
Published as a conference paper at ICLR 2024

CHAIN OF THOUGHT EMPOWERS TRANSFORMERS TO
SOLVE INHERENTLY SERIAL PROBLEMS

Zhiyuan Li
TTIC & Stanford University
zhiyuanli@ttic.edu

Hong Liu
Stanford University
hliu99@stanford.edu

Denny Zhou
Google DeepMind
dennyzhou@google.com

Tengyu Ma
Stanford University
tengyuma@stanford.edu

ABSTRACT

Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain
of thought (CoT), is a highly effective method to improve the accuracy of large
language models (LLMs) on arithmetics and symbolic reasoning tasks. However,
the mechanism behind CoT remains unclear. This work provides a theoretical un-
derstanding of the power of CoT for decoder-only transformers through the lens
of expressiveness. Conceptually, CoT empowers the model with the ability to
perform inherently serial computation, which is otherwise lacking in transform-
ers, especially when depth is low. Given input length n, previous works have
shown that constant-depth transformers with finite precision poly(n) embedding
size can only solve problems in TC0 without CoT. We first show an even tighter
expressiveness upper bound for constant-depth transformers with constant-bit pre-
cision, which can only solve problems in AC0, a proper subset of TC0. However,
with T steps of CoT, constant-depth transformers using constant-bit precision and
O(log n) embedding size can solve any problem solvable by boolean circuits of
size T . Empirically, enabling CoT dramatically improves the accuracy for tasks
that are hard for parallel computation, including the composition of permutation
groups, iterated squaring, and circuit value problems, especially for low-depth
transformers.

1 INTRODUCTION

Large Language Models (LLMs) exhibit exceptional capabilities in complex reasoning tasks such
as mathematical problem-solving and code generation (Chowdhery et al., 2023; Anil et al., 2023;
Achiam et al., 2023; Romera-Paredes et al., 2023; Trinh et al., 2024), far surpassing standard su-
pervised machine learning techniques. The key to unlocking these advanced reasoning abilities lies
in enabling LLMs to generate intermediate steps, or a chain of thought (CoT), before finalizing the
final answer. This can be achieved through various methods, including training or instruction tun-
ing a model with examples enriched with intermediate steps (Ling et al., 2017; Cobbe et al., 2021;
Nye et al., 2021; Chung et al., 2022), or through zero-shot or few-shot CoT prompting (Reynolds &
McDonell, 2021; Nye et al., 2021; Wei et al., 2022; Kojima et al., 2022).

A natural explanation is that the intermediate steps provide extra information about the tasks and
efficient approaches to solving, so that a model can imitate. However, intriguingly, the efficacy of
generating thought steps extends to zero-shot CoT prompting (Kojima et al., 2022), where LLMs are
only instructed with the prompt “let’s think step by step”, and to even using incorrect reasoning steps
in the few-shot examples (Wang et al., 2022a; Madaan & Yazdanbakhsh, 2022). These observations
suggest that the form of few-shot CoT prompting is as important as (if not more important than) its
content, because merely instructing LLMs to generate the intermediate steps helps.

This paper aims to study why the form of CoT improves the reasoning capability of LLMs. Our
hypothesis is that CoT allows for performing more serial computations that a vanilla transformer
cannot do without CoT. We formulate and analyze this hypothesis through the lens of expressive-
ness with and without CoT. We adopt the language of circuit complexity to discuss the capability

1

Published as a conference paper at ICLR 2024

of transformers. Previous works (Liu et al., 2022b; Merrill & Sabharwal, 2023b) have shown stan-
dard decoder-only transformers (that output answers directly) are efficient parallel computers and
can only express functions computable in an O(1)-parallel run-time with threshold circuits, TC0,
a computational model that allows the AND, OR, NOT and MAJORITY function with multiple
inputs to be computed efficiently in parallel. We first show a tighter upper bound (Theorem 3.1) for
expressiveness of constant-precision transformer – it can only express a proper subset class of TC0,
AC0, where MAJORITY gates are not allowed. Our upper bound is also more realistic because
it handles the rounding issue or iterative addition of floating point numbers, while most previous
results essentially only work for fixed-point number addition.

We then show that transformers equipped with CoT—allowing the transformer to auto-regressively
generate a sequence of intermediate tokens before answering the questions—can solve complex
problems that inherently require serial computations (assuming well-known conjectures in com-
plexity theory). Intuitively, without CoT, the number of serial computations conducted by the trans-
former is bounded by the depth (which is considered as a fixed constant for this work), whereas with
T intermediate steps, the number of serial computations possible is boosted to T . Note that T can
easily increase as the sequence length increases where the depth is a fixed number that depends on
the architecture.

Concretely, we prove that a constant-precision transformer with T intermediate steps and embedding
dimension logarithmic in the sequence length can express any functions computable by a circuit of
size T in Theorem 3.3. Taking T to be polynomial in the sequence length, the result suggests that
transformers with polynomially many intermediate steps are capable of computing all circuits in
with polynomial size, P/poly, a superclass of P. Theorem 3.3 also implies that transformers with
linearly many intermediate steps can compute all regular languages, including composition of non-
solvable groups, like permutation group over five elements, S5, which does not belong to AC0 and
is also widely conjectured to be out of TC0. As such, CoT makes transformers with bounded depth
and precision strictly more powerful.

To corroborate our theoretical analysis, we empirically evaluate the capability of transformers in
solving four core problems: modular addition, permutation composition, iterated squaring, and cir-
cuit value problem. We train transformers to solve these tasks with a large amount of synthetic data,
with and without CoT, or with additional hint but not CoT. The modular addition belongs to TC0,
meaning it can be easily solved in parallel. Liu et al. (2022a) shows it is solvable by constant-depth
transformers with log-precision and, indeed empirically depth 1 is sufficient for the parity problem
(Modulo 2 addition). The other three tasks are all conjectured to require inherently serial computa-
tions. As expected, the vanilla transformer either requires a huge depth to solve these tasks (because
the depth is the upper bound on the number of serial computation by transformers), or cannot solve
the tasks at all. On the other hand, CoT can solve these tasks as long as the depth exceeds a small
threshold. These experiments demonstrate CoT can provide more serial computations to solve com-
plex reasoning tasks.

2 NOTATIONS AND PRELIMINARIES

Given a string x or a set x, we use |x| to denote the size of x.For any n ∈ N+, we define softmax :
Rn → Rn as (softmax(x))i = exp(xi)/

n
i=1 exp(xi) for any x ∈ Rn and i ∈ [n]. We refer the

readers to Appendix B for all notations and preliminaries on circuit complexity and transformers.

Given a vocabulary V , a decoder-only transformer with parameter θ and maximal input length
nmax maps a sequence of input tokens (x1, . . . , xn) ∈ Vn to a probability distribution over V for all
n ≤ nmax, denoted by pθ(· | x1, . . . , xn). We also define function TFθ(x) by the token in V that
maximizes pθ(· | x1, . . . , xn), that is, TFθ(x) ≜ argmaxx∈V pθ(x | x1, . . . , xn).

Next-token Generator: Given a vocabulary V , a next-token generator with parameter θ and max-
imal input length nmax is a mapping from ∪nmax

n=1 Vn to V . The main next-token generator we
are interested in this work is decoder-only transformers, TFθ(x1, . . . , xn) where xi ∈ V for all
i ∈ [n]. We also recursively define TFi

θ(x1, . . . , xn) ≜ TFi−1
θ (x1, . . . , xn,TFθ(x1, . . . , xn)),

for every positive integer i and n satisfying that i + n ≤ nmax − 1 with the base case that
TF1

θ(x1, . . . , xn) ≜ TFθ(x1, . . . , xn). In other words, for all 0 ≤ i ≤ nmax − n − 1, the out-
put with i steps of CoT is xn+i+1 = TFi+1

θ (x1, . . . , xn) = TFθ(x1, . . . , xn, xn+1, . . . , xn+i).

2

Published as a conference paper at ICLR 2024

Transformer Architecture Overview: The decoder-only transformer model we consider in this
paper is very similar to GPT style architectures (Radford et al., 2019) and consists of four parts: a
token embedding layer (TE), a position encoding layer (PE), an output linear layer (OUTPUT),
and a stack of L identical layers serving as the “decoder” where L is also called the depth of
the model. Each decoder layer has two sub-layers: a multi-head self-attention layer (ATTN)
and a position-wise fully-connected feed-forward network (FF). Each layer mentioned above
has its own trainable parameters and is indexed by the layer name and the depth for attention
and feedforward layers. 1 That is we can split the model parameter θ in the following way:
θ = (θPE, θTE, θOUTPUT, {θ(l)ATTN, θ

(l)
FF}

L−1
l=0), which are all trainable. (See formal definition in Al-

gorithm 1). We defer the details of the standard transformer layers, including the token embedding
layer TE, the positional encoding layer PE, the attention layer ATTN, the feedforward layer FF, and
the output layer OUTPUT into Appendix B.2.

Algorithm 1 Decoder-only Transformer, TFθ and pθ

Input: Transformer parameter θ = (θPE, θTE, θOUTPUT, {θ(l)ATTN, θ
(l)
FF}

L−1
l=0) and input tokens x =

(x1, . . . , xn) ∈ Vn.
Output: Output distribution pθ(· | x1, . . . , xi) for all i ∈ [n] and output token TFθ(x).

1: h
(0)
i ← θTE(xi) + θPE(i), ∀i ∈ [n]

2: for l = 0, . . . , L− 1 do
3: (h

(l+0.5)
1 , . . . , h

(l+0.5)
n) ← (h

(l)
1 , . . . , h

(l)
n) + ATTN

θ
(l)
ATTN

(h
(l)
1 , . . . , h

(l)
n)

4: h
(l+1)
i ← h

(l+0.5)
i + FF

θ
(l)
FF

(h
(l+0.5)
i), ∀i ∈ [n]

5: end for
6: pθ(· | x1, . . . , xi) ← OUTPUTθOUTPUT

(h
(L)
i), ∀i ∈ [n]

7: TFθ(x) ← argmaxx pθ(x | x1, . . . , xn).

3 EXPRESSIVENESS THEORY FOR TRANSFORMERS WITH CHAIN OF
THOUGHT(COT)

3.1 FINITE PRECISION MODELING

In practice, training and inference of transformers are typically done with 16- or 32-bit floating
point numbers. Thus in this paper, we mainly focus on the computation model of constant-precision
transformers, where the output of each arithmetic operation is rounded to the closest floating point
number representable by a fixed number of digits following IEEE 754 standard (Definition B.2),
thus avoiding the unrealistic infinite precision assumption made by prior works (Pérez et al., 2019;
Dehghani et al., 2018).

Below we give an informal definition of finite-precision transformers and defer the formal definition
to Appendix B.3. We use Fe,s to denote the set of floating-point numbers that can be expressed by
1 sign bit, e exponent bit, and 2s precision bits. We further use rounde,s(x) to denote the closest
number to x in Fe,s, which is also denoted by [·]e,s for convenience. We break the tie by picking the
one with a smaller absolute value. We extend the definition of rounde,s to vector inputs by rounding
coordinate-wisely.

Next, we define finite-precision summation over more two numbers by decomposing it as a chain of
rounded binary addition in a fixed order. 2

Definition 3.1 (Summation with Iterative Rounding). For any s, n ∈ N+ and vector x ∈ Rn, we de-
fine summation with iterative rounding to 2s-bit precision as sume,s : ∪n∈N+(Fe,s)

n → Fe,s , where

for any n ∈ N+ and x ∈ Rn, sume,s(x) ≜

[x1 + x2]e,s + x3

e,s
+ · · ·xn−1

e,s

+ xn

e,s

.

1We ignore the LayerNorm (Ba et al., 2016) in the usual transformer architecture for simplicity. Our ex-
pressiveness analysis can extend to the transformers with LayerNorm with more careful treatment. See Ap-
pendix G.1 for discussion.

2Technically speaking, instead of a chain, the summation could also proceed like a tree. This is a more
complicated case and we leave it for future work.

3

Published as a conference paper at ICLR 2024

We further define the following operations:

• Finite-precision inner product: 〈x, y〉e,s ≜ sume,s(x⊙ y);
• Finite-precision matrix product: (A×e,s B)i,j ≜

(Ai,:)

⊤, B:,j

e,s

;

• Finite-precision softmax: softmaxe,s(x) ≜

[exp(x)]e,s /sume,s([exp(x)]e,s)

e,s
.

Finally, a finite-precision transformer can be defined by replacing all the infinite-precision operations
by their finite-precision counterparts listed above. (See details in Algorithm 4). We postpone the
details of the finite-precision version of individual transformer layers into Appendix C.

3.2 CoT: COMPLEXITY CLASS FOR CONSTANT-DEPTH TRANSFORMERS WITH COT

In this subsection, we define the complexity class consisting of all the problems that can be solved
by some decoder-only transformers with CoT with finite precision.
Definition 3.2 (CoT). Given a finite vocabulary V and four functions T (n), d(n), s(n), e(n), in-
formally, CoT[T (n), d(n), s(n), e(n)] is the family of problems solvable by a transformer with a
constant depth, s(n) bits of precision, e(n) bits of exponent, embedding size d(n) and T (n) steps
of CoT. Formally, we say a problem L : ∪n∈N+Vn → {0, 1} is in CoT[T (n), d(n), s(n), e(n)] iff
there is an integer L and three functions T ′(n) = O(T (n)), d′(n) = O(d(n)), s′(n) = O(s(n)),
e′(n) = O(e(n)), such that for every positive integer n, there is a L-layer decoder-only transformer,
denoted by TFθn with embedding size d′(n), 2s′(n) bits of precision, and e′(n) bits of exponent,
that can output L(x) given any input x in Vn, using T ′(n) steps of chain of thought. Mathematically,
it means

TF
1+T ′(n)
θn

(x) = L(x), ∀x ∈ Vn. (1)
We also extend the definition of CoT to a class of function instead of a single function. For example,
CoT[T (n), poly(n), s(n), e(n)] ≜ ∪k∈N+CoT[T (n), nk, s(n), e(n)].

