
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BUILD ROADMAP FOR AUTOMATED FEATURE TRANS-
FORMATION: A GRAPH-BASED REINFORCEMENT
LEARNING APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Feature transformation tasks aim to generate high-value features by combining ex-
isting ones through mathematical operations, which can improve the performance
of downstream machine learning models. Current methods typically use itera-
tive sequence generation, where exploration is guided by performance feedback
from downstream tasks. However, these approaches fail to effectively utilize his-
torical decision-making experiences and overlook potential relationships between
generated features, thus limiting the flexibility of the exploration process. Addi-
tionally, the decision-making process lacks the ability to dynamically backtrack
on efficient decisions, which hinders adaptability and reduces overall robustness
and stability. To address these issues, we propose a novel framework that uses a
graph to track the feature transformation process, where each node represents a
transformation state. In this framework, three cascading agents sequentially select
nodes and mathematical operations to generate new nodes. This strategy benefits
from the graph structure’s ability to store and reuse valuable transformations, and
it incorporates backtracking via graph pruning techniques, allowing the frame-
work to correct inefficient paths. To demonstrate the effectiveness and flexibility
of our approach, we conducted extensive experiments and detailed case studies,
demonstrating superior performance across a variety of datasets.

1 INTRODUCTION

Classic machine learning is highly dependent not only on the structure of the model but also on
the quality of the training data (Sambasivan et al., 2021; Strickland, 2022; Borisov et al., 2022;
Zha et al., 2023) (as depicted in Figure 1(a)). Traditionally, optimizing the dataset is referred to as
feature engineering (Dong & Liu, 2018; Nargesian et al., 2017), which requires extensive manual
intervention by domain experts (Conrad et al., 2022) and is time-consuming and labor-intensive.
Other models, such as GBTs (Si et al., 2017) and deep neural networks (Bengio et al., 2013), can
capture non-linear feature interactions spontaneously. However, they generally require significant
amounts of data and computational power to achieve good generalization Grinsztajn et al. (2022),
especially with limited tabular data Shwartz-Ziv & Armon (2022). Consequently, automated feature
transformation has been proposed to adopt a data-centric perspective (Zha et al., 2023; Cui et al.,
2024) to ensure both efficiency and automation.

Background of Automated Feature Transformation: The mainstream of existing automated fea-
ture transformation adopts an iterative perspective: 1) expansion-reduction approaches (Kanter &
Veeramachaneni, 2015; Khurana et al., 2016b; Horn et al., 2019) randomly combine and gener-
ate features through mathematical transformations, then employ feature selection techniques to
isolate high-quality features. Those approaches are highly stochastic, lack stability, and are not
optimization-oriented. 2) iterative-feedback approaches (Tran et al., 2016; Li et al., 2023; Liu et al.,
2024) aim to refine the feature space with the transformation towards reinforcement learning (Wang
et al., 2022; Xiao et al., 2023a; 2024) and evolutionary algorithms (Khurana et al., 2018). Although
those methods can optimize their strategies during the exploration, they discard the valuable experi-
ences from historical sub-transformations and cannot backtrack on individual features. 3) AutoML
approaches (Zhu et al., 2022b; Zhang et al., 2023) partially adjust aforementioned issues by learn-
ing the pattern of the collected historical transformation records (Wang et al., 2024) thus reach a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Weight

Height

BMI Index

Diabetes?

Weight

Height

Diabetes?

Machine Learning
Model Focus

Machine Learning
Model

Feature
Transformation(s)

Focus

Classic Machine Learning Machine Learning with Optimized Feature

Height
W
ei
gh
t

positive
negative

negative positive

BMI

Feature-Centric Perspective Transformation-Centric Perspective

Next
Move

Potential
Combination and

Backtracking
Previous

Transformation

Potential
Combination

Previous
Transformationstep-1 step-2

current
step

next
step step-1 step-2

current
step

next
step

a

b

Valuable Experiences Discarded

Figure 1: Motivation of this study. (a) Illustration of classic machine learning versus machine
learning with optimized features in diabetes diagnosis.(b) A conceptual view of feature-centric and
transformation-centric perspectives.

so-called global view of the action space. Nevertheless, a clear disadvantage of these methods is
that they initially rely on the quality of collected transformations, which are essential for construct-
ing a continuous search space that closely mirrors real-world conditions. After these discussions, a
critical question emerges: How to develop a framework that maintains a global view, utilizes on the
underlying connections between features, and dynamically adapts the transformation strategy?

Our Perspective and Contribution: In this work, we pivot to a transformation-centric approach
in addressing the challenges outlined earlier (illustrated in the right section of Figure 1(b)). This
shift brings forth three principal benefits that significantly enhance the capabilities of our reinforce-
ment learning-based automated feature transformation framework: (1) Enhanced Transformation
Agility: Our model is designed to capture and dynamically apply transformations across various
stages of the feature transformation process rather than being restricted to transformations derived
from the current feature set. This enables a more flexible and robust handling of features. (2)
Historical Insights Utilization: We leverage deep learning techniques to extract and model latent
correlations and mathematical characteristics from past transformation efforts. This historical in-
sight informs our decision-making process, allowing the algorithm to execute transformation actions
based on the lessons learned strategically. (3) Robust Backtracking Mechanism: Our approach
incorporates a sophisticated backtracking system that utilizes historical transformation records for
traceability. This feature ensures that the transformation process can revert or alter its course to
avoid inefficient or suboptimal trajectories, thus optimizing the overall feature engineering pathway.

Summary of Proposed Method: A Framework That Maintains Transformation Roadmap.
To capitalize on the benefits of a transformation-centric approach, we introduce the Flexible
Transformation-Centric Tabular Data Optimization Framework (TCTO), an innovative automated
feature transformation methodology employing a cascading multi-agent reinforcement learning
(MARL) algorithm (Busoniu et al., 2008; Panait & Luke, 2005). Our framework is structured
around an evolving feature-state transformation graph, which is maintained throughout the MARL
process. This graph serves as a comprehensive roadmap, where each node and its path back to root
node represents a unique sequence of transformations applied to the initial features of the dataset.
Our optimization procedure comprises four steps: (1) clustering each node on the roadmap with
mathematical and spectral characteristics, (2) state representation for each cluster, (3) cluster-level
transformation decision generation based on multi-agent reinforcement learning; (4) evaluation and
reward estimation for the generated outcomes. Iteratively, TCTO executes these steps while lever-
aging the traceability of the roadmap for a precise node-wise and step-wise pruning. This allows for
targeted feature reduction and strategic rollbacks, optimizing the transformation pathway. Through
rigorous experimental validation, we demonstrate that TCTO not only enhances the flexibility of the
optimization process, but also delivers more resilient and effective results compared to traditional
iterative optimization frameworks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARY

2.1 IMPORTANT DEFINITIONS

Dataset. Formally, a dataset can be defined as D = [F , Y], where F = {f1, . . . , fn} represents n
features and Y stands for the labels. Each row of D represents a single observation or data point,
while each column corresponds to a specific attribute or feature of the observation.

Operation Set. To enhance the feature space and potentially improve the performance of down-
stream machine learning models, we can apply a set of mathematical operations to the existing
features, generating new and informative-derived features. We define this collection of operations
as the operation set, represented by the symbolO. The operations1 within this set can be categorized
into two main types according to their computational properties: unary and binary operations Unary
operations are those that operate on a single input feature, such as square, exponentiation (exp), or
logarithm (log). Binary operations involve two input features and perform operations like addition,
multiplication, or subtraction.

... ...
node

embedding

new node

descriptivestatistic

Figure 2: An example of feature transformation roadmap
update: the feature fh conducts sin operation generating
the feature ft. The embedding of node vt can be derived
from the statistic description of generated feature ft.

Feature Transformation Roadmap.
A feature transformation roadmap G
is an evolving directed graph and
could uniquely represent the global
optimization process. Figure 2 shows
an example of the new generation of
edges and nodes. We can apply the
roadmap to generate a new dataset
D′ with a given dataset, defined as
D′ = G(D). This roadmap, denoted
as G = {V,E,A}, consists of multi-
ple tree structures where the number
of trees equals the number of features
in the original dataset. V = {vi}mi=1 and E = {ei}ni=1 represent the set of feature state nodes2 and
transformation edges, respectively. A is the adjacency matrix. Each pair of nodes, connected by a
directed edge, represents a new feature state vt generated from a previous state vh after undergoing
the transformation represented by the type of edge e. The embedding of each node will be obtained
via the descriptive statistics information (e.g., the standard deviation, minimum, maximum, and the
first, second, and third quartile) of the generated features.

2.2 FEATURE TRANSFORMATION PROBLEM

As the toy model illustrated in Figure 1, given a downstream target ML modelM (e.g., classification
model, regression model, etc.) and a dataset D = [F , Y], our objective is to find an optimal feature
transformation roadmap G∗ that can optimize the dataset through mathematical operation in O.
Formally, the objective function can be defined as:

G∗ = argmax
G

V(M(G(F)), Y), (1)

where V denotes the evaluation metrics according to the target downstream ML modelM.

3 PROPOSED METHOD

3.1 INSIGHTS OF THE PROPOSED METHOD

Figure 3 illustrates an overview of our proposed framework which comprises five key insights:

Effective Transformation Action with Roadmap Clustering: Previous study (Wang et al., 2022)
shows that the mathematical operation between two distinct groups of features tends to generate
high-informative features. In addition, a single feature transformation has little effect on downstream

1The detail of including mathematical operation can be found in Appendix A.2.5.
2Note that in the formulas, v also represents the embedding of node v for the sake of simplification.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Original Tabular Dataset

Initial Feature State

Optimal Tabular Dataset

Pipeline of TCTO

sample

1

2

3

...

