Function

Minimum up-time & down-time violations : The penalty for correcting invalid on-off status decisions
is the number of minimum up-time and down-time violations multiplied by a penalty factor. The violations
represent that the agent attempted to turn off a power unit that must be kept on or turn on a power unit
that must be kept off at the current time step.

CUTDT
t =

∑
i

P · I
(∑

vseq
i,t+1 > ui,t+1 ∨

∑
wseq

i,t+1 > 1− ui,t+1
)

Ramp-up & ramp-down violations : The penalty for correcting invalid power output decisions is the
magnitude of ramp-up and ramp-down violations multiplied by a penalty factor. The violations represent that
the agent attempted to increase or decrease a power output too aggressively, which exceeds the generator’s
allowable ramping limits between consecutive time steps.

CRamp
t = P ·

∑
i

max
(
pi,t+1 − pi,t −RUi · ui,t − SUi · vr

i,t+1, pi,t − pi,t+1 −RDi · ur
i,t+1 − SDi · wr

i,t+1, 0
)

Transmission capacity violations : The penalty for correcting invalid volatage angle decisions is the
magnitude of transmission capacity violations multiplied by a penalty factor. The violations represent that
the agent attempted to allocate an excessive or insufficient amount of power to other buses, exceeding or
falling short of the transmission capacity.

CCap
t = P ·

∑
k

max
(
fk,t+1 − Fmax k, Fmin k − fk,t+1, 0

)
Total Cost

Ct = CUTDT
t + CRamp

t + CCap
t

A.3.7 Reward Function

The agent receives a reward equal to the negative of the production generation cost, startup cost, shutdown
cost, load shedding cost and reserve shortfall cost.

Production generation reward:

Πpg
t = −

∑
i

(ai · p2
i,t + bi · pi,t + ci)

Startup reward:
Πv

t = −
∑

i

(Cv
i · vi,t)

25

Under review as submission to TMLR

Shutdown reward:
Πw

t = −
∑

i

(Cw
i · wi,t)

Load shedding reward:
ΠLS

t = −CLS ·
∑

n

sn,t

where sn,t represents the load unfulfillment at bus n.

Reserve shortfall reward:
ΠR

t = −CR ·max(R−
∑

i

ri,t, 0),

where ri,t represents the power that can be reserved at generator i.

Total reward:
Πt = Πpg

t + Πv
t + ΠLS

t + ΠR
t

A.3.8 Episode Dynamics

The episode commences with the known sequence of the on-off status and power output from the preceding
time step, and terminates after T time steps.

A.4 Generation and Transmission Expansion Planning(GTEPEnv)

A.4.1 Overview

The generation and transmission expansion problem is a critical planning task in power systems, aiming to
determine when and where to install new generators and transmission lines to ensure adequate power supply
amidst growing and spatially distributed demand. This problem is inherently combinatorial and must satisfy
constraints such as the maximum number of generators in a region and overall demand satisfaction (Li et al.,
2022).

Because electricity demand varies over time and across regions, expansion decisions must be made periodi-
cally, turning the problem into a sequential decision-making process. Moreover, future demand is typically
forecasted and therefore uncertain, necessitating a rolling planning framework in which decisions are con-
tinually updated as new information becomes available. This need is further heightened by the increasing
integration of renewable energy sources and the growing volatility in energy consumption patterns, both of
which introduce greater uncertainty into power system operations. As such, effective solutions must explicitly
account for these uncertainties and remain flexible enough to adapt to frequent forecast revisions. Keeping
these considerations in mind, reinforcement learning (RL) offers a promising approach for addressing the
generation and transmission expansion problem (Pesántez et al., 2024). In particular, safe reinforcement
learning techniques enable agents to learn actions that are more likely to be both feasible and near-optimal.
To this end, we model the problem as a CMDP and implement it as the environment GTEPEnv, which sup-
ports decision-making regarding the installation of generators and transmission lines across different time
periods and regions. We assume generators operate at full capacity and the cost for curtailment is negligible.
A schematic of the environment is shown in figure 4.

A.4.2 Problem Setup

We consider a multi-period generator and transmission expansion planning problem. The sets and known
parameters used in the model are described below.

Sets

• T = {1, . . . , T}: Set of discrete time periods.

• R: Set of regions.

26

Under review as submission to TMLR

Figure 4: Schematic of GTEPEnv: This is a representation of a network of 3 regions where we install
solar panels and transmission lines to deal with the demand for power. The solar panels with blue borders
represent those already installed (state), and the one with the red border represents the one being installed
in this time period (action)

• G: Set of generator types.

• L ⊆ R×R: Set of candidate transmission lines, where each line is represented by a single directed
pair (r1, r2) with r1 ̸= r2. For any unordered pair {r1, r2}, only one direction (e.g., (r1, r2)) is
included in L.

Parameters

• Demr,t: Electricity demand in region r ∈ R at time t ∈ T .

• Capgen
i : Capacity of a single unit of generator type i ∈ G.

• C inst,gen
i : Installation cost of generator type i.

• Captl
l : Transmission capacity of line l ∈ L.

• C inst,tl
l : Installation cost of transmission line l.

• Mi,r: Maximum number of generators of type i that can be installed in region r.

• λ0: Fixed penalty term (analogous to an ℓ0-style penalty to encourage sparsity).

• λ2: Quadratic penalty coefficient (analogous to an ℓ2-style penalty to discourage overuse or smooth
solutions).

• k: Window length for demand forecast

• ϵ: A small threshold used to ignore negligible power flows

27

Under review as submission to TMLR

A.4.3 State Space

The state at each time step t ∈ T , denoted st, includes the following components:

• ni,r,t ∈ Z≥0, bounded by [0, Mi,r]: Number of generators of type i ∈ G installed in region r ∈ R at
time t ∈ T . This component contributes a state dimension of |G| × |R|.

• ntl,t ∈ {0, 1}: Binary indicator for whether transmission line l ∈ L is installed at time t. This
contributes a dimension of |L|.

• Demr,t+1:t+k: Forecasted demand in region r ∈ R from time t+1 to t+k, where k is the forecasting
window. This has a dimension of |R| × k. Entries are padded with zeros for time periods beyond
the episode horizon.

• t: Current time index, optionally included to provide temporal context.

All components are concatenated and flattened into a continuous vector for use in reinforcement learning.

A.4.4 Action Space

At each time step t ∈ T , the agent selects the following actions:

• nadd
i,r,t ∈ [0, Mi,r]: Number of generators of type i ∈ G to install in region r ∈ R at time t. This

defines a decision space of dimension |G| × |R|.

• Pl,t ∈ [−Captl
l , Captl

l]: Power flow along transmission line l = (r1, r2) ∈ L at time t, where the
direction of flow is from r1 to r2. This defines a space of dimension |L|.

The bounds of the action space are given by the physical constraints on installation limits and transmission
capacities.

For reinforcement learning, actions are normalized to [−1, 1] and then scaled back to their original ranges
using:

aactual = (anormalized + 1)
2 · (ahigh − alow) + alow

A.4.5 Transition Dynamics

After scaling, we denote the set of actions by{
nadd,action

i,r,t , P action
l,t

}
.

We first further process the actions by rounding the number of generators added to the nearest integer and
setting negligible power flows to 0.

nadd,prebound
i,r,t = round(nadd,action

i,r,t)

Pl,t =
{

0 if |P action
l,t | ≤ ϵ

P action
l,t otherwise

We then increment t to t + 1.

28

Under review as submission to TMLR

Checking action for generator bounds: Next, we proceed to check for violations of bounds in the state.
The main focus is on checking for violations related to the number of generators in each region, as everything
else has been accounted for in the scaling process. If the action results in a violation of the constraint, we
adjust the action to ensure the state reaches the maximum possible configuration within the bounds.

nadd
i,r,t =

{
Mi,r − ni,r,t−1 if ni,r,t−1 + nadd,prebound

i,r,t > Mi,r

nadd,prebound
i,r,t otherwise

After sanitizing the actions and ensuring the state satisfies its bounds, the state is updated as follows:

Generator Updates:
ni,r,t = ni,r,t−1 + nadd

i,r,t

Transmission Line Installation:

ntl,t =
{

1 if ntl,t−1 = 0 and |Pl,t| > 0
ntl,t−1 otherwise

We then proceed to calculate the cost and reward. Finally, we shift the demand forecast by one step to
Demr,t+1:t+k.

A.4.6 Cost Function

The total cost at each time step consists of penalties for constraint violations, including those for the bounds
of the state, and demand satisfaction violations. The components of the cost are defined as follows:

Generator Bound Violations: We apply a combination of L0 and L2 penalties for generating an action
before sanitization that violates the maximum number of generators in a region:

Cbound,gen
i,r =

λ0 + λ2 ·
(

nadd,prebound
i,r,t + ni,r,t−1 −Mi,r

)2
if nadd,prebound

i,r,t + ni,r,t−1 > Mi,r

0 otherwise

Demand Violations: The available power Powavail
r,t in region r at time t is calculated as:

Powavail
r,t =

∑
i

ni,r,t · Capgen
i +

∑
r′|(r,r′)∈L

P(r,r′),t −
∑

r′|(r′,r)∈L

P(r′,r),t

Note: The power flow obtained from the agent is only in one direction. The power flow along the reverse
direction can be interpreted simply the negative of the power flow in the original direction. Specifically, for
any transmission line (r1, r2) ∈ L, the power flow from region r1 to region r2 is denoted by P(r1,r2),t, and
the reverse flow from region r2 to region r1 is P(r2,r1),t = −P(r1,r2),t.

We apply a combination of L0 and L2 penalties for unmet demand:

Cdemand
r =

λ0 + λ2 ·
(

Demr,t − Powavail
r,t

)2
if Demr,t > Powavail

r,t

0 otherwise

Total cost: The total cost is the sum of the penalties for all violations, as follows:

Ct =
∑
i,r

Cbound,gen
i,r +

∑
r

Cdemand
r

The total cost is used to guide the agent toward optimal decision-making.

29

Under review as submission to TMLR

A.4.7 Reward Function

The reward function consists of:

Contribution to reward from installation of generators :

πgen
t = −

∑
i,r

nadd
i,r,t · C

inst,gen
i

Contribution to reward from installation of transmission lines :

πtl
t = −

∑
l∈L

C inst,tl
l · 1[ntl,t−1 = 0 ∧ |Pl,t| > 0]

Total reward :
πt = πgen

t + πtl
t

A.5 Multiperiod Blending Problem(BlendingEnv)

A.5.1 Overview

The multiperiod blending problem, a core challenge in chemical engineering, involves optimally blending
multiple input streams to produce outputs with desired quality attributes over a series of time periods.
Input streams, characterized by specific properties, are procured and stored in inventory vessels. These
streams are then transferred to blenders, where they are mixed according to specified blending rules. The
resulting output streams must meet property constraints (e.g., quality specifications) and are subsequently
stored in output inventory vessels before being sold, subject to upper bounds on product quantities.

The goal is typically to maximize profit while satisfying constraints on inventory levels, property ranges,
and operational rules—such as prohibiting simultaneous inflow and outflow in the same blender. These
requirements lead to a highly nonlinear and constrained formulation, commonly modeled as a non-convex
mixed-integer quadratically constrained program (MIQCP) (Chen & Maravelias, 2020).

Due to the sequential decision-making structure of the problem and the uncertainty in demands or property
variations over time, reinforcement learning (RL) emerges as a promising approach. In particular, safe
RL techniques can guide agents to learn actions that are not only near-optimal but also likely to satisfy
complex constraints. To that end, we model the problem as a Constrained Markov Decision Process (CMDP)
and implement it as the environment BlendingEnv, which supports dynamic decisions on stream flows,
purchasing, and selling over time. A schematic of the environment is shown in figure 5.

A.5.2 Problem Setup

The sets and known parameters used to describe the environment are shown below:

Sets

• T = {1, . . . , T}: Set of discrete time periods.

• S: Set of source streams.

• J : Set of blenders.

• P: Set of demand streams.

• Q: Set of stream properties (e.g., chemical or physical characteristics).

• Fs,j : Set of tuples representing possible directed flows from source streams to blenders.

30

Under review as submission to TMLR

Figure 5: Schematic of BlendingEnv: This is a representation of a blending system with the blue arrows
representing the flows between different components (action) and the red variables representing the different
inventories and properties of the blender (state)

• F j,j : Set of tuples representing possible directed flows between blenders. Flows are defined in such
a way that only one way is possible.

• F j,p: Set of tuples representing possible directed flows from blenders to demand streams.

Parameters

• F max: Upper bound for any flow between nodes.

• σs,q: Value of property q ∈ Q for source stream s ∈ S.