Definition 3.3 (T). We define T[d(n), s(n)] ≜ CoT[0, d(n), s(n)] as the problems that a constant-
depth, constant-precision decoder-only transformer can solve with O(s(n)) bits of precision,
O(d(n)) embedding size and without CoT (or with only 0 step of CoT).

By definition, CoT[T (n), d(n), s(n), e(n)] is monotone in all T (n), d(n), s(n), e(n), e.g.,
CoT[T ′(n), d(n), s(n), e(n)] ⊆ CoT[T (n), d(n), s(n), e(n)] if T ′(n) ≤ T (n) for all n ∈ N. In
particular, we have T[d(n), s(n)] ≜ CoT[0, d(n), s(n)] ⊆ CoT[T (n), d(n), s(n)].

Note the above-defined complexity class CoT is non-uniform, that is, it allows a different program
for every input size. This is in contrast to previous works (Pérez et al., 2019; 2021; Yao et al., 2021;
Weiss et al., 2021; Chiang et al., 2023; Hao et al., 2022; Merrill & Sabharwal, 2023a; Merrill et al.,
2022) which focus on the uniform transformer classes. Please refer to Appendix H for a discussion.

3.3 TIGHTER UPPER BOUNDS ON TRANSFORMER EXPRESSIVENESS

Existing works (Merrill & Sabharwal, 2023b; Liu et al., 2022a) have shown that constant depth,
polynomial width, and log precision transformers can be simulated in a small parallel time, i.e.,
using TC0 circuits. These results are built on the fact that multiplication and division of n-bits
binary numbers (Hesse, 2001), as well as the iterated addition over n different n-bit binary integers
are in TC0.

However, such TC0 expressiveness upper bounds may be unrealistic for transformers operating
with floating point numbers. (Merrill & Sabharwal, 2023b; Liu et al., 2022a) implicitly assumes
when adding more than one floating-point numbers, the algorithm first compute the exact answer
without rounding using arbitrarily more precision and only perform rounding in the end. How-
ever, in practice rounding happens after each addition between two numbers and it is open if
such TC0 upper bounds still holds. Immediate rounding makes iterated addition over floating
point numbers no longer associative (Goldberg, 1991), for example, round(a + round(b + c)) ∕=
round(round(a + b) + c)). The associativity of integer addition plays a crucial role in the fact that
the iterated addition over n different n-bit binary integers are in TC0.

In this section, we present two novel expressiveness upper bounds for transformers which rounds
the immediate result after step of arithmetic operation. First, we show a strictly tighter upper bound

4

Published as a conference paper at ICLR 2024

Hint Label:

Input:

(2 3 1 4 5) (2 3 4 1 5) (5 1 4 3 2) CoT Label:

Input: (2 3 1 4 5) (1 2 4 3 5) (5 4 3 2 1) =

A

B

(2 3 1 … 4 3 2 1) = (2 3 1 3 … 1 4 3 2)

B A

(2 3 1 3 … 1 4 3 2)

A

Figure 1: Permutation Composition (S5). The label is the composition of all the permutations, where given two
permutation σ = (σ1, . . . ,σ5), π = (π1, . . . ,π5), we define σ ◦ π ≜ (σπ1 , . . . ,σπ5). The chain of thoughts
and hints are the partial compositions. Only CoT can solve this task well, as predicted by our Theorem 3.5.
Note for the most time the accuracy without CoT is ∼ 20%, which is no better than randomly guessing a
number between 1 and 5.

than TC0, which is AC0, for constant-depth transformers with both constant bits of precision and
exponents. (Theorem 3.1) This suggests when input length is sufficiently long, constant-precision
transformers cannot count eventually, even in the sense of modular. For example, it is well known
that no AC0 circuits can decide the parity of a binary string.

Theorem 3.1. T[poly(n), 1, 1] ⊆ CoT[1, poly(n), 1, 1] ⊆ AC0.

Our second result, Theorem 3.2, shows that when the number of bits for exponent is 0 (i.e. fixed-
point numbers), TC0 upper bounds for expressiveness of constant-depth, log-precision transformers
still holds, even with the correct rounding defined in Definition B.2.

Theorem 3.2. T[poly(n), log(n), 0] ⊆ CoT[1, poly(n), log(n), 0] ⊆ TC0.

The main technical difficulties in above two results are showing sume,s : (Fe,s)
n → Fe,s has

AC0 (resp. TC0) circuits when e, s are both constants (resp. e = 0, s = O(log(n))). We view
iterated addition with rounding over Fe,s as an automaton with both state space and vocabulary
being Fe,s. The first result are due to a novel application of classical Krhon-Rhodes decomposition
theorem for automata (Theorem D.2), where we use the property of rounded addition that for all
x, x′ ∈ Fe,s, y ∈ Fe,s, x ≥ x′ =⇒ [x+ y]e,s ≥ [x′ + y]e,s. We formalize this property in
Definition E.2 as ordered automata and show all ordered automata are counter-free Theorem E.3
and thus can be simulated by AC0 circuits (McNaughton & Papert, 1971).

The proof technique for Theorem 3.1 does not generalize to Theorem 3.2 because the depth of AC0

circuits constructed before depends on the number of the states of the automaton and thus is not
constant. Our proof for Theorem 3.2 is motivated by Algorithm 1 in Liu et al. (2022a) for the
automaton named ‘GridWorld’.

However, it remains open whether constant-depth, log-precision transformers with log bits for expo-
nents T[poly(n), log(n), log(n)] or even constant bits for exponents T[poly(n), log(n), 1] have TC0

circuits.

3.4 COT MAKES TRANSFORMERS MORE EXPRESSIVE

Now we are ready to present our main theoretical results (Theorem 3.3) which characterize the
expressiveness of constant-depth, constant-precision transformers with CoT and O(log(n)) embed-
ding size. log(n) embedding sizes is necessary to ensure that the position embeddings for n in-
puts are different. All the lower bounds for transformer expressiveness (with or without CoT) are
proved for fixed-point numbers, i.e., without using any exponent bits. Allowing exponent bits will
only make transformers more expressive. For convenience, we define CoT[T (n), d(n), s(n)] ≜
CoT[T (n), d(n), s(n), 0]. The omitted proofs in this section can be found in Appendix F.

5

Published as a conference paper at ICLR 2024

Theorem 3.3. For any polynomial function T : N+ → N+, SIZE[T (n)] ⊆ CoT[T (n), log n, 1]. In
particular, P/poly = CoT[poly(n), log n, 1].

Compared to Theorems 3.1 and 3.2, Theorem 3.3 shows that allowing polynomial steps of CoT
strictly makes constant-depth, constant-precision, decoder-only transformer more expressive and
log-precision transformers more expressive under a standard hardness assumption that TC0 ⊊
P/poly.3

Proof sketch of Theorem 3.3. The high-level proof idea is that we use each step in CoT to simulate
one gate operation in the target circuit and write the gate output as next input. To do that, we use one
position encoding to store the information for each gate, which contains four parts: the current gate
type {AND,OR,NOT,TRUE,FALSE}, the two input gates id and the current gate id. Since there
are total poly(n) gates, d(n) = Θ(log n) embedding size suffices to store the above information.
And the CoT here is constructed to be the values of each gate in the increasing order of id. Therefore,
in each step, we can use attention to pull the value (either computed already or it is input) of the two
input gates and use a feedforward network to compute the value of the current gate.

As we can see from proof sketch, a crucial step for CoT to simulate any depth circuit is to write
the output token back to the next input position. This action resets the “depth” of the intermediate
output in the circuit to 0. Our theory explains the ablation experiment in Wei et al. (2022) that when
the model is prompted to output a only sequence of dots (. . .) equal to the number of tokens needed
to solve the problem, the performance is no better than directly outputting the answer.

Because every regular languages can be recognized by a finite state automaton (Definition D.1) and
finite state automata can clearly be simulated by linear size circuits. The following holds as a direct
corollary of Theorem 3.3
Corollary 3.4. Every regular language belongs to CoT[n, log n, 1].

Below we give a concrete regular language that constant-depth, poly-embedding-size transformers
can solve only with CoT, the wording problem of permutation group over 5 elements, S5 in Theo-
rem 3.5, under a standard hardness assumption that TC0 ⊊ NC1 (Yao, 1989).
Definition 3.4 (Wording problem of group G). Given n elements from G, (g1, . . . , gn), we use LG

to denote the decision problem of whether g1 ◦ g2 ◦ · · · ◦ gn is equal to the identity of G.

For convenience, in this paper we extend the domain of LG to the sequence of groups encoded by
binary strings. The proof of Theorem 3.5 is a direct consequence of Theorems 3.2, 3.3 and 3.6.
Theorem 3.5. Assuming TC0 ⊊ NC1, the wording problem of S5 , LS5 is in CoT[n, log n, 1] but
not T[poly(n), log n].
Theorem 3.6 (Barrington (1986)). The wording problem of S5 is NC1-complete under AC0 re-
ductions. That is, for any decision problem L in NC1, there is a family of AC0 circuits {Cn}∞n=1
(constant depth, poly(n) fan-outs), such that for any n ∈ N+ and x ∈ {0, 1}n, L(x) = LS5(Cn(x)).

Proof of Theorem 3.5. First LS5 is a regular language, thus belonging to CoT[n, log n, 1] by Corol-
lary 3.4. Since LS5 is NC1-complete by Theorem 3.6, assuming TC0 ⊊ NC1, LS5 does not belong to
TC0. This proof is completed by applying Theorem 3.2, which says T[poly(n), log(n)] ⊆ TC0.

Results for poly(n) embedding size: So far we have been focusing on the expressiveness of trans-
former with O(log n) embedding size, so it is natural to ask can whether transformers can also
benefit from having a larger embedding size, say poly(n)? Our Theorem 3.7 answers this question
positively by showing that log-precision (resp. constant-precision) constant-depth poly-embedding-
size decoder-only transformers with T (n) steps of CoT can simulate any T (n)-size circuit with
some TC0 (resp. AC0) oracle gates with poly(n) input.

Formally, given a decision problem L : ∪∞
n=1{0, 1}n → {0, 1}, we use Ln to denote the restriction

of L on {0, 1}n, which can also be viewed as an single gate with n fan-ins. We define problems that
can be solved by circuits with certain size of gates (including oracle gates) by Definition 3.5. 4

3Indeed such separation can be shown for any polynomial steps of CoT by padding polynomially many
tokens to input.

4Our definition of complexity class solvable by circuits with oracle is slightly different from that in literature
(Wilson, 1985), where the size of the oracle circuits refers to the number of wires, whereas ours refers to the
number of gates.

6

Published as a conference paper at ICLR 2024

Hint Label:
Input:

1 3 6 3 1 0 0
1 2 3 4 5 6 = CoT Label:

Input:
1 3 6 3 1 0 0

1 2 3 4 5 6 = 1 3 6 3 1 0 0

Figure 2: Modular Addition(C7). The label is the sum of the inputs modulo a positive integer, which is 7 in this
case. The chain of thoughts and hints are the partial modular sum. Low-depth transformers with hint can solve
this task well for a reasonable input sequence length, but with cot the performance is much better, especially
with a long input sequence, as predicted by our Theorem 3.3. See experiments for C2 in Figure 5.

Definition 3.5 (SIZEL). For any decision problem L and T (n) ⊆ O(poly(n)), we define
SIZEL(T (n)) as the set of decision problems L′ such that there exists p(n) ∈ poly(n) and circuits
{Cn}∞n=1 where Cn contains at most O(T (n)) AND, OR, NOT, and Lp(n) gates. For a complexity
class C, we define SIZEC(T (n)) ≜ ∪L∈CSIZE

L(T (n)).

Theorem 3.7. For any T (n) ∈ poly(n), it holds that SIZETC0

[1 + T (n)] =

CoT[T (n), poly(n), log n]. Specifically, for T (n) = 0, we have TC0 = SIZETC0

[1] =
CoT[0, poly(n), log n] = T[poly(n), log n].

Theorem 3.8. For any T (n) ∈ poly(n), it holds that SIZEAC0

[1 + T (n)] = CoT[T (n), poly(n), 1].
Specifically, for T (n) = 0, we have AC0 = SIZEAC0

[1] = CoT[0, poly(n), 1] = T[poly(n), 1].

Theorem 3.8 shows that for T (n) = poly(n) steps of CoT, using poly(n) embedding size
does not improve expressiveness over using log(n) embedding size (Theorem 3.3), because
SIZETC0

[poly(n)] = SIZEAC0

[poly(n)] = SIZE[poly(n)]. However, Theorem 3.9 shows that for
any specific polynomial T (n) = nk steps of CoT, increasing embedding width from O(log(n)) to
poly(n) make transformers strictly more powerful.
Theorem 3.9. For any s(n) = O(log n), T[log n, s(n)] ⊊ T[poly(n), s(n)] and for all k ∈ N,
CoT[nk, log n, s(n)] ⊊ CoT[nk, poly(n), s(n)].

4 COT EMPIRICALLY IMPROVES EXPRESSIVENESS OF LOW-DEPTH
TRANSFORMERS ON INHERENTLY SERIAL PROBLEMS

This section is an empirical study of the expressiveness of decoder-only transformers with CoT on
four different arithmetic problems: modular addition, permutation composition (S5), iterated squar-
ing, and circuit value problem. The first problem is parallelizable and can be solved by constant-
depth transformers with log-precision while the latter three are inherently serial under some standard
hardness assumptions in computational complexity or cryptography. As a prediction of our theory,
we expect to see a huge improvement in accuracy when CoT is turned on.

General Setup. To examine the expressiveness of decode-only transformers with and without CoT
on these four types of problems, we train the transformer using Adam (Kingma & Ba, 2014) from
random initialization in the online supervised setting for each problem and each different sequence
length n. At each step, we sample a batch of training data from a distribution pn(x) where x =
(x1, . . . , xn) is training data and y = f∗(x1, . . . , xn) is the label. We always set xn to be ’=’. We
consider three different settings, base, cot, and hint:

• base: The optimization objective is simply ℓbase(θ) ≜ Ex∼p ℓce(pθ(x), f
∗(x)).