...

sample

1

2

3

...

...

......

ch o ct

Downstream Task Evaluation

Feature Complexity

...
 Generating New Features

Combining Reward
Estimation and Feedback

High reward

Low reward

Roadmap Nodes Clustering

Roadmap Encoder

Cluster Representation

...

ch o ct() Reward
Estimation

Cascading Agents Decision

Roadmap Pruning

Reward
Feedback

...
a.

b.

c.
d.

e.

An Example Exploration Step of TCTO

Cluster 1

Cluster 2

Cluster 3

Cluster 2

Cluster 3

Cluster 1

...

Previous Roadmap

...
... ...

Iterative Transformation

Figure 3: An overview of our framework: (a) cluster the nodes on roadmap; (b) represent the trans-
formation roadmap; (c) calculate cluster representation; (d) reinforce multi-agent iterative feature
transformation decision generation; (e) prune the roadmap effectively.

tasks’ performance and hinders the optimization of reinforcement learning agents. Further, our
insight into group-wise operation is that two close features will have similar historical transformation
records or mathematical characteristics. With the roadmap accumulating, this latent relationship will
reveal and could be critical to organizing effective yet efficient transformation.

Roadmap-based State Representation for Each Agent: Achieving an accurate state representa-
tion is crucial for enabling reinforcement agents to make informed decisions. In our framework,
the transformation roadmap is a repository of intermediate transformation records, complete with
their mathematical attributes. At each step, the agents select clusters of nodes, which can be
seen as a subgraph on the roadmap. We then integrate a Relational Graph Convolutional Network
(RGCN) (Schlichtkrull et al., 2018) to extract latent correlations within these historical records and
capture the representation of each cluster. This approach allows our model to take advantage of the
global insights gained from the RGCN, facilitating strategic transformation actions that are guided
by the detailed state of the selected nodes.

Multi-agent Reinforcement Learning based Transformation Decision: Reinforcement learning
has proven effective in addressing complex decision-making challenges across various domains.
We employ three cascading agents that collaboratively construct unary and binary mathematical
transformations. These agents operate sequentially to select the optimal head cluster, mathematical
operation, and operand cluster, respectively. The chosen features undergo the specified mathematical
operations, resulting in the generation of new features and the creation of new nodes within the
roadmap. Additional details regarding the decision-making process will be provided in Section 3.3.

Reward Estimation for Optimizing Agents: Our model is optimized to generate high-quality
features with minimal steps, enhancing efficiency. In this context, TCTO evaluates the generated
features via the performance of downstream tasks to refine the reinforcement learning algorithm. In
addition, we factored the complexity of the generated features into the reward function. This dual
focus on performance and complexity ensures that the model aims for effectiveness while avoiding
overly complex solutions that could hinder practical applicability and interpretability.

Effective Roadmap Backtracking: We have implemented two pruning strategies to manage the
expanding complexity as the number of nodes in our roadmap grows. These approaches are designed
to reduce the potential explosion in roadmap complexity, ensure the system remains efficient and
manageable, and enhance our system’s stability.

3.2 OPERATION ON DYNAMIC TRANSFORMATION ROADMAP

Node Clustering on Roadmap: As illustrated in Figure 4, we delineate the structure of roadmap
G using its adjacency matrix A, where each element A[i, j] quantifies the connectivity strength

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

between nodes vi and vj . Each node in the roadmap is characterized by an embedding vector that
encapsulates its feature information, denoted by the same notation v for simplicity.

Node Clusters

Roadmap Structure

Nodes Similarity

Figure 4: Nodes clustering on roadmap based on
structural and feature information.

Inspired by Von Luxburg (2007), to enhance
our analysis of inter-node relationships, we
compute a similarity matrix Ã based on the co-
sine similarity between the embedding vectors
of the nodes. The cosine similarity is calculated
as follows:

Ã[i, j] = vi · vj
∥vi∥∥vj∥

(2)

This similarity matrix Ã is integrated with
the adjacency matrix A to amalgamate struc-
tural and feature-based information, thereby
augmenting the efficacy of clustering or other
graph analytical tasks. Furthermore, we define
an enhanced Laplacian matrix S to capture both structural and mathematical information from
nodes, formulated as follows:

S = D − (A+ Ã) (3)

Here,D represents the degree matrix, with diagonal elementsD[i, i] equal to the sum of the elements
in the i-th row ofA+Ã. The clustering module uses hierarchical clustering based on the eigenvalues
and eigenvectors of S to identify the optimal roadmap partition into clusters. The clustering module
treats each eigenvector corresponding to node vi as an initial singleton cluster and iteratively merges
pairs of shortest clusters to progressively form larger clusters. This process continues until the cluster
number reaches a specified setting, denoted as k. The set of clusters is denoted as C = {ci}ki=1.

Cluster State Representation with Roadmap: As illustrated in Figure 5, we construct a dual-
layer RGCN framework to disseminate and consolidate information across nodes, utilizing various
relationship types to accurately represent the state of each cluster, described as:

v
(l+1)
i = ϕ

 R∑
r=1

∑
j∈Nr

i

1

ci,r
W (l)

r v
(l)
j

 (4)

operation type RRoadmap Encoder
Nodes Representation
Node 1

Node 2

Node 3
Node 4

...
Node 5

Figure 5: The roadmap encoding process utilizing graph
convolution network.

where v
(l)
i and v

(l+1)
i represents the

embedding of the i-th node in the
roadmap at RGCN layer-l and layer-
(l + 1), respectively. Nr

i denotes
the set of neighboring nodes of vi
with operation type r, and the de-
gree normalization factor ci,r scales
the influence of neighboring nodes. r
represents the relationships between
nodes, which correspond to different
operation types. The resulting sum is then passed through an activation function ϕ to produce the
final representation of the node vi. Based on the aggregated node representation, the representation
of the cluster ci can be obtained by Rep(ci) =

1
|ci|

∑
v∈ci

v, where |ci| denotes the number of nodes
in cluster ci.

Roadmap Prune Strategy: As illustrated in Figure 6, we employ two pruning strategies to ensure
its stability during the feature transformation process.

1) Node-wise pruning strategy: entails the identification of K nodes that show the greatest relevance
to labels. This strategy computes the mutual information, defined as the relevance between each
node’s corresponding features and labels, as follows:

I(v, Y) =
∑
fi∈v

∑
yi∈Y

p(fi, yi) log
p(fi, yi)

p(fi)p(yi)
(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Cluster Representation

Cluster 1

Cluster 2

Cluster 3

Node Clusters

Nodes Representation
Node 1

Node 2

Node 3
...

...

...

...

Head
Agent

Operation
Agent

Operand
Agent

...

...

...

Generating Transformation Decision

Figure 7: The reinforcement learning decision process. Three cascading agent cooperate to generate
a binary transformation.

where fi denotes the element values of node v and yi is its correlated label. I(v, Y) denoted the
mutual information based score. p(f) represents the marginal probability distribution, while p(f, y)
represents the joint probability distribution. Finally, the framework will select top-K nodes by the
score. The node-wise pruning strategy removes low-correlation nodes while preserving information
as much as possible, ensuring exploration diversity.

Transformation
Roadmap

...

step1

step2

step3

......

Node-wise
Pruning

Step-wise
Backtracking

Figure 6: The two transformation roadmap prun-
ing strategies.

2) Step-wise backtracking strategy: involves
tracing back to the previous optimal transfor-
mation roadmap before the present episode to
prevent deviating onto suboptimal paths. This
stepwise backtracking ensures that the explo-
ration process remains on the correct trajectory
by revisiting and affirming the most effective
roadmap configurations.

3) When and how to prune the roadmap: Prun-
ing is recommended when the number of nodes
reaches a set threshold. The node-wise pruning
approach preserves diversity while minimiz-
ing complexity during the initial stages when
agents are unfamiliar with the dataset. Once agents have grasped the fundamental policy, the step-
wise backtracking strategy assumes leadership to enhance exploration stability. Combining both
approaches, the agent explores a sufficiently large search space and maintains stable exploration in
the later stages of training. Specifically, we adopt node-wise pruning in each step of the initial 30%
of the exploration period, while the subsequent 70% is equipped with step-wise backtracking.

3.3 REINFORCEMENT LEARNING FRAMEWORK ON THE EVOLVING ROADMAP

Cascading Reinforcement Learning Agents: Figure 7 shows an example of the cascading agents’
decision-making process. We utilize a series of cascading agents, each performing a specific task
in sequential order. These agents collaborate in a step-by-step decision-making process, where the
output of one agent serves as the input for the next. The first agent (head cluster agent) is respon-
sible for selecting the head cluster, the second (operation agent) for choosing the most appropriate
mathematical operation, and the third (operand cluster agent) for identifying the operand cluster. By
using this cascading structure, each decision is informed by the context set by the previous agents,
leading to a more efficient decision-making process. The details of each agent are as follows:

1) Head Cluster Agent: As described earlier, each node on the roadmap has been clustered into C.
The first agent aims to select the head cluster to be transformed according to the current state of each
cluster. Specifically, the i-th cluster state is given as Rep(ci), and the overall state can be represented
as Rep(V). With the head policy network πh(·), the score of select ci as the action can be estimated
by: shi = πh(Rep(ci)⊕Rep(V)). We use ch to denote the selected cluster with the highest score.

2) Operation Agent: The operation agent aims to select the mathematical operation to be performed
according to the overall roadmap and selected head cluster. The policy network in the operation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

agent takes Rep(ch) and the global roadmap state as input, then chooses an optimal operation from
the operation set O: o = πo(Rep(ch)⊕Rep(V)).

