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Abstract

Although auto-regressive models excel in nat-001
ural language processing, they often struggle002
to generate diverse text and provide limited003
controllability. Non-auto-regressive methods004
could be an alternative but often produce de-005
generate outputs and exhibit shortcomings in006
conditional generation. To address these chal-007
lenges, we propose Diffusion-EAGS, a novel008
framework that integrates conditional masked009
language models into diffusion language mod-010
els through the theoretical lens of a conditional011
Markov Random Field. In doing so, we propose012
entropy-adaptive Gibbs sampling and entropy-013
based noise scheduling to counterbalance each014
model’s shortcomings. Experimental results015
show that Diffusion-EAGS outperforms base-016
lines and achieves the best quality-diversity017
tradeoff, demonstrating its effectiveness in non-018
autoregressive text generation.019

1 Introduction020

Auto-Regressive Models (ARMs) have driven sig-021

nificant advances in NLP (Achiam et al., 2023;022

Dubey et al., 2024; Team et al., 2023), yet they023

still have fundamental challenges such as diver-024

sity and controllability, due to the ARM’s in-025

nate left-to-right inductive bias. Specifically, as026

ARMs often rely on first few initial tokens, a phe-027

nomenon known as attention sink (Gu et al., 2025),028

they struggle to correct past errors in safety (Qi029

et al., 2025), dialogue (Laban et al., 2025), and030

math (Wang et al., 2025). In addition, they can-031

not effectively foster diversity through temperature-032

based sampling alone (Lee et al., 2025), nor can033

they anticipate future requirements at earlier steps,034

thus undermining controllability when external in-035

formation is provided later (Lu et al., 2022; Hude-036

cek and Dusek, 2023; Sun et al., 2023; Su et al.,037

2024).038

One promising alternative is non-autoregressive039

generation, which includes conditional masked040
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Figure 1: Overview of how our approach (Diffusion-
EAGS) combines the strengths of MLM and diffusion-
based models to overcome the limitations of AR models,
achieving a better diversity-quality tradeoff and fine-
grained controllability

language models (CMLMs) (Ghazvininejad et al., 041

2019a; Kasai et al., 2020) and diffusion models. 042

CMLMs provide strong contextual understanding 043

but lack an effective text generation mechanism. 044

Meanwhile, diffusion models iteratively refine text 045

through denoising, enabling fine-grained control 046

and increased diversity, but recent works, such as 047

direct diffusion-based generation (Li et al., 2022; 048

Gat et al., 2024; The et al., 2024; Ye et al., 2025) or 049

hybrid approaches combining diffusion with PLMs 050

and LLMs (Lin et al., 2023; Xiang et al., 2024), 051

suffer from degeneration (Xu et al., 2025) and out- 052

put homogeneity in conditional generation tasks, 053

as confirmed by our experiments. 054

We therefore propose Diffusion-EAGS, a novel 055

approach that integrates CMLMs into the discrete 056

diffusion language models (DDLMs) to achieve 057

diverse, controllable, and high-quality conditional 058

generation. However merging these methods is 059
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challenging because CMLMs generate text in one060