• cot: We manually design a chain of thought for each instance x, which is a string in V
and we denote by c(x). We ensure the last token of c(x) is always equal to the answer,
f∗(x). With x̃ ≜ (x, c(x)), the concatenation of x and c(x), and m be the length of c(x),
the optimization objective is ℓcot(θ) ≜ 1

m Ex∼p

n+m−1
i=n − ln pθ(x̃i+1 | x̃1, . . . , x̃i)).

• hint: Even if the transformer has better performance in cot setting than base setting,
one may argue that besides the difference expressiveness, cot setting also has a statisti-

7

Published as a conference paper at ICLR 2024

Hint Label:

Input:
CoT Label:

Input: 997 2 ^2 ^2 ^2 ^2 =

4 16 256 731 731

997 2 ^2 ^2 ^2 ^2 = 4 16 256 731

4 16 256 731

Figure 3: Iterated Squaring(IS). The vocabulary V ≜ {0, 1, . . . , T − 1,=, ˆ 2} with T = 1000. We randomly
generate input of format (r, p, ˆ 2, . . . , ˆ 2,=) with 1 ≤ r, p ≤ T − 1, p being a prime and random number
of ˆ2 tokens (at most m). The label is fr,p(n) ≡ (r2

n

) mod p. CoT and hints are (fr,p(i))
n
i=1. Though

our construction does not exactly satisfy the technical conditions of the hardness assumption, this problem is
difficult for transformers without CoT to learn, but can be perfectly expressed with CoT even if depth is only 1.

cal advantage over base, as cot provides more labels and thus more information about the
groundtruth f∗ to the model. This motivates us to design the following loss which provides
the chain of thought c(x) as the labels. Here for simplicity, we assume the length of c(x)
is equal to n. 5 Formally we define ℓhint(θ) ≜ 1

n Ex∼p

n
i=1 − ln pθ(ci(x) | x1, . . . , xi)).

Performance Evaluation. Since we train transformers using fresh sampled synthetic data each step,
the training accuracy/loss is just the same as validation accuracy/loss. For base and hint setting,
we evaluate the accuracy of the final answer directly. For cot setting, directly evaluating the final
answer is too easy because it only measures the ability of the transformer to correctly compute the
last step since CoT is given as inputs. Ideally, we should measure the answer output by transformers
after auto-regressively generating |c(x)| tokens. But for computational efficiency, we measure the
probability that transformers can predict all tokens in the given CoT correctly. Note this probability
is a lower bound of the ideal metric because there is a small possibility that transformers can answer
correctly with a wrong CoT. Nevertheless, even with this slightly more difficult evaluation metric,
transformers in cot setting still optimize much faster than without CoT.

Due to space limit, we defer the details of the training and each setting to Appendix A. Our experi-
mental results are presented in Figures 1 to 4.

Our Findings: Unsurprisingly, the accuracy in hint setting is always higher than base setting. Due
to the space limit, we postpone all results for base settings into Appendix A. For the problems hard
for parallel computation, i.e., permutation composition, iterated squaring, and circuit value problem,
we find that cot is always better than hintand base, and the improvement is huge especially when
depth is small. Our experiments suggest that turning on CoT drastically improves the expressiveness
of low-depth transformers on problems which are hard to be parallel computed, i.e., those inherently
serial problems.

5 RELATED WORKS

Despite the numerous empirical achievements, unanswered questions concerning the inner workings
of neural networks capable of algorithmic reasoning. The ability of self-attention to create low-
complexity circuits has been recognized (Edelman et al., 2022; Hahn, 2020; Merrill et al., 2021),
as well as its capacity to form declarative programs (Weiss et al., 2021), and Turing machines (De-
hghani et al., 2018; Giannou et al., 2023; Pérez et al., 2021). Moreover, it has been demonstrated that
interpretable symbolic computations can be drawn from trained models (Clark et al., 2019; Tenney
et al., 2019; Vig, 2019; Wang et al., 2022b).

Liu et al. (2022a) is a closely related work to ours, which studies the expressiveness of low-depth
transformers for semi-automata. Their setting corresponds to using only 1 step of CoT and our
contribution is to show that allowing more steps of CoT enables the transformers to solve more

5Note such alignment is in general impossible because the CoT c(x) can be even longer than x itself.
However, in our four settings, there exist meaningful ways to set CoT c(x) as hints for earlier tokens in x.

8

Published as a conference paper at ICLR 2024

Hint Label:

Input:

CoT

Input: T NA NA 1 F NA NA 2 AND 1 2 3 NOT 3 NA 4 =

T NA NA 1 F NA NA 2 AND T F F NOT F NA T T A

B

T NA NA … 3 NA 4 = T NA NA 1 … F NA T T

T NA NA 1 … F NA T T

A

A

B

Figure 4: Circuit Value Problem(CVP). Given a randomly generated circuit with m gates (sorted by topological
order), the vocabulary V = [m]∪{TRUE,FALSE,AND,OR,NOT,NA,=}. Each gate is represented by four
consecutive tokens, which are gate type, two input gate ids, and the current gate id. The output is the value of
the last gate m. CoT and hints also contain 4 tokens for each gate, which are gate type, two input gate values,
and the current gate value.

difficult problems than semi-automata, especially those inherently serial problems, like the circuit
value problem, which is P-complete.

Constant precision versus logarithmic precision: We note that most previous literature on the
expressiveness of transformers focuses on the setting of logarithmic precision, including (Merrill &
Sabharwal, 2023b; Merrill et al., 2022; 2021; Liu et al., 2022a), etc. One main reason as argued by
Merrill & Sabharwal (2023a) is that log precision allows the transformer to use uniform attention
over the rest tokens. However, recent advancements in LLMs showed that uniform attention might
not be necessary towards good performance, at least for natural language tasks. For example, one
of the most successful open-sourced LLM, LLAMA 2 (Touvron et al., 2023) takes the input of
a sequence of 4096 tokens and uses BF16 precision, which has 1 sign bit, 8 exponent bits and 7
mantissa bits (plus one extra leading bit). As a consequence, for example, BF16 cannot express any
floating-point number between 28 = 256 and 28 + 2 = 258, which makes LLAMA 2 impossible to
compute uniform attention over 257 elements.

A concurrent work Feng et al. (2023) also studies the benefit of CoT via the perspective of expres-
siveness, where they show with CoT, transformers can solve some specific P-complete problem.
Our result is stronger in the sense that we give a simple and clean construction for each problem
in P/poly. We also note the slight difference in the settings, while we mainly focus on constant-
precision transformers with O(log n) embedding size, they focus on O(log(n)) precision transform-
ers with bounded embedding size.

6 CONCLUSION

We study the capability of CoT for decoder-only transformers through the lens of expres-
siveness. We adopt the language of circuit complexity and define a new complexity class
CoT[T (n), d(n), s(n), e(n)] which corresponds to a problem class solvable by constant-depth,
constant-precision decoder-only transformers with O(T (n)) steps of CoT, O(d(n)) embedding size
and floating-point numbers with O(e(n)) bits of exponents and O(s(n)) bits of significand. Our
theory suggests that increasing the length of CoT can drastically make transformers more expres-
sive. We also empirically verify our theory in four arithmetic problems. We find that for those three
inherently serial problems, transformers can only express the groundtruth function by using CoT.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We thank Wei Zhan and Lijie Chen for providing references on circuit complexity and various
inspiring discussions. We thank Cyril Zhang and Bingbin Liu for helpful discussion on Khron-
Rhodes Decomposition Theorem. We thank Kaifeng Lyu for his helpful feedbacks.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in nc. pp. 1–5, 1986.

Ashok K Chandra, Steven Fortune, and Richard Lipton. Unbounded fan-in circuits and associative
functions. In Proceedings of the fifteenth annual ACM symposium on Theory of computing, pp.
52–60, 1983.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. arXiv preprint arXiv:2301.10743, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research, 24(240):1–113, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. arXiv preprint arXiv:2210.11416, 2022.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pp.
5793–5831. PMLR, 2022.

10

Published as a conference paper at ICLR 2024

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dim-
itris Papailiopoulos. Looped transformers as programmable computers. arXiv preprint
arXiv:2301.13196, 2023.

David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
computing surveys (CSUR), 23(1):5–48, 1991.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

William Hesse. Division is in uniform tc0. In International Colloquium on Automata, Languages,
and Programming, pp. 104–114. Springer, 2001.

IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–70, 2008. doi: 10.
1109/IEEESTD.2008.4610935.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems,
2022.

Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition theorem
for finite semigroups and machines. Transactions of the American Mathematical Society, 116:
450–464, 1965.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022a.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360–12370, 2022b.

Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with applications to
ppad-hardness and vdfs. In Advances in Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceed-
ings, Part III, pp. 632–651. Springer, 2020.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes
two to tango. arXiv preprint arXiv:2209.07686, 2022.

Oded Maler. On the krohn-rhodes cascaded decomposition theorem. In Time for Verification: Essays
in Memory of Amir Pnueli, pp. 260–278. Springer, 2010.

Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT research monograph no.
65). The MIT Press, 1971.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b.

11

Published as a conference paper at ICLR 2024

William Merrill, Yoav Goldberg, and Noah A Smith. On the power of saturated transformers: A
view from circuit complexity. arXiv preprint arXiv:2106.16213, 2021.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. arXiv preprint arXiv:1901.03429, 2019.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of
Machine Learning Research, 22(1):3463–3497, 2021.

Nicholas Pippenger and Michael J Fischer. Relations among complexity measures. Journal of the
ACM (JACM), 26(2):361–381, 1979.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto.
1996.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program
search with large language models. Nature, 2023. doi: 10.1038/s41586-023-06924-6.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Jesse Vig. Visualizing attention in transformer-based language representation models. arXiv preprint
arXiv:1904.02679, 2019.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022a.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. Advances in Neural
Information Processing Systems, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Confer-
ence on Machine Learning, pp. 11080–11090. PMLR, 2021.

12

Published as a conference paper at ICLR 2024

Christopher B Wilson. Relativized circuit complexity. Journal of Computer and System Sciences,
31(2):169–181, 1985.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Andrew Chi-Chih Yao. Circuits and local computation. pp. 186–196, 1989.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. arXiv preprint arXiv:2105.11115, 2021.

13

Published as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Notations and Preliminaries 2

3 Expressiveness Theory for Transformers with Chain of Thought(CoT) 3

3.1 Finite Precision Modeling . 3

3.2 CoT: Complexity Class for Constant-depth Transformers with CoT 4

3.3 Tighter Upper Bounds on Transformer Expressiveness 4

3.4 CoT Makes Transformers More Expressive . 5

4 CoT Empirically Improves Expressiveness of Low-Depth Transformers on Inherently
Serial Problems 7

5 Related Works 8

6 Conclusion 9

A Additional Experimental Results 16

B Additional Notations and Preliminaries 17

B.1 Circuit Complexity . 18

B.2 Transformer Layers . 18

B.3 Floating-point Numbers . 19

C Details on Finite-Precision Layers 20

D Preliminary of Automata and Krohn-Rhodes Decomposition Theorem 20

D.1 The Krohn-Rhodes Decomposition Theorem . 21

D.2 Counter-free Automata . 22

E Proofs for Expressiveness Upper Bounds (Section 3.3) 23

E.1 Proofs for Theorem E.1 . 23

E.2 Proofs for Theorem E.2 . 24

F Proofs for Expressiveness Lower Bounds (Section 3.4) 25

F.1 Proof of Theorem 3.3 . 25

F.2 Proof of Theorems 3.7 and 3.8 . 27

F.3 Proof of Theorem 3.9 . 30

F.4 Auxiliary Lemmas . 31

G Discussion on Variants in Transformer Architecture 32

G.1 Extension to Transformers with LayerNorm . 32

14

Published as a conference paper at ICLR 2024

G.2 Extension to Transformers with Multihead Attention 32

H Discussion on Non-uniformity 32

15

Published as a conference paper at ICLR 2024

A ADDITIONAL EXPERIMENTAL RESULTS

In this section present the experimental results for base setting which is omitted in the main paper
and the details of training and each task. We use the nanogpt6 codebase for language modeling.

Training Details. For all settings we use Adam with 10−5 learning rate, 0 weight decay, β1 = 0.9,
β2 = 0.95, and gradient clipping with threshold equal to 1.0. The total training budget is 106 steps
and we use a linear warmup in the first 2000 steps starting from 10−6. For each step, we use a fresh
sampled batch of size 64 from population distribution. We turn off dropout and use float16. We
vary the depth of the transformer for different settings while the embedding size and the number of
attention heads are fixed to be 512 and 8 respectively.

Below we present the setting and the experimental results of each problem respectively.

Modular Addition (Cp). Given any positive integer p, the vocabulary of modular addition problem
is {0, 1, . . . , p − 1,=}. We generate x = (x1, . . . , xn) in the following way: for each i ∈ [n −
1], we independently sample xi from {0, 1, . . . , p − 1} and set xn = ‘=’. The label is f∗(x) =n−1

i=1 xi mod p and CoT c(x) is (
k

i=1 xi mod p)n−1
k=1 . Unsurprisingly, this task is an easy task

for transformers because attention can easily express the average function across different positions,
and so is the sum function. Then the feedforward layers can compute the modulus of the sum and
m. We note that the high training accuracy here is not contradictory with our Theorem 3.1, because
our sequence length is not long enough and float16 is like log-precision. This intuitive argument is
elegantly extended to all solvable groups by leveraging Khron-Rhodes decomposition theorem by
Liu et al. (2022a).

Permutation Composition (Sp). Given any p ∈ N+, the vocabulary of permutation composition
problem is {1, . . . , p, (,),=}. We pick n = (p + 2)m + 1 and generate x = (x1, . . . , xn) in the
following way: for each i ∈ [m], we set x(p+2)(i−1)+1 as ’(’, x(p+2)i as ’)’ and independently
sample a random permutation over [p], σi = (x(p+2)(i−1)+2, . . . , x(p+2)(i−1)+p+1). We set xn to
be ’=’. Different from other settings which only have the label at one position, we have p labels for
this setting, which is the composition of σ1 ◦ . . . ◦σn. The CoT c(x) is the partial composition from
σ1 to σn.