3) Operand Cluster Agent: If the operation agent selects a binary operation, the operand cluster
agent will choose a tail cluster to perform the transformation. Similarly to the head agent, the policy
network πt(·) will take the state of the selected head cluster, the operation, the general roadmap state,
and the i-th candidate tail cluster as input, given as sti = πt(Rep(ch)⊕Rep(V)⊕Rep(o)⊕Rep(ci)),
where Rep(o) is a one-hot embedding for each operation. We use ct to denote the selected tail cluster
with the highest score.
These aforementioned stages are referred to as one exploration step. Depending on the selected
head cluster ch, operation o, and optional operand cluster ct, TCTO will cross each feature and then
update the transformation roadmap (as shown in Figure 2 and Figure 7).

Reward Estimation: As illustrated in Figure 3, we reinforced and encouraged the cascading agents
to conduct simple yet effective feature transformations. Based on this target, we employ the per-
formance of downstream tasks and the complexity of the transformation roadmap as rewards to
optimize the reinforcement learning framework, denoted asRp andRc, respectively.

(1) Performance of Downstream Tasks: As the objective in Equation 1,Rp is calculated as follows:
Rp = V(M(Ft+1), Y)− V(M(Ft), Y), (6)

where Ft indicates the feature set at the t-th step.

(2) Complexity of the Transformation: The feature complexity rewardRc is defined as follows:

Rc =
1

n

n∑
j=1

1

eh(vj)
, (7)

where h(vj) represents the number of levels from the root node to node vj on G. The total reward
R is defined as follows: R = Rp +Rc. In each step, the framework assigns the reward equally to
each agent that has action.

Optimization of the Pipeline: In the cascading reinforcement learning setup described, the opti-
mization policy is critical to refine the decision making capabilities of the agents involved: the Head
Cluster Agent, Operation Agent, and Operand Cluster Agent. The overarching goal of this policy
is to iteratively improve the actions taken by these agents to maximize the cumulative rewards de-
rived from both the performance of downstream tasks and the complexity of transformations in the
roadmap.The pseudo-code of cascading agents optimization and application phase are supplied in
Algorithm 1 and Algorithm 2.

1) Policy Optimization: The learning process for each agent is driven by a reward mechanism that
quantifies the effectiveness and efficiency of the transformations applied to the roadmap. Specifi-
cally, the optimization policy is framed within a value-based reinforcement learning approach, lever-
aging a dual network setup architecture: a prediction network and a target network. The prediction
network generates action-value (Q-value) predictions that guide the agents’ decision-making pro-
cesses at each step. It evaluates the potential reward for each possible action given the current state,
facilitating the selection of actions that are anticipated to yield the highest rewards. The target net-
work serves as a stable benchmark for the prediction network and helps to calculate the expected
future rewards. Decoupling the Q-value estimation from the target values is crucial to reducing
overestimations and ensuring stable learning.

2) Loss Function: The loss function used for training the prediction network is defined as follows:

L =

(
(Qπ

p (st, at)−
(
Rt + γ ·max

at+1

Qπ
t (st+1, at+1)

))2

, (8)

where prediction network Qπ
p (st, at) is the Q-value for the current state-action pair from the policy

network π(·). Rt is the immediate reward received after taking action at in state st, and γ is the
discount factor. maxat+1

Qπ
t (st+1, at+1) is the maximum predicted Q value for the next state-

action pair as estimated by the target network. The parameters of the prediction network are updated
through gradient descent to minimize loss, thereby aligning the predicted Q values with the observed
rewards plus the discounted future rewards. To maintain the stability of learning process, parameters
of the target network are periodically updated by copying them from the prediction network.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Overall performance comparison. ‘C’ for binary classification and ‘R’ for regression. The
best results are highlighted in bold. The second-best results are highlighted in underline. (Higher
values indicate better performance.) #Samp and #Feat denote the number of samples and features.

Dataset C/R #Samp. #Feat. RDG ERG LDA AFAT NFS TTG GRFG DIFER FETCH OpenFE TCTO

Higgs Boson C 50000 28 0.695 0.702 0.513 0.697 0.691 0.699 0.709 0.669 0.697 0.702 0.709±0.001

Amazon Employee C 32769 9 0.932 0.934 0.916 0.930 0.932 0.933 0.935 0.929 0.928 0.931 0.936±0.001

PimaIndian C 768 8 0.760 0.761 0.638 0.765 0.749 0.745 0.823 0.760 0.774 0.744 0.850±0.007

SpectF C 267 44 0.760 0.757 0.665 0.760 0.792 0.760 0.907 0.766 0.760 0.760 0.950±0.012

SVMGuide3 C 1243 21 0.787 0.826 0.652 0.795 0.792 0.798 0.836 0.773 0.772 0.810 0.841±0.012

German Credit C 1001 24 0.680 0.740 0.639 0.683 0.687 0.645 0.745 0.656 0.591 0.706 0.768±0.008

Credit Default C 30000 25 0.805 0.803 0.743 0.804 0.801 0.798 0.807 0.796 0.747 0.802 0.808±0.001

Messidor features C 1150 19 0.624 0.669 0.475 0.665 0.638 0.655 0.718 0.660 0.730 0.702 0.742±0.003

Wine Quality Red C 999 12 0.466 0.461 0.433 0.480 0.462 0.467 0.568 0.476 0.510 0.536 0.579±0.003

Wine Quality White C 4900 12 0.524 0.510 0.449 0.516 0.525 0.531 0.543 0.507 0.507 0.502 0.559±0.003

SpamBase C 4601 57 0.906 0.917 0.889 0.912 0.925 0.919 0.928 0.912 0.920 0.919 0.931±0.002

AP-omentum-ovary C 275 10936 0.832 0.814 0.658 0.830 0.832 0.758 0.868 0.833 0.865 0.813 0.888±0.002

Lymphography C 148 18 0.108 0.144 0.167 0.150 0.152 0.148 0.342 0.150 0.158 0.379 0.389±0.016

Ionosphere C 351 34 0.912 0.921 0.654 0.928 0.913 0.902 0.971 0.905 0.942 0.899 0.971±0.001

Housing Boston R 506 13 0.404 0.409 0.020 0.416 0.425 0.396 0.465 0.381 0.440 0.387 0.495±0.015

Airfoil R 1503 5 0.519 0.519 0.220 0.521 0.519 0.500 0.538 0.558 0.601 0.605 0.622±0.011

Openml 618 R 1000 50 0.472 0.561 0.052 0.472 0.473 0.467 0.589 0.408 0.565 0.393 0.600±0.005

Openml 589 R 1000 25 0.509 0.610 0.011 0.508 0.505 0.503 0.599 0.463 0.575 0.539 0.606±0.003

Openml 616 R 500 50 0.070 0.193 0.024 0.149 0.167 0.156 0.467 0.076 0.188 0.100 0.499±0.052

Openml 607 R 1000 50 0.521 0.555 0.107 0.516 0.519 0.522 0.640 0.476 0.571 0.430 0.670±0.008

Openml 620 R 1000 25 0.511 0.546 0.029 0.527 0.513 0.512 0.626 0.442 0.538 0.489 0.629±0.001

Openml 637 R 500 50 0.136 0.152 0.043 0.176 0.152 0.144 0.289 0.072 0.170 0.055 0.355±0.022

Openml 586 R 1000 25 0.568 0.624 0.110 0.543 0.544 0.544 0.650 0.482 0.611 0.512 0.689±0.004

* We report F1-score for classification tasks and 1-RAE for regression tasks.
** The standard deviation is computed based on the results of 5 independent runs.

4 EXPERIMENT

We list the details of the experiment setting in the Appendix, where Appendix A.2.1 and A.2.3
introduce the platform information and the description of the dataset, all the methods compared and
the preparation of the data are included in Appendix A.2.2. We also report hyperparameter settings
and predefined mathematical operation set in Appendix A.2.4 and Appendix A.2.5. To thoroughly
analyze the multiple characteristics of our approach, we also analyzed the running time complexity
and bottleneck (Appendix A.3.1), space scalability (Appendix A.3.2), robustness (Appendix A.3.3),
case studies (Appendix A.3.4), reward function (Appendix A.3.5) and scalability on large-scale
datasets (Appendix A.3.6).

4.1 OVERALL COMPARISON

This experiment aims to answer the question: Can our framework generate high-quality features to
improve the downstream machine learning model? Table 1 presents the overall comparison between
our model and other models in terms of F1-score for classification tasks and 1-RAE for regression
tasks. We observed that our model outperforms other baseline methods in most datasets. The pri-
mary reason is that it dynamically captures and applies transformations across various stages of
the feature transformation process rather than being restricted to the latest nodes, thereby enhanc-
ing flexibility and robustness. Compared to expansion-reduction, our technique, along with other
iterative-feedback methods, demonstrates a significant advantage in performance. The fundamental
mechanism is that the reinforcement agent is capable of learning and refining its approach to the
process, thereby achieving superior performance compared to random exploration. Another obser-
vation is that our model performs better than other iterative-feedback approaches, such as NFS, TTG,
and GRFG. An explanation could be that our model identifies and incorporates hidden correlations
and mathematical properties, enabling it to develop an improved strategy for feature transformation,
drawing on extensive historical knowledge from previous efforts. Compared with the AutoML-
based approach, DIFER, our technique demonstrates a significant improvement. This is primarily
because DIFER relies on randomly generated transformations, which are unstable and prone to sub-
optimal results. Overall, this experiment demonstrates that TCTO is effective and robust across
diverse datasets, underscoring its broad applicability for automated feature transformation tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 8: Comparison of TCTO and its variants in Regression and Classification tasks.

4.2 SIGNIFICANCE OF THE TRANSFORMATION ROADMAP

This experiment aims to answer the question: How does the transformation roadmap impact each
component in our model? We design three different ablation variants: 1) TCTO−f indicates that
the clustering module ignores the mathematical characteristics. 2) TCTO−s indicates that the clus-
tering module ignores structural information. 3) TCTO−g ablate the roadmap and adopt a feature-
centric perspective. The comparison results of these variants are reported in Figure 8 and Figure 9.