• [slb
s , sub

s]: Lower and upper bounds on inventory of source s ∈ S.

• τ0
s,t: Availability of source stream s ∈ S at time t ∈ T .

• [blb
j , bub

j]: Lower and upper inventory bounds for blender j ∈ J .

• [σlb
p,q, σub

p,q]: Lower and upper bounds on property q ∈ Q for demand stream p ∈ P.

• [dlb
p , dub

p]: Lower and upper bounds on inventory of demand stream p ∈ P.

• δ0
p,t: Maximum amount of demand stream p ∈ P that can be fulfilled at time t ∈ T .

• βd
p : Unit selling price for demand stream p ∈ P.

• βs
s : Unit purchase cost of source stream s ∈ S.

• β: Unit cost of intermediate flows (e.g., between nodes).

• α: Fixed cost of activating an intermediate flow.

• k: Window length for source and demand forecast

31

Under review as submission to TMLR

• strategy: The strategy used in the environment to handle illegal actions caused by constraint viola-
tions. We support three options: prop, disable, and none. In the prop strategy, we adjust a subset
of actions when they violate the relevant constraints, with actions scaled or clipped depending on
the specific constraint. In the disable strategy, a subset of actions is set directly to zero . The
none strategy applies no correction, allowing actions to remain unchanged regardless of constraint
violations.

• λ0,B : a fixed cost for violating bound constraint (analogous to ℓ0 regularization).

• λB : prefactor to the sum of ℓ0 and ℓ1 violations for inventory bound constraint (analogous to ℓ0
regularization).

• λ0,M : a fixed cost for violating in-out rule constraint (analogous to ℓ0 regularization).

• λ0,Q: a fixed cost for violating property specifications (analogous to ℓ0 regularization).

• ϵ: A small positive threshold used to disregard negligible violations of constraints.

A.5.3 State Space

The state st at time t ∈ T includes the following components, with dimensionality expressed using the sets
defined previously:

• Source inventories: Is
s,t ∈ [slb

s , sub
s], for all s ∈ S. This has dimension |S|.

• Blender inventories: Ib
j,t ∈ [blb

j , bub
j], for all j ∈ J . This has dimension |J |.

• Demand inventories: Id
p,t ∈ [dlb

p , dub
p], for all p ∈ P. This has dimension |P|.

• Blender properties: Cj,q,t ∈ R, for all j ∈ J , q ∈ Q. This has dimension |J | × |Q|.

• τ0
s,t+1:t+k: Forecasted source availability for all s ∈ S from time t+1 to t+k where k is the forecasting

window. This component has a dimension of |S|×k. Entries are padded with zeros for time periods
beyond the episode horizon.

• δ0
p,t+1:t+k Forecasted demand availability, for all p ∈ P from time t+1 to t+k where k is the fore-

casting window. This component has a dimension of |P|×k. Entries are padded with zeros for time
periods beyond the episode horizon.

• Time step: t ∈ T . This is a scalar.

A.5.4 Action Space

At each time step t ∈ T , the agent selects the following actions:

• Source purchases: τs,t ∈ [0, τ0
s,t], for all s ∈ S. This has dimension |S|.

• Demand sales: δp,t ∈ [0, δ0
p,t], for all p ∈ P. This has dimension |P|.

• Source-to-blender flows: F sj
s,j,t ∈ [0, F max], for all (s, j) ∈ Fs,j . This has dimension |Fs,j |.

• Blender-to-blender flows: F jj
j,j′,t ∈ [0, F max], for all (j, j′) ∈ Fj,j . This has dimension |F j,j |.

• Blender-to-demand flows: F jp
j,p,t ∈ [0, F max], for all (j, p) ∈ Fj,p. This has dimension |F j,p|.

Each action is initially normalized to the interval [−1, 1] and mapped to its actual value using affine trans-
formation based on the lower and upper bounds of the corresponding action:

aactual = (anormalized + 1)
2 · (ahigh − alow) + alow

Here, alow and ahigh are the lower and upper bounds for each action dimension as specified above.

32

Under review as submission to TMLR

A.5.5 Transition Dynamics

After scaling the actions, we increment t to t + 1. Let us denote the set of actions at this point as{
τprebound

s,t , δprebound
p,t , F sj,prebound

s,j,t , F jj,preinout
j,j′,t , F jp,preinout

j,p,t

}
.

respectively.

Checking action for source inventory bounds: We next proceed to check if the actions provide a
source inventory that violates the bounds. If there is a violation, we adjust the actions based on the strategy
chosen.

Is
new,s = Is

s,t−1 −
∑

(s,j)∈Fs,j

F sj,prebound
s,j,t + τprebound

s,t

F sj
s,j,t|(s,j)∈Fs,j =


F sj,prebound

s,j,t

(
Is

s,t−1+τprebound
s,t −slb

s∑
(s,j)∈Fs,j F sj,prebound

s,j,t

)
if Is

new,s < slb
s − ϵ, strategy = prop

0 if Is
new,s < slb

s − ϵ, strategy = disable

F sj,prebound
s,j,t otherwise

τs,t =


min(sub

s +
∑

(s,j)∈Fs,j F sj,prebound
s,j,t − Is

s,t−1, τ0
s,t) if Is

new,s > sub
s + ϵ, strategy = prop

0 if Is
new,s > sub

s + ϵ, strategy = disable

τprebound
s,t otherwise

Source inventory updates We then update the source inventory as follows:

Is
s,t = clip(Is

s,t−1 −
∑

(s,j)∈Fs,j

F sj
s,j,t + τs,t, slb

s , sub
s)

Checking action for in-out rule violations: We now check if the actions follow the in-out rule for
blenders. That is, blenders should not have simultaneous inflow and outflow of streams. If there is such a
case, we set all corresponding outflows to 0. The value of other flows are not changed.

Inflowj =
∑

(s,j)∈Fs,j

F sj
s,j,t +

∑
(j′,j)∈Fj,j

F jj,preinout
j′,j,t

Outflowj =
∑

(j,j′)∈Fj,j

F jj,preinout
j,j′,t +

∑
(j,p)∈Fj,p

F jp,preinout
j,p,t

F jp,prebound
j,p,t|(j,p)∈Fj,p =

{
0 if Inflowj > ϵ, Outflowj > ϵ, strategy ̸= no

F jp,preinout
j,p,t otherwise

F jj,prebound
j,j′,t|(j,j′)∈Fj,j =

{
0 if Inflowj > ϵ, Outflowj > ϵ, strategy ̸= no

F jj,preinout
j,j′,t otherwise

Checking action for blender inventory lower bound: We next proceed to check if the actions provide
a blender inventory that violates the lower bounds.

Ib
new,j = Ib

j,t−1 +
∑

(s,j)∈Fs,j

F sj
s,j,t +

∑
(j′,j)∈Fj,j

F jj,prebound
j′,j,t

−
∑

(j,j′)∈Fj,j

F jj,prebound
j,j′,t −

∑
(j,p)∈Fj,p

F jp,prebound
j,p,t

33

Under review as submission to TMLR

If there is a violation, we adjust the actions based on the strategy chosen. We keep the same actions
otherwise.

F jp
j,p,t|(j,p)∈Fj,p =



F jp,prebound
j,p,t F j,prop

j,t if Ib
new,j < blb

j − ϵ,

strategy = prop

0 if Ib
new,j < blb

j − ϵ,

strategy = disable

F jp,prebound
j,p,t otherwise

F jj
j,j′,t|(j,j′)∈Fj,j =



F jj,prebound
j,j′,t F j,prop

j,t if Ib
new,j < blb

j − ϵ,

strategy = prop

0 if Ib
new,j < blb

j − ϵ,

strategy = disable

F jj,prebound
j,j′,t otherwise

F j,prop
j,t =

Ib
j,t−1 +

∑
(s,j)∈Fs,j F sj

s,j,t +
∑

(j′,j)∈Fj,j F jj,prebound
j′,j,t − blb

j∑
(j,j′)∈Fj,j F jj,prebound

j,j′,t +
∑

(j,p)∈Fj,p F jp,prebound
j,p,t

Blender inventory updates: After making the adjustments described above, we update the blender
inventory.

Ib
j,t = clip(Ib

j,t−1 +
∑

(s,j)∈Fs,j

F sj
s,j,t +

∑
(j′,j)∈Fj,j

F jj
j′,j,t −

∑
(j,j′)∈Fj,j

F jj
j,j′,t −

∑
(j,p)∈Fj,p

F jp
j,p,t, blb

j , bub
j)

Checking action for demand inventory lower bound: We now check if the actions provide a demand
inventory that violates the lower bounds.

Id
new,p = Id

p,t−1 +
∑

(j,p)∈Fj,p

F jp
j,p,t − δprebound

p,t

If there is a violation, we adjust the actions based on the strategy chosen.

δp,t =


Id

p,t−1 +
∑

(j,p)∈Fj,p F jp
j,p,t − dlb

p if Id
new,p < dlb

p − ϵ, strategy = prop

0 if Id
new,p < dlb

p − ϵ, strategy = disable

δprebound
p,t otherwise

Demand inventory updates: After making the adjustments described above, we update the demand
inventory.

Id
p,t = clip(Id

p,t−1 +
∑

(j,p)∈Fj,p

F jp
j,p,t − δp,t, dlb

p , dub
p)

Blender property updates We then update the property of the materials in each blender as follows:

Cj,q,t =



= 1
Ib

j,t

(
Cj,q,t−1 · Ib

j,t−1 +
∑

(s,j)∈Fs,j F sj
s,j,t · σs,q

+
∑

(j′,j)∈Fj,j F jj
j′,j,t · Cj′,q,t−1

−
∑

(j,j′)∈Fj,j F jj
j,j′,t · Cj,q,t−1

−
∑

(j,p)∈Fj,p F jp
j,p,t · Cj,q,t−1

)
if Ib

j,t+1 > ϵ

0 otherwise

We then proceed to calculate the cost and reward. Finally, we shift the future schedules forecast by one step
to τ0

s,t+1:t+k and δ0
p,t+1,t+k.

34

Under review as submission to TMLR

A.5.6 Costs

The total cost at each time step consists of penalties for constraint violations, including those for the
violations of the bounds of the state and the in-out rule. The components of the cost are defined as follows:

Inventory Bound Violation Costs :

Inventory levels at sources, blenders, and demands are required to remain within prescribed upper and lower
bounds. Inventory levels computed with actions before the relevant upadates are used to assess constraint
violations.

Sources:

Csource
s,t =


λB · (λ0,B + Is

new,s − sub
s), if Is

new,s > sub
s + ϵ

λB · (λ0,B + slb
s − Is

new,s), if Is
new,s < slb

s − ϵ

0, otherwise

Blenders:

Cblender
j,t =


λB · (λ0,B + Ib

new,j − bub
j), if Ib

new,j > bub
j + ϵ

λB · (λ0,B + blb
s − Ib

new,j), if Ib
new,j < blb

j − ϵ

0, otherwise

Demands:

Cdemand
p,t =


λB · (λ0,B + Id

new,p − dub
p), if Id

new,p > dub
p + ϵ

λB · (λ0,B + dlb
p − Ib

new,j), if Id
new,p < dlb

p − ϵ

0, otherwise

In-Out Rule Violation Costs :

Blenders must not simultaneously receive and send flow within the same time step. If both incoming and
outgoing flows are non-zero (beyond a tolerance ϵ), a penalty is applied:

Cin−out
j,t =

{
λ0,M , if Inflowj > ϵ, Outflowj > ϵ

0, otherwise

Property Violation Costs :

Each demand p requires product properties q within bounds. If blender j’s content violates these bounds
and is being delivered to p, a penalty is applied:

CQ
j,q,p,t =

{
λ0,Q, if (Cj,q,t < σlb

p,q − ϵ ∨ Cj,q,t > σub
p,q + ϵ), (j, p) ∈ Fj,p, F jp

j,p,t > 0
0, otherwise

Total Cost The total penalty at time t is:

Ct =
∑
s∈S

Csource
s,t +

∑
j∈J

Cblender
j,t +

∑
p∈P

Cdemand
p,t +

∑
j∈J

Cin−out
j,t +

∑
j∈J

∑
q∈Q

∑
p∈P

CQ
j,q,p,t

A.5.7 Reward Function

The reward function consists of:

35

Under review as submission to TMLR

Revenue from selling streams :
πsale

t =
∑
p∈P

βd
p · δp,t

Contribution to reward from buying streams :

πpurchase
t = −

∑
s∈S

βs
s · τs,t

Contribution to reward from flows :

πflow
t = −α ·Qbin − β ·Qfloat

where
Qbin =

∑
(s,j)∈Fs,j

1[F sj
s,j,t > 0] +

∑
(j,p)∈Fj,p

1[F jp
j,p,t > 0]

Qfloat =
∑

(s,j)∈Fs,j

F sj
s,j,t +

∑
(j,p)∈Fj,p

F jp
j,p,t

Total Reward :
πt = πsale

t + πpurchase
t + πflow

t

A.6 Multi-Echelon Inventory Management Environment (InvMgmtEnv)

A.6.1 Overview

The multi-echelon inventory management problem involves coordinating replenishment orders across a five-
tier supply network—raw-material suppliers, producers, distributors, retailers, and end-markets—under
time-varying demand. At each period, the decision maker chooses continuous order quantities along each
transportation route, with orders subject to fixed lead times before arrival. On-hand and in-transit inven-
tories incur holding costs, while unmet demand is backlogged and penalized. The objective is to maximize
cumulative net profit—total sales revenue minus procurement, operating, holding, and shortage penalty
costs—over a finite planning horizon.

