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ABSTRACT

Prompt engineering and calibration make large language models excel at reason-
ing tasks, including multiple choice commonsense reasoning. From a practical
perspective, we investigate and evaluate these strategies on smaller language mod-
els. Through experiments on five commonsense reasoning benchmarks, we find
calibration favors GPT-2 and T5, prompt engineering favors Flan-T5, but their
joint effects are mostly negative. 1

1 INTRODUCTION

Large Language models (LLMs) have shown impressive performance in many NLP applications
(Ouyang et al., 2022; Chung et al., 2022; Wei et al., 2022a), including commonsense reasoning, a key
component to AGI (Davis & Marcus, 2015). Recent studies suggest that LLMs are capable of zero-
shot and few-shot learning (Brown et al., 2020; Webson & Pavlick, 2022; Chowdhery et al., 2022),
and prompt engineering and calibration can further improve their performance (Kojima et al., 2022;
Zhao et al., 2021; Jiang et al., 2021; Kadavath et al., 2022). Despite achieving SOTA performance
on many benchmarks, most LLMs are very expensive to use and not released to the public.

Consequently, we study whether prompt engineering and calibration can help smaller language mod-
els (those with no more than 3B parameters) in zero-shot multiple choice commonsense reasoning.
Since these strategies are likely emergent (Wei et al., 2022b; Chan et al., 2022), we make several
modifications, then evaluate them on five commonsense reasoning benchmarks. We find that prompt
engineering favors large Flan-T5 models, while calibration works well on GPT-2 and T5. Their joint
effects are, however, negative in most cases.

2 METHODS

Background. Multiple choice commonsense reasoning is formalized as follows: Given a question
x and several options y1, ..., yn, select the best option. In the zero-shot setting, a language model
computes a score for each option, which is usually the conditional probability PLM (yi|x), and
selects the one with the highest score, as shown in Figure 1. Recent works suggest that alternatives
to the conditional probability can lead to better performance (Holtzman et al., 2021; Niu et al., 2021;
Min et al., 2022), but we do not consider these variants for simplicity and fair comparison.

Prompt engineering: multiple choice prompt and instruction. A limit of PLM (yi|x) is that
options are not considered jointly. Recent works suggest that providing all the options in the input,
along with instructions about the task, is beneficial (Robinson & Wingate, 2023; Chung et al., 2022).
Inspired by these ideas, we design templates T () that add an instruction and options to a question,
as shown in Figure 1. We do not bind options to symbols like (A), because symbol binding is an
emergent ability (Robinson & Wingate, 2023).2

1Code: https://github.com/KasMasVan/Prompt-engineering-and-calibration.
2We discuss the effect of symbol binding in Appendix C.
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Figure 1: Combinations of data format and option scores for multiple choice commonsense reason-
ing. Based on the zero-shot method, we add prompt engineering (instruction and multiple choice
prompt) and calibration. Unlike previous works, we do not bind options to symbols, like (A).

Calibration. Recent works find that language models prefer certain options even without a question,
which suggests they are not well-calibrated (Zhao et al., 2021; Jiang et al., 2021). To overcome this
problem, we divide the conditional score of an option by another score computed from a ”null”
prompt that contains no question, as in PLM (yi|x)

PLM (yi)
. An example is shown in Figure 1.

3 EXPERIMENTS

Setup. We evaluate prompt engineering and calibration on five multiple choice commonsense
benchmarks: (1) CommonsenseQA (CSQA) (Talmor et al., 2019); (2) COPA (Gordon et al., 2012);
(3) OpenBookQA (OBQA) (Mihaylov et al., 2018); (4)PIQA (Bisk et al., 2019); (5)Social IQA
(SIQA) (Sap et al., 2019); We present their statistics in Appendix B. For all benchmarks, we only
use their development sets. We compare four zero-shot methods mentioned in Figure 1: (1) ZS,
the standard zero-shot method that computes conditional probability scores of each option; (2) CA,
which is ZS with calibration, also known as PMIDC in Holtzman et al. (2021); (3) PE, which is ZS
with prompt engineering; (4) FULL, which is ZS with both prompt engineering and calibration. As
for language models, we use GPT-2 (Radford et al., 2019), T5 (Raffel et al., 2022), and Flan-T5
(Chung et al., 2022). The evaluation metric is accuracy.