Impact on Clustering Component: Figure 8 illustrates the effectiveness of the optimal features
produced by our model and its variants in downstream tasks on the test dataset. Firstly, we discov-
ered that TCTO against the other three variants, while TCTO−g showed the weakest performance.
This indicates that the integration of roadmap structure and feature information is vital for a pre-
cise clustering, which can help the agents to organize transformation between two distinct groups
of features, thus generating high-value features. We can also observe that TCTO−s outperforms
TCTO−f on each task and dataset. This observation shows that TCTO−f is superior to TCTO−g ,
i.e., the mathematical characteristic of the generated feature seems to be more significant than struc-
tural information. The underlying driver is that structural information from historical transformation
can enhance the clustering component, thus resulting in better performance.

Impact on Cluster State Representation: From Figure 8, we can observe a decrease in the per-
formance of downstream tasks when the roadmap structure is excluded, i.e., TCTO−g . This per-
formance decline is attributed to the loss of essential information that the transformation roadmap
maintained. In contrast, utilizing the roadmap can enable agents to make strategic decisions based
on comprehensive historical insights and complex feature interactions.

Figure 9: Stability comparison of TCTO and TCTO−g in four different datasets.

Impact on Exploration Stability: To assess stability, we collected the performance of the down-
stream task at each exploration step of TCTO and the ablation variation method TCTO−g . Figure 9
displays box plots summarizing the distributional characteristics of the experimental results. We
can first observe that the median line of our model is consistently higher than TCTO−g . Addi-
tionally, the interquartile range (IQR), depicted by the length of the box, indicates that our model’s
performance distribution is more concentrated than the ablation variation. The observed stability
in our model can be attributed to two primary factors. Firstly, the incorporation of historical and
feature information within the roadmap provides guidance, steering the model towards more stable
exploration directions. Secondly, the implementation of a roadmap pruning strategy alongside a
backtracking mechanism plays a crucial role; it eliminates ineffective transformed features or re-
verts the model to the optimal state of the current episode, thereby ensuring stability throughout the
exploration process.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 ANALYSIS ON GRAPH PRUNING TECHNIQUE

0

20

40

60

80

100

Ra
te

(%
)

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

step-wise prune ratio
node-wise prune ratio
Airfoil (1-RAE)
PimaIndian (F1-score)

Figure 10: Study of the node-wise and
step-wise pruning ratio on Airfoil and
PimaIndia datasets.

This experiment aims to answer the question: What is the
impact of node-wise and step-wise pruning ratios? To
validate the pruning ratio sensitivity of our model, we set
the ratio from 0 to 1 to observe the differences. We report
the performance variations on Airfoil (regression task)
and PimaIndia (classification task) in Figure 10. We ob-
serve that adopting more node-wise pruning, downstream
ML performance improves initially and then declines. A
possible reason is that the node-wise pruning could pre-
serve search space diversity when agents are unfamiliar
with the dataset. However, with more application of the
node-wise pruning strategy, TCTO cannot backtrack to
the previous optimal transformation roadmap, resulting
in suboptimal paths and decreased performance. We set
the node-wise pruning ratio to 30% according to the ex-
perimental results.

5 RELATED WORK

Feature engineering refers to the process of handling and transforming raw features to better suit
the needs of machine learning algorithms (Hancock & Khoshgoftaar, 2020; Chen et al., 2021).
Automated feature engineering implies that machines autonomously perform this task without the
need for human prior knowledge(Lam et al., 2017). There are three mainstream approaches: The
expansion-reduction based method (Kanter & Veeramachaneni, 2015; Horn et al., 2019; Khurana
et al., 2016b; Lam et al., 2017; Khurana et al., 2016a), characterized by its greedy or random expan-
sion of the feature space(Katz et al., 2016; Dor & Reich, 2012), presents challenges in generating
intricate features, consequently leading to a restricted feature space. The iterative-feedback ap-
proach (Khurana et al., 2018; Tran et al., 2016; Wang et al., 2022; Xiao et al., 2023a; Zhu et al.,
2022a; Xiao et al., 2024) methods integrate feature generation and selection stages into one stage
learning process, and aims to learn transformation strategy through evolutionary or reinforcement
learning algorithms (Ren et al., 2023). However, these methods usually model the feature gener-
ation task as a sequence generation problem, ignoring historical and interactive information dur-
ing the transformation progress, result in lack of stability and flexibility. The AutoML-based ap-
proaches (Wang et al., 2021; Zhu et al., 2022b; Xiao et al., 2023b; Ying et al., 2023) have recently
achieved significant advancement. However, they are limited by the quality of the collected trans-
formation and also the lack of stability and traceability during the generation phase. To overcome
these problems, TCTO introduces a novel framework that integrates structural insights based on
roadmaps and a backtracking mechanism with deep reinforcement learning techniques to improve
feature engineering.

6 CONCLUSION REMARKS

We introduce TCTO, an automated framework for feature transformation. Our approach focuses on
managing feature modifications through a transformation roadmap, which keeps track of and orga-
nizes the process to ensure optimal feature generation. There are three main benefits to our approach:
(1) Preserving Transformation Records: The roadmap structure automatically logs all feature trans-
formations, making it accurate to cluster similar features and enhancing the model’s capabilities.
(2) Insightful Decision-Making: By utilizing unique structural and mathematical characteristics, our
cascading agents can make better decisions based on detailed state representations. (3) Increased
Robustness through Backtracking: The roadmap’s built-in backtracking feature allows the frame-
work to correct or change its path if it encounters inefficient or suboptimal transformations, thereby
improving the model’s robustness and adaptability. Extensive experiments show that TCTO is ef-
fective and flexible in optimizing data for a wide range of applications. Further discussion including
future work and application scenario is listed in Appendix A.4.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

D Vijay Anand, Qiang Xu, JunJie Wee, Kelin Xia, and Tze Chien Sum. Topological feature engineer-
ing for machine learning based halide perovskite materials design. npj Computational Materials,
8(1):203, 2022.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

Robson P Bonidia, Anderson P Avila Santos, Breno LS de Almeida, Peter F Stadler, Ulisses N
da Rocha, Danilo S Sanches, and André CPLF de Carvalho. Bioautoml: automated feature engi-
neering and metalearning to predict noncoding rnas in bacteria. Briefings in Bioinformatics, 23
(4):bbac218, 2022.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, 2008.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71–80.
IEEE, 2019.

Yi-Wei Chen, Qingquan Song, and Xia Hu. Techniques for automated machine learning. ACM
SIGKDD Explorations Newsletter, 22(2):35–50, 2021.

Zhen Chen, Pei Zhao, Fuyi Li, Tatiana T Marquez-Lago, André Leier, Jerico Revote, Yan Zhu,
David R Powell, Tatsuya Akutsu, Geoffrey I Webb, et al. ilearn: an integrated platform and meta-
learner for feature engineering, machine-learning analysis and modeling of dna, rna and protein
sequence data. Briefings in bioinformatics, 21(3):1047–1057, 2020.

Davide Chicco, Luca Oneto, and Erica Tavazzi. Eleven quick tips for data cleaning and feature
engineering. PLOS Computational Biology, 18(12):e1010718, 2022.

Lin Chih-Jen. Libsvm dataset download. [EB/OL], 2022. https://www.csie.ntu.edu.
tw/˜cjlin/libsvmtools/datasets/.

Felix Conrad, Mauritz Mälzer, Michael Schwarzenberger, Hajo Wiemer, and Steffen Ihlenfeldt.
Benchmarking automl for regression tasks on small tabular data in materials design. Scientific
Reports, 12(1):19350, 2022.

Lingxi Cui, Huan Li, Ke Chen, Lidan Shou, and Gang Chen. Tabular data augmentation for machine
learning: Progress and prospects of embracing generative ai. arXiv preprint arXiv:2407.21523,
2024.

Dongbo Dai, Tao Xu, Xiao Wei, Guangtai Ding, Yan Xu, Jincang Zhang, and Huiran Zhang. Using
machine learning and feature engineering to characterize limited material datasets of high-entropy
alloys. Computational Materials Science, 175:109618, 2020.

Guozhu Dong and Huan Liu. Feature engineering for machine learning and data analytics. CRC
press, 2018.

Ofer Dor and Yoram Reich. Strengthening learning algorithms by feature discovery. Information
Sciences, 189:176–190, 2012.

OpenAI et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

11

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://arxiv.org/abs/2303.08774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

John T Hancock and Taghi M Khoshgoftaar. Survey on categorical data for neural networks. Journal
of big data, 7(1):28, 2020.

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. Chatgpt as your personal
data scientist, 2023.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36, 2024.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. arXiv preprint arXiv:1901.07329, 2019.

Jeremy Howard. Kaggle dataset download. [EB/OL], 2022. https://www.kaggle.com/
datasets.

Daniel P. Jeong, Zachary C. Lipton, and Pradeep Ravikumar. Llm-select: Feature selection with
large language models, 2024. URL https://arxiv.org/abs/2407.02694.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analytics
(DSAA), pp. 1–10. IEEE, 2015.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation and
selection. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 979–984.
IEEE, 2016.

Prathik R Kaundinya, Kamal Choudhary, and Surya R Kalidindi. Machine learning approaches for
feature engineering of the crystal structure: Application to the prediction of the formation energy
of cubic compounds. Physical Review Materials, 5(6):063802, 2021.