We adopt a centralized, single-product framework (Perez et al., 2021) in which all replenishment decisions
are made by a central planner, and customer demand at each retailer-to-market link is drawn from a known
stationary distribution, such as a Gaussian with specified mean and variance. Transportation is lossless with
deterministic lead times, and replenishment quantities are bounded by per-route capacity, with any excess
actions penalized. Episodes terminate after a fixed number of periods. A schematic of the environment is
shown in figure 6.

A.6.2 Problem Setup

The sets and known parameters used to describe InvMgmtEnv are shown below.

Sets

• T = {1, . . . , T}: set of discrete time periods.

• M: set of market nodes.

• R: set of retailer nodes.

• D: set of distributor nodes.

• P: set of producer nodes.

36

Under review as submission to TMLR

Figure 6: Schematic of InvMgmtEnv. A multi-echelon supply-chain network with raw distributors, producers,
distributors, and retailers serving a market. Directed red arrows depict transportation routes ℓ ∈ L. Red
callouts indicate observation components: on-hand inventory In,t for all main nodes n ∈ NM; pipeline
inventory P inv

ℓ,t (time-indexed along each route ℓ); demand window Dr,m,t:t+k on retail–market pairs (r, m) ∈
RM; sales Sr,m,t; and backlog Br,m,t. The blue callout marks the action—the normalized reorder anorm,ℓ,t

on each route ℓ. The shaded region highlights the main-node set NM

• S: set of raw-material supplier nodes.

• N =M∪R∪D ∪ P ∪ S: set of all nodes.

• NM = R∪D ∪ P: set of main nodes.

• L: set of directed replenishment routes. Each route is written

ℓ =
(
orig(ℓ), dest(ℓ)

)
,

an ordered pair of nodes with orig(ℓ) ∈ N the origin (shipping) node and dest(ℓ) ∈ N the destination
(receiving) node.

• RM: set of retailer-to-market demand links.

Parameters

• I init
n , n ∈ N : initial on-hand inventory at node n.

• Caproute
ℓ , ℓ ∈ L: capacity limit of route ℓ.

• Chold,mat
ℓ , ℓ ∈ L: per-unit holding cost for pipeline inventory on route ℓ.

• Cℓ, ℓ ∈ L: procurement cost per unit ordered on route ℓ.

• LTℓ, ℓ ∈ L: fixed lead time (in periods) for route ℓ.

• Chold,inv
n , n ∈ N : per-unit holding cost for on-hand inventory at node n.

• Coper
p , p ∈ P: operating cost per unit of production activity at producer p.

37

Under review as submission to TMLR

• ηp, p ∈ P: production yield at producer p.

• µr,m, σr,m, (r, m) ∈ RM: mean and standard deviation of demand on link (r, m).

• Pr,m, (r, m) ∈ RM: selling price per unit on link (r, m).

• Cpenalty
r,m , (r, m) ∈ RM: penalty cost per unit of unmet demand on link (r, m).

• k: look-ahead window length for demand forecast.

• ε: small threshold below which reorder quantities are treated as zero.

• ϕaction: penalty factor for action-bound violations.

• ϕon_hand: penalty factor for on-hand inventory violations.

• ϕpipeline: penalty factor for pipeline inventory violations.

• ϕsales: penalty factor for sales-state violations.

• ϕbacklog: penalty factor for backlog-state violations.

A.6.3 State Space

The state st at time t ∈ T is represented by the tuple

st =
(
In,t, P inv

ℓ,t , Sr,m,t, Br,m,t, Dr,m,t:t+k, t
)
,

where:

• On-hand inventory levels:
In,t ∈ R≥0, n ∈ NM,

contributing |NM| dimensions.

• Pipeline inventory:
P inv

ℓ,t =
(
Pℓ,1,t, . . . , Pℓ,LTℓ,t

)
, ℓ ∈ L,

contributing
∑

ℓ∈L LTℓ dimensions.

• Sales:
Sr,m,t ∈ R≥0, (r, m) ∈ RM,

contributing |RM| dimensions.

• Backlog:
Br,m,t ∈ R≥0, (r, m) ∈ RM,

contributing |RM| dimensions.

• Demand window:
Dr,m,t:t+k =

(
Dr,m,t, . . . , Dr,m,t+k

)
, (r, m) ∈ RM,

where, for offsets h with t + h > T , the unavailable future demand Dr,m,t+h is padded with 0. This
contributes |RM| × k dimensions.

• Time step: (optional) the scalar t, contributing 1 dimension.

All components are concatenated and flattened into a continuous observation vector of total dimension

|NM| +
∑
ℓ∈L

LTℓ + 2 |RM| + |RM| × k + 1.

38

Under review as submission to TMLR

A.6.4 Action Space

At each decision epoch t ∈ T the agent outputs a |L|–tuple of normalized actions

anorm,t =
(
anorm,ℓ,t

)
ℓ∈L ∈ [−1, 1]|L|,

whose components correspond one-to-one with the directed replenishment routes ℓ ∈ L.

Scaling to Physical Reorder Quantities. Each normalized component is linearly mapped to a true
reorder quantity, respecting the capacity of its route:

Qℓ,t = anorm,ℓ,t + 1
2 Caproute

ℓ , ℓ ∈ L.

A small-order cutoff ε is then applied:

Qℓ,t =
{

0, Qℓ,t ≤ ε,

Qℓ,t, otherwise.

Collecting all routes, the environment works with the physical reorder vector

Qt =
(
Qℓ,t

)
ℓ∈L ∈

[
0, Caproute

ℓ

]|L|
.

Effective Action Space. After scaling and cutoff, the admissible actions lie in the |L|-dimensional box

A =
{

Qt

∣∣ Qℓ,t ∈
[
0, Caproute

ℓ

]
, ℓ ∈ L

}
.

A.6.5 Transition Dynamics

At each time step t ∈ T , after observing st and selecting normalized actions anorm ∈ [−1, 1]|L|, the environ-
ment updates to st+1 as follows:

Action Processing, Clipping, and Penalty Recording. Each component anorm,ℓ is first mapped to a
preliminary reorder quantity

Qpre
ℓ,t = anorm,ℓ + 1

2 Caproute
ℓ .

A small-order cutoff ε is applied:

Qcut
ℓ,t =

{
0, Qpre

ℓ,t ≤ ε,

Qpre
ℓ,t , otherwise.

Any remaining violation of the action bounds is then clipped and recorded:

Qℓ,t =


0, Qcut

ℓ,t < 0,

Qcut
ℓ,t , 0 ≤ Qcut

ℓ,t ≤ Caproute
ℓ ,

Caproute
ℓ , Qcut

ℓ,t > Caproute
ℓ ,

and the action-bound violation penalty is computed as

Cbound,action
ℓ,t =


ϕaction

∣∣Qcut
ℓ,t

∣∣, Qcut
ℓ,t < 0,

ϕaction
∣∣Qcut

ℓ,t − Caproute
ℓ

∣∣, Qcut
ℓ,t > Caproute

ℓ ,

0, otherwise,

with ϕaction the penalty factor for action violations. Finally, increment the period: t← t + 1.

39

Under review as submission to TMLR

Pipeline Update. After incrementing the period t← t+1 at the end of previous step, the in-transit slots
are shifted and the newest order is injected:

Pℓ,τ,t =


Pℓ,τ+1, t−1, τ = 1, 2, . . . , LTℓ − 1,

Qℓ, t−1, τ = LTℓ,

0, otherwise.

The total in-transit inventory on route ℓ is

P inv
ℓ,t =

LTℓ∑
τ=1

Pℓ,τ,t,

and the arrivals at node n are
Arrivalsn,t =

∑
ℓ∈L

dest(ℓ)=n

Pℓ,1,t.

Arrival and Inventory Update. For each node n ∈ N ,

In,t = In,t−1 + Arrivalsn,t.

4. Demand Realization. For each (r, m) ∈ RM,

Dr,m,t ∼ N (µr,m, σr,m).

Sales and Backlog Update. Sales are

Sr,m,t = min
{

Dr,m,t + Br,m,t−1, Ir,t

}
,

then
Ir,t ← Ir,t − Sr,m,t, Br,m,t = Dr,m,t + Br,m,t−1 − Sr,m,t.

Demand Forecast Shift.

Dr,m,t+1:t+k =
(
Dr,m,t+1, . . . , Dr,m,t+k

)
∀ (r, m) ∈ RM.

Observation Clipping. After constructing all next-state components, any xi,t+1 outside its bounds
[Li, Ui] is clipped to Li or Ui as appropriate. Each such clipping is recorded as an observation-bound
violation and will incur the corresponding penalty in the Cost Function.

A.6.6 Cost Function

The total cost at time t is the sum of the penalties incurred for any state-observation violations:

Ct = Con_hand
t + Cpipeline

t + Csales
t + Cbacklog

t

Each category cost Cc
t (for c ∈ {on_hand, pipeline, sales, backlog}) is computed by applying the same

piecewise linear penalty to each pre-clipped component xi,t in that category. Let Ic be the set of
component indices for category c, each with bounds [Li, Ui] and penalty factor ϕc. For each category
c ∈ {on_hand, pipeline, sales, backlog}, let ϕc denote its penalty factor (e.g. ϕpipeline for pipeline-inventory
violations). Then

Cc
t =

∑
i∈Ic


ϕc

(
Li − xi,t

)
, xi,t < Li,

ϕc

(
xi,t − Ui

)
, xi,t > Ui,

0, otherwise,

so that any observation below its lower bound or above its upper bound contributes linearly to the total
cost.

40

Under review as submission to TMLR

Action-bound penalty. If a preliminary order Qcut
ℓ,t violates the interval

[
0, Caproute

ℓ

]
(Step 1 of the tran-

sition dynamics), it is clipped to the nearest bound and the deviation is recorded as an action-bound penalty
Cbound,action

ℓ,t , weighted by the scalar factor ϕaction. The sum over all routes yields Caction
t is added to the

total cost Ct above.

A.6.7 Reward Function

We express the per-step reward as the sum of five components, each denoted by Π:

Πt = Πrev
t − Πproc

t − Πhold
t − Πoper

t − Πbacklog
t .

• Πrev
t =

∑
(r,m)∈RM

Sr,m,t Pr,m, revenue from sales.

• Πproc
t =

∑
ℓ∈L

Qℓ,t Cℓ, procurement cost for orders.

• Πhold
t =

∑
n∈N

In,t Chold,inv
n +

∑
ℓ∈L

P inv
ℓ,t Chold,mat

ℓ , holding cost for on-hand and pipeline inventories.

• Πoper
t =

∑
p∈P

Coper
p

ηp

∑
ℓ∈L

orig(ℓ)=p

Qℓ,t, operating cost at each producer p, proportional to the total

quantity Qℓ,t dispatched along routes ℓ that originate at p; the factor 1/ηp converts finished-good
output to required production input.

• Πbacklog
t =

∑
(r,m)∈RM

Br,m,t Cpenalty
r,m , penalty for backlog.

A.6.8 Episode Termination

An episode ends when the final time step t = T is reached. It is not truncated, even if the system encounters
infeasible states.

A.7 Grid-Integrated Energy Storage (GridStorageEnv)

A.7.1 Overview

The grid-integrated energy-storage environment (GridStorageEnv) models the hourly operation of a
transmission-connected battery fleet co-located with conventional generators on a network subject to time-
varying loads and deterministic line de-energisation schedules (Piansky et al., 2024). At each period, the
agent simultaneously chooses (i) real-power outputs for every thermal generator, (ii) battery charge rates,
(iii) battery discharge rates, (iv) deliberate load shedding, and (v) bus voltage angles at all non-reference
buses (Bus 1 is fixed at 0 rad). Given these angles, line flows are computed through DC power-flow equations,
and flows on deterministically de-energised lines are forced to zero.