As mentioned in Section 3, unless TC0 = NC1, composition of Sp cannot be computed by TC0 for
any p ≥ 5, since composition of Sp implies the wording problem of Sp, which is NC1-complete
under AC0 reductions. Since all constant-depth poly-embedding-size transformers can be simulated
by TC0 circuits (Theorem 3.2), shallow transformers are not able to solve the composition problem
of Sp for p ≥ 5. Our experimental results in Figure 1 matches this theoretic prediction very well.

Iterated Squaring (IS). Iterated squaring refers to the following problem: given integers r, n, p, we
define the iterated squaring function fr,p(n) ≜ r2

n

mod p. It is often used as hardness assump-
tions in cryptography (Rivest et al., 1996; Lombardi & Vaikuntanathan, 2020) that iterated squaring
cannot be solved in n− o(n) time even with polynomial parallel processors under certain technical
conditions (e.g., p is the product of two primes of a certain magnitude and there is some requirement
on the order of r as an element of the multiplicative group of integers modulo p). In other words,
people conjecture there is no faster parallel algorithm than doing squaring for n times.

Circuit Value Problem (CVP). Circuit value problem is the computational problem of computing
the output of a given Boolean circuit on a given input. It is complete for P under AC0-reductions.
This means if one can solve CVP with constant-depth transformers (or any TC0 circuits), then any
problem in P becomes solvable by TC0, which is widely believed to be impossible.

6https://github.com/karpathy/nanoGPT

16

https://github.com/karpathy/nanoGPT

Published as a conference paper at ICLR 2024

Hint Label:
Input:

1 0 0 1 1 0 0
1 1 0 1 0 1 = CoT Label:

Input:
1 0 0 1 1 0 0

1 1 0 1 0 1 = 1 0 0 1 1 0 0

Figure 5: Results of Modular Addition C2.

Figure 6: Results of base on Permutation Composition, Iterated Squaring, and Circuit Value Problem.

Figure 7: Results of Modular Addition base on C2 and C7.

We can observe that the accuracy of base setting is also lower than that of hint setting.

B ADDITIONAL NOTATIONS AND PRELIMINARIES

We use N and R to denote the set of natural numbers and real numbers respectively. For any n ∈ N+,
we define [n] ≜ {1, 2, . . . , n}. We define relu(x) ≜ max(x, 0). For vector x, we use xa:b to denote
the vector containing coordinates of x from position a to position b. For matrix M , we define
Ma1:b1,a2:b2 to denote the submatrix by selecting rows from a1 to b1, columns from a2 to b2. We
also use a1 : to denote the subset of indices from a1 to the end, : b1 to denote the subset of indices
from the beginning (1) to b1 and : to denote all indices. Given two non-negative functions f, g, we
say f(n) = O(g(n)) (resp. f(n) = Ω(g(n))) iff there exists C > 0, such that for all n ≥ 0,

17

Published as a conference paper at ICLR 2024

f(n) ≤ Cg(n) (resp. f(n) ≥ Cg(n)). We use poly(n) ≜ {T : N → N | ∃k > 0, T (n) = O(nk)}
to denote the set of functions with at most polynomial growth rate.

Given a string x or a set x, we use |x| to denote the size of x. We use φ(x) =
|x|

i=1 2
|x|−ixi to

denote the value of binary number represented by binary string x. We use bink(x) to denote the
usual binary encoding of natural number x using k binary bits in the sense that φ(bink(x)) = x and
sbink(x) to denote the signed binary encoding, which is 2bink(x) − (1, . . . , 1). For any n ∈ N+,
we define softmax : Rn → Rn as (softmax(x))i = exp(xi)/

n
i=1 exp(xi) for any x ∈ Rn and

i ∈ [n]. We use ⊙ to denote the element-wise product of two vectors. We use ab or (a, b) to denote
the concatenation of two vectors a and b.

B.1 CIRCUIT COMPLEXITY

Problem. In this paper we consider the following notion of problems: given a sequence of input
tokens, output a token as the answer. Mathematically, given a vocabulary V , we call a mapping
L : ∪k∈N+Vk → V a problem. If the correct answer is always 0 or 1, we call L a decision problem.
In circuit complexity, such L is also called a language.

Though the standard definition of circuit complexity only deals with binary strings, given any finite
vocabulary V , we can always replace each token in V by its binary representation, and the length of
the input only blows up by a constant factor. Therefore we can extend existing complexity classes
listed to arbitrary finite vocabulary naturally.

P. The class P contains all problems solvable by a deterministic Turing machine in polynomial time.

Boolean Circuit. A Boolean circuit over n variables is a directed acyclic graph where nodes are
AND, OR, or NOT gates. The gates with in-degree 0 are the inputs, which are assigned one of the
n boolean variables. Given the inputs, the circuit computes the value of each non-input gate based
on the value of the incoming gates and outputs a number at the output gate.

SIZE[T (n)]. Given any function T , SIZE[T (n)] denotes the class of problems that can be solved
by boolean circuits with O(T (n)) gates when the input length is n. Formally, a problem L is in
SIZE[T (n)] if and only if there exists a sequence of circuits {Cn} such that each circuit Cn has n
inputs and 1 output, the size of each circuit Cn is at most O(T (n)), and for all strings x, x is in L if
and only if C|x|(x) = 1.

P/poly. We define the class P/poly as the set of problems that can be solved by a family of
polynomial-size circuits, that is, P/poly ≜ ∪k∈N+SIZE[nk]. Since any Turing Machine with time
bound T (n) can be simulated by a circuit of size T (n) log T (n) (Pippenger & Fischer, 1979), we
know that P ⊆ P/poly.

NC,AC, and TC. The class NC contains all problems that can be solved in a small parallel
runtime—polylogarithmic in input length—and with a polynomial number of processors. For-
mally, for a positive integer k, a problem L is in NCk if and only if there exists a polynomial
p(n) and a family of circuits {Cn} such that each circuit Cn has n inputs and 1 output, the fan-
in of the gates is at most 2, the size of each circuit Cn is at most p(n), the depth of each circuit
Cn is O((log n)k), and for all strings x, x is in if and only if C|x|(x) = 1. Finally we define
NC = ∪k∈NNC

k. The class ACk is defined almost the same as NCk for each k ∈ N+, except the
AND and OR gates in ACk allow unbounded fan-in. The class TCk allows a more powerful type of
gate, MAJORITY, compared to ACk. MAJORITY gate can have unbounded fan-in and is defined

as MAJORITY (x1, . . . , xn) = ⌊ 1
2 +

(
n

i=1 xi)−1/2

n ⌋.

It holds that NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 for all natural number i. Therefore NC = AC = TC,
which all stands for the problem class that can be solved in polylogarithmic time with polynomial
parallel processors.

B.2 TRANSFORMER LAYERS

Throughout this paper, we use d to denote the embedding size of a transformer.

18

Published as a conference paper at ICLR 2024

Self-Attention Mechanism: Given attention parameter θATTN = (WQ,WK ,WV ,WO) ∈ Rd×d ×
Rd×d × Rd×d × Rd×d, we define the Attention layer with mask for decoder-only transformer in
Algorithm 3. Note allowing multi-head attention will not change the class of problems solvable by
constant layer decoder-only transformers as we can simulate 1 multi-head attention layer with any
constantly many heads with multiple single-head attention layers. Thus for simplicity of presenta-
tion, we do not include multi-head attention in the definition below.

Algorithm 2 Causal Self-Attention, ATTN

Input: Parameter θATTN = (WQ,WK ,WV ,WO), Input embedding h = (h1, . . . , hn) ∈ Rnd.
Output: Output embedding h′ = (h′

1, . . . , h
′
n) ≜ ATTNθATTN(h1, . . . , hn).

1: qi ≜ WQhi, ki ≜ WKhi, vi ≜ WV hi, ∀i ∈ [n]

2: si ≜ softmax(〈qi, k1〉 , . . . , 〈qi, ki〉)(0, . . . , 0).
3: h′

i ≜ WO

n
j=1(si)jvj .

Feed-Forward Network: Given the parameter of fully-connected feedforward network layer θFF =
(W1, b1,W2, b2) ∈ Rd×d × Rd × Rd×d × Rd, we define the fully-connected feedforward layer
FFθFF : Rd → Rd as FFθFF(h) ≜ W2relu(W1h+ b1) + b2.

Token Embedding: Given the parameter of token embedding layer θTE ∈ Rd×|V|, we define the
token embedding layer by viewing θTE as a mapping from V to Rd, that is, for all x ∈ V , the token
embedding is θTE(x).

Position Encoding: Given the parameter of position encoding layer θPE ∈ Rd×nmax , we define the
token embedding layer by viewing θPE as a mapping from [nmax] to Rd that is, for all n ∈ [nmax],
the position embedding is as θPE(n).

Output Layer: Given the parameter of output layer θOUTPUT ∈ R|V|×d, we define the output layer
OUTPUTθOUTPUT

: Rd → V as OUTPUTθOUTPUT
(h) ≜ softmax(θOUTPUTh) for all h ∈ Rd.

B.3 FLOATING-POINT NUMBERS

Below we give a formal definition the floating-point number and rounding operation. Recall we
use φ(a) =

k
i=1 2

k−iai to denote the value of binary number represented by a ∈ {0, 1}k for any
k ∈ N+.
Definition B.1 (Floating-point Representation). Let e be the number of bits for exponents and s be
the number of bits for significand. A (e + 2s + 1)-bit binary string a = (a1, a2, . . . ae+2s+1) ∈
{0, 1}e+2s+1 is a floating-point binary representation of number φe,s(a) ≜ sign(a) · 2exponent(a) ·
significand(a) with e-bit exponent and 2s-precision, where the sign is sign(a) ≜ 2a1−1, the signif-
icand is significand(a) ≜ 2−sφ(a2:2s+1), and the exponent is exponent(a) ≜ φ(a2s+2:2s+e+1) −
2max(0,e−1). We further use Fe,s to denote all the floating numbers representable using e-bit ex-
ponent and 2s-bit precision (significand), that is, Fe,s ≜ {S · 2−s+E | −22s + 1 ≤ S ≤
22s − 1,−2max(0,e−1) ≤ E ≤ 2e − 1− 2max(0,e−1), E, S ∈ N}. We define Be,s ≜ maxFe,s.

We also use ψe,s : Fe,s → {0, 1}e+2s+1 to denote the inverse of φe,s. We note that when the number
of exponent bits is larger than 0, there are multiple ways to represent a number in Fe,s by a binary
string and we assign ψe,s(x) as the string a ∈ {0, 1}e+2s+1 with the smallest |exponent(a)|, which
is unique for all non-zero numbers. For 0 we additionally set sign(ψe,s(0)) = 1.
Definition B.2 (Correct Rounding). For any x ∈ R and any closed subset of R containing 0, F, we
define correct rounding round(x,F) as the closest number to x in F. We break the tie by picking the
one with a smaller absolute value.

In particular, we denote the rounding operation with e-bit exponent, 2s-bit precision by
rounde,s(·) ≜ round(·,Fe,s), which is also denoted by [·]e,s for convenience. We extend the defini-
tion of round and rounde,s to vector inputs by rounding coordinate-wisely.

Our notion of floating-point number simplifies the IEEE 754 Standard for Floating-point Arith-
metic (IEEE, 2008) by removing ∞ and −∞. When overflow happens, we always round the out-

19

Published as a conference paper at ICLR 2024

put to the (negative) largest representable number in Fe,s. For unary functions like exp(·) and
binary functions including addition, subtraction, multiplication, and division, we simply define their
rounded version by rounding their outputs. Whenever division by 0 happens, we treat it as the model
outputs the wrong result.

C DETAILS ON FINITE-PRECISION LAYERS

In this section, we give the definition of the finite-precision version of different transformer layers.
Recall that given s ∈ N+, the numbers representable using 2s-bit significand and e-bit exponent is
Fe,s ≜ {S ·2−s+E | −22s+1 ≤ S ≤ 22s−1,−2max(0,e−1) ≤ E ≤ 2e−1−2max(0,e−1), E, S ∈ N}.

Self-Attention Mechanism: Given attention parameter θATTN = (WQ,WK ,WV ,WO) ∈ Fd×d
e,s ×

Fd×d
e,s × Fd×d

e,s × Fd×d
e,s , we define the self-attention layer with causal mask for decoder-only trans-

former in Algorithm 3.

Algorithm 3 Finite-Precision Causal Self-Attention, ATTN

Input: Integer s ∈ N+, e ∈ N, Parameter θATTN = (WQ,WK ,WV ,WO), Input embedding h =
(h1, . . . , hn) ∈ Fnd

e,s.
Output: Output embedding h′ = (h′

1, . . . , h
′
n) ≜ ATTNθATTN(h1, . . . , hn).

1: qi ≜ WQ ×e,s hi, ki ≜ WK ×e,s hi, vi ≜ WV ×e,s hi, ∀i ∈ [n]

2: si ≜ softmaxe,s(〈qi, k1〉e,s , . . . , 〈qi, ki〉e,s)(0, . . . , 0). ⊲ n− i’s 0; Mask for Causal
Attention;

3: h′
i ≜ WO ×e,s sume,s([v1, . . . , vn]×e,s si).

Feed-Forward Network: Given s ∈ N+, e ∈ N, and the parameter of fully-connected feedforward
network layer θFF = (W1, b1,W2, b2) ∈ Fd×d

e,s × Fd
e,s × Fd×d

e,s × Fd
e,s, we define the fully-connected

feedforward layer FFθFF : Fd
e,s → Fd

e,s as FFθFF(h) ≜

W2 ×e,s relu([W1 ×e,s h+ b1]e,s) + b2

e,s
.

Token Embedding: Given s ∈ N+, e ∈ N, and the parameter of token embedding layer θTE ∈
Fd×|V|
e,s , we define the token embedding layer by viewing θTE as a mapping from V to Rd, that is, for

all x ∈ V , the token embedding is θTE(x).