Udayan Khurana, Fatemeh Nargesian, Horst Samulowitz, Elias Khalil, and Deepak Turaga. Au-
tomating feature engineering. Transformation, 10(10):10, 2016a.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-
mated feature engineering for supervised learning. In 2016 IEEE 16th International Conference
on Data Mining Workshops (ICDMW), pp. 1304–1307. IEEE, 2016b.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive
modeling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Oznur Alkan.
One button machine for automating feature engineering in relational databases. arXiv preprint
arXiv:1706.00327, 2017.

Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang, Sai Wu, Gang Chen, and Junbo Zhao. Learning
a data-driven policy network for pre-training automated feature engineering. In The Eleventh
International Conference on Learning Representations, 2023.

Mucan Liu, Chonghui Guo, and Liangchen Xu. An interpretable automated feature engineering
framework for improving logistic regression. Applied Soft Computing, 153:111269, 2024.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On
llms-driven synthetic data generation, curation, and evaluation: A survey. CoRR, 2024.

Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.
Learning feature engineering for classification. In Ijcai, volume 17, pp. 2529–2535, 2017.

12

https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://arxiv.org/abs/2407.02694

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dan Ofer and Michal Linial. Profet: Feature engineering captures high-level protein functions.
Bioinformatics, 31(21):3429–3436, 2015.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11:387–434, 2005.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
wardZ. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. arXiv: Learning,arXiv: Learning, Dec 2019.

Public. Openml dataset download. [EB/OL], 2022a. https://www.openml.org.

Public. Uci dataset download. [EB/OL], 2022b. https://archive.ics.uci.edu/.

Kezhou Ren, Yifan Zeng, Yuanfu Zhong, Biao Sheng, and Yingchao Zhang. Mafsids: a reinforce-
ment learning-based intrusion detection model for multi-agent feature selection networks. Journal
of Big Data, 10(1):137, 2023.

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh, and
Lora M Aroyo. “everyone wants to do the model work, not the data work”: Data cascades in
high-stakes ai. In proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–15, 2021.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings
15, pp. 593–607. Springer, 2018.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Si Si, Huan Zhang, S Sathiya Keerthi, Dhruv Mahajan, Inderjit S Dhillon, and Cho-Jui Hsieh.
Gradient boosted decision trees for high dimensional sparse output. In International conference
on machine learning, pp. 3182–3190. PMLR, 2017.

Eliza Strickland. Andrew ng, ai minimalist: The machine-learning pioneer says small is the new
big. IEEE spectrum, 59(4):22–50, 2022.

Binh Tran, Bing Xue, and Mengjie Zhang. Genetic programming for feature construction and se-
lection in classification on high-dimensional data. Memetic Computing, 8(1):3–15, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Dakuo Wang, Josh Andres, Justin D Weisz, Erick Oduor, and Casey Dugan. Autods: Towards
human-centered automation of data science. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–12, 2021.

Dongjie Wang, Yanjie Fu, Kunpeng Liu, Xiaolin Li, and Yan Solihin. Group-wise reinforcement fea-
ture generation for optimal and explainable representation space reconstruction. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22,
pp. 1826–1834, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393850.

Dongjie Wang, Meng Xiao, Min Wu, Yuanchun Zhou, Yanjie Fu, et al. Reinforcement-enhanced
autoregressive feature transformation: Gradient-steered search in continuous space for postfix
expressions. Advances in Neural Information Processing Systems, 36, 2024.

13

https://www.openml.org
https://archive.ics.uci.edu/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ziyu Xiang, Mingzhou Fan, Guillermo Vázquez Tovar, William Trehern, Byung-Jun Yoon, Xi-
aofeng Qian, Raymundo Arroyave, and Xiaoning Qian. Physics-constrained automatic feature
engineering for predictive modeling in materials science. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 10414–10421, 2021.

Meng Xiao, Dongjie Wang, Min Wu, Ziyue Qiao, Pengfei Wang, Kunpeng Liu, Yuanchun Zhou,
and Yanjie Fu. Traceable automatic feature transformation via cascading actor-critic agents.
Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), pp. 775–
783, 2023a. doi: 10.1137/1.9781611977653.ch87. URL https://epubs.siam.org/doi/
abs/10.1137/1.9781611977653.ch87.

Meng Xiao, Dongjie Wang, Min Wu, Pengfei Wang, Yuanchun Zhou, and Yanjie Fu. Beyond
discrete selection: Continuous embedding space optimization for generative feature selection. In
2023 IEEE International Conference on Data Mining (ICDM), pp. 688–697. IEEE, 2023b.

Meng Xiao, Dongjie Wang, Min Wu, Kunpeng Liu, Hui Xiong, Yuanchun Zhou, and Yanjie Fu.
Traceable group-wise self-optimizing feature transformation learning: A dual optimization per-
spective. ACM Transactions on Knowledge Discovery from Data, 18(4):1–22, 2024.

Wangyang Ying, Dongjie Wang, Kunpeng Liu, Leilei Sun, and Yanjie Fu. Self-optimizing feature
generation via categorical hashing representation and hierarchical reinforcement crossing. In 2023
IEEE International Conference on Data Mining (ICDM), pp. 748–757. IEEE, 2023.

Wangyang Ying, Dongjie Wang, Xuanming Hu, Yuanchun Zhou, Charu C Aggarwal, and Yanjie
Fu. Unsupervised generative feature transformation via graph contrastive pre-training and multi-
objective fine-tuning. arXiv preprint arXiv:2405.16879, 2024.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong, and
Xia Hu. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158, 2023.

Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei
Cao, and Li Jian. OpenFE: Automated feature generation with expert-level performance.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 41880–41901. PMLR, 23–29 Jul 2023.

Xinhao Zhang, Jinghan Zhang, Banafsheh Rekabdar, Yuanchun Zhou, Pengfei Wang, and Kunpeng
Liu. Dynamic and adaptive feature generation with llm. arXiv preprint arXiv:2406.03505, 2024.

Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, and Yihua Huang. Evolutionary auto-
mated feature engineering. In PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific Rim
International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November
10–13, 2022, Proceedings, Part I, pp. 574–586. Springer, 2022a.

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: differentiable automated
feature engineering. In International Conference on Automated Machine Learning, pp. 17–1.
PMLR, 2022b.

14

https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch87
https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch87

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PSEUDO-CODE FOR PROPOSED METHOD

This section intends to provide the details of our methodology. Algorithm 1 describes the optimiza-
tion process of our method. Through continuous interaction with the environment, the RGCN can
effectively encode the transformation roadmap. Cascading agents are capability to make optimal
decisions based on the current state.

Algorithm 1 Cascading Agents Optimization Phase
Input: dataset D[F , Y]
Initialization: downstream ML task M, evaluation metric V , complexity metric U , head cluster
agent πh, operation agent πo, operand cluster agent πt, cluster state representation Rep(·), reward
R
Parameter: training episode T, training step N, prune strategy node number p
Output: head cluster agent πh, operation agent πo, operand cluster agent πt, RGCN encoder
Rep(·)

1: for i = 0 to T do
2: G ← D # 1. Initialize roadmap based on dataset
3: for j = 0 to N do
4: C ← clustering roadmap G
5: ch ← πh(Rep(G), Rep(C)) # 2. Head agent decision
6: o← πo(Rep(G), Rep(C), Rep(ch)) # 3. Operation agent decision
7: if o is a unary operation then
8: D ← (D ∪ (o→ ch)) # 4. Generate new features and update dataset
9: else

10: ct ← πt(Rep(G), Rep(C), Rep(ch), Rep(o)) # 5. Operand agent decision
11: D ← (D ∪ (ch → o→ ct)) # 6. Generate new features and update dataset
12: end if
13: G UPDATES
14: R ← Rp +Rc # 7. Calculate combining reward
15: Optimize πh, πo, πt and encoder Rep based onR
16: if node number of G > p then
17: G ← Prune G
18: end if
19: end for
20: end for
21: return πh, πo, πt, Rep

Algorithm 2 describes the application process of TCTO. The optimized reinforcement learning
agents can make decisions based on the current roadmap, resulting in a dataset with better perfor-
mance on downstream tasks.

A.2 EXPERIMENT SETTINGS

A.2.1 EXPERIMENTAL PLATFORM INFORMATION

All experiments were conducted on the Ubuntu 18.04.6 LTS operating system, AMD EPYC 7742
CPU, and 8 NVIDIA A100 GPUs, with the framework of Python 3.8.18 and PyTorch 2.2.0 Paszke
et al. (2019).

A.2.2 BASELINE METHODS AND DATA PREPARATION

We conducted a comparative evaluation of TCTO against seven other feature generation meth-
ods: (1) RDG randomly selects an operation and applies it to various features to generate new
transformed features. (2) ERG conducts operations on all features simultaneously and selects the
most discriminative ones as the generated features. (3) LDA (Blei et al., 2003) is a classic method
based on matrix decomposition that preserves crucial features while discarding irrelevant ones. (4)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 Cascading Agents Application Phase
Input: dataset D[F , Y], head cluster agent πh, operation agent πo, operand cluster agent πt, cluster
state representation Rep(·)
Initialization: downstream ML taskM, evaluation metric V , complexity metric U
Parameter: testing episode T, testing step N, prune strategy node number p
Output: optimal dataset D′

1: for i = 0 to T do
2: G ← D # 1. Initialize roadmap based on dataset
3: Let best performance m = 0, current best dataset D

′
= D.