Batteries follow a “bucket” state-of-charge (SOC) dynamic that applies charging/discharging inefficiency and
an inter-period carry-over factor.

The objective is to minimise total cost over a finite horizon of T hours, comprising (a) generator fuel cost
modelled as a polynomial in power output and (b) linear penalties on slack generation, unserved load, bus-
angle limits, line-loading ratio, SOC and demand violations, as well as a nodal power-balance penalty that
discourages infeasible angle choices. Physical limits on generators, transmission lines, buses, and batteries
are enforced by clipping out-of-bounds actions or state variables and charging a proportional penalty.

We assume perfect foresight of hourly demand and line de-energisation schedules, a single central decision
maker, lossless transmission on energised lines, and a fixed k-hour demand-forecast window embedded in the

41

Under review as submission to TMLR

state. Episodes last exactly T steps and are never truncated. A schematic of the environment is shown in
figure 7.

Figure 7: Schematic of GridStorageEnv. A power grid with buses, generators, and battery storage, subject to
time-varying demand and deterministic line de-energization. Agent actions (blue) at each time step include
generator output pg,t, battery charge cn,t, discharge pd

n,t, load shed ℓn,t, and voltage angles θn,t. Observed
state (red) comprises battery SOC SOCn,t, line flows fℓ,t, voltage-angle differences Θℓ,t, slack sn,t, and a
k-period demand forecast Dn,t:t+k−1.

A.7.2 Problem Setup

The environment is defined by the following sets and parameters.

Sets

• T = {1, . . . , T}: discrete time periods.

• N : set of buses in the network, |N | = N .

• G: set of generators, |G| = G.

• L ⊆ N ×N : set of transmission lines.

• Dt ⊆ L: deterministic subset of lines de-energized at time t.

Parameters

• BusGeneratorLink: a mapping g 7→ n for g ∈ G, n ∈ N , indicating which bus each generator sits on.

• Bij , (i, j) ∈ L: line susceptance.

• f ℓ, ℓ ∈ L: maximum power-flow on line ℓ.

• θℓ, θℓ, ℓ ∈ L: bounds on voltage-angle difference.

• dn,t, (n, t) ∈ N × {1, . . . , T}: demand at bus n and time t.

42

Under review as submission to TMLR

• pmin
g , pmax

g , g ∈ G: generator output limits.

• Emin
n , Emax

n , n ∈ N : battery state-of-charge (SOC) bounds.

• En,0, n ∈ N : initial SOC.

• pc,min
n , pc,max

n , n ∈ N : battery charge-rate bounds.

• pd,min
n , pd,max

n , n ∈ N : battery discharge-rate bounds.

• η: battery charge/discharge efficiency.

• γ: SOC carry-over rate between periods.

• PolynomialDegree: number of generator-cost coefficients (the highest exponent is
PolynomialDegree− 1).

• Cg,j , g ∈ G, j = 0, . . . , PolynomialDegree− 1: generator cost coefficients.

• Kslack (Kslack): per-unit penalty for slack generation.

• Kls (Kls): per-unit penalty for load-shedding.

• Θmax: absolute bound on controllable bus voltage angle (radians).

• ϕbal: penalty factor for nodal power-balance violations arising when injections do not match DC
power flow.

• ϕθ,act: penalty factor for node-angle action clipping.

• ϕpower: penalty factor for generator output bounds violations.

• ϕcharge: penalty factor for battery charge-rate bounds violations.

• ϕdischarge: penalty factor for battery discharge-rate bounds violations.

• ϕslack: penalty factor for slack generation bounds violations.

• ϕshed: penalty factor for load-shedding bounds violations.

• ϕsoc: penalty factor for state-of-charge observation bounds violations.

• ϕθ: penalty factor for voltage-angle observation-bound violations.

• smax: maximum slack-generation allowed at each bus.

• dmax
global = max

n∈N , t∈T
dn,t: system-wide peak demand, used as the upper bound for all load-shedding

actions.

A.7.3 State Space

The state st at time t ∈ T is the tuple

st =
(
SOCn,t, Θℓ,t, fℓ,t, sn,t, Dn,t:t+k−1, τt

)
,

with components defined and sized as follows:

• SOCn,t = En,t/Emax
n ∈ [0, 1] (normalized battery state of charge at bus n; dimension N).

• Θℓ,t = 2(θi,t−θj,t)−(θ
ℓ
+θℓ)

θℓ−θℓ

(normalized voltage-angle difference for ℓ = (i, j); dimension L).

43

Under review as submission to TMLR

• fℓ,t ∈ [−f ℓ, f ℓ] (actual power flow on line ℓ in MW; dimension L).

• sn,t ∈ [0, smax] (slack generation at bus n; dimension N).

• Dn,t:t+k−1 = (dn,t, dn,t+1, . . . , dn,t+k−1) (length-k demand-forecast window; dimension N × k).

• τt = (t− 1)/(T − 1) ∈ [0, 1] (normalized time index; dimension 1).

All components combine into a flattened observation vector of length

2N + 2L + N k + 1.

A.7.4 Action Space

At the start of each period t the agent chooses the vector

at =
(
pt, ct, pd

t , ℓt, θt

)⊤
, θ1,t ≡ 0.

Its components obey the compact interval constraints

pt ∈
[
pmin, pmax]

, (generator outputs, dim. G),
ct ∈

[
pc,min, pc,max]

, (battery charge, N),
pd

t ∈
[
pd,min, pd,max]

, (battery discharge, N),
ℓt ∈ [0, dmax

global]N , (load shedding, N),
θt ∈ [−Θmax, Θmax]N−1, (bus angles, N−1).

Normalized interface. The policy operates in the cube [−1, 1] G+3N+(N−1) and outputs anorm,t. An affine
map rescales it to a preliminary action

apre,t = 1
2
(
anorm,t + 1

)
⊙ (amax − amin) + amin,

with block-wise bounds
amin =

(
pmin, pc,min, pd,min, 0N ,−Θmax1N−1

)⊤

amax =
(
pmax, pc,max, pd,max, dmax

global1N , Θmax1N−1
)⊤

Any element that exceeds its limits after mapping is clipped to the nearest bound; the clipping distance is
multiplied by the corresponding penalty factor ϕ· and accumulated into the action-bound penalty Caction

t .

A.7.5 Transition Dynamics

At each time step t ∈ T , the environment moves from state st to st+1 after receiving a normalized action
anorm,t ∈ [−1, 1]G+3N+(N−1). The update proceeds through seven ordered steps:

1. Action decoding, clipping, and penalty logging. Each normalized component is mapped back
into its physical range:

apre
i,t = anorm,i,t + 1

2 (amax
i − amin

i) + amin
i ,

and clipped to remain within bounds [amin
i , amax

i]. Let the resulting action vector be

at =
{

pg,t

}
g∈G ∥

{
cn,t

}
n∈N ∥

{
pd

n,t

}
n∈N ∥

{
ℓn,t

}
n∈N ∥

{
θn,t

}
n∈N \{1},

with θ1,t ≡ 0. Each clipping violation incurs a penalty multiplied by the corresponding ϕ·.

44

Under review as submission to TMLR

2. Battery state-of-charge update. The battery SOC at each bus n evolves as:

En,t+1 = γEn,t + ηcn,t −
1
η

pd
n,t, n ∈ N .

3. Load-shedding enforcement. Any load shedding exceeding the global maximum is clipped:

ℓn,t ← min(ℓn,t, dmax
global),

penalising excess with factor ϕshed.

4. Power-flow calculation. Compute power flows from voltage angles, enforcing zero flow on de-energised
lines:

fℓ,t =

Bij(θi,t − θj,t), ℓ /∈ Dt

0, ℓ ∈ Dt

, ℓ = (i, j).

5. Slack generation calculation. Slack generation sn,t is computed to enforce exact network balance:

sn,t = max
{

0, dn,t − ℓn,t −
∑

g:BusGeneratorLink[g]=n

pg,t + cn,t − pd
n,t

+
∑

(i,n)∈L

f(i,n),t −
∑

(n,j)∈L

f(n,j),t

}
.

6. Net nodal-injection and power-balance penalty. Compute net nodal injection at each bus n:

Pn,t =
∑

g:BusGeneratorLink[g]=n

pg,t + sn,t − dn,t + ℓn,t − cn,t + pd
n,t.

The nodal power-balance residual is:

∆n,t = Pn,t −
∑
j∈N

Bnj(θn,t − θj,t),

and the network-balance penalty is:
Cbal

t = ϕbal
∑
n∈N
|∆n,t|.

7. Demand-forecast and observation reconstruction. Update the forecast window at each bus n:

Dn,t:t+k−1 = (dn,t, dn,t+1, . . . , dn,min{t+k−1,T }),

padded with zeros beyond horizon T . Form the next state st+1 from normalized SOC, voltage-angle differ-
ences, loading ratios, flows, slack generation sn,t, demand window, and normalized time τt+1 = t/(T − 1).
Components outside valid bounds are clipped, incurring penalties accordingly.

A.7.6 Cost Function

The total penalty cost at time t is

Ct = Csoc
t + Cθ

t + Cflow_ratio
t + Cslack

t + Cbal
t + Caction

t

Observation-bound terms. For each category c ∈ {soc, θ, flow_ratio, slack}, let Ic be the indices of the
corresponding observation sub-vector and [Li, Ui] its valid range. Then

Cc
t =

∑
i∈Ic


ϕc (Li − xi,t), xi,t < Li,

ϕc (xi,t − Ui), xi,t > Ui,

0, otherwise.

45

Under review as submission to TMLR

Network-balance term. Cbal
t is defined in Transition-Step 5 as ϕbal

∑
n |∆n,t|, penalising any mismatch

between injections and DC power flow.

Action-bound term. Caction
t aggregates the clipping penalties accrued in Transition-Step 1 for generator

power, charge/discharge rates, load shedding, and bus angles (the latter weighted by ϕθ,act). It ensures every
action component exceeding its hard limit is penalised proportionally to its violation.

A.7.7 Reward Function

We decompose the per-step reward Πt into three components, each denoted by Π:

Πt = Πgen
t + Πslack

t + Πshed
t .

where

Πgen
t = −

∑
g∈G

PolynomialDegree−1∑
j=0

Cg,j p j
g,t,

negative generator fuel cost (polynomial in output pg,t),

Πslack
t = −Kslack

∑
n∈N

sn,t,

negative cost of slack generation at each bus,

Πshed
t = −Kls

∑
n∈N

ℓn,t.

negative cost of load-shedding.

A.7.8 Episode Termination

An episode ends when the final time step t = T is reached. It is not truncated, even if the system encounters
infeasible states.

A.8 Integrated scheduling and maintenance (SchedMaintEnv)

A.8.1 Overview

Energy-intensive chemical processes leverage Demand Response (DR) to adjust electricity usage in response
to price fluctuations, typically optimizing production on a rolling basis using forecasted demand and electric-
ity prices. However, optimizing production scheduling alone can be detrimental, as it neglects the operational
condition of essential equipment. Recent studies have addressed this by integrating condition-based main-
tenance into production optimization, notably for Air Separation Units (ASUs) (Xenos et al., 2016), and
natural gas plants (Huang & Zheng, 2020).

In this study, we model an Air Separation Unit (ASU) comprising three compressors tasked with meeting
aggregated gaseous nitrogen (GAN) and oxygen (GOX) demand over a 31-day episode, leveraging a de-
terministic 30-day rolling forecast of electricity prices and demands. Each day, the agent decides for each
compressor whether to operate—producing at a chosen output level—or to undergo maintenance, incurring
downtime and resetting its operational state. If total production falls short of demand, the deficit is met
through external purchases at a fixed (though inflated) price. The objective is to minimize total operating
expense—comprising electricity costs, downtime losses, and external purchase costs—by optimally trading
off short-term production gains against long-term equipment health. The base environment, which is com-
pletely deterministic, is termed SchedMaintEnv-v0. To further resemble real-world operations, we introduce

46

Under review as submission to TMLR

uncertainty in compressor failure times. We refer to our stochastic variant of the base environment as
SchedMaintEnv-v1. A schematic of the environment is shown in figure 8.

Figure 8: Schematic of SchedMaintEnv. At each time step t, the agent observes the day-ahead electricity
price forecast et, the demand forecast dt, and the compressor health state ht = (tslmt, tlcmt, cdmt). It
then selects compressor production rates ap,t, maintenance scheduling flags am,t, and external purchase
fraction ae,t to meet demand while managing cost and maintenance constraints, receiving reward rt from
the compressors.

A.8.2 Problem Setup

The sets and known parameters used to describe the environment are shown below:

Sets

• T = {0, . . . , T}: Set of discrete time periods.