Figure 2: Experiment results on 5 benchmarks, grouped by model families, i.e., GPT-2, T5, Flan-T5.

Results. According to Figure 2, We find calibration works best on GPT-2 and T5, and prompt
engineering is most performant on Flan-T5. We attribute the former to the surface form competition
(Holtzman et al., 2021), and the latter to instruction tuning (Chung et al., 2022). In addition, we find
neither strategy works on PIQA, and their joint effects are mostly negative. We leave detailed results
and analysis in Appendix C.

4 CONCLUSION

We study whether prompt engineering and calibration help smaller language models in multiple
choice commonsense reasoning, as they help LLMs. We find that calibration works well on GPT-2
and T5, prompt engineering favors Flan-T5, but their joint effects are mostly negative.
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A FULL PROMPTS FOR ALL BENCHMARKS

In this section, we present prompts (i.e., templates) for each benchmark in Table 1. Specifically, we
use one prompt for CSQA and SIQA, and another for COPA, OBQA, and PIQA, because the latter
three do not always have a question in a data sample. For simplicity, we still use the term ”question”
for these three datasets. We also provide the prompts we use for calibration, which is used in FULL.

Table 1: Prompts for each benchmark
Benchmarks Prompt for the Question Prompt for Calibration

CSQA, SIQA
Given answers in square brackets [], choose the best
for the question. Answers: [answers]. Question:
[question] The best answer is:

Given answers in square brackets [], choose the
best one. Answers: [answers]. The best answer
is:

COPA, OBQA, PIQA
Given answers in square brackets [], choose the one
that best completes the sentence. Answers: [answers].
Sentence: [question] The best answer is:

Given answers in square brackets [], choose the
best one. Answers: [answers]. The best answer
is:

B DATASET STATISTICS

We present statistics of the five commonsense reasoning (CSR) dataset we use in our experiments in
Table 2.

C FULL EXPERIMENT RESULTS AND ANALYSIS

C.1 MAIN RESULTS

We present results on GPT-2 in Table 3, T5 in Table 4, and Flan-T5 in Table 5. We do not use
Flan-T5-XXL, which is too large (11B) to store on our hardware.
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Table 2: Statistics of datasets
Dataset Name Type of CSR Number of choices Train Validation Test

COPA (Gordon et al., 2012) Causal 2 N/A 500 500
CSQA (Talmor et al., 2019) General 5 9741 1221 1140

OBQA (Mihaylov et al., 2018) Scientific 4 4957 500 500
PIQA (Bisk et al., 2019) Physical 2 16000 2000 3000
SIQA (Sap et al., 2019) Social 3 33410 1954 N/A

Calibration is the best method on GPT-2 and T5. Calibration works well on OBQA, outper-
forming the second-best baseline by 10.6% and 3.5% absolute for GPT-2 and T5, and similarly
on COPA, CSQA, and SIQA. This is because calibration mitigates the surface form competition
(Holtzman et al., 2021) by factoring out the probability of surface forms.

Prompt engineering is the best method on Flan-T5. On SIQA, prompt engineering beats other
baselines by 3.9-10.7% absolute, and similarly on COPA, CSQA, and OBQA. This is because Flan-
T5 has been instruction-tuned on many NLP tasks (Chung et al., 2022), and some of them are written
with multiple choice prompts. Another cause is Flan-T5 has seen the training splits of all the five
commonsense reasoning benchmarks during instruction tuning.

Neither strategy works on PIQA. On all models, ZS is the strongest baseline on PIQA, and beats
the second-best baseline by 3.9-7.5% absolute. We attribute this fact to that solving PIQA requires
different commonsense knowledge and reasoning than other benchmarks. PIQA focuses on physical
knowledge, like gravity, momentum, and force. On the other hand, other benchmarks are more
human-centric, focusing on general and social commonsense. We believe these models are not good
at physical commonsense, so calibration and prompt engineering degrade performance.

The joint effects of the two strategies, i.e., FULL, are mostly negative. In most cases, the per-
formance of FULL roughly equals the summed effect of prompt engineering and calibration, which
is intuitive. We also find FULL only performs best on OBQA and CSQA with Flan-T5, where it is
only marginally better than PE. For Flan-T5, this is likely because instruction tuning does not work
well on small models, so FULL is partially functional. For GPT-2 and T5, this is likely because they
are not instruction tuned, so the longer context introduced by PE and FULL degrades performance.