step by predicting all masked tokens, whereas diffu-061

sion models iteratively refine representations over062

multiple steps by introducing and removing noise.063

Our approach bridges this gap by leveraging a con-064

ditional Markov Random Field (cMRF) formula-065

tion, which enables:066

1. Stepwise iterative generation, overcoming067

the single-step limitations of CMLMs.068

2. Stable and diverse conditional text genera-069

tion, reducing semantic drift in DDLMs.070

Diffusion-EAGS achieves this through two key071

methodologies:072

• Entropy-Adaptive Gibbs Sampling073

(EAGS): A strategy that updates the most074

uncertain (high-entropy) tokens first at each075

denoising step, ensuring qualified generation.076

• Entropy-based Noise Scheduling (ENS): A077

training approach that progressively masks078

tokens based on ascending order of entropy,079

enabling the model to learn a structured de-080

noising process.081

We conduct extensive experiments to validate082

Diffusion-EAGS on various conditional genera-083

tion tasks, demonstrating significant improvements084

over baseline models. We further show that, with-085

out our method, naively integrating a pre-trained086

model into diffusion models results in degraded per-087

formance, highlighting that solely relying on pre-088

training does not effectively improve performance.089

Our approach achieves the best quality-diversity090

tradeoff, demonstrating that Diffusion-EAGS bal-091

ances fluency and variability more effectively than092

existing models. Moreover, keyword-based story093

generation experiments confirm that our model ef-094

fectively generates coherent and controlled text095

from randomly masked sequences, making it highly096

adaptable to different conditioning constraints.097

2 Related Works098

Efforts to integrate generative flow models into099

sequence generation exploit the distribution shift100

from a source language to a target language through101

a series of invertible linear transformations (Ma102

et al., 2019; Zhang et al., 2024). However, as103

DDPM (Ho et al., 2020a) demonstrate the effective-104

ness of generating images, diffusion models have105

been a major topic of interest within the field of gen-106

erative flow models (Song et al., 2021a,b). To apply107

such diffusion methodologies to NLP, in order to108

leverage their strengths in controllability and diver- 109

sity, recent studies have demonstrated promising 110

performance across various tasks (Li et al., 2022; 111

Gong et al., 2023a; He et al., 2023; Yuan et al., 112

2023; Lovelace et al., 2023; Chen et al., 2023; He 113

et al., 2023; Lou et al., 2024; Zhou et al., 2024; Shi 114

et al., 2024; Sahoo et al., 2024; Zheng et al., 2024; 115

The et al., 2024; Wang et al., 2024). 116

Although Continuous Diffusion Language Mod- 117

els (CDLMs) such as Diffusion-LM (Li et al., 118

2022), DiffuSeq-v1, v2 (Gong et al., 2023a,b), and 119

LD4LG (Lovelace et al., 2023) show promising 120

performance, Bansal et al. (2022) argue that such 121

operations do not necessarily have to be governed 122

by stochastic randomness. 123

Building on this rationale, D3PM (Austin et al., 124

2023) propose the discrete restoration-generation 125

approach and DiffusionBERT (He et al., 2022) 126

adopt pre-trained language models (PLMs) to 127

DDLM. SEDD (Lou et al., 2024) propose score 128

entropy inspired by MLM loss, and outperform ex- 129

isting CDLMs. Recent works by Shi et al. (2024) 130

and Sahoo et al. (2024) extend this idea and obtain 131

better empirical results. Zheng et al. (2024) further 132

enhance discrete diffusion models by correcting the 133

numerical precision error in SEDD-based models. 134

These research make an improvement on the open 135

ended generation task. Furthermore, Venkatraman 136

et al. (2024) use SEDD as text infilling, and Nie 137

et al. (2024) demonstrate that DDLMs are scalable. 138

3 MLM & DDLM : D-cMRF 139

Pre-trained MLMs offer rich, context-aware rep- 140

resentations through one-pass masked prediction, 141

whereas DDLMs iteratively refine text via step- 142

wise denoising to enhance control and diversity. 143

Combining these approaches can overcome MLMs’ 144

one-pass limitations and DDLMs’ degeneration in 145

conditional generation. However, their integra- 146

tion is challenging because DDLMs require iter- 147

ative updates while MLMs predict all masked to- 148

kens simultaneously. To bridge this gap, we pro- 149

pose Diffusion-based Constrained Markov Random 150

Fields (D-cMRF), a framework that integrates a 151

discrete diffusion process into MLM sequence gen- 152

eration. By leveraging an entropy-based sampling 153

strategy to selectively update high-uncertainty to- 154

kens at each step, D-cMRF achieves a principled 155

reduction in sequence energy, leading to stable and 156

coherent generation. 157
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3.1 MLM as cMRF158