• C: Set of compressors.

Parameters

• n: Number of compressors.

• S: Forecast horizon.

• Capc: Maximum daily production capacity of the compressor c.

• SPENc: Specific energy of compressor c in KWh/t.

47

Under review as submission to TMLR

• MTTFc: Mean time to failure represents the maximum number of consecutive operating days before
maintenance is required for compressor c.

• MTTRc: Mean time to repair represents fixed duration (in days) of any maintenance outage com-
pressor c.

• MNRDc: Minimum no-repair duration, i.e., the time that must elapse after maintenance before the
next service can begin for compressor c.

• tlcmc,0: Initial time left to complete maintenance for compressor c at start of the episode.

• tslmc,0: Initial time since last maintenance for compressor c at start of the episode.

• cdmc,0: Initial indicator of whether compressor c is eligible for maintenance at the start of the
episode.

• αext: External purchase price of per unit of product.

• Qext: Maximum possible purchase quantity for any given day.

• D: Array of daily forecasted demand over the simulation horizon T + S in ton.

• E: Array of daily forecasted electricity prices over the simulation horizon T + S in $/KWh.

• ρMD, ρMF, ρEM, ρRP, ρD: Various penalty parameters related to constraint violation.

A.8.3 State Space

The observation state at time t ∈ T is represented as a vector,

s(t) = (dt, et, tslmt, tlcmt, cdmt) , t ∈ [0, T]

The state vector s(t) captures the essential operational and maintenance-related information for the Air
Separation Unit (ASU) on day t. It includes forecasts of production demands and electricity prices over a
fixed horizon (S days), along with detailed maintenance indicators for each compressor. These components
are defined as follows:

• Demand Forecast (dt ∈ RS×1
+): a vector of predicted demands from day (t + 1) to (t + S), expressed

in tons.

• Electricity Price Forecast (et ∈ RS×1
+): a vector of corresponding day-ahead electricity prices from

day t to t + S − 1, measured in $/kWh

• Time Since Last Maintenance (tslmt ∈ Zn×1
+): the number of days since each compressor c last

underwent maintenance

• Time Left to Complete Maintenance (tlcmt ∈ Zn×1
+): the remaining time (in days) required to

complete maintenance for each compressor c; it is strictly positive only when maintenance is in
progress.

• Can Do Maintenance Indicator (cdmt ∈ {0, 1}n): a binary vector where cdmct = 1 indicates that
compressor c is eligible for maintenance on day t

In the base SchedMaintEnv, the agent strives to learn the fixed failure time MTTFc of each compressor
c. In the stochastic variant, we assume each compressor can fail at MTTFc, MTTFc − 1, or MTTFc − 2
with equal probability; hence, the agent should ideally learn a robust preventive maintenance policy. We
implement the uncertainty by introducing the aforementioned stochasticity in failure times at the beginning
of each episode.

48

Under review as submission to TMLR

A.8.4 Action Space

Given the received observation at the start of each day t ∈ T , the action space at time t consists of operational
decisions related to maintenance scheduling, compressor utilization, and external product procurement. The
physical description is as follows:

• Compressor maintenance (amaintenance(t) ∈ {0, 1}n): a binary vector indicating whether each com-
pressor is scheduled for maintenance at time t, with amaintenance,c(t) = 1 if compressor c is under
maintenance. We occasionally abbreviate this action as amaint.,c(t).

• Compressor production rate (aproduction(t) ∈ [0, 1]n): a continuous vector representing the fraction
of the maximum capacity Capc utilized by each compressor c. We occasionally abbreviate this action
as aprod.,c(t).

• External purchase apurchase(t) ∈ [0, 1]: the fraction of the maximum external product Qext purchased
to meet demand when internal production is insufficient.

The agent’s raw actions are clipped to remain within their specified bounds. In particular, each component
of amaintenance(t) is first generated as a scalar in [0, 1] and then rounded to {0, 1}, while all other actions are
clipped directly to their respective intervals.

A.8.5 Transition Dynamics

Here we define how the environment state evolves in response to the agent’s actions at each discrete time
step t ∈ T . Let s(t) =

(
dt, et, tslmt, tlcmt, cdmt

)
be the observation vector at time t, with s(0) denoting

the initial observation. The transition to s(t + 1) is governed by the following procedures:

Information State Update: This update incorporates changes in demand and electricity price signals.
The updated states are retrieved from the simulated perfect-forecast arrays of demand (D) and electricity
prices (E) for the next S days as follows:

dt+1 ← D[t + 1, t + S], et+1 ← E[t + 1, t + S] ∀t ∈ T

It is worth noting that the simulated data is appropriately longer than the episode length to account for the
state horizon; therefore, no padding is used at any point.

Compressor Physical Condition Transition: The following updates track the evolution of maintenance
status and compressor readiness for each compressor c ∈ C, based on operational decisions. The initial
physical state at the start of the simulation is given by (tlcmc,0, tslmc,0, cdmc,0), and future states are
derived accordingly.

tslmc,t+1 =
{

0, if amaintenance,c(t) = 1
tslmct + 1, otherwise

tlcmc,t+1 =


MTTRc − 1, if amaintenance,c(t) = 1 ∧ cdmct = 1
tlcmct − 1, if amaintenance,c(t) = 1 ∧ cdmct = 0
tlcmct, otherwise

cdmc,t+1 =
{

1, if tslmc,t+1 ≥ MNRDc

0, otherwise

To ensure feasibility and consistency with compressor state constraints, a sanitization step is applied to the
raw agent actions before the state update, but after the associated violation costs are realized. For each
compressor c ∈ C, the action is adjusted as follows:

49

Under review as submission to TMLR

• If tslmct ≥ MTTFc and amaintenance,c(t) ̸= 1, then:

⇒ amaintenance,c(t)← 1 and aproduction,c(t) ← 0

This rule enforces maintenance when it is overdue (i.e., tslmct ≥ MTTFc) but the agent has not
scheduled it. Maintenance is forced, and production is halted to ensure feasibility and update the
environment state accordingly.

• If amaintenance,c(t) = 1 and aproduction,c(t) > 0, then:

⇒ aproduction,c(t)← 0

This rule ensures that production is not allowed during maintenance.

• If cdmct = 0 and tlcmct = 0 and amaintenance,c(t) = 1, then:

⇒ amaintenance,c(t)← 0

To ensure maintenance is not performed after the required duration or prematurely before it is
permitted.

• If tlcmct > 0 and amaintenance,c(t) ̸= 1, then:

⇒ amaintenance,c(t)← 1 and aproduction,c(t) ← 0

To make sure maintenance remains active for the required maintenance duration.

A.8.6 Cost Function

The agent may incur various costs at each time step if system constraints are violated, encouraging it
to learn an optimal policy. We reiterate that these costs are realized before the action is sanitized. The
potential costs are as follows:

Maintenance Duration Cost:

This cost is incurred if maintenance is interrupted before it is completed or prolonged, in which case tlcmct

becomes negative. The cost is denoted by CMI
ct , where MI stands for maintenance interruption, defined as:

CMI
ct =


if (amaint.,c(t) ̸= 1 and tlcmct > 0)

ρMD · exp (|tlcmct|) or (amaint.,c(t) = 1 and tlcmct = 0 and tslmct = 0)
or (amaint.,c(t) = 1 and tlcmct < 0) ,

0 otherwise.

Maintenance Failure Cost:

This cost occurs if the Time Since Last Maintenance (tslmct) exceeds the Mean Time to Failure (MTTFc)
of the compressor. The cost is denoted by CMF

ct , where MF stands for maintenance failure, defined as:

CMF
ct =


ρMF · (tslmct −MTTFc) if (amaint.,c(t) = 0 and tslmct > MTTFc) ,

ρMF if (amaint.,c(t) = 0 and tslmct = MTTFc) ,

0 otherwise.

Early Maintenance Cost:

50

Under review as submission to TMLR

This cost is incurred if maintenance is performed on a compressor when it is not yet eligible for maintenance
(i.e., when cdmct = 0, indicating that the compressor has recently undergone maintenance, and tlcmct = 0).
The cost is proportional to the Time Since Last Maintenance (tslmct) of the compressor. The cost is denoted
by CEM

ct , where EM stands for early maintenance, defined as:

CEM
ct =

{
−ρEM · tslmct if (amaint.,c(t) = 1 and cdmct = 0 and tlcmct = 0) ,

0 otherwise.

Ramp Cost:

This cost is incurred when a compressor is ramped up while under maintenance.

CRamp
ct =

{
ρRP · aprod.,c(t) · Capc if (amaint.,c(t) = 1 and aprod.,c(t) ̸= 0) ,

0 otherwise.

Demand Cost:

This penalty is incurred if the total supply from production and external purchases does not meet the
demand on the current day. The total supply is the sum of the production and external purchase, and if
this is less than or greater than the demand, a penalty is imposed proportional to the absolute difference
between demand and supply.

CDemand
t = ρD · |dt −

∑
c

(aproduction,c · Capc)|

Total Cost:

Ctotal
t =

∑
c∈C

(CMI
ct + CMF

ct + CEM
ct + CRamp

ct) + CDemand
t

A.8.7 Reward Function

The reward function represents the cost incurred by the agent for making decisions related to production
and external purchases. At each time step t, the reward is defined as:

Πaction
t = −

(
production costt + external purchase costt

)
where,

production costt =
∑
c∈C

(
SPENc aproduction,c(t) Capc E[t]

)
external purchase costt = apurchase(t) Qext αext

The production cost at time t is calculated using the production rate, compressor capacity, specific energy
consumption, and electricity price. The external purchase cost is incurred when demand exceeds production
capacity, calculated by multiplying the purchase amount by the external price.

A.8.8 Episode Termination

The episode terminates when t + 1 = T , indicating the start of the day immediately after the final one.

51

Under review as submission to TMLR

A.9 Production Scheduling in Air Separation Unit (ASUEnv)

A.9.1 Overview

The ASUEnv simulates a liquid air separation unit (ASU) producing liquid nitrogen, oxygen, and argon in a
Gym-compatible reinforcement learning framework. We consider the ASU to have hourly production capacity
while demand occurs only at 24-hour intervals. To that end, at each hour the agent selects production rates
based on inventory levels to minimize electricity and storage costs while ensuring daily demand satisfaction.
Production actions are restricted to the convex hull of historically observed operating points, guaranteeing
industrial feasibility. We follow the simplified dynamics of Zhang et al. (Zhang et al., 2015), which capture
core ASU behavior without the complexity of detailed mode-switching or maintenance constraints.

We make several key assumptions to keep the environment tractable. Only two production modes—“Work”
(active production) and “Off” (zero output)—are available each hour, and switching between them is instan-
taneous and cost-free. Electricity prices and product demands over a short rolling horizon are treated as
perfectly known and error-free. Storage capacity for each product is finite and nonnegative, with penalties
applied if inventory limits are exceeded or daily demand is unmet. Finally, we do not model any external
purchasing option, assuming all demand falls within the ASU’s inherent production capability. The simu-
lation runs for a total of seven days with a four-day lookahead, resulting in 24 × 7 steps per episode. A
schematic of the environment is shown in figure 9.

Figure 9: Schematic of ASUEnv. At each hour t, the agent observes the electricity price forecast et, demand
forecast Dt, and inventory levels IVt. It then selects production weights λt (convex-combination coefficients
of historical patterns) to meet demand and manage inventories, and receives reward rt from the ASU.

52

Under review as submission to TMLR

A.9.2 Problem Setup

The sets and known parameters used to describe the environment are shown below:

Sets

• T = {0, . . . , T}: Set of hours in the episode.

• D = {1, . . . , D}: Set of days in the episode.

• J : Set of liquid products: liquid nitrogen (LIN), liquid oxygen (LOX) and liquid argon (LAR).

• X : Set of vertices of the convex hull derived from historical operational data.

Parameters

• T : Episode length in hours.

• D: Episode length in days.

• S: Lookahead days used in the forecast.

• m: Number of products in J .

• [IV j,lb, IV j,ub]: Lower and upper bounds on the inventory level of each product j.

• N : Number of historical production data points.

• vx: Extreme points of the convex hull.

• HPQ: Historical hourly production quantities.

• k: Number of extreme points of the convex hull.

• D̄t: Matrix of hourly product demands used in the simulation, of dimension Rm×4(S+T +1)
+ .

• Ēt: Array of hourly electricity prices used in the simulation, of dimension R24(S+T +1)
+ .

• PQt: Array of products produced based on the actions.

• DQd: Array of dispatched product quantities at the end of each day in the simulation.

• ρIV: Penalty parameter for inventory overflow.

• ρD: Penalty parameter for unmet demand.