Position Encoding: Given s ∈ N+, e ∈ N, and the parameter of position encoding layer θPE ∈
Fd×nmax
e,s , we define the token embedding layer by viewing θPE as a mapping from [nmax] to Rd that

is, for all n ∈ [nmax], the position embedding is as θPE(n).

Output Layer: Given s ∈ N+, e ∈ N, and the parameter of output layer θOUTPUT ∈
F|V|×d
e,s , we define the output layer OUTPUTθOUTPUT

: Fd
e,s → V as OUTPUTθOUTPUT

(h) ≜
softmaxe,s(θOUTPUT ×e,s h) for all h ∈ Fd

e,s.

Finally, we define finite-precision decoder-only transformers below.

D PRELIMINARY OF AUTOMATA AND KROHN-RHODES DECOMPOSITION
THEOREM

In this section we recap the basic notations and definitions for automata theory and Krohn-Rhodes
Decomposition Theorem (Krohn & Rhodes, 1965), following the notation and presentation of Maler
(2010).

Definition D.1 (Automaton). A deterministic automaton is triple A = (Σ, Q, δ) where Σ is a finite
set of symbols called the input alphabet, Q is a finite set of states and δ : Q×Σ → Q is the transition
function.

The transition function can be lifted naturally to input sequences, by letting δ(q, wσ) ≜
δ(δ(q, w),σ) for all w ∈ Σ∗ recursively.

20

Published as a conference paper at ICLR 2024

Algorithm 4 Finite-precision Decoder-only Transformer, TFθ and pθ

Input: Integer s ∈ N+, e ∈ N. Transformer parameter θ = (θPE, θTE, θOUTPUT, {θ(l)ATTN, θ
(l)
FF}

L−1
l=0)

with 2s-bit precision and e-bit exponent. Input tokens x = (x1, . . . , xn) ∈ Vn.
Output: Output distribution pθ(· | x1, . . . , xi) for all i ∈ [n] and output token TFθ(x).

1: h
(0)
i ≜ [TE(xi) + PE(i)]e,s , ∀i ∈ [n]

2: for l = 0, . . . , L− 1 do
3: (h

(l+0.5)
1 , . . . , h

(l+0.5)
n) ≜

(h

(l)
1 , . . . , h

(l)
n) + ATTN

θ
(l)
ATTN

(h
(l)
1 , . . . , h

(l)
n)

e,s

4: h
(l+1)
i ≜

h
(l+0.5)
i + FF

θ
(l)
FF

(h
(l+0.5)
i)

e,s
, ∀i ∈ [n]

5: end for
6: pθ(· | x1, . . . , xi) ≜

OUTPUTθOUTPUT

(h
(L)
i)

e,s
, ∀i ∈ [n]

7: TFθ(x) ≜ argmaxx pθ(x | x1, . . . , xn).

An automaton can be made an acceptor by choosing an initial state q0 ∈ Q and a set of accepting
states F ⊆ Q. As such it accepts/recognizes a set of sequences, also known as a language, defined
as L(A, q0, F) = {w ∈ Σ∗ : δ(q0, w) ∈ F}. Kleene’s Theorem states that the class of languages
recognizable by finite automata coincides with the regular languages.
Definition D.2 (Automaton Homomorphism). A surjection φ : Q → Q0 is an automaton homo-
morphism from A = (Σ, Q, δ) to A0 = (Σ, Q0, δ0) if for every q ∈ Q,σ ∈ Σ,φ(δ(q,σ)) =
δ0(φ(q),σ). In such a case we say that A0 is homomorphic to A and denote it by A0 ≤φ A. When
φ is a bijection, A and A0 are said to be isomorphic.

The conceptual significance of Automaton Homomorphism is that, if we can simulate any A and
A0 ≤φ A, we can ‘almost’ simulate A0 as well, in the sense of following lemma:
Lemma D.1. For any two automata A = (Σ, Q, δ),A0 = (Σ, Q0, δ0) satisfying that A0 ≤φ A
for some function φ, for any F0 ⊆ Q, q0 ∈ Q, φ(q) = q0, it holds that L(A0, q0, F0) =
L(A, q,φ−1(F0)).

Proof of Lemma D.1. We claim for any w ∈ Σ∗, it holds that φ(δ(q, w)) = δ(φ(q), w). This claim
holds by definition of automaton homomorphism for all |w| ≤ 1. suppose the claim already holds
for all w no longer than n for some n, for any w′ = wσ with |w| = n and σ ∈ Σ, it holds that
φ(δ(q, w′)) = φ(δ(δ(q, w),σ)) = δ(φ(δ(q, w)),σ) = δ(δ(φ(q), w),σ) = δ(φ(q), w′). Therefore
δ0(q0, w) ∈ F0 ⇐⇒ δ0(φ(q), w) ∈ F0 ⇐⇒ φ(δ(q, w)) ∈ F0 ⇐⇒ δ(q, w) ∈ φ−1(F0). Thus
we conclude that L(A0, q0, F0) = {w ∈ Σ∗ | δ(q0, w) ∈ F0} = {w ∈ Σ∗ | δ(q, w) ∈ φ−1(F0)} =
L(A, q,φ−1(F0)).

Definition D.3 (Semigroups, Monoids and Groups). A Semigroup is a pair (S, ·) where S is a set
and · is a binary associative operation (“multiplication”) from S × S to S. A Monoid (S, ·, 1) is a
semigroup admitting an identity element 1 such that s · 1 = 1 · · · = s for every s ∈ S. A group is a
monoid such that for every s ∈ S there exists an element s−1 ∈ S (an inverse) such that s · s−1 = 1.
Definition D.4 (Semigroup Homomorphisms). A surjective function φ : S → S0 is a semigroup
homomorphism from (S, ·) to (S0, ∗) if for every s1, s2 ∈ S,φ(s1 · s2) = φ(s1) ∗ φ(s2). In such a
case we say that S0 is homomorphic to S and denote it by S0 ≤φ S. Two mutually homomorphic
semigroups are said to be isomorphic.
Definition D.5 (Transformation Semigroup). The transformation semigroup of an automata A =
(Σ, Q, δ) is the semigroup generated by {δ(·,σ) : Q → Q | σ ∈ Σ}.

D.1 THE KROHN-RHODES DECOMPOSITION THEOREM

Below we give the definition of the cascade product of two automata, which is a central concept
used in Krohn-Rhodes Decomposition Theorem for automata.
Definition D.6 (Cascade Product). Let B1 = (Σ, Q1, δ1) and B2 = (Q1 × Σ, Q2, δ2) be two
automata. The cascade product B1 ◦ B2 is the automaton C = (Σ, Q1 ×Q2, δ) where

δ((q1, q2),σ) ≜ (δ1(q1,σ), δ2(q2, (q1,σ))).

21

Published as a conference paper at ICLR 2024

The cascade product of more than two automata is defined as B1 ◦B2 ◦ · · · ◦Bk = (· · · ((B1 ◦B2) ◦
B3 · · ·) ◦ Bk.
Definition D.7 (Permutation-Reset Automata). A automaton A = (Σ, Q, δ) is a permutation-reset
automaton if for every letter σ ∈ Σ, σ is either a permutation or reset. If the only permutations are
identities, we call it a reset automaton.
Theorem D.2 (Krohn-Rhodes; cf. Maler (2010)). For every automaton A there exists a cascade
C = B1 ◦ B2 ◦ · · · ◦ Bk such that:

1. Each Bi is a permutation-reset automaton;

2. There is a homomorphism φ from C to A;

3. Any permutation group in some Bi is homomorphic to a subgroup of the transformation
semigroup of A.

The pair (C,φ) is called a cascaded decomposition of A.

D.2 COUNTER-FREE AUTOMATA

Next we introduce a key concept used in the proof of Theorem E.1 (and thus Theorem 3.1) – Counter-
free Automaton.
Definition D.8 (Counter-free Automaton, (McNaughton & Papert, 1971)). An automaton is counter-
free if no word w ∈ Σ∗ induces a permutation other than identity on any subset of Q.

A subclass of the regular languages is the class of star-free sets defined as:
Definition D.9 (Star-Free regular languages). The class of star-free regular languages over Σ is the
smallest class containing Σ∗ and the sets of the form {σ} where σ ∈ σ ∪ {}, which is closed under
finitely many applications of concatenation and Boolean operations including union, intersection,
and complementation.

It is well-known that languages recognized by counter-free automata have the following equivalent
characterizations.
Theorem D.3 (McNaughton & Papert (1971)). Suppose L is a regular language not containing the
empty string. Then the following are equivalent:

1. L is star-free;

2. L is accepted by a counter-free automata.

3. L is non-counting, i.e., there is an n ∈ N so that for all x, y, and z and all m ≥ n,
xymz ∈ L ⇐⇒ xym+1z ∈ L.

Counter-free property of an automaton can also be characterized via its transformation semigroup
by Lemma D.4, whose proof is straightforward and skipped.
Lemma D.4. An automaton is counter-free if and only if the transformation semigroup of the au-
tomaton is group-free, i.e., it has no non-trivial subgroups. A semigroup (S, ·) is group-free if and
only if it is aperiodic, i.e., for all s ∈ S, there exists k ∈ N, sk = sk+1.

Thus Theorem D.5 holds as a corollary of Theorem D.2.
Theorem D.5 (Corollary of Theorem D.2). For every counter-free automaton A there exists a cas-
cade C = B1 ◦ B2 ◦ · · · ◦ Bk such that each Bi is a reset automaton and there is a homomorphism φ
from C to A.

Using Theorem D.5 the following theorem connects the counter-free automata to constant-depth
poly-size circuits with unbounded fan-in. The high-level proof idea is that any reset automaton can
be simulated using constantly many depth and any counter-free automaton can be decomposed into
the cascade product of a finite number of reset automaton.
Theorem D.6. [Theorem 2.6, Chandra et al. (1983)] Suppose A = (Σ, Q, δ) is an counter-free
automaton. Then there is a circuit of size O(n3) with unbounded fan-in and constant depth that
simulates δ(q, w) for any q ∈ Q and w ∈ Σ∗ satisfying |w| = n, where O(·) hides constants
depending on the automaton.

22

Published as a conference paper at ICLR 2024

E PROOFS FOR EXPRESSIVENESS UPPER BOUNDS (SECTION 3.3)

The main technical theorems we will prove in this section are Theorems E.1 and E.2. Their proofs
can be found in Appendices E.1 and E.2 respectively.

Recall ψe,s : Fe,s → {0, 1}e+2s+1 is the binary representation of floating point with e-bit exponent
and 2s-bit precision.

Theorem E.1. For any fixed e ∈ N, s ∈ N+, sume,s : (Fe,s)
n → Fe,s has AC0 circuits.

In detail, there is a family of AC0 circuits {Cn} such that for all x1, . . . , xn ∈ Fe,s, it holds that

Cn(ψe,s(x1) . . . ψe,s(xn)) = ψe,s(sume,s(x1, . . . , xn)) (2)

Theorem E.2. For s(n) = O(poly(n)), sum0,s(n) : (F0,s(n))
n → F0,s(n) has TC0 circuits.

In detail, there is a family of TC0 circuits {Cn} such that for all x1, . . . , xn ∈ F0,s(n), it holds that

Cn(ψ0,s(n)(x1) . . . ψ0,s(n)(xn)) = ψ0,s(n)(sume,s(x1, . . . , xn)) (3)

With Theorems E.1 and E.2 ready, Theorems 3.1 and 3.2 are standard (e.g., see proof of Theorem 4
in Liu et al. (2022a)) and thus are omitted.

E.1 PROOFS FOR THEOREM E.1

Definition E.1 (Total Order). A total order ≤ on some set X is a binary relationship satisfying that
for all a, b, c ∈ X:

1. a ≤ a (reflexive)

2. a ≤ b, b ≤ c =⇒ a ≤ c (transitive)

3. a ≤ b, b ≤ a =⇒ a = b (antisymmetric)

4. a ≤ b or b ≤ a. (total)
Definition E.2 (Ordered Automaton). We say an automaton A = (Σ, Q, δ) is ordered if and only if
there exists a total order ≤ on Q and for all σ ∈ Σ, δ(·,σ) preserves the order, that is,

∀q, q′ ∈ Q, q ≥ q′ =⇒ δ(q,σ) ≥ δ(q′,σ).

Theorem E.3. All ordered automata are counter-free. Languages recognizable by any ordered
automata belong to AC0.

Proof of Theorem E.3. To show an ordered automaton A = (Σ, Q, δ) is counter-free, it suffices to
its transformation semigroup is group-free, or aperiodic. We first recall the definition of aperiodic
semigroups Lemma D.4. Let πw : Q → Q,πw(q) ≜ δ(q, w) be the transformation induced by word
w ∈ Σ∗. Transformation semigroup of A is aperiodic iff for any w ∈ Σ∗, there exists k ∈ N, such
that (πw)

k = (πw)
k+1.

Now We claim for any q ∈ Q, there is k ∈ N, such that (πw)
k(q) = (πw)

k+1(q). Since Q is
finite, this implies that there exists k ∈ N, such that (πw)

k = (πw)
k+1 and thus the transformation

semigroup of A is aperiodic. First, note that A is ordered, we know πσ is order-preserving for all
σ ∈ Σ. Let w = w1 · · ·wn where |w| = n, we have πw = πw1 ◦ · · · ◦ πwn is also order-preserving
and thus for all q ≥ q′ ∈ Q, πw(q) ≥ πw(q

′). Then we proceed by three cases for each q ∈ Q:

1. πw(q) = q. In this case, it suffices to take k = 0;

2. πw(q) ≥ q. Since πw is order-preserving, we know for any k ∈ N, (πw)
k+1(q) ≥

(πw)
k(q). Since Q is finite, there must exist some k ∈ N such that (πw)

k+1(q) = (πw)
k.

3. πw(q) ≤ q. Same as the case of πw(q) ≥ q.

Since ≥ is a total order, at least one of the three cases happens. This concludes the proof.

The second claim follows directly from Theorem D.3.