Table 3: Accuracy (%) on GPT-2

Model GPT-2-Base (125M) GPT-2-Medium (350M) GPT-2-Large (765M) GPT-2-XL (1.6B)
ZS CA PE FULL ZS CA PE FULL ZS CA PE FULL ZS CA PE FULL

COPA 61.0 62.8 53.0 54.4 67.0 70.0 49.4 54.2 69.8 69.4 51.4 57.4 69.0 71.6 51.4 53.0
CSQA 25.5 36.4 23.8 27.4 30.9 41.8 27.4 30.1 33.3 44.5 26.9 33.2 38.6 47.8 35.1 36.2
OBQA 15.8 33.4 25.6 28.0 18.0 38.6 26.8 27.4 21.6 41.4 25.2 29.4 22.4 43.2 25.8 29.4
PIQA 62.1 57.1 54.6 52.6 66.2 57.5 51.8 52.6 69.6 60.7 55.0 54.6 69.6 62.2 52.6 53.4
SIQA 35.8 38.0 34.3 37.1 36.9 40.0 36.0 38.0 36.6 40.3 34.0 35.6 39.0 41.0 35.2 35.9

Table 4: Accuracy (%) on T5

Model T5-Small (80M) T5-Base (250M) T5-Large (780M)
ZS CA PE FULL ZS CA PE FULL ZS CA PE FULL

COPA 55.2 51.2 51.2 52.2 59.6 59.4 51.0 51.8 65.2 56.6 53.2 53.8
CSQA 16.6 22.8 21.1 21.0 26.1 30.0 20.6 22.5 39.2 35.4 33.1 35.7
OBQA 14.2 28.8 23.8 25.8 15.8 30.8 27.8 27.2 19.0 30.4 24.8 26.4
PIQA 56.6 50.5 51.2 50.8 61.0 57.7 51.7 53.0 66.6 64.4 52.8 51.7
SIQA 36.2 36.1 35.0 34.4 36.2 37.6 37.0 33.5 38.7 38.1 37.0 34.1

Table 5: Accuracy (%) on Flan-T5

Model Flan-T5-Small (80M) Flan-T5-Base (250M) Flan-T5-Large (780M) Flan-T5-XL (3B)
ZS CA PE FULL ZS CA PE FULL ZS CA PE FULL ZS CA PE FULL

COPA 59.8 56.6 52.0 49.6 67.0 68.2 60.6 61.4 72.8 71.6 87.6 84.0 80.8 78.4 88.8 85.6
CSQA 29.2 37.7 30.8 28.3 40.9 48.5 52.5 51.8 51.6 51.5 62.2 67.6 61.8 64.7 70.6 72.7
OBQA 14.0 32.6 24.8 29.6 20.0 34.0 28.6 34.0 24.2 39.4 53.4 52.8 30.0 49.6 61.0 55.4
PIQA 62.5 57.6 54.2 51.1 65.9 59.7 58.1 54.0 71.4 65.5 72.7 60.6 75.8 68.3 68.9 60.4
SIQA 41.7 42.5 42.3 42.3 46.4 47.4 54.7 53.7 51.4 48.1 68.6 66.7 56.1 56.3 71.6 58.9
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C.2 ABLATION STUDY: THE EFFECT OF SYMBOL BINDING

We apply symbol binding (SB) to PE and FULL, and compare their accuracy (%) on SIQA. Results
are shown in Table 6. We find symbol binding universally decreases performance on all models
and on both methods, which is likely because symbol binding is an emergent ability that only ben-
efits large models (Robinson & Wingate, 2023). Therefore, we do not use symbol binding in our
experiments.

Table 6: Effect of symbol binding (%) on SIQA

Method GPT-2 T5 Flan-T5
PE 34.9 36.3 59.3

PE + SB 33.0 (-1.9) 32.6 (-3.7) 57.8 (-1.5)
FULL 36.7 34.0 55.4

FULL + SB 33.6 (-3.1) 33.1 (-0.9) 52.0 (-3.4)
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