• Cfixed: Fixed cost per hour to keep the plant operational.

• Cunit: Hourly unit production cost.

A.9.3 State Space

At any hour t, the observation state is represented by the vector

s(t) = (et, Dt, IVt) , ∀t ∈ T

The state vector s(t) captures all relevant information needed for the agent to make production planning
decisions at hour t in the Air Separation Unit (ASU). It includes deterministic forecasts of electricity prices
and product demands over a lookahead horizon of S future days; therefore, including the current day, the
total forecasting horizon becomes S + 1 days. It also includes the current inventory levels of liquid products.
The components are defined as follows:

53

Under review as submission to TMLR

• Electricity Price Forecast (et ∈ R24(S+1)×1
+): a vector of day-ahead electricity prices for the next

S + 1 days, given at an hourly resolution (totaling 24(S + 1) elements), measured in KWh.

• Demand Forecast (Dt ∈ R24(S+1)×m
+): a matrix of demands for each product j over the next S + 1

days, where j ∈ J . Each row represents the hourly demand forecast for one product; however, the
demand is non-zero only at 24-hour intervals.

• Inventory Levels (IVt ∈ Rm×1
+): the current inventory levels of all m liquid products at hour t.

These are bounded between predefined lower and upper capacity limits.

A.9.4 Action Space

The action space at each time step t is defined as:

a(t) = λ(t),

where λ(t) ∈ [0, 1]k represents the weights of the extreme points in the convex hull of the possible production
quantities. We assume historical hourly production quantities are given by

HPQ =
{

Q1
j , Q2

j , . . . , QN
j | j ∈ J

}
,

where N is the number of samples available. The feasible region FR is then approximated as convhull(HPQ),
with vertices vjx for j ∈ J , x ∈ X , and |X | = k. The quantity of each product produced at time t is

PQjt =
∑
x∈X

λx(t) vjx.

The received actions are clipped to their bounds [0, 1] and then normalized to enforce the convex-sum
property

∑k
x=1 λx(t) = 1 as described in the next section.

A.9.5 Transition Dynamics

Here we describe how the system state evolves in response to the agent’s production decisions at each discrete
hourly time step t ∈ T . Let the observation vector at time t be s(t) = (et, Dt, IVt), with s(0) denoting the
initial observation. The transition to s(t + 1) is governed by two primary updates: the shifting of forecast
windows and the physical evolution of product inventories.

Forecast Update: The forecast arrays for electricity prices and product demand are deterministic and
span a rolling horizon of S + 1 days at hourly resolution. The environment updates the forecast component
of the state differently depending on whether a new hour or a new day has begun.

Hourly Shifting: At each non-zero hour (t + 1) mod 24 ̸= 0, the environment updates the observation by
shifting the forecast vectors leftward by one hour to discard outdated information. This is achieved via the
shift_observation() routine:

Dt+1 ← ShiftLeft(Dt), et+1 ← ShiftLeft(et)

where ShiftLeft removes the earliest hour from the forecast vector and appends a placeholder value—such
as the average of the remaining values (for electricity) or zeros (for demand)—to preserve the total horizon
length 24(S + 1).

Daily Refresh: At the start of each new day (i.e., when (t + 1) mod 24 = 0), the environment invokes
update_demand_and_electricty_state() to refresh the entire forecast arrays for electricity prices and
product demands. This function populates only the end-of-day demand values (i.e., the 24th hour of each
day) while keeping the rest of the hourly entries zero, as demand is modeled to be daily:

Dt+1 ←
(
D̄[t + 1], D̄[t + 2], . . . , D̄[t + 24 (S + 1)]

)
54

Under review as submission to TMLR

Et+1 ←
(
Ē[t + 1], Ē[t + 2], . . . , Ē[t + 24 (S + 1)]

)
This rolling update mechanism enables the agent to make production decisions with awareness of upcoming
price and demand trends while ensuring that outdated data does not persist in the observation state. The
simulated data exceeds the episode length to cover the lookahead horizon, eliminating the need for padding
during daily refresh.

Inventory State Transition: Before updating the inventory, action sanitization rescales the raw weights
{λx(t)} to enforce the convex-sum constraint:

λx(t) ← λx(t)∑k
y=1 λy(t)

∀x ∈ X , s.t.
k∑

x=1
λx(t) = 1

The inventory vector is then updated based on the production action PQt at time t, itself computed as a
convex combination of feasible production profiles. If t mod 24 = 23 (the last hour of the day), a portion
of inventory is shipped to meet daily demand; otherwise, production is simply added:

IVj,t+1 =
{

IVj,t + PQj,t −DQj,d, if t mod 24 = 23, d =
⌊

t+1
24

⌋
IVj,t + PQj,t otherwise,

where DQj,d = min(IVj,t + PQj,t, D[j, 23]) ensures that the shipment quantity does not exceed the sum of
available inventory and production.

Finally, state sanitization corrects any inventory overflow by checking whether the inventory penalty CIV
t > 0.

If so, the inventory vector is clipped element-wise to its upper bounds:

IVt+1 ← min
(
IVt+1, IV ub)

,

thereby preserving feasibility by preventing storage violations.

A.9.6 Cost Function

The agent may incur several types of costs at each time step t from production decisions or constraint
violations. These costs guide the agent toward learning an efficient and feasible production policy. The
individual cost components are as follows:

Inventory Overflow Cost:
This cost is incurred if the inventory of any product exceeds its maximum storage capacity:

CIV
t = ρIV ·

∑
j∈J

max(IVj,t − IV max
j , 0)

Demand Shortfall Cost:
At the end of each day (i.e., every 24 hours), the environment evaluates whether the shipped quantity meets
the daily demand. A cost is imposed for any shortfall:

CD
t =

{
ρD ·

∑
j∈J max

(
D[j, t]−DQj,d, 0

)
if t mod 24 = 23, d =

⌊
t+1
24

⌋
0 otherwise,

where D[j, 23] is the daily non-zero demand for product j, and DQj,d is the quantity shipped.

Total Cost
Ctotal

t = CIV
t + CD

t

55

Under review as submission to TMLR

A.9.7 Reward Function

The reward at time t is defined as the negative of the production cost:

Πproduction
t = − (production costt)

The production cost is formally given by:

production costt =
{

0 if
∑

x λx(t) = 0,

Cfixed +
(∑

j∈J PQjt

)
· Cunit · e[t] otherwise

where PQjt is the production quantity of product j, and e[t] is the electricity price at time t. These costs
arise from the fixed cost Cfixed, incurred if any production occurs and a variable cost, proportional to the
total production and electricity price at hour t.

A.9.8 Episode Termination

The episode terminates when (t + 1) = H or (t + 1) = 24D, i.e., when the next starting hour is the first hour
following the final day.

B Other Results

B.1 Additonal Environments and Variants

We consider results for three additional environments—ASUEnv, UNEnv-v1, and GTEP. Figure 10 presents
the average reward and cost per training epoch, with shaded regions indicating one standard deviation
around the mean. Table 4 summarizes the evaluation results, averaged over 10 episodes, for the additional
environments. For the set of environments considered, the values in green correspond to the evaluation
reward and cost of the best-performing algorithms, while values in red indicate those of the worst-performing
algorithms. The optimal reward is calculated by solving an optimization counterpart of the environment at
each step. The strategy used to determine the algorithm with the best and worst performance, as well as
the criteria to segregate the environments based on performance, remains the same as described in the main
paper.

56

Under review as submission to TMLR

0 100 200 300 400 500
Epoch

10000

8000

6000

4000

Re
wa

rd
 (×

10
2)

0 100 200 300 400 500
Epoch

0

500

1000

1500

2000

Co
st

(a) UCEnv-v1

0 100 200 300
Epoch

500

450

400

350

300

Re
wa

rd

0 100 200 300
Epoch

500

0

500

1000

1500

2000

Co
st

 (×
10

1)

(b) GTEPEnv

0 50 100 150 200 250 300
Epoch

8250

8000

7750

7500

7250

7000

6750

Re
wa

rd

0 50 100 150 200 250 300
Epoch

0

500

1000

1500

2000

2500

3000

Co
st

 (×
10

1)

(c) ASUEnv

CPO DDPGLag OnCRPO P3O TRPOLag FOCOPS SACPID SACLag Best

Figure 10: Training curves of average reward and cost per episode across three additional environments and
BlendingEnv variants with different strategies

B.1.1 Description of Environments
• GTEPEnv: This case study involves a five-region power system with two generators and possible

transmission lines between all region pairs over a 10-period planning horizon. We train with 100
episodes per epoch. P3O shows a significant gap between training and evaluation in both reward and
cost. Notably, DDPGLag learns a policy that achieves high rewards at the expense of significantly
increased costs. To preserve clarity in visual comparisons, we omit the training curve for DDPGLag
in Figure 10b. We see a significant gap for training and evaluation costs in the P3O algorithm and
for rewards in the P3O, FOCOPS, SACPID, and SACLag algorithms.

• UCEnv-v1: This unit commitment version models a multi-bus system with explicit power flows,
enabling realistic evaluation of policies where generation and demand locations are critical. This
example considers a multi-bus unit commitment power system with five generators distributed across
four buses, connected by five transmission lines. It operates over a 24-hour horizon with hourly
updates to demand forecasts, generator states, and network power flows. A significant gap is observed
for training and evaluation costs in the SACPID and SACLag algorithms.

• ASUEnv: This example considers production scheduling in an air separation unit over a one-week
horizon, where the agent takes hourly steps to meet daily product demands. We consider a planning
horizon of 5 days, with each episode consisting of 168 steps, reflecting the operation of the ASU over
a week. We train using 60 episodes per epoch. A significant gap is observed between the training
and testing costs for CPO and TRPOLag.We see a significant gap for training and evaluation costs
in the CPO, DDPGLag,OnCRPO, and TRPOLag algorithms.

B.1.2 Discussion

For GTEPEnv and UCEnv-v1, we see that OnCRPO performs the best. However, for the ASUEnv, we
observe that CPO marginally outperforms ONCRPO, positioning it as the best algorithm in this setting.
DDPGLag sustains its poor performance for the additional environments as well. Furthermore, while GTE-
PEnv and UCEnv-v1 are trained to reasonable optimality, the evaluation costs for ASUEnv remain high

57

Under review as submission to TMLR

for all the algorithms, indicating the issues faced by current algorithms to get good feasible solutions. This
further underscores the persistent challenges inherent in such constrained settings and highlights the urgent
need for more refined and robust approaches to safe reinforcement learning in these domains.

Table 4: Evaluation results for 10 episodes

Optimal CPO DDPGLag
Environment Reward Reward Cost Reward Cost
GTEPEnv -267.7 -313 0 -19 689140
UCEnv-v1 -264104 -319469 0 -575239 216
ASUEnv -6597.5 -7295.45 25563.34 -7743.56 13130.41

OnCRPO P3O
Environment Reward Cost Reward Cost
GTEPEnv -298 0 -346 79.28
UCEnv-v1 -313897 0 -1035242 0
ASUEnv -7330.32 17706.08 -7427.55 12624.76

TRPOLag FOCOPS
Environment Reward Cost Reward Cost
GTEPEnv -352 0 -367 0
UCEnv-V1 -553465 4.21 -589754 0
ASUEnv -7337.64 16018.8 -7416.93 11747.68

SACPID SACLag
GTEPEnv -403 10725.05 -475 600
UCEnv:V1 -390289 153.06 -414884 195.9
ASUEnv -7870.69 16713.63 -8329.49 28864.44

B.2 Constraint-wise violation analysis across Safe-RL algorithms

In the following subsection we interpret the plots that report the mean episode-level constraint breaches per
epoch observed during training with eight Safe RL algorithms. To help the reader connect each trend to
its control philosophy, we first give a concise description of every algorithm and its reward–cost balancing
mechanism.

• Constrained Policy Optimization (CPO): At each update, CPO solves a small trust-region
quadratic program (QP) that maximizes expected return while ensuring the new policy remains
within a cumulative-cost constraint set. This provides theoretical guarantees of monotonic improve-
ment under standard approximations in reward without violating the safety constraints.

• Trust-Region Policy Optimization with a Lagrange Multiplier (TRPOLag): TRPOLag
enhances standard Trust-Region Policy Optimization (TRPO) by introducing an on-policy Lagrange
multiplier, updated after each batch. This multiplier penalizes excessive costs within the Kull-
back–Leibler trust region, balancing reward optimization and safety.

58

Under review as submission to TMLR

• On-Policy Constrained Reinforcement Policy Optimization (OnCRPO): OnCRPO alter-
nates between maximizing reward using a standard Proximal Policy Optimization (PPO) objective
when constraints are satisfied, and minimizing costs through a dedicated surrogate objective when
constraints are breached, thus explicitly balancing reward and safety.