Inspired by the traditional approaches of Wang159

and Cho (2019) and Goyal et al. (2022), which160

model MLMs as Markov Random Fields (MRFs)161

and energy-based models (EBMs), respectively, we162

reinterpret MLM as a conditional MRF (cMRF)163

model and employ it as a denoising function at164

each diffusion step.165

Let X = (x1, x2, . . . , xL) be a sequence of dis-166

crete variables from a vocabulary V , with Y repre-167

senting observed conditions. The sequence proba-168

bility follows an energy-based MRF formulation:169

Pθ(X;Y ) =
exp(−Eθ(X;Y ))

Z(Y, θ)
(1)170

171 where Eθ(X;Y ) is the energy function param-172

eterized using MLM-based embeddings, θ denotes173

parameterization of MLM, and Z(Y, θ) is the par-174

tition function for ensuring proper normalization.175

Then the total sequence energy is defined as:176

Eθ(X;Y ) = −
L∑

l=1

log ϕl(X;Y ) (2)177

178 where log-potential function log ϕl(X;Y ) is :179

log ϕl(X;Y ) = 1h(xl)
T fθ(X\{xl};Y ) (3)180

181 where l is a token position in the sequence,182

1h(xl) is the one-hot encoding of token xl, and183

fθ(X\{xl};Y ) represents the MLM logit output184

conditioned on the sequence.185

3.2 DDLM with Entropy-based Denoising186

Determining how to perform sampling with such187

a simple cMRF presents a separate challenge. In188

particular, one can use techniques such as Gibbs189

sampling as long as the energy space remains un-190

changed, but we cannot guarantee that this energy191

space is stable in general (Goyal et al., 2022). The192

necessity of generating sequences in cMRF based193

on energy update is in Appendix A. Hence, a natu-194

ral research question arises: “How should we sam-195

ple and update the energy?”196

The training process of diffusion models (both197

forward and backward) conceptually represents the198

entire distribution as a product of local conditional199

distributions across time steps. Hence, diffusion200

models share a probabilistic graphical structure201

with MRF, enabling MLM to be integrated within202

DDLM framework.203

Therefore, in this subsection, we describe how to204

update the energy and perform sampling under the205

DDLM framework using Pθ(X;Y ). Specifically,206

we integrate Pθ(X;Y ) into each diffusion step as 207

a denoising function, employing an entropy-based 208

denoising matrix Q in Section 4.2. We first define 209

the entropy of each token: 210

Hi(X
(t)) = −

∑
x′∈V

pθ(x
′
i;X

(t)) log pθ(x
′
i;X

(t)) (4) 211

212where pθ(x
′
i;X

(t)) is the softmax probability 213

of token x′i at position i in sequence X(t), and t 214

denotes the diffusion timestep. We then select high- 215

entropy positions for updating: 216

Mt = {i | Hi(X
(t)) ≥ τt} (5) 217

218where τt is a dynamically adjusted entropy 219

threshold. This ensures that updates occur at posi- 220

tions where the model has the highest uncertainty. 221

Subsequently, we sample the next-step sequence 222

from Pθ(X
(t);Y ) at the suggested positions. We 223

perform this selection process at every diffusion 224

step, which corresponds to updating the energy, 225

different from existing research (Wang and Cho, 226

2019; Goyal et al., 2022). 227

3.3 D-cMRF 228

By combining DDLM with cMRF, our approach en- 229

ables a theoretically grounded generation process 230

from the perspective of MLM. Moreover, from the 231

diffusion standpoint, the training process naturally 232

aligns with MLM objective, as discussed in Sec- 233

tion 3.1 and Section 3.2. Specifically, our D-cMRF 234

guarantees energy reduction during generation, en- 235

suring stable sequence reconstruction. 236

Step 1: Expected Energy at Diffusion Step t At 237

diffusion step t, we compute the expected sequence 238

energy as: 239

EX(t)∼q

[
Eθ(X

(t);Y )
]
=

∑
X(t)

q(X(t))Eθ(X
(t);Y ) (6) 240

where q(·) denotes the probability distribution 241

from which X(t) is sampled. Since high-entropy 242

tokens are selected for replacement, the total se- 243

quence energy can be decomposed as follows: 244

E
[
Eθ(X

(t);Y )
]
=

∑
i∈Mt

E
[
Eθ(x

(t)
i ;X(t−1), Y )