4: for j = 0 to N do
5: C ← clustering roadmap G
6: ch ← πh(Rep(G), Rep(C)) # 2. Head agent decision
7: o← πo(Rep(G), Rep(C), Rep(ch)) # 3. Operation agent decision
8: if o is a unary operation then
9: D ← (D ∪ (o→ ch)) # 4. Generate new features

10: else
11: ct ← πo(Rep(G), Rep(C), Rep(ch), Rep(o)) # 5. Tail agent decision
12: D ← (D ∪ (ch → o→ ct)) # 6. Generate new features
13: end if
14: G UPDATES
15: if V(M(D)) > m then
16: m← V(M(D))
17: D

′ ← D # 7. Update optimal dataset
18: end if
19: if node number of G > p then
20: G ← Prune G
21: end if
22: end for
23: end for
24: return D′

AFAT (Horn et al., 2019) overcomes the limitations of ERG by generating features multiple times
and selecting them in multiple steps. (5) NFS (Chen et al., 2019) conceptualizes feature transfor-
mation as sequence generation and optimizes it using reinforcement learning. (6) TTG (Khurana
et al., 2018) formulates the transformation process as a graph construction problem at the dataset
level to identify optimal transformations. (7) GRFG (Xiao et al., 2024) employs a cascading re-
inforcement learning structure to select features and operations, which ultimately generates new
discriminative characteristics. (8) FETCH (Li et al., 2023) is an RL-based end-to-end method that
employs a single agent to observe the tabular state and make decisions sequentially based on its pol-
icy. (9) OpenFE (Zhang et al., 2023) is an efficient method that initially evaluates the incremental
performance of generated features and then prunes candidate features in a coarse-to-fine manner.

To ensure experimental integrity, the datasets were divided into training and testing subsets to pre-
vent data leakage. The training dataset, comprising 80% of the data, was used to optimize the
reinforcement learning process. The testing datasets were used to evaluate the transformation and
generation capabilities of the models. The partitioning principle was stratified sampling, which fol-
lows the same settings as in previous research Wang et al. (2022); Zhu et al. (2022b). Specifically, for
regression tasks, we divided the labels into five ranges based on value size and randomly selected
20% from each range for testing, with the remaining portion used for training. For classification
tasks, we selected 20% from each class for testing, with the remaining data used for exploration.
In the model’s final evaluation phase, we used the sci-kit-learn toolkit to test the on-hold generated
dataset in downstream tasks and applied the n-fold cross-validation method provided by the toolkit
to partition the data for testing. Downstream machine learning tasks were performed using Random
Forest Regressor and Random Forest Classifier.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2.3 DATASET AND EVALUATION METRICS

Table 1 provides a succinct summary of these datasets, detailing sample sizes, feature dimensions,
and task categories. The datasets utilized for training our model were obtained from publicly acces-
sible repositories, including Kaggle, LibSVM, OpenML, and the UCI Machine Learning Repository.
Specifically, the details of the dataset source are listed below:

• LibSVM (Chih-Jen, 2022): SVMGuide3
• Kaggle (Howard, 2022): Amazon Employee
• UCIrvine (Public, 2022b): Higgs Boson, PimaIndian, SpectF, German Credit, Credit De-

fault, Messidor features, Wine Quality Red, Wine Quality White, SpamBase, Lymphogra-
phy, Ionosphere, Housing Boston, Airfoil

• OpenML (Public, 2022a): AP-omentum-ovary, Openml 618, Openml 589, Openml 616,
Openml 607, Openml 620, Openml 637, Openml 586

Our experimental analysis incorporated 14 classification datasets and 9 regression datasets. For
evaluation, we utilized the F1-score for classification tasks and the 1-Relative Absolute Error (1-
RAE) for regression tasks. In both cases, a higher value of the evaluation metric indicates that the
generated features are more discriminative and effective.

A.2.4 HYPERPARAMETER SETTINGS AND REPRODUCIBILITY

To comprehensively explore the feature space, we conducted exploration training for 50 episodes,
each consisting of 100 steps, during the reinforcement learning agent optimization phase. Following
optimizing, we assessed the exploration ability of the cascading agents by conducting 10 applica-
tion episodes, each comprising 100 steps. Following existing research Wang et al. (2024); Xiao
et al. (2024), we set the number of clusters k to the square root of the current number of nodes,
while the number of nodes triggered for pruning K is set to four times the original number of fea-
tures. During step-wise pruning, we utilize the k most importance features. We utilized a two-layer
RGCN as the encoder for the transformation roadmap, and an embedding layer for the operation
encoder. The hidden state sizes for the roadmap encoder and operation encoder were set to 32 and
64, respectively. Each agent was equipped with a two-layer feed-forward network for the predictor,
with a hidden size of 100. The target network was updated every 10 exploration steps by copying
parameters from the prediction network. To train the cascading agents, we set the memory buffer to
16 and the batch size to 8, with a learning rate of 0.01. For the first 30% epochs, we employed a
node-wise pruning strategy to eliminate low-quality features. Subsequently, we utilized a step-wise
backtracking strategy for the remaining epochs to restore the optimal roadmap.

A.2.5 MATHEMATICAL OPERATION SET

The operation set includes elementary unary and binary mathematical operation. For enhancing the
transformation agility, we utilize some functional mathematical operation. The details of operation
set are listed as follows. The token x is a scalar, which implies each element in vector X .

• Elementary mathematical operation
– Unary: x2, x3,

√
x, sinx, cosx, loge(x), e

x

– Binary: +,−,×,÷
• Functional mathematical operation

– tanh: x′ = ex−e−x

ex+e−x

– sigmoid: x′ = 1
1+e−x

– reciprocal: x′ = 1
x

– stand scaler: X ′ = X−µ
σ

Note: µ and σ is the mean and standard deviation of X , respectively.
– minmax scaler: X ′ = X−Xmin

Xmax−Xmin

Note: Xmin and Xmax mean the minus and max element of X , respectively.
– quantile transform: X ′ = Quantile(X)

Note: Quantile transforms features to follow a uniform distribution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 SUPPLEMENTARY EXPERIMENT

For analyzing the multiple characteristics of TCTO, we conducted supplementary experiments. We
provide the runtime bottleneck analysis (results shown in Figure 11), the space complexity analysis
(results shown in Table 3), the study of robustness (results shown in Table 4), case study on generated
features (results shown in Table 5), weight of reward function (results shown in Figure 12) and
scalability on large-scale datasets (results shown in Table 6).

A.3.1 RUNTIME COMPLEXITY AND BOTTLENECK ANALYSIS

This experiment aims to answer: What is the main temporal bottleneck of TCTO?

Table 2: The time complexity analysis

Time Complexity Analysis
Cluster Decision Update Prune Downstream task
O(m3) R O(mk) O(nm) O(Tmn log n+ T log n)

n :sample number T :the number of constructed trees during
Random Forest algorithm

m:feature number R:related to the latent dimension, neural
network architecture

k: generative feature number

Time Complexity Analysis: Table 2 shows
the analysis of the time complexity. Regard-
ing of clustering process: It involves calculat-
ing the eigenvalue and eigenvector of a matrix,
whose dimension depends on the feature num-
ber. The normal time complexity of eigen de-
composition is O(m3). Regarding of decision
process: It is a neural network forward infer-
ence process. The time complexity lies on the
latent dimension, neural network architecture
and etc. We don’t analysis it deeply. Regard-
ing of roadmap updating process: In order to avoid the repeat nodes adding to the roadmap, we
compare generative nodes with existing ones. Suppose the generative feature number is k, the time
complexity of updating is O(mk). Regarding of roadmap pruning process: For node-wise pruning
strategy, we select the most effective nodes from existing nodes based on their importance. The time
complexity of calculating importance is O(nm). For step-wise pruning strategy, the time complex-
ity is O(1) Regarding of downstream task process: Take random forest algorithm as an example,
the constructing and training trees involves O(Tmn log n) and testing model involves O(T log n)
time complexity. It is worth noting that although clustering process hasO(m3) time complexity, the
calculating process of eigen decomposition is fast during empirical running time.

Lymphography

SpectF
Ionosphere

PimaIndian
Wine Quality Red

Messidor_features

SVMGuide3

Wine Quality White

0

100

200

300

400

Ti
m

e
Co

ns
um

in
g

0

200

400

600

800

1000

Sa
m

pl
e

Nu
m

be
r

Reward Estimation Time
Decision Time
Update Time
Prune Time
Cluster Time
sample number

(a) Time consuming on classification tasks

Housing Boston

Airfoil
Openml_616

Openml_620

Openml_589

Openml_607

Openml_618

0

250

500

750

1000

1250

1500

Ti
m

e
Co

ns
um

in
g

2000

4000

6000

8000

10000

Da
ta

 N
um

be
r

Reward Estimation Time
Decision Time
Update Time
Prune Time
Cluster Time
data number

(b) Time consuming on regression tasks

Figure 11: Time consumption of TCTO on different tasks.

Runtime Bottleneck Analysis: Figure 11 visualized the average empirical running time consump-
tion on each dataset of different modules to analyze the time complexity, including reward estima-
tion, agent decision-making, roadmap updating, clustering and pruning. We can first observe that
the reward estimation time dominates the overall time consumption across all dataset sizes. This
phenomenon can be primarily attributed to the computationally intensive nature of the downstream
tasks evaluation process. In addition, the time cost of reward estimation increases proportionally
with the size of the dataset, resulting in a linear scalability of TCTO in terms of time complexity.
In summary, the main temporal bottleneck of this framework, as well as other iterative-feedback
approaches, is the downstream task evaluation in the reward estimation component.

A.3.2 SPACE COMPLEXITY ANALYSIS

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: The space complexity analysis

Hidden
dim.

Output
dim.

Embedding
dim.

Head agent
param.

Operation agent
param.

Operand agent
param.

Total
param.