• Penalty-based Proximal Policy Optimization (P3O): P3O integrates an adaptive exterior
penalty into PPO’s clipped-surrogate objective, dynamically adjusting penalty strength based on
constraint violations. The penalty increases when cumulative cost exceeds its budget and decreases
otherwise, gradually guiding the policy towards feasibility while prioritizing reward.

• Deep Deterministic Policy Gradient with a Lagrange Multiplier (DDPGLag): DDPGLag
employs an off-policy deterministic actor–critic architecture, augmented with stability enhancements
from Twin Delayed Deep Deterministic Policy Gradients (TD3). It concurrently learns a Lagrange
multiplier, policy, and critic from replay-buffer data, effectively balancing reward and constraint
satisfaction through deterministic policy gradients.

• Soft Actor–Critic with Lagrangian Penalty (SACLag): An off-policy actor–critic that aug-
ments the Soft Actor–Critic (SAC) objective with a learned Lagrange multiplier, adapting the
penalty on expected cost online.

• Soft Actor–Critic with PID Control (SACPID): Extends SAC with a propor-
tional–integral–derivative controller on cumulative cost, automatically tuning penalty strength via
PID updates to balance reward and safety.

• First-Order Constrained Policy Optimization (FOCOPS): A trust-region method that lin-
earizes both reward and cost objectives and solves a first-order approximation via a closed-form
update, yielding a policy that enforces cost constraints with minimal computational overhead.

B.2.1 RTNEnv

Figure 11 illustrates mean episode-level constraint violations per epoch for the RTNEnv. For inventory-level
constraints, projection-based algorithms—CPO, OnCRPO, and TRPOLag—consistently reduce viola-
tions, converging swiftly to minimal violation levels. P3O achieves comparable compliance more gradually,
while DDPGLag consistently exhibits the highest residual violations. Both SACLag and SACPID demon-
strate strong reductions in inventory violations, reaching compliance at rates comparable to projection-based
methods, whereas FOCOPS shows slower improvement and stabilizes with moderately higher residual viola-
tions. Equipment-usage violations are inherently less frequent owing to the simpler nature of the constraints
compared to inventory management; all methods maintain near-baseline levels throughout training, with
CPO, OnCRPO, TRPOLag, and the SAC-based methods (SACLag, SACPID) achieving compliance ear-
liest, followed slightly later by P3O, and with DDPGLag and FOCOPS maintaining modestly higher yet
infrequent violation rates.

0 5 10 15 20 25
Epoch

72

74

76

78

80

82

84

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Inventory Violations
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 5 10 15 20 25
Epoch

0.8

1.0

1.2

1.4

1.6

1.8

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Equipment Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

Figure 11: Average number of episode violations for different epochs for RTNEnv

59

Under review as submission to TMLR

B.2.2 STNEnv

Figure 12 presents mean episode-level constraint breaches per epoch for the STNEnv. Regarding inventory-
level safety, the projection-driven algorithms—CPO, OnCRPO, and TRPOLag—steadily minimize viola-
tions, stabilizing at the lowest counts observed. P3O demonstrates a slower convergence, while DDPGLag
retains a significantly higher residual violation count. Both SACLag and SACPID show strong reduction
in inventory violations, with convergence patterns comparable to projection-based methods, whereas FO-
COPS achieves improvement but stabilizes at slightly higher violation levels. Equipment-usage breaches are
consistently low for all algorithms due to reasons similar to the RTN environment, with immediate practical
compliance from CPO, OnCRPO, TRPOLag, and the SAC-based methods (SACLag, SACPID), followed
shortly thereafter by P3O, while DDPGLag and FOCOPS maintain modestly higher yet infrequent violation
rates.

0 5 10 15 20 25
Epoch

74

76

78

80

82

84

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Inventory Violations
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 5 10 15 20 25
Epoch

1.0

1.2

1.4

1.6

1.8

2.0
Nu

m
be

r o
f v

io
la

tio
ns

Number of violations: Equipment Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

Figure 12: Average number of episode violations for different epochs for STNEnv

B.2.3 UCEnv

Single-bus system without network constraints (UCEnv-v0): Figure 13 reports mean episode-level
constraint violations per epoch for the single-bus UCEnv problem, covering minimum up-time, minimum
down-time, and ramping-rate constraints. Projection-based algorithms—CPO, OnCRPO, TRPOLag, and
FOCOPS—rapidly reduce violations (in about 100 epochs), converging to the lowest residual counts. P3O
achieves compliance more gradually as its adaptive penalty strengthens, while DDPGLag is the quickest
to reduce violations (in less than 10 epochs) early on due to aggressive Lagrangian penalty updates and
off-policy learning but plateaus with ramp-up residual violations due to higher variance and instability. In
contrast, SAC-based methods, SACLag and SACPID, exhibit considerably higher residual violation for
the ramp-up/ramp-down constraints than other algorithms.

60

Under review as submission to TMLR

0 100 200 300 400 500
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Nu
m

be
r o

f v
io

la
tio

ns
Number of violations: Minimum up-time

CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

0 100 200 300 400 500
Epoch

0

5

10

15

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Minimum down-time
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

0 100 200 300 400 500
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Ramping up
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

0 100 200 300 400 500
Epoch

0

2

4

6

8

10

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Ramping down
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

Figure 13: Average number of episode violations for different epochs for UCEnv-v0

Multiple-bus system with network constraints (UCEnv-v1): Figure 14 illustrates mean episode-
level breaches per epoch for the multi-bus UCEnv problem, incorporating minimum up-time, minimum
down-time, ramping-rate, and network feasibility constraints. The qualitative performance of the algorithms
remains the same as described for UCEnv-v0.

0 100 200 300 400 500
Epoch

0

5

10

15

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Minimum up-time
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

0 100 200 300 400 500
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Minimum down-time
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

0 100 200 300 400 500
Epoch

0

2

4

6

8

10

12

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Ramping up
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

0 100 200 300 400 500
Epoch

0

2

4

6

8

10

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Ramping down
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACLag
SACPID

Figure 14: Average number of episode violations for different epochs for UCEnv-v1

61

Under review as submission to TMLR

B.2.4 GTEPEnv

Figure 15 illustrates mean episode-level constraint violations per epoch for the generation and transmission
expansion planning task. The projection-based methods, CPO, OnCRPO, and TRPOLag, rapidly reduce
generator-bound violations while keeping demand violations low, highlighting their effectiveness in per-
update safety enforcement. P3O and FOCOPS achieve comparable compliance more gradually, converging
to a non-zero level of bound violations. In contrast, SACPID and SACLag exhibit an initial reduction in
generator-bound violations but persistently exceed the bounds thereafter, though they maintain relatively
few demand violations. Finally, DDPGLag sustains non-zero bound violations and shows a persistent
demand violation.

0 100 200 300
Epoch

0

20

40

60

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Generator bound violations
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACPID
SACLag

0 100 200 300
Epoch

0

10

20

30

40
Nu

m
be

r o
f v

io
la

tio
ns

Number of violations: Demand violations
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACPID
SACLag

Figure 15: Average number of episode violations for different epochs for GTEPEnv

B.2.5 BlendingEnv

Figure 16 shows the mean episode-level constraint violations per epoch during training for the Blending
environment. For inventory bound violations, CPO, TRPOLag, and OnCRPO rapidly converge to zero
violations. P3O and FOCOPS exhibits a gradual decline with minor oscillations before stabilizing at a small
but non-zero level. DDPGLag, SACPID and SACLag consistently oscillates without clear convergence.
In contrast, for the in-out rule violations, CPO, TRPOLag, and OnCRPO show significant increases,
stabilizing at substantial violation levels. P3O and FOCOPS displays gradual increases with P3O showing
pronounced occilations. DDPGLag maintains persistent oscillations around a steady level. SACPID and
SACLag maintain a steady level with very occasional osccilations. Property violations slightly increase over
time for P3O, CPO, TRPOLag, OnCRPO and FOCOPS with minor fluctuations, whereas DDPGLag
demonstrates clear oscillations with an upward trend. In contrast, SACPID and SACLag osccilates around
0.

62

Under review as submission to TMLR

0 500 1000 1500 2000
Epoch

0

10

20

30

Nu
m

be
r o

f v
io

la
tio

ns
Number of violations: Inventory bound

CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACPID
SACLag

0 500 1000 1500 2000
Epoch

8

10

12

14

16

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: In_out_rule
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACPID
SACLag

0 500 1000 1500 2000
Epoch

0

1

2

3

4

Nu
m

be
r o

f v
io

la
tio

ns
Number of violations: Property violations

CPO
TRPOLag
P3O
DDPGLag
OnCRPO
FOCOPS
SACPID
SACLag

Figure 16: Average number of episode violations for different epochs for BlendingEnv with prop strategy

B.2.6 InvMgmtEnv

Figure 17 plots episode-level reordering-quantity bound violations per epoch in InvMgmtEnv across several
methods. InvMgmtEnv includes bounds constraints on reordering quantities, on-hand inventory, pipeline
inventory, backlog, and sales. The on-policy convex optimization method CPO and primal method OnCRPO,
along with the on-policy primal-dual method TRPOLag, reduce violations rapidly and sustain low levels; the
on-policy penalty function method P3O follows a similar path but needs a few extra epochs to recover from
early spikes. The off-policy primal-dual methods DDPGLag and SACLag, the off-policy PID-based methods
SACPID, and the on-policy convex optimization method FOCOPS also trend downward over training and
exhibit zero to near-zero violations. All methods achieve near-zero violations for the on-hand inventory,
pipeline inventory, sales, and backlog bounds constraints.

0 500 1000 1500 2000 2500 3000
Epoch

0

10

20

30

40

50

60

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Reordering Quantities Violations
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

Figure 17: Average number of episode violations for different epochs for InvMgmtEnv

B.2.7 GridStorageEnv

Figure 18 illustrates the mean episode-level violations per epoch for the GridStorageEnv, which includes
bounds constraints on generator power limits, battery charge rates, battery discharge rates, load shedding,

63

Under review as submission to TMLR

bus-angle bounds, battery state of charge (SOC), and the slack-bus angle. The on-policy convex optimization
method CPO, primal method OnCRPO, and primal-dual method TRPOLag rapidly mitigate violations
and quickly stabilize compliance; the on-policy penalty function method P3O converges more slowly, with
temporary mid-training peaks before aligning with the leading methods. Among the other methods, apart
from the on-policy convex optimization method FOCOPS, which in the initial stages shows an increasing
trend in the number of violations, the off-policy primal-dual methods DDPGLag and SACLag, along with the
off-policy PID-based method SACPID, remain consistently at (or near) zero across all violations. Violations
for battery SOC and slack-bus voltage angles remain consistently at zero across all methods, indicating
complete compliance from the outset.

0 1000 2000 3000
Epoch

0

10

20

30

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Generator power violations
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 1000 2000 3000
Epoch

0

5

10

15

20

25

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Battery charge violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 1000 2000 3000
Epoch

0

5

10

15

20

25

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Battery discharge violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 1000 2000 3000
Epoch

0

5

10

15

20

25

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Demand shed violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 1000 2000 3000
Epoch

0

5

10

15

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Bus voltage angle violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

Figure 18: Average number of episode violations for different epochs for GridStorageEnv

B.2.8 SchedMaintEnv

Deterministic integrated scheduling and maintainence environemnt (SchedMaintEnv-v0): Fig-
ure 19 illustrates mean episode-level violations per epoch for the Integrated Scheduling & Maintenance
benchmark, covering constraints on maintenance-duration, maintenance-failure, early-maintenance, ramping-
in-maintenance, and demand-unsatisfaction. Projection-based methods—CPO, OnCRPO, and TRPO-
Lag—swiftly reduce violations across all constraints, establishing stable and minimal breach levels. P3O fol-
lows a similar trend but exhibits transient spikes in violations for almost all constraints during mid-training,
except for demand-unsatisfaction, where it consistently fails to learn full compliance. For the other con-

64

Under review as submission to TMLR

straints, it eventually achieves violation levels comparable to the projection-based algorithms. DDPGLag
consistently displays higher residual violations, notably in duration and demand-unsatisfaction categories,
highlighting variability from its replay-buffer updates. Maintenance-failure violations remain consistently
low for all methods. Among the remaining methods, FOCOPS performs on par with P3O. SACLag is
only slightly better than DDPGLag, but it persistently yields the highest rates of maintenance failures and
unmet demand. SACPID has perfomance similar to SACLag (overlapping in this case).