]
+

∑
i/∈Mt

Eθ

(
x
(t−1)
i ;Y

)
.

(7) 245

Step 2: Energy Reduction via Denoising Since 246

masked tokens are replaced with lower-energy can- 247

didates at each step, we expect a general trend of 248

energy reduction. However, due to the stochastic 249

3



Figure 2: Overview of the training (forward) and inference (backward) processes in Diffusion-EAGS. Training
(left): Entropy-based Noise Scheduling (ENS) determines which tokens in the masked sequence, denoted by [M ],
should be denoised at each timestep based on the position entropy H(xi). These tokens are then generated using the
diffusion model with parameters θ, and the loss is computed using a cross-entropy (C.E.) diffusion loss. Inference
(right): Starting from a fully masked sequence conditioned on Y , Entropy-Adaptive Gibbs Sampling (EAGS)
iteratively refines the sequence by focusing on high-entropy tokens, denoted as Mt, based on a threshold τt, yielding
stable and coherent text generation.

nature of sampling, local fluctuations in energy may250

occur. Over multiple diffusion steps, the entropy-251

based selection mechanism ensures a net decrease252

in sequence energy.253

E
[
Eθ(x

(t)
i ;X(t−1), Y )

]
≤ Eθ(x

(t)
i ;X(t), Y ) (8)254

Applying this property across all updated tokens255

i ∈ Mt, we obtain:256

Eθ(X
(t−1);Y ) ≤ Eθ(X

(t);Y ) (9)257

Step 3: Convergence to Low-Energy States258

Summing over all diffusion steps T :259

Eθ(X
(0);Y ) ≤ Eθ(X

(T );Y ) (10)260

where X(T ) is the fully masked sequence with261

maximum entropy, and X(0) is the final recon-262

structed sequence. Since the token space is discrete263

and energy is derived from a sum of bounded logits,264

Eθ(X;Y ) is lower-bounded by a finite minimum265

energy state. While stochastic sampling may in-266

troduce fluctuations, the diffusion process ensures267

progressive energy minimization, leading to an268

approximate low-energy state.269

3.3.1 D-cMRF Guarantees270

So far, more detailed explanations of D-cMRF are271

in Appendix M. The proof establishes that our272

method satisfies the following properties:273

• Progressive Energy Reduction: The energy274

function exhibits an overall decrease, lead-275

ing to more stable sequence generation. This276

trend is supported by empirical results in Ap-277

pendix D.278

• Stable Convergence: Since the energy func- 279

tion is lower-bounded and sequence length is 280

finite, the generation process is expected to 281

reach a structured, low-entropy state. 282

These properties explain the improved performance 283

of Diffusion-EAGS compared to traditional diffu- 284

sion models, as shown in §Section 6. Notably, 285

the ablation study in Table 5 demonstrates that re- 286

moving EAGS leads to a significant drop in per- 287

formance, highlighting its importance in guiding 288

stable generation. 289

4 Diffusion-EAGS 290

Our approach, Diffusion-EAGS, leverages two 291

key components—Entropy-Adaptive Gibbs Sam- 292

pling (EAGS) and Entropy-based Noise Schedul- 293

ing (ENS)—rooted in the theory of Section 3. As 294

shown in Figure 2, during training, ENS selectively 295

masks tokens based on their certainty, while dur- 296

ing generation, EAGS iteratively refines a fully 297

masked sequence by updating high-uncertainty to- 298

kens. This stepwise refinement yields balanced 299

improvements in text quality and diversity. 300

4.1 Inference Process: Entropy-Adaptive 301

Gibbs Sampling 302

As discussed in Section 3.2, MLM can be inter- 303