32 64 7 53993 14516 20213 177444
32 32 7 29129 8116 10613 95716
32 64 16 53993 14516 21257 179532
64 32 7 51625 8116 10613 140708
64 64 7 94921 14516 20213 259300
64 64 16 94921 14516 21257 261388

This experiment aims to answer the
question: Does TCTO have a good
spatial scalability? Table 3 presents
the space complexity of each agent
and the total number of parameters in
TCTO. Since our model’s reinforce-
ment learning structure remains fixed
and decoupled with dataset size, it maintains constant space complexity even when exploring large-
scale datasets. We configure various dimensions for RGCN hidden layers, output layers, and op-
eration embeddings to assess their impact on space complexity. We can observe that the scale of
the head cluster agent correlates with the dimensions of RGCN hidden and output layers, as it en-
codes the roadmap during the initial step. Similarly, the parameter scale of the operation agent is
influenced by the dimension of RGCN output layers, as this agent makes decisions based on state
information derived from roadmap embeddings. The operand cluster agent’s space complexity is
higher due to its inclusion of an additional embedding layer for encoding mathematical operations
within the value network. Notably, our model employs a dual value-network structure within the
deep Q-Learning framework, resulting in a total parameter count twice the sum of the parameters of
the three cascading agents.

Table 4: Robustness check of TCTO with distinct ML models on different datasets

RFR Lasso XGBR SVM-R Ridge-R DT-R MLP

ATF 0.433 0.277 0.347 0.276 0.187 0.161 0.197
ERG 0.412 0.162 0.331 0.278 0.256 0.257 0.300
NFS 0.434 0.169 0.391 0.324 0.261 0.293 0.306
RDG 0.434 0.193 0.299 0.287 0.218 0.257 0.279
TTG 0.424 0.163 0.370 0.329 0.261 0.294 0.308
GRFG 0.451 0.185 0.435 0.363 0.265 0.197 0.208
TCTO 0.495 0.370 0.444 0.384 0.317 0.350 0.310

(a) Housing Boston

RFC XGBC LR SVM-C Ridge-C DT-C KNB

ATF 0.669 0.608 0.634 0.664 0.633 0.564 0.530
ERG 0.683 0.703 0.659 0.571 0.654 0.580 0.537
NFS 0.659 0.607 0.627 0.676 0.646 0.613 0.577
RDG 0.627 0.607 0.623 0.669 0.660 0.609 0.577
TTG 0.650 0.607 0.633 0.676 0.646 0.599 0.577
GRFG 0.692 0.648 0.642 0.486 0.663 0.580 0.552
TCTO 0.742 0.730 0.706 0.701 0.689 0.652 0.587

(b) Messidor features

Table 5: A case study on the ten most significant features of both original and transformed datasets
for Housing Boston and White Wine Quality

Housing Boston TCTO−g TCTO
feature importance feature importance feature importance

lstat 0.362 quan trans(lstat) 0.144 v18 :
√
|v17| 0.080

rm 0.276 lstat 0.135 sta(v17) 0.077
dis 0.167 quan trans(rm) 0.126 sta(

√
|v17|) 0.054

crim 0.072 rm 0.119 sta(v16) 0.054
rad 0.032 (dis+(...))-quan(lstat) 0.076 sta(

√√
v18) 0.053

black 0.032 (dis*(...))+(...)+(dis+...) 0.050 v16 : 1
sin v12−v0

0.053
age 0.030 (dis+...)+(...)-(zn+(...)) 0.048 sta(v24) 0.050
nox 0.011 (dis+...)-(...)+quan(rm) 0.028 min(v5) 0.044

ptratio 0.007 (dis+..lstat)-(...+rad) 0.016 v17 :
√
|v16| 0.037

indus 0.005 (dis+..crim)-(...+rad) 0.015 v12 0.025

1-RAE:0.414 Sum:0.993 1-RAE:0.474 Sum:0.757 1-RAE:0.494 Sum:0.527

Wine Quality White TCTO−g TCTO
feature importance feature importance feature importance

alcohol 0.118 quan trans(alcohol) 0.043 v2 + v30 0.026
density 0.104 alcohol 0.036 sin (sin (f0)) + v30 0.025
volatile 0.099 ((den...)+(alc...)/(...)) 0.028 v5 + v30 0.024

free sulfur 0.093 quan trans(density) 0.028 sin (f0) + v30 0.023
total sulfur 0.092 density 0.028 v2 0.023

chlorides 0.091 (den/(...))+(dens...)/(...) 0.026 v3 + v30 0.023
residual 0.087 (den/(...)+((...)/tan(...)) 0.024 v6 + v30 0.021

pH 0.082 (den/...)-(...+stand(...)) 0.023 v7 + v30 0.021
citric acid 0.081 (citr/(...)+(...)/(tanh(...)) 0.023 v0 + v30 0.021

fixed acidity 0.078 (free/(...)+(...)/tanh(...)) 0.023 v11 + v30 0.021

F1-score:0.536 Sum:0.924 F1-score:0.543 Sum:0.282 F1-score:0.559 Sum:0.228

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.3.3 ROBUSTNESS CHECK

This experiment aims to answer the question: Are our generative features robust across different
machine learning models used in downstream tasks? We evaluate the robustness of the generated
features on several downstream models. For regression tasks, we substitute the Random Forest Re-
gressor (RFR) with Lasso, XGBoost Regressor (XGB), SVM Regressor (SVM-R), Ridge Regressor
(Ridge-R), Decision Tree Regressor (DT-R), and Multilayer Perceptron (MLP). For classification
tasks, we assess the robustness using Random Forest Classifier (RFC), XGBoost Classifier (XGB),
Logistic Regression (LR), SVM Classifier (SVM-C), Ridge Classifier (Ridge-C), Decision Tree
Classifier (DT-C), and K-Neighbors Classifier (KNB-C). Table 4 presents the results in terms of
1-RAE for the Housing Boston dataset and F1-score for the Messidor features dataset, respectively.
We can observe that the transformed features generated by our model consistently achieved the high-
est performance in regression and classification tasks among each downstream machine learning
method. The underlying reason is that these features contain significant information that is capable
of fitting into various machine learning tasks. Therefore, this experiment validates the effectiveness
of our model in generating informative and robust features for various downstream models.

A.3.4 CASE STUDY ON GENERATED FEATURES

This experiment aims to answer the question: Can our model reuse the high-value sub-
transformation and generate a high-quality feature space? Table 5 presents the Top-10 most impor-
tant features generated by the original dataset, our proposed method, and its feature-centric variants
(i.e., TCTO−g). We can first observe that TCTO has reused many high-value sub-transformations,
such as node v17 in Housing Boston and node v30 in Wine Quality White. Compared to TCTO−g ,
the roadmap-based model tends to reuse important intermediate nodes, transforming them to gener-
ate more significant features. A possible reason for this is that our model effectively utilizes histori-
cal information from the roadmap, identifying optimal substructures and exploring and transforming
these crucial nodes, thereby utilizing the historical sub-transformations. Another point to note is that
the transformed feature’s importance score in our model tends to be more balanced compared to the
original dataset and its variant, e.g., the sum of the top-10 feature importance is lower. Since our
model has better performance, we speculate that our framework comprehends the properties of the
feature set and ML models to produce numerous significant features by combining the original fea-
tures. Regarding the record of feature transformations shown in Table 5, which is depicted through
a formula combining both original and intermediate features, full traceability is also achieved. Such
characteristics of traceability might help experts find new domain mechanisms.

A.3.5 ANALYSIS ON THE WEIGHT OF REWARD FUNCTION

0:1
0.1

:0.
9
0.2

:0.
8
0.3

:0.
7
0.4

:0.
6
0.5

:0.
5
0.6

:0.
4
0.7

:0.
3
0.8

:0.
2
0.9

:0.
1 1:0

Reward Weight Ratio (Performance : Complexity)

0.40

0.45

0.50

0.55

0.60

Pe
rfo

rm
an

ce
 (1

-R
AE

)

Figure 12: Impact of varying weights be-
tween performance and complexity rewards

This experiment aims to answer the question: How
does the trade-off between performance and com-
plexity impact the performance? We conducted a
preliminary experiment using the Airfoil dataset to
analyze the impact of varying reward weights during
the optimization stage. Figure 12 shows that only
the complexity reward or the performance reward
is used exclusively, the performance is noticeably
lower. This result suggests that while performance
rewards encourage the agent to generate high-value
features, overly complex features can be detrimental
to the downstream task. With a balanced weight of
them, the performance fluctuates slightly. Based on
these preliminary results, we concluded that a ratio of 1:1 between feature quality and complexity,
providing stable and reliable performance.

A.3.6 ANALYSIS ON THE SCALABILITY ON LARGE-SCALE DATASETS

This experiment aims to answer the question: Can our approach scale to large-scale datasets?
We categorize large-scale datasets into two types: large-sample and high-dimensional datasets. As
shown in Section A.3.1, the main temporal bottleneck of TCTO lies in the downstream task evalua-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: Comparison of Baseline Methods and TCTO on ALBERT

Dataset Original RDG ERG LDA AFAT NFS TTG GRFG DIFER FETCH OpenFE TCTO
ALBERT 0.674 0.678 0.619 0.530 * 0.680 0.681 * * * 0.679 0.681

Newsgroups 0.568 0.556 0.545 0.230 0.544 0.553 0.546 * * * 0.544 0.576

We report F1-score for ALBERT and Macro-F1 for Newsgroups.
‘*’ indicates that the method ran out of memory or took too long.

tion within the reward estimation component.
Scalability with large-sample datasets: ALBERT is a large-sample dataset with 425,240 samples
and 78 features. The time required for the downstream task is approximately 16 minutes per step
which is unacceptable. To address this issue, we switched to a more efficient downstream model
LightGBM, which offers faster speed. Table 6 demonstrates that TCTO can effectively scale by
leveraging more efficient models for large-sample datasets. We observed that all methods exhibit
limited gains, and the results suggest that feature transformation methods have limited impact on
extremely large-sample datasets, consistent with existing work (see Table 3 in study (Zhang et al.,
2023)). The key reason for this is that neural networks can learn latent patterns from sufficient sam-
ples, making additional feature transformation less essential.
Scalability with high-dimensional datasets: Newsgroups is a high-dimensional dataset with
13,142 samples and 61,188 features. The time required for the downstream task is approximately 5
minutes per step. For high-dimensional datasets, we employed a pruning strategy to remove irrele-
vant root nodes before exploring the dataset. Table 6 shows that TCTO outperforms baseline meth-
ods in terms of Macro-F1. The pruning strategy helps mitigate the complexity of high-dimensional
datasets, speeding up the process while maintaining performance.
In conclusion, our experiments demonstrate that TCTO is scalable and performs well on both large-
sample and high-dimensional datasets when appropriate strategies are employed.