0 200 400 600 800
Epoch

0

2

4

6

8

10

12

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Maintenance-Duration Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Maintenance-Failure Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

0

5

10

15

20

25

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Early-Maintenance Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

5

10

15

20

25

30

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Ramping-in-Maintenance Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

5

10

15

20

25

30

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Demand-Unsatisfaction Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

Figure 19: Average number of episode violations for different epochs for SchedMaintEnv-v0

65

Under review as submission to TMLR

Integrated scheduling and maintainence environemnt with stochasticity (SchedMaintEnv-v1):
Figure 20 illustrates the mean episode-level breaches per epoch for the stochastic variant of the integrated
scheduling and maintenance environment. The figure captures all maintenance-, production-, and demand-
related constraints, as in Figure 19. The qualitative performance of the algorithms remains consistent with
that observed for SchedMaintEnv-v0.

0 200 400 600 800
Epoch

0

2

4

6

8

10

12

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Maintenance-Duration Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

0

1

2

3

4

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Maintenance-Failure Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

0

5

10

15

20

25

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Early-Maintenance Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

5

10

15

20

25

30

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Ramping-in-Maintenance Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 200 400 600 800
Epoch

5

10

15

20

25

30

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Demand-Unsatisfaction Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

Figure 20: Average number of episode violations for different epochs for SchedMaintEnv-v1

B.2.9 ASUEnv

Figure 21 shows the mean episode-level constraint violations per epoch in the Air Separation Unit environ-
ment, focusing on inventory limits and demand satisfaction. Projection-based methods—CPO, OnCRPO,
and TRPOLag—rapidly suppress inventory violations, converging to stable minimal levels (approximately
9 episodes per epoch by around 170 epochs). P3O and FOCOPS exhibit monotone declines but plateau
with substantial residual violations (roughly 16–17) by the end of training. Among off-policy methods,
DDPGLag remains elevated (near 23) throughout, SACLag is consistently the highest and flat (about
26–27), and SACPID holds very high counts (around 28) until a late drop near epoch ∼ 180, after which
it stabilizes at roughly 18.

66

Under review as submission to TMLR

Demand violations emerge only in the latter half of training—after approximately 150–160 epochs—because
the agent begins to encounter underproduction violations once it has learned to avoid overproduction. Conse-
quently, methods that tighten inventory most aggressively (CPO, TRPOLag, OnCRPO) exhibit sub-unit
average demand-violation rates with intermittent spikes, whereas P3O, FOCOPS, DDPGLag, SACLag,
and SACPID remain near zero—an artifact of maintaining slack inventories rather than superior con-
straint balancing. Overall, projection-based methods best reconcile the inventory–demand trade-off; off-
policy methods—especially SACLag and DDPGLag—struggle to reduce inventory violations in ASUEnv,
and SACPID improves late but does not match the leaders.

0 50 100 150 200 250 300
Epoch

10

15

20

25

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Inventory Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

Nu
m

be
r o

f v
io

la
tio

ns

Number of violations: Demand Violation
CPO
TRPOLag
P3O
DDPGLag
OnCRPO
SACLag
SACPID
FOCOPS

Figure 21: Average number of episode violations for different epochs for ASUEnv

B.3 Benchmarking Classical Rule-Based Policies in InvMgmtEnv

We evaluated two classical rule-based policies—(s, S) and (r, Q)—in InvMgmtEnv. Under an (s, S) policy, an
order is placed whenever the inventory position falls to or below a reorder point s, and the order raises the
position to a target level S. Under an (r, Q) policy, a fixed lot Q is ordered whenever the position falls to or
below a threshold r. We impose lower bounds s ≥ smin and r ≥ rmin on these triggers; with smin = 20 the
(s, S) controller achieves a reward of 7,610.42, while with rmin = 20 the (r, Q) controller attains 10,948.9.
With the optimal reward being 11265.97493; (r, Q) lies within ≈ 2.8% of the optimum, whereas (s, S)
is ≈ 32% below. Relative to the learned SafeRL policies reported for this environment (e.g., ONCRPO
≈ 7,599, CPO ≈ 7,303, TRPOLag ≈ 7,198), the (s, S) baseline is comparable to the best-performing RL
result, and the (r, Q) baseline exceeds all RL methods by roughly 40%−50%. In our 10-episode evaluation for
InvMgmtEnv (Table 2), SACLag achieves a reward of −14,386.99 with cost 0, SACPID 5,555.74 with cost
0, and FOCOPS −6,434.03 with cost 0; hence (r, Q) improves upon SACPID by ≈ 97% and (s, S) exceeds
SACPID by ≈ 37%, while both rule-based policies obtain higher rewards than SACLag and FOCOPS.

B.4 Computational Time for Training Different Environments with Various Algorithms

Table 5 lists the wall-clock training time (hours) required by each algorithm on every environment. All
experiments were run on an AWS g4dn.xlarge instance—4 vCPUs, 16 GB RAM, and a single NVIDIA T4
GPU.

Runtime trends across algorithms The projection–trust-region trio—TRPO-Lag, On-CRPO, and
CPO—shows virtually identical runtimes, reflecting their shared on-policy update pattern with lightweight
trust-region sub-problems. P3O matches this group closely, incurring only a modest overhead for its adap-
tive penalty update. FOCOPS is also in this regime, with runtimes comparable to the projection methods
thanks to its focused update structure that avoids heavy critic–actor coupling. By contrast, the off-policy
DDPG-Lag is consistently the slowest: replay-buffer sampling, twin-critic evaluation, and deterministic
actor updates roughly double the wall-clock time relative to the on-policy methods. SAC-Lag and SAC-
PID exhibit similar off-policy behaviour, with entropy-regularised objectives and adaptive dual updates
that inflate runtime beyond DDPG-Lag in some environments, though SAC-PID generally yields more sta-
ble trajectories at the cost of additional computation. Overall, the results indicate that enforcing safety

67

Under review as submission to TMLR

through on-policy projections or dual updates delivers both strong constraint compliance and favourable
computational efficiency, whereas off-policy dual learning trades longer runtimes for greater sample reuse.

Table 5: Wall-clock training time (hours) across environments and algorithms

(a) P3O, DDPGLag, TRPOLag, OnCRPO, CPO

Environment P3O DDPGLag TRPOLag OnCRPO CPO

RTNEnv 0.13 0.26 0.12 0.12 0.12
STNEnv 0.13 0.26 0.13 0.13 0.13

UCEnv-v0 4.66 9.18 4.43 4.43 4.46
UCEnv-v1 4.58 3.71 4.44 4.44 4.43
GTEPEnv 0.33 1.00 0.31 0.31 0.32

BlendingEnv 1.20 3.62 1.16 1.18 1.23
InvMgmtEnv 0.93 2.60 0.82 0.83 0.88

GridStorageEnv 0.94 2.70 0.86 0.84 0.95
SchedMaintEnv-v0 0.57 1.70 0.56 0.56 0.58
SchedMaintEnv-v1 1.49 3.35 1.45 1.51 1.42

ASUEnv 2.38 8.80 2.42 2.39 2.42

(b) FOCOPS, SACLag, SACPID

Environment FOCOPS SACLag SACPID

RTNEnv 0.21 0.35 0.34
STNEnv 0.17 0.35 0.36

UCEnv-v0 3.71 7.71 7.52
UCEnv-v1 3.24 5.72 5.91
GTEPEnv 0.32 1.11 0.96

BlendingEnv 1.11 3.49 3.51
InvMgmtEnv 1.25 3.07 2.67

GridStorageEnv 1.03 2.60 2.50
SchedMaintEnv-v0 1.45 4.02 3.60
SchedMaintEnv-v1 1.19 2.94 2.89

ASUEnv 13.57 5.72 9.91

C Comparison with other Open-source Repositories

Discussion. Table 6 systematically evaluates four representative open-source reinforcement learning en-
vironments that incorporate constraint management. We classify each framework by its API, enforcement
mechanism (e.g. truncation, reward/cost penalties, or formal CMDP wrappers), application areas, compati-
bility with SafeRL algorithm libraries, the dimensionality of observation and action spaces, and support for
nonconvex and mixed decision variables.

The key differences of our work compared with

1. Constraint handling. OR-Gym and SustainGym mainly rely on simple truncation to enforce basic
constraints, such as bounds on state variables. More complex constraints are handled indirectly by
assigning negative rewards for violations. SafeOR-Gym uses a more principled approach:

• For non-safety-critical constraints (e.g., delayed product delivery in a supply chain problem),
penalties are applied to the reward signal.

• For safety-critical or hard physical constraints (e.g., preventing negative inventory levels, which
are physically infeasible), SafeOR-Gym introduces explicit costs to guide Safe RL algorithms to
rigorously respect these constraints.

In contrast, the purely reward-based handling in other frameworks can lead to violations of safety-
critical constraints.

2. Environment and algorithm compatibility. Both OR-Gym and SustainGym are implemented
in Gymnasium and are primarily compatible with standard RL algorithms (e.g., PPO, DDPG

68

Under review as submission to TMLR

Table 6: Comparison of Gym environments with constraint handling. “Mixed Space” refers to presence of
both discrete and continuous variables.

(a) Environment class, constraints, and application domains

Work Env. Class Constraint Handling Application Domain

OR Gym Gynasium Truncation, Reward Classical OR problems

SustainGym Gynasium Reward Penalties Sustainable Energy Systems

SafeOR Gym
Gynasium
+ CMDP wrapper

Truncation,
Reward Penalty,
Cost

Supply Chain,
Chemical Production,
Network scheduling,
Power Systems

(b) Compatibility, structural properties, and observation/action sizes

Work
Compatible with

SafeRL Algorithms
Nonconvex
constraints

Mixed state
action space

Obs / Action
(mean, max)

OR Gym ✗ ✗ ✓ (242, 2501) / (57, 200)

SustainGym ✗ ✗ ✓ (79, 150) / (33, 72)

SafeOR
Gym

✓ ✓ ✓ (86, 4280) / (32, 272)

from Stable-Baselines), treating all problems as unconstrained Markov Decision Processes (MDPs).
SafeOR-Gym extends Gymnasium with a Constrained MDP (CMDP) wrapper, enabling compatibil-
ity with Safe RL algorithms such as those provided in OmniSafe, which explicitly handle constraints.

3. Type of constraints. SafeOR-Gym includes environments with nonlinear, nonconvex constraints
and more complex logical relationships between variables. SustainGym focuses on linear and convex
constraints, while OR-Gym environments are limited to relatively simple linear constraints.

4. Problem difficulty. While the problem dimensions (observation and action space sizes) are of
similar magnitude across the frameworks, SafeOR-Gym instances are significantly harder to solve
due to their more intricate and realistic constraint structures.

5. Application domains. OR-Gym implements classical OR problems such as knapsack and travel-
ing salesman, where well-known greedy heuristics can often provide near-optimal solutions without
violating constraints. SafeOR-Gym focuses on more complex, realistic problems where simple heuris-
tics typically violate feasibility constraints. SustainGym targets sustainable energy systems, whereas
SafeOR-Gym spans a wider set of domains, including supply chains, chemical production, scheduling,
and power systems.

69

	Introduction
	Related Work
	Environments
	Multiperiod Blending Problem (BlendingEnv)
	Integrated Scheduling and Maintenance (SchedMaintEnv)

	Implementation, Compatibility, and Extensibility
	Experiments
	Results and Discussion
	Environments with reasonable performance
	Environments not trained to reasonable optimality
	Discussion: Algorithm based performance analysis

	Conclusions and Future Directions
	Problem Environment Description
	Resource Task Network Environment (RTNEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function
	Episode Termination

	State Task Network (STNEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function
	Episode Termination

	Unit Commitment (UCEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function
	Episode Dynamics

	Generation and Transmission Expansion Planning(GTEPEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function

	Multiperiod Blending Problem(BlendingEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Costs
	Reward Function

	Multi-Echelon Inventory Management Environment (InvMgmtEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function
	Episode Termination

	Grid-Integrated Energy Storage (GridStorageEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function
	Episode Termination

	Integrated scheduling and maintenance (SchedMaintEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function
	Episode Termination

	Production Scheduling in Air Separation Unit (ASUEnv)
	Overview
	Problem Setup
	State Space
	Action Space
	Transition Dynamics
	Cost Function
	Reward Function
	Episode Termination

	Other Results
	Additonal Environments and Variants
	Description of Environments
	Discussion

	Constraint-wise violation analysis across Safe-RL algorithms
	RTNEnv
	STNEnv
	UCEnv
	GTEPEnv
	BlendingEnv
	InvMgmtEnv
	GridStorageEnv
	SchedMaintEnv
	ASUEnv

	Benchmarking Classical Rule-Based Policies in InvMgmtEnv
	Computational Time for Training Different Environments with Various Algorithms

	Comparison with other Open-source Repositories