23

Published as a conference paper at ICLR 2024

For any e, s ∈ N, iterated addition on floating point numbers with e-bit exponent and s-bit signifi-
cand Fe,s can be viewed Ae,s = (Fe,s,Fe,s, δ+).

Theorem E.4. Automaton Ae,s = (Fe,s,Fe,s, δ+) is ordered, where δ+(x, y) ≜ [x+ y]e,s for any
x, y ∈ Fe,s.

Proof of Theorem E.4. The total order we use for Fe,s as the state space of automaton A co-
incides with the usual order ≤ on R. Recall the rounding operation is defined as [x]e,s ∈
argminx′∈Fe,s|x−x′|, which means rounding operation is order preserving, that is, for any x ≥
x′ ∈ Fe,s, [x]e,s ≥ [x′]e,s. Thus for any x, x′, y ∈ Fe,s with x ≤ x′, it holds that δ+(x, y) =

[x+ y]e,s ≥ [x′ + y]e,s = δ+(x
′, y). Thus Ae,s is ordered.

The following theorem Theorem E.1 is a direct consequence of Theorem E.4.

E.2 PROOFS FOR THEOREM E.2

We first claim that the following algorithm Algorithm 5 correctly computes sum0,s(n) over n num-
bers in F0,s(n).

Lemma E.5. Algorithm 5 outputs sum0,s(n)(x1, . . . , xn) for all n ∈ N+ and x1, . . . , xn ∈ F0,s(n).

Proof of Lemma E.5. Note that y−2 = 0, [y−1+y0]0,s(n) = sign(x1)·Bs(n), and [sign(x1)·Bs(n)+
y1]0,s(n) = x1, thus we conclude sum0,s(n)(x1, . . . , xn) = sum0,s(n)(y−2, y−1, y0, y1, . . . , yn).
Without loss of generality, we can assume that x1 > 0. Therefore S−2 = 0, S−1 = Bs(n), and
S0 = 2Bs(n), which further implies that L−2 ≤ 0 and U−2 ≥ 2Bs(n). This ensures i∗ is always
well-defined. For convenience we use Hi to denote sum0,s(n)(y−2, y−1, y0, y1, . . . , yi−1) in the rest
of this proof.

Now we claim either Si∗ = Li∗ or Si∗ = Ui∗ . By definition of i∗, if neither of these two equalities
happen, we have that i∗ ≤ n − 1, Ui∗ = Ui∗+1, and Li∗ = Li∗+1, which contradicts with the
maximality of i∗ since Ui∗+1 − Li∗+1 = Ui∗ − Li∗ ≥ 2Bs(n). Without loss of generality, we
assume Si∗ = Li∗ and the analysis for the other case is almost the same. Now we claim that for all
i > i∗, no negative overflow happens at position i, that is, Hi + yi ≥ −Bs(n).

We will prove this claim for two cases respectively depending on whether there exists some i∗ <
j < i such that sum0,s(n)(y−2, y−1, y0, y1, . . . , yj) = Bs(n). The first case is such j does not exist.
Then neither positive or negative overflow happens through i∗ to i, and thus

Hi−1 + yi = Hi∗ + (Si − Si∗) ≥ Hi∗ ≥ −Bs(n). (4)

If such j exists, we let j∗ to be the maximum of such j. Then neither positive or negative overflow
happens through j∗ to i. Due to the optimality of i∗, we know that for all i, j ≥ i∗, |Si − Sj | <
2Bs(n) <. Thus

Hi−1 + yi = Hj∗ + (Si − Sj∗) ≥ Bs(n) − 2Bs(n) ≥ −Bs(n). (5)

Now we claim Hk∗ = Bs(n). Because there is no negative overflow between i∗ and k∗, we have
that Hk∗ −Hi∗ ≥ Sk∗ − Si∗ ≥ 2Bs(n) and the fist inequality is only strict when positive overflow
happens at some i∗ ≤ j ≤ k∗. If there is no such j, then Bs(n) ≥ Hk∗ ≥ Hi∗ + 2Bs(n) ≥ Bs(n)

and thus Hk∗ = Bs(n). Otherwise such j exists and j∗ be the maximum of such j. Then Hk∗ ≥
Hj∗ +(Sk∗ −Sj∗) ≥ Bs(n)+(Sk∗ −Sj∗) ≥ Bs(n), where the last inequality is due to the optimality
of k∗. Thus in both cases we conclude that Hk∗ = Bs(n).

Finally we will show there is neither negative or positive overflow from k∗ + 1 to n and thus Hn =
Hk∗ + Sn − Sk∗ , which would justify the correctness of the algorithm. We have already shown
there is no negative overflow. Suppose there is a positive overflow at some j > k∗ in the sense
that Hj−1 + yj ≥ Bs(n) and we let j∗ be the first positive overflow after k∗. By definition of j∗,
there is neither positive and negative overflow between k∗ + 1 and j∗ and thus Hj∗−1 + yj∗ =
Hk∗ +(Sj∗ −Sk∗) ≤ Hk∗ = Bs(n), which is contradictory to the assumption that there is a positive
overflow at j∗. This concludes the proof.

24

Published as a conference paper at ICLR 2024

Algorithm 5 AC0 algorithm for iterative addition for poly-precision floating point numbers

Input: Integer n ∈ N+, s(n) = O(poly(n)). Floating numbers x1, . . . , xn ∈ F0,s(n).
Output: ans = sum0,s(n)(x1, . . . , xn) ∈ F0,s(n).

1: y−2 ← 0, y−1, y0 ← sign(x1) ·Bs(n), y1 ← x1 − sign(x1) ·Bs(n), yi ← xi, ∀i ∈ {2, . . . , n};
2: Si ←

i
j=0 yj , ∀i ∈ {−2, . . . , n};

3: Ui ← maxi≤j≤n Sj , Li ← mini≤j≤n Sj , ∀i ∈ {−2, . . . , n};
4: i∗ ← max{−2 ≤ i ≤ n | Ui − Li ≥ 2Bs(n)};
5: if Si∗ = Ui∗ then
6: k∗ ← max{i∗ ≤ k ≤ n | Sk = Li∗};
7: O ← −Bs(n);
8: else
9: k∗ ← max{i∗ ≤ k ≤ n | Sk = Ui∗};

10: O ← Bs(n);
11: end if
12: ans ← O + Sn − Sk∗ .

Proof of Theorem 3.2. It suffices to show that Algorithm 5 can be implemented by a family of AC0

circuits since Lemma E.5 guarantees the correctness of Algorithm 5. We can treat all the fixed-point
floating numbers in the Algorithm 5 as integers with a suitable rescaling, which is 2s(n). Since both
sorting and adding n binary integers with polynomial bits have AC0 circuits, each line in Algorithm 5
can be implemented by an AC0 circuits (for all indexes i simultaneously if there is any).

F PROOFS FOR EXPRESSIVENESS LOWER BOUNDS (SECTION 3.4)

We first introduce some notations. Since in the construction of the lower bounds we are only using
fixed-point numbers, we will use the shorthand Fs ≜ F0,s = {c · k · 2−s | c ∈ {−1, 1}, 0 ≤
k ≤ 22s − 1, k ∈ N} and rounding operation [·]s ≜ [·]0,s. We use 1s to denote all-one vectors of
length s. Similarly we define 〈·, ·〉s, ×s, and softmaxs. We recall that for any s ∈ N+ and integer
0 ≤ x ≤ 2s − 1, we use bins(x) ∈ {0, 1}s to denote the usual binary encoding of integer x using s
binary bits in the sense that x =

s
i=1 2

i(bins(x))i and sbins(x) ∈ {−1, 1}s to denote the signed
binary encoding, which is 2bins(x)− (1, . . . , 1).

Recall Bs = maxFs = 2s − 2−s.

Lemma F.1. For any s ∈ N+, it holds that [exp(−Bs)]s = 0.

Proof of Lemma F.1. By the definition of rounding operation for 2s-bit precision (Definition B.2),
it suffices to show that exp(−Bs) ≤ 2−s−1, that is, Bs ≥ ln 2 · (s+1). Note that 2s ≥ s+1 for all
s ≥ 1, we have Bs/(s+ 1) ≥ Bs2

−s = 1− 2−2s ≥ 3/4 ≥ ln 2.

Using the same argument above, we also have Lemma F.2.

Lemma F.2. For any s ∈ N+, it holds that [exp(Bs)]s = Bs.

F.1 PROOF OF THEOREM 3.3

Given two vectors x, y of the same length s, we use x⌢y to denote their interleaving, that is,
(x⌢y)2i−1 = xi, (x

⌢y)2i = yi for all i ∈ [e].

Lemma F.3. For any s ∈ N+, let qi = sbins(i)
⌢
1s and ki = Bs · (sbins(i)⌢(−1s)) for all

i ∈ [2s − 1], it holds that

exp(〈qi, kj〉s)

s
= 1[i = j] for all i, j ∈ [2s − 1].

Proof of Lemma F.3. It suffices to prove that 〈qi, kj〉s = −Bs if i ∕= j and 〈qi, kj〉s = 0 if i = j.
The rest is done by Lemma F.1.

25

Published as a conference paper at ICLR 2024

Given any i, j ∈ [2s − 1], by definition of finite-precision inner product, we know that for any
l ∈ [2s − 1], it holds that al =

al−1 + [(qi)l(kj)l]s

s

where a0 ≜ 0 and al ≜ 〈(qi):l, (kj):l〉s for
l ∈ [2s].

For all l ∈ [e], we have that [(qi)2l(kj)2l]s = −Bs and [(qi)2l−1(kj)2l−1]s = Bs · 1[(sbins(i))l =
(sbins(j))l]. If i = j, it is straightforward that a2l−1 = −Bs and a2l = 0 for all l ∈ [e]. If
i ∕= j, then there exists l ∈ [s − 1] such that (sbin(i)))l ∕= (sbin(j)))l. Thus [(qi)2l−1(kj)2l−1]s =
[(qi)2l(kj)2l]s = −Bs, which implies a2l = −Bs regardless of the value of a2l−2. Again use
induction we can conclude that a2l′ = −Bs for all l ≤ l′ ≤ e.

Proof of Theorem 3.3. For any L ∈ SIZE[T (n)], by definition there is a family of boolean circuit
{Cn} which compute L for all inputs of length n using O(T (n)) many NOT and AND gates.
Without loss of generality, let us assume the number of non-input gates in Cn be T (n). We will
show that for each n, there is a 2-layer decoder-only transformer TFθn that computes Cn(x) using
T (n) steps of CoT for all x ∈ {0, 1}n. More precisely, we will construct a transformer that simulates
one boolean gate in Cn, following the topological order of the circuit, in each step of its chain of
thought.

We first index the gates (including input gates) from 1 to n + T (n) according to the topological
order. For each gate i ∈ [n + 1, n + T (n)], we use a(i) and b(i) to denote its two input gates.
Since NOT only has one input, we set a(i) as its input and b(i) as 0. We let c(i) = 0 if ith gate
is NOT and c(i) = 1 if ith gate is AND. For any input gate 1 ≤ i ≤ n, a(i), b(i), and the gate
type are not meaningful and their choice will not affect the output and thus can be set arbitrarily.
For convenience, we will set a(i) = b(i) = c(i) = 0. We use gi(x) to denote the output of
non-input gate i (n + 1 ≤ i ≤ n + T (n)) on the circuit input x ∈ {0, 1}n, which is equal to
(1− c(i))(1− xa(i)) + c(i)(relu(xa(i) + xb(i) − 1)).

Now we describe the construction of the vocabulary V , the token embedding θTE, and position
encoding θPE. We set precision s as any positive integer larger than 1, V = {0, 1}, k ≜ k(n) =
⌈log2(T (n) + n)⌉ = O(log n) since T (n) is a polynomial, d′(n) = 3k + 6, θTE(0) = 0 · e1,
θTE(1) = 1 · e1, and

(θPE)
⊤
i−1 = [0, 0, 0, 0, c(i), sbink(i), sbink(a(i)), sbink(b(i)), 1], ∀2 ≤ i ≤ n+ T (n). (6)

We use h0
i , h0.5

i , h1
i , h1.5

i , and h2
i to denote the intermediate embeddings at position i and different

depths. Here, depth 0.5 and 1.5 refer to the output of the Attention layer inside each transformer
layer.

1. For the first attention layer, denoting embedding at the ith position h0
i by h, we set the query as

qi ≜ (hk+6:2k+5)
⌢

(h3k+6 · 1s), the key as ki ≜ (Bsh6:k+5)
⌢

(−h3k+6 · 1s), and the value as
vi ≜ h1 · e2. 7

2. For the first fully-connected layer, we skip it by setting its weights to be 0.

3. For the second attention layer, denoting embedding at the ith position h1
i by h, we set the query

as qi ≜ (h2k+6:3k+5)
⌢

(h3k+6 · 1s), the key as ki ≜ (Bsh6:k+5)
⌢

(−h3k+6 · 1s), and the value
as vi ≜ h1 · e3.

4. For the second fully-connected layer, we define F (a, b, c) ≜ relu(1−a−c)+ relu(a+b+c−2).
Denote the embedding at position i, hi

1.5 by h. The output of the second fully-connected layer
is defined as F (h2, h3, h4) · e4. Note this expression is valid because it can be expressed by
two-layer ReLU nets with constant bits of precision and a constant number of neurons.

5. The final output at position i is (h2
i)4.

Below we first describe the value of the internal variables of the transformer and then show there
exist parameters making such computation realizable. Let (x1, . . . , xn) be the input tokens, we

7Note here the dimension of ki and qi are the same but less than d′, which does not strictly satisfy our
definition of transformer in Algorithm 3. This is for notational convenience and is without loss of generality
because we can pad extra zeros.