A.4 DISCUSSION ON FUTURE WORK

In this section, we outline three potential future milestones: enhancing the framework, incorporating
large language models, and exploring further application scenarios.

A.4.1 IMPROVEMENT ON THE FRAMEWORK

While TCTO demonstrate promising advances toward building a roadmap for automated feature
transformation, our analysis has identified some primary bottlenecks in our approach:

Regarding the Framework of Iterative-Feedback Approaches. Those approaches result in a
time-consuming nature of the evaluations on downstream tasks. Toward this metric, the reward
feedback will be more precise and directed. However, this phase often requires extensive com-
putational resources and time Ying et al. (2024), especially when dealing with large datasets and
complex models. In future work, we aim to balance the trade-off between efficacy and efficiency by
adaptively integrating some unsupervised evaluation metrics into the iterative-feedback framework,
thus making it more suitable for huge datasets.

Regarding the Limitation of State Representation Method: The state representation method
could be treated as the ‘eye’ of each cascading agent. In our study, the state representation method is
consisted of statistical information of (generated) features and the historical feature-feature crossing
maintained by the roadmap. Although applying graph modeling technique on the evolving could
capture the latent information within the feature-feature crossing, the discussion of feature-level
state representation is still limited. Inspired by the study Xiao et al. (2024), our work will enhance
the state representation technique by integrating advanced deep learning methods, including Au-
toEncoder Kingma (2013), Graph Attention Network Veličković et al. (2017), and large language
models in the future.

Regarding the Limitation of Applications on Large-scale Datasets: While TCTO and feature
transformation methods show promising results for small-scale datasets, further research is needed
to improve their adaptability to large-scale and high-dimensional datasets. Specifically, future work
will focus on the following areas: Optimizing Feature Transformation Methods for Large-sample
Datasets: We aim to develop more scalable feature transformation methods that can better handle
large-scale datasets without introducing significant computational bottlenecks. This may involve in-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

corporating more efficient algorithms for feature generation and selection. Enhancing Feature Prun-
ing Techniques for High-dimensional Datasets: Given the challenges posed by high-dimensional
datasets, we plan to investigate advanced feature pruning strategies that can more effectively identify
and retain the most relevant features while minimizing performance loss. Additionally, exploring
hybrid approaches combining feature selection and transformation could enhance efficiency.

A.4.2 LARGE LANGUAGE MODELS AS DATA SCIENTISTS

Recently some research has utilized Large Language Model(LLM) to generate high-quality fea-
tures (Hassan et al., 2023; Long et al., 2024; Zhang et al., 2024; Hollmann et al., 2024). However,
LLMs exhibit limitations from two perspectives: the semantic understanding of feature names and
the issue of hallucination.

Regarding the Limitation of Feature Names Comprehension: LLM-based methods utilize the
comprehensive ability, conducting transformation to generate high-quality features based on the
semantic of feature names. However, due to data quality issues, feature names are frequently anony-
mous or missing in some case, such as federated learning scenarios. With semantic blinding, Holl-
mann et al. (2024) found a strong drop in performance based on their experimental conclusion.

Regarding the Issue of Hallucination: When LLMs are engaged in certain feature engineer-
ing tasks, such as evaluating feature importance, they often encounter the hallucination problem.
The hallucination problem in LLMs can result in the generation of irrelevant or unsupported con-
tent (Hassan et al., 2023). Due to hallucination problems, Jeong et al. (2024) reported that without
providing dataset, LLMs can produce a precise numerical value for importance.

In contrast to these approaches, TCTO operates independently of the semantic context of feature
names, allowing for broader application scenarios. We also acknowledge that integrating common
or injected knowledge in LLMs has the potential to greatly improve the scalability, performance,
and efficiency of our framework. It also worth noting that Jeong et al. (2024), GPT-4 (et al., 2024)
exhibits notable hallucination problems. However, we have noticed a significant improvement fol-
lowing the release of GPT-4o. We provide a preliminary experiment in the following figure, (regard-
ing omitted prompts, please refer to (Jeong et al., 2024)), where LLMs demonstrate a reasonable
capacity to evaluate the importance of features. In future work, we will explore how LLMs can
be utilized to comprehend and evaluate the roadmap that identified by TCTO, focusing on research
aspects such as node clustering, reward feedback and node pruning.

Preliminary Experiment on GPT-4o: Feature Importance Notion

System: (Omitted) # Prompts are omitted.
User: Provide a score and reasoning for “Number of times pregnant” formatted according to
the output schema above:
GPT-4o: { “reasoning”:“The number of times a patient has been pregnant is associated with
gestational diabetes and overall metabolic health. Multiple pregnancies can increase the risk of
developing diabetes later in life, making this feature significant for prediction.”, “score”: 0.75
} # GPT-4 can also support this analysis.
User: Is there a specific notion of feature importance that is captured in your score?
GPT-4o: Yes, the score reflects the degree to which the feature contributes to the model’s
ability to predict the target variable—in this case, the likelihood of having diabetes. It incor-
porates both the statistical relevance of the feature in relation to diabetes risk and its clinical
significance based on existing medical knowledge. This can involve techniques like correlation
analysis, feature selection methods, or model-specific importance metrics, ensuring the score
represents a blend of empirical data and domain expertise. # GPT-4 can also support this anal-
ysis, but hallucination could happened.
User: What kind of statistical analysis are you referring to? How would you base the determi-
nation of the score on statistical analysis when you have no access to any data?
GPT-4o: In a real scenario, statistical analysis methods like the following could be employed
to determine feature importance scores based on available data: Correlation Analysis: Examin-
ing the correlation coefficients (e.g., Pearson or Spearman) between each feature and the target
variable to identify how strongly each feature relates to the likelihood of diabetes.
Feature Selection Techniques: Recursive Feature Elimination (RFE): Iteratively removing fea-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

tures and evaluating model performance to identify which features contribute most to predictive
power. Lasso Regression: Using regularization to shrink coefficients of less important features
to zero, allowing identification of important features.
Tree-based Methods: Algorithms like Random Forest or Gradient Boosting can provide fea-
ture importance scores based on how much each feature contributes to reducing uncertainty in
predictions.
Statistical Tests: Using tests such as the Chi-square test for categorical features or t-tests for
continuous features to assess their significance in relation to the target variable. Without ac-
cess to data, the scores I provided were based on common clinical knowledge and established
relationships in the medical literature regarding diabetes risk factors. The scores are hypothet-
ical and illustrative, meant to guide the conceptual understanding of how feature importance
might be assessed in practice. # GPT-4 can not provide reason on its previous analysis and will
response SORRY.

A.4.3 APPLICATION SCENARIOS OF FEATURE GENERATION

For years, feature engineering has been a significant step Sambasivan et al. (2021); Strickland (2022)
before applying computational statistics or machine learning methods to data, and its importance has
grown with the growing trend of interdisciplinary research between artificial intelligence and vari-
ous fields, such as life sciences (Ofer & Linial, 2015; Chen et al., 2020; Chicco et al., 2022; Bonidia
et al., 2022) and material sciences (Dai et al., 2020; Kaundinya et al., 2021; Xiang et al., 2021;
Anand et al., 2022). Given the complexity inherent in scientific data, automated feature transfor-
mation methods like the one proposed in this work have significant potential to advance various
AI4Science disciplines. In bio-informatics and computational biology, our approach can aid in ex-
tracting pivotal gene, protein, or metabolites combinations (as depicted in our motivation, Figure 1)
from high-throughput sequencing data, enhancing the identification of gene networks associated
with diseases. In the realm of chemistry and drug discovery, chemically meaningful features can
automatically be generated to improve the accuracy of molecular activity and toxicity predictions,
thereby accelerating the development of new pharmaceuticals. In future research, we plan to ad-
vance our study by assisting life sciences experts in identifying combinations within population co-
hort data. The feature transformation roadmap can ensure traceability and interpretability, thereby
aiding scientific discovery and enhancing the model’s accuracy in early disease detection.

23

	introduction
	preliminary
	Important Definitions
	Feature Transformation Problem

	Proposed Method
	Insights of the Proposed Method
	Operation on Dynamic Transformation Roadmap
	Reinforcement Learning Framework on the Evolving Roadmap

	Experiment
	Overall Comparison
	Significance of the Transformation Roadmap
	Analysis on Graph Pruning Technique

	Related Work
	Conclusion Remarks
	Appendix
	Pseudo-code for Proposed Method
	Experiment Settings
	Experimental Platform Information
	Baseline Methods And Data Preparation
	Dataset and Evaluation Metrics
	Hyperparameter Settings and Reproducibility
	Mathematical Operation Set

	Supplementary Experiment
	Runtime Complexity and Bottleneck Analysis
	Space Complexity Analysis
	Robustness Check
	Case Study on Generated Features
	Analysis on the weight of reward function
	Analysis on the scalability on large-scale datasets

	Discussion on Future Work
	Improvement on the Framework
	Large Language Models as Data Scientists
	Application Scenarios of Feature Generation