26

Published as a conference paper at ICLR 2024

define xn+i ≜ TFi
θn(x1, . . . , xn), ∀1 ≤ i ≤ T (n). We claim there exists transformers parameter

θn such that TFT (n)
θn

(x1, . . . , xn) = gT (n)(x) (i.e. Cn(x)). More specifically, we claim that our
constructions will ensure the following inductively for all n+ 1 ≤ i ≤ n+ T (n),

1. h0
i−1 = [xi−1, 0, 0, 0, c(i), (sbink(i))

⊤, (sbink(a(i)))
⊤, (sbink(b(i)))

⊤, 1]⊤;

2. h0.5
i−1= [xi−1, xa(i), 0, 0, c(i), (sbink(i))

⊤, (sbink(a(i)))
⊤, (sbink(b(i)))

⊤, 1]⊤;

3. h1
i−1 = [xi−1, xa(i), 0, 0, c(i), (sbink(i))

⊤, (sbink(a(i)))
⊤, (sbink(b(i)))

⊤, 1]⊤;

4. h1.5
i−1=[xi−1, xa(i), xb(i), 0, c(i), (sbink(i))

⊤, (sbink(a(i)))
⊤, (sbink(b(i)))

⊤, 1]⊤;

5. h2
i−1=[xi−1, xa(i), xb(i), gi(x), c(i), (sbink(i))

⊤, (sbink(a(i)))
⊤, (sbink(b(i)))

⊤, 1]⊤;

6. xi ≜ TFθn(x1, . . . , xn, . . . , xi−1) = gi(x).

Now we explain why the above conditions hold for any position i using induction, i.e., assuming it
is true for all n+1 ≤ i′ ≤ i. We first notice that by our construction, for all 1 ≤ i′ ≤ n− 1, it holds
that (hk

i′)1 = xi′ and (hk
i′)6:k+5 for all k ∈ {0, 0.5, 1, 1.5, 2}. Note these are the only information

that will be used in the later attention layers.

1. This is simply by the construction of θTE and θPE.

2. In the first attention layer, at the jth position, we have qj ≜ sbink(a(j))
⌢1s as the query,

kj ≜ Bs · sbink(j)⌢(−1s) as the key and vj ≜ xj as the value for all j ∈ [n + T (n)].
Note here we reduce the sizes of hidden embeddings for simplicity of demonstration. This
is valid because we can fill the extra coordinates by 0. This is valid because we can al-
ways set the extra coordinates to be 0. By Lemma F.3, we know that

exp(〈qi, kj〉s)

s
=

1[a(i) = j] for all j ∈ [n + T (n)]. Recall that the attention scores are defined as
si ≜ softmax(〈qi, k1〉s , . . . , 〈qi, ki〉s)(0, . . . , 0), we know that si = ea(i).

3. We set the parameters in the first fully-connected feedforward layer to be all 0 and let the
skip connection pass the intermediate values.

4. The second attention layer attains xb(i) and places it in the third coordinate in the same way
as step 2.

5. In the fully-connected feedforward layer we compute F (xa(i), xb(i), c(i)) = relu(1 −
xa(i)−c(i))+ relu(xa(i)+xb(i)+c(i)−2) for all xa(i), xb(i), c(i) ∈ {0, 1}. We can verify
that F (xa(i), xb(i), c(i)) = (1 − c(i))(1 − xa(i)) + c(i)(relu(xa(i) + xb(i) − 1)) = gi(x),
which is the desirrd output of the gate i. This is because when c(i) = 0, the output is
1−a(i) = NOTa(i) and when c(i) = 0, the output is relu(a(i)+b(i)−1) = a(i)ANDb(i).

6. The output layer uses the fourth coordinate of h2
i , which is gi(x) according to induction, as

the output.

This completes the proof of Theorem 3.3.

F.2 PROOF OF THEOREMS 3.7 AND 3.8

In this subsection, we prove Theorems 3.7 and 3.8. We first prove a useful lemma that gives an
equivalent characterization of SIZEAC0

and SIZETC0

.

Lemma F.4. For any T (n) ∈ poly(n) satisfying T (n) ≥ 1, ∀n ∈ N+, a decision problem L :

∪k∈N+{0, 1}k → {0, 1} belongs to SIZEAC0

[T (n)] (resp. SIZETC0

[T (n)]) if and only if there exist
a polynomial S(n), a function T ′(n) = O(T (n)), and a depth L ∈ N+ such that for every n ∈ N+

there exist a sequence of sizes-S(n), depth-L circuits, {Ci
n}

T ′(n)
i=1 , with unlimited-fanin AND, OR

27

Published as a conference paper at ICLR 2024

and NOT gates (with additionally MAJORITY gates for SIZETC0

) and that for all x ∈ {0, 1}n,

L(x) = xn+T ′(n), where xn+i ≜ Ci
n(x1, . . . , xn+i−1), ∀i ∈ [T ′(n)]. (7)

Proof of Lemma F.4. We will prove for SIZETC0

only and the proof for SIZEAC0

is almost the same.

The “ =⇒ ” direction is straightforward. By definition of SIZETC0

[T (n)] (Definition 3.5), for any
L ∈ SIZETC0

[T (n)], there is a function p(n) ∈ poly(n) and a family of TC0 circuits {C ′
i}∞i=1 such

that for every n ∈ N and x ∈ {0, 1}n, Ln(x1, . . . , xn) can be computed by a size-O(T (n)) threshold
circuits with oracle gate Cp(n). Now we sort all the nodes in the circuits with oracle gates along the
topological order as x1, . . . , xn+T ′(n) where x1, . . . , xn are the inputs and T ′(n) = O(T (n)) is the
number of the gates, then clearly xn+i is a function of x1, . . . , xn+i−1 for all i ∈ [T ′(n)] and this
function can be implemented by a different threshold circuit of constant depth and poly(n) size for
each i. This completes the proof of “ =⇒ ” direction.

Now we prove the other direction “⇐=”. We first show that given T ′(n) sizes-S(n), depth-L cir-
cuits, {Ci

n}
T ′(n)
i=1 , there is a depth-(L+ 1), size O(T ′(n)S(n)) circuit C ′

n, such that

C ′
n(x1, . . . , xn+T ′(n)−1, ej) = Cj

n(x1, . . . , xn+j−1), ∀j ∈ [T ′(n)], x ∈ {0, 1}n+T ′(n)−1, (8)

where 1j ∈ {0, 1}T ′(n) is the one-hot vector with its jth coordinate being 1. Indeed, it suffices to
set

C ′
n(1, . . . , xn+T ′(n)−1, y1, . . . , yT ′(n)) = ∨T ′(n)

j=1

yj ∧ Cj

n(x1, . . . , xn+j−1)

. (9)

Once we have such oracle gate C ′
n, given input x1, . . . , xn, we can recursively define

xn+i ≜ C ′
n(x1, . . . , xn+i−1, 0T ′(n)−n, ej). (10)

Thus we can compute L(x) = xn+T ′(n) using T ′(n) oracle gate C ′
n. We can get constant gate 0

and 1 by using x1 ∧ ¬x1 and x1 ∨ ¬x1. respectively. This completes the proof.

Now we are ready to prove Theorems 3.7 and 3.8. We will prove Theorem 3.7 first and the proof of
Theorem 3.8 is very similar to Theorem 3.7.

Proof of Theorem 3.7. We first show that SIZETC0

[T (n) + 1] ⊇ CoT[T (n), poly(n), log n]. For
the case that the vocabulary of transformer V = {0, 1}, by Theorem 3.2, we know for any θn,
TFθn(x1, . . . , xi) can be expressed by a TC0 circuit whose depth is uniformly upper bounded by
some constant for all n ≤ i ≤ n + O(T (n)). This completes the proof when V = {0, 1}. When
V ∕= {0, 1}, we can use the binary encoding of elements in V as the inputs of those TC0 gates
constructed for the later layers of the transformer.

Now we turn to the proof for the other direction: SIZETC0

[T (n) + 1] ⊆ CoT[T (n), poly(n), log n].
In high-level speaking, the proof contains two steps:

1. We show that TC0 ⊆ T[poly(n), log n] ⊆ CoT[1, poly(n), log n]. The first step has two
key constructions: (a). using attention to copy all the weights to the same position; (b). we
can use polysize two-layer FC net with ReLU activation to simulate MAJORITY,AND,OR
gate with unbounded fan-in (Lemma F.5);

2. We can do the first step for all positions i = n+ 1, . . . , n+O(T (n) + 1) simultaneously.

By Lemma F.4, we know that for any problem L ∈ SIZETC0

[T (n) + 1], there exist constant L,
polynomial S(n), and T ′(n) = O(T (n) + 1), such that for every n ∈ N+, there exist a sequence of
threshold circuits, {Ci

n}
T ′(n)
i=1 , whose sizes are uniformly bounded by S(n) and depth are uniformly

bounded by L, and that for all x ∈ {0, 1}n,

L(x) = xn+T ′(n), where xn+i ≜ Ci
n(x1, . . . , xn+i−1), ∀i ∈ [T ′(n)]. (11)

28

Published as a conference paper at ICLR 2024

To simplify the notation of the proof, without loss of generality, we assume for each i ∈ [T ′(n)],
circuit Ci

n has the exactly same size S(n) and depth L.

Now we present the construction of the constant-depth, constant-precision decoder-only transformer,
TFθn which computes problem L when input length is n. Without loss of generality we only
consider the case where T ′(n) = T (n) + 1. We set vocabulary V = {0, 1}, embedding width
d(n) = 1 + 3(T (n) + n) + 2S(n)T (n) = O(poly(n)), depth equal to L + 2, CoT length T (n)
and precision s(n) = ⌈log2 S(n)⌉ so the precision is high enough for simulating all the poly(n)
size MAJORITY gates used in Ci

n (Lemma F.5). We set (θTE)0 = 0 · e1, (θTE)1 = 1 · e1, and
(θPE)i = ei+1 for all i ∈ [n + T (n)], where we use ei ∈ {0, 1}d(n) to denote the one-hot vector
whose ith coordinate is 1 for i ∈ [d(n)] and ei ∈ {0, 1}n+T (n) to denote one-hot vector whose ith
coordinate is 1 for i ∈ [n+ T (n)].

Below we first describe the value the internal variables of the transformer and then show there exist
parameters making such computation realizable. To make our claims more interpretable, we only
write the non-zero part of the embedding and omit the remaining 0’s. the Let (x1, . . . , xn) be the
input tokens and ∆ ≜ 3n+ 3T (n) + 1, our constructions will ensure that

1. xn+i = TFi
θn(x1, . . . , xn), ∀i ∈ [T (n)].

2. h0
i = xie1 + ei+1 = (xi, ei) ∀i ∈ [n+ T (n)];

3. h0.5
i = xie1 + ei+1 = (xi, ei), ∀i ∈ [n+ T (n)];

4. h1
i = xie1 + ei+1 + xien+T (n)+i+1 = (xi, ei, xiei), ∀i ∈ [n+ T (n)];

5. h1.5
i = (xi, ei, xiei, x1, . . . , xi), ∀i ∈ [n+ T (n)]

6. (h1+l
n+i−1)∆+(i−1)S(n)+1:∆+iS(n) ∈ {0, 1}S(n) stores the intermediate result of circuit

Ci
n(x1, . . . , xn+i−1) at layer l, ∀i ∈ [T (n)] and l ∈ [L];

7. (hL+2
n+i−1)∆+(i−1)S(n)+1:∆+iS(n) is the intermediate result of circuit Ci

n(x1, . . . , xn+i−1)
at layer l, ∀i ∈ [T (n)], but represented using {−1, 1}. That is,
(hL+2

n+i−1)∆+(i−1)S(n)+1:∆+iS(n) = 2 · (hL+2
n+i−1)∆+(i−1)S(n)+1:∆+iS(n) − 1. Mean-

while, (hL+2
n+i−1)∆+(j−1)S(n)+1:∆+jS(n) = 0 , ∀i, j ∈ [T (n)], j ∕= i

8. (θOUTPUTh
L+2
n+i−1)0 = 0, (θOUTPUTh

L+2
n+i−1)1 =

T (n)
j=1 (hL+2

n+i−1)∆+jS(n) =

2Ci
n(x1, . . . , xn−i+1)− 1, for all i ∈ [T (n)].

Now we explain the purpose of each layer and how to set the parameters such that the requirements
above are met.

1. xn+i = TFi
θn(x1, . . . , xn), ∀i ∈ [T (n)] is the goal of the construction;

2. This is by our construction of θPE and θTE;

3. The first attention layer does nothing by setting all weights to 0;

4. By Lemma F.5, AND can be simulated by 2-layer ReLU networks using 2 hidden neu-
rons. Thus we use the first feedforward-layer to compute the function (h1

i)n+T (n)+1+j =

(h0.5
i)1+j ∧ (h0.5

i)1 for all i, j ∈ [n + T (n)] with totally 2(n + T (n)) hidden neurons.
Therefore if j ∕= i, then (h0.5

i)1+j = 0, which implies (h1
i)n+T (n)+1+j = 0; if j = i, then

(h0.5
i)1+j = 1, thus (h1

i)n+T (n)+1+j(h
0.5
i)1 = xi.

5. This step exactly requires (ATTN
θ
(1)
ATTN

(h
(1)
1 , . . . , h

(1)
n))i =

i
j=1 e∆+jxj . It suffices to

set the attention score of the second layer at ith position si = (1, . . . , 1, 0 . . . , 0) =
(1i, 0n+T (n)−i) for all i ∈ [n + T (n) − 1]. This can be done by setting q1.5i =

WQh
1.5
i = (Bs(n), 0n+T (n)−1), k

1.5
i = WKh1.5

i = (1, 0n+T (n)−1). By Lemma F.2, we

29

Published as a conference paper at ICLR 2024

have [exp([〈qi, kj〉]s(n))]s(n) = [exp(Bs(n))]s(n) = Bs(n). Since rounded sum of any
number of Bs(n) is still Bs(n) and [Bs(n)/Bs(n)]s(n) = 1, we know that

si = softmaxs(n)(Bs(n)1i)(0, . . . , 0) = (1, . . . , 1, 0 . . . , 0) = (1i, 0n+T (n)−i)

for all i ∈ [n + T (n) − 1]. Note in this step we use our specific rounding rule to copy
all the previous xi with a sum of attention score larger than 1. We can just also use ap-
proximately uniform attention scores with an additional coefficient before xi since we have
log n precision. Finally we set v1.5i = WV h

1.5
i = e∆+ixi and WO = Id(n).

6. The second attention layer is the only attention layer which has non-zero weights. Using
the feedforward ReLU networks from layer 2 to L + 1, we can simulate the circuits Ci

n
in parallel for all i ∈ [T (n)] by Lemma F.5. In detail, Lemma F.5 ensures that we can
use a two-layer fully-connected ReLU network with weights to simulate a layer of the TC0

circuits Ci
n. Moreover, there is enough space in the embedding to reserve S(n)’s 1 needed

by Lemma F.5. And we always append the value of intermediate gates after the gate values
which have already been computed at each layer using the indices ∆ + (i − 1)S(n) + 1 :
∆ + S(n) for hl

n+i−1 for each i ∈ [T (n)]. Note for each i, only the computation in the
range ∆+(i−1)S(n)+1 : ∆+S(n) is meaningful and the computation for other indices
will not be used later.

7. This is similar to step 3. We skip the attention layer and simply set
(hL+2

n+i−1)∆+(i−1)S(n)+k = (hL+1.5
n+i−1)n+i ∧ (hL+1.5

n+i−1)∆+(i−1)S(n)+k for all k ∈ [S(n)]
using the feedforward fully-connected network.

8. This step holds directly due to the property guaranteed in step 8. We note that with the
property claimed in step 9, we have that (θOUTPUTh

L+2
n+i−1)1 − (θOUTPUTh

L+2
n+i−1)0 =

2Ci
n(x1, . . . , xn−i+1))− 1. Thus if Ci

n(x1, . . . , xn−i+1) = 1, then (θOUTPUTh
L+2
n+i−1)1 −

(θOUTPUTh
L+2
n+i−1)0 = 1, which implies TFθn(x1, . . . , xn+i−1) = 1, otherwise if

Ci
n(x1, . . . , xn−i+1) = 0, then TFθn(x1, . . . , xn+i−1) = 0. In both cases, we have that

Ci
n(x1, . . . , xn−i+1) = TFθn(x1, . . . , xn+i−1) (12)

So far we have finished the proof for the general T (n). Specifically, when T (n) = T ′(n) = 0, our
proof shows that the constant-depth transformer can still simulate any constant-depth circuit, which
means TC0 ⊆ T[poly(n)] ⊆ CoT[1, poly(n)] = SIZETC0

(1) = TC0. Thus all the inclusions are
equivalence, that is TC0 = T[poly(n)] = CoT[1, poly(n)] = SIZETC0

(1).

Proof of Theorem 3.8. We first show that SIZEAC0

[T (n) + 1] ⊇ CoT[T (n), poly(n), 1]. For the
case that the vocabulary of transformer V = {0, 1}, by Theorem 3.1, we know for any θn,
TFθn(x1, . . . , xi) can be expressed by a TC0 circuit whose depth is uniformly upper bounded by
some constant for all n ≤ i ≤ n + O(T (n)). This completes the proof when V = {0, 1}. When
V ∕= {0, 1}, we can use the binary encoding of elements in V as the inputs of those TC0 gates
constructed for the later layers of the transformer.

The other direction is almost the same as that of Theorem 3.7, except that we now only need constant
bits of precision because we do not need to simulate MAJORITY gates (Lemma F.5).

F.3 PROOF OF THEOREM 3.9

Proof of Theorem 3.9. By Lemma F.7, it holds that for all k ∈ N, AC0 ⊊ SIZE[nk]. By The-
orem 3.7, we know that AC0 ⊆ CoT[1, poly(n), 1] ⊆ CoT[nk, poly(n), 1] for any k ∈ N.
Thus CoT[nk, poly(n), 1] ⊊ SIZE[nk] for all k, k′ ∈ N. Also, note that the attention layer
and fully-connected layer can be computed using poly-size circuits. Thus for any k ∈ N,
CoT[nk, log(n)] ⊆ SIZE[nk′

] for some integer k′ ≥ k. Combining these we conclude that for
any k ∈ N, CoT[nk, log(n)] ⊊ CoT[nk, poly(n)].

30

Published as a conference paper at ICLR 2024

F.4 AUXILIARY LEMMAS

In this subsection, we prove a few auxiliary lemmas that are used in the proofs in Section 3.4.
Lemma F.5. Unlimited-fanin AND,OR (resp. MAJORITY) : {0, 1}n → {0, 1} can be simulated
by some 2-layer feedforward ReLU network with constant (resp. log n) bits of precision constant
hidden dimension and additional n constant inputs of value 1.

Mathematically, let FF[s(n)] be the set of functions C : {0, 1}n → {0, 1} which can be a two-
layer feedforward ReLU network with at most s(n) bits of precision and constant hidden dimension
FFθ : {0, 1}2n → {0, 1},FFθ(x

′) = W2 ×s relu([W1 ×s x
′ + b1]s), where θ = (W2,W1, b1), such

that for any x ∈ {0, 1}n,

FFθ(x1, 1, x2, 1, . . . , xn, 1) = C(x). (13)

We have unlimited-fanin AND,OR ∈ FF[1] and MAJORITY ∈ FF[log n].

The proof of Lemma F.5 is based on the following straightforward lemma (Lemma F.6).
Lemma F.6. For any e ∈ N+ and a ∈ Z∩Fs, relu([a]s)− relu([a− 1]s) = 1[a > 0]. In particular,
for any a ∈ Z, relu(a)− relu(a− 1) = 1[a > 0].

Proof of Lemma F.5. Recall that x⌢y denotes (x1, y1, x2, y2, . . . , xn, yn) for any x, y ∈ {0, 1}n.
We have that sums(x

⌢(−1n)) ≤ 0 for all e ≥ 2 and x ∈ {0, 1}n. Moreover, sums(x
⌢(−1n)) =

0 ⇐⇒ ∀i ∈ [n], xi = 1. Similarly, we have that sums(x) ≥ 0 and sums(x) = 0 ⇐⇒ ∀i ∈
[n], xi = 0. In other words, we have

• AND(x) = 1[sums(x
⌢(−1n)] ≥ 0) = 1[〈x⌢1n, 1n

⌢(−1n)〉s + 1 > 0];
• OR(x) = 1[sums(x

′
i) > 0] = 1[〈x⌢1n, 1n

⌢(0n)〉s > 0].

Therefore for AND, we can set θAND ≜ (WAND
1 ,WAND

2 , bAND
1) with WAND

1 ≜

1n

⌢(−1n)
1n

⌢(−1n)

, b1 =

1
0

,WAND

2 = [1,−1], and we have that

FFθAND(x⌢1n) = [relu(〈x⌢1n, 1n
⌢(−1n)〉s + 1)− relu(〈x⌢1n, 1n

⌢(−1n)〉s)]s
=1[〈x⌢1n, 1n

⌢(−1n)〉s + 1 > 0] (by Lemma F.6)
=AND(x)

Similarly for OR, we can set θOR ≜ (WOR
1 ,WOR

2 , bOR
1) with WOR

1 ≜

1n

⌢0n
1n

⌢0n

, b1 =

0
−1

,WOR

2 = [1,−1], and we have that

FFθOR(x⌢1n) = [relu(〈x⌢1n, 1n
⌢0n〉s)− relu(〈x⌢1n, 1n

⌢0n〉s − 1)]s
=1[〈x⌢1n, 1n

⌢0n〉s > 0] (by Lemma F.6)
=OR(x)

The proofs for AND and OR are thus completed.

Next we deal with MAJORITY. Note that for s(n) ≥ log2 n + 1, we have that
n

i=1(2xi − 1) =
〈x⌢1n, 2n

⌢(−1n)〉s for all x ∈ {0, 1}n.

MAJORITY(x) =1[
n

i=1

(2xi − 1) > 0] = 1[〈x⌢1n, 2n
⌢(−1n)〉s > 0]

= [relu(〈x⌢1n, 2n
⌢(−1n)〉s)− relu(〈x⌢1n, 2n

⌢(−1n)〉s − 1)]s
=FFθMAJORITY(x⌢1n), (14)

where θMAJORITY ≜ (WMAJORITY
1 ,WMAJORITY

2 , bMAJORITY
1) with WMAJORITY

1 ≜

2n

⌢−1n
2n

⌢−1n

, b1 =

0
−1

,WMAJORITY

2 = [1,−1].

31

Published as a conference paper at ICLR 2024

Lemma F.7. For all k ∈ N, AC0 ∕⊆ SIZE[nk].

Proof of Lemma F.7. We first define SIZE[T (n)] as the problems solvable by circuits with T (n)
standard AND,OR,NOT gates exactly. Thus SIZE[nk] = ∪C∈N+SIZE(Cnk). Now we claim that
for each C ∈ N, there is a N ∈ N+, such that for all n ≥ N , it holds that there is a conjunction
normal form (CNF) with at most nk+1 clauses over {x1, . . . , xn} that cannot be expressed by any
circuit of size Cnk. This claim holds because of a simple counting argument. There are at least
2n

k+1

different such CNFs. On the other hand, it is well known that one can represent a T (n)-size
circuit only allowing standard AND,NOT,OR gates with 3T (n) log T (n) bits (we need log T (n)
bits to encode the id of a gate). Thus the total number of different circuits of size at most Cnk is
at most 23Cnk(k logn+C), which is smaller than 2n

k+1

for sufficiently large n. We denote such n
for each C by NC . Now we define the following language LCNF: if the input length of x is NC

for some C, use the nk+1-clause CNF’s output which cannot be expressed by size-Cnk circuits as
the output; otherwise rejects (output 0). Then clearly LCNF /∈ SIZE(Cnk) for all C, thus LCNF /∈
∪C∈N+SIZE(Cnk) = SIZE[nk]. By construction, LCNF ∈ AC0. This completes the proof.

G DISCUSSION ON VARIANTS IN TRANSFORMER ARCHITECTURE

G.1 EXTENSION TO TRANSFORMERS WITH LAYERNORM

Allowing LayerNorm changes the function class that a transformer can express and the position of
the layer norm also matters (Xiong et al., 2020). However, the expressiveness results mentioned
in this work still hold for the two most popular transformer architecture variants with LayerNorm
— Post LayerNorm and Pre LayerNorm. The upper bounds on transformer expressiveness The-
orems 3.1 and 3.2 clearly don’t get affected by adding LayerNorm, which can be computed in
polynomial time for each token.

Below we focus on the upper bound of the expressiveness of decoder-only transformers with or
without CoT. In detail, we will explain why Theorems 3.3 and 3.7 still holds even with LayerNorm.
Here the key observation is that, if each coordinate of h ∈ Rd ranges from {−1, 1} and −1, 1 appear
in pairs, then LayerNorm(h) = h. Thus it suffices to show that we can slightly twist the construc-
tion of transformers in Theorems 3.3 and 3.7 that for all i ∈ [n + T (n)], l ∈ {0, 0.5, 1, . . . , L}, hl

i
is composed of −1 and 1 and they appear in pairs so the sum is always 0. Note that in the current
construction, each hl

i only contains 0,−1, 1. It suffices to replace each dimension with four dimen-
sions, in the sense 0 → (1,−1, 1,−1), 1 → (1, 1,−1,−1) and −1 → (−1,−1, 1, 1). This can be
done by changing the weights of the token embedding, position encoding, and the weights of the
second layer of each fully-connected layer. For the outgoing layer, we just use the average of the
new representation, which is exactly the same as the original value in all three cases.

G.2 EXTENSION TO TRANSFORMERS WITH MULTIHEAD ATTENTION

In this paper, for simplicity, we only focus on the case where there is only one attention head in each
layer. The main results in this paper still apply if we allow constantly many attention heads, because
we can simulate an attention layer with k heads with k attention layers with one head. Allowing an
arbitrary number of attention heads while fixing total embedding size might make the constant-depth
transformers strictly more expressive in certain settings and we leave it for future works.

H DISCUSSION ON NON-UNIFORMITY

Non-uniform computation models allow a different program for each different input length, like
boolean circuits. However, the complexity class defined by circuits can also be uniform, if we add
additional assumption on the correlation between circuits of different input lengths, e.g., one can
require the circuits for input length n can be generated by a Turing Machine taken n as input in
using a certain amount of time and space.

The complexity class CoT introduced in this paper can also be made uniform by enforcing an ad-
ditional assumption, that the parameters of the transformer can be generalized by some Turing Ma-

32

Published as a conference paper at ICLR 2024

chine given the input sequence length n. It is well-known that one can simulate the execution of
the Turing Machine for any T steps by a family of uniform boolean circuits of size O(T 2). Thus if
we enforce the parameters of transformers in CoT to be uniform, our main theorem would imply
that constant-depth transformers with uniform parameters and polynomially many steps of chain of
thoughts can solve all problems in P. Also note that the inference of transformers can also be done
in polynomial time, we conclude it is exactly equal to P.

One natural question about non-uniformity is that whether having a different transformer for each
input sequence length is practical, given that a significant portion of previous theoretical works
on transformer expressiveness focuses on the uniform setting. This problem is kind of ill-defined
because we haven’t been able to scale up the input length to arbitrary length in practice, and thus it is
not clear if it is necessary to keep scaling up the size of LLMs for longer input sequence length. But
at least for the LLMs that have been seen in practice, it seems quite common to scale up the model
size when dealing with longer input sequence length. Also taking the GPT architecture (Radford
et al., 2019) that we focus on in this paper, having more trainable parameters is necessary for longer
input sequence length, due to the trainable absolute position encoding.

Still, one needs to note that there is a difference between natural language tasks and complexity
class, where the former has a lot of memorization and does not require a strong ability to solve math
problems of any sequence length. In contrast, to learn this complexity class like the composition of
permutation of any length, transformers need to have the ability of length generalization, which does
seem impossible for certain non-uniform models, e.g., like GPT architectures with trainable absolute
position encoding, because there is no way to learn the position encoding at an unseen position in the
training dataset. Of course, length generalization would still be possible if GPT architecture learned
the ground truth without using the trainable position encoding at all.

33