preted as cMRF, which is used as pθ in the sam- 304

pling process of DDLM with Mt. In particular, 305

Mt is not only associated with energy updates but 306

also serves as a solution to the MLM’s difficulty in 307

selecting the next tokens to denoise, as shown in 308
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Appendix C. Henceforth, we designate this strat-309

egy as Entropy-Adaptive Gibbs Sampling (EAGS).310

In EAGS, Mt is constructed by ranking tokens311

in descending order of entropy, thereby prioritiz-312

ing the least informative parts of the sequence.313

EAGS facilitates the creation of more structured se-314

quences by leveraging the syntactic context that has315

already been established. The process of determin-316

ing the denoising schedule is shown in Appendix C.317

Our approach for T step-generation process can318

be formalized as follows:319

1. Entropy Calculation: Compute the entropy320

Hi(X
(t)) for each variable xi.321

2. Variable Selection: Obtain Mt for sampling322

3. Sampling: Sample xi∗ from its conditional323

distribution pθ(xi∗ | X(t), Y ), where i∗ ∈324

Mt.325

4. Update: Update the conditional distributions326

and entropy for the affected variables.327

5. Iteration: Repeat Steps 1 through 4 until t =328

T , where T is the total number of timestep.329

The detailed algorithm of EAGS is in Appendix330

Algorithm 1.331

4.2 Training Process: Entropy-based Noise332

Scheduling333

To improve the effectiveness of EAGS during gen-334

eration, we simulate a similar process during train-335

ing. Therefore, we schedule the forward process of336

diffusion training based on the entropy Hi(X
(t))337

of position xi with the input sequence [Y |X(t)] at338

sampled timestep t. During training, Hi(X
(t)) is339

calculated by pre-trained MLM. Assuming the dif-340

fusion process progresses over T steps, we mask341

the L/T number of positions with the lowest en-342

tropy from the set {x1, . . . , xL} at each step t,343

where L is the sequence length. This selection344

process is used to determine τt in Equation 5. The345

masking process at step t in position i is described346

by the denoising matrix Qti.347

Qti =


q11 0 · · · 0 q1,M
0 q22 · · · 0 q2,M
...

...
. . .

...
...

0 0 · · · qM−1,M−1 qM−1,M

0 0 · · · 0 qMM

348

Here, q1,M denotes the transition probability from349

the vocab index corresponding to token 1 to the350

[MASK] token and qmn is defined as:351

qmn =


qmm = 1 if xi /∈ MIN([H1(x1), · · · , HL(xL)],

L
T
)

qmM = 1 if xi ∈ MIN([H1(x1), · · · , HL(xL)],
L
T
)

0 otherwise
352

353Henceforth, we designate this strategy as 354

Entropy-based Noise Sampling (ENS). ENS masks 355

lower entropy tokens first, thereby learning to pro- 356

gressively generate sequences. This ensures that 357

the forward process in diffusion training closely 358

mirrors the generation process, thereby enhancing 359

the effectiveness of EAGS in language generation. 360

The detailed algorithm of ENS is in Appendix Al- 361

gorithm 2. 362

4.3 Diffusion Loss with Cross Entropy 363

Distinct from the prevailing methodologies in dif- 364

fusion models (Ho et al., 2020a; Austin et al., 365

2023), we do not employ the PLM parameterization 366

p̃θ(z̃0|zt, t), which preserves the original semantic 367

embedding spaces during the training phase as we 368

empirically find that such method restricts the di- 369

versity of generated responses. We follow the tra- 370

ditional diffusion loss (Ho et al., 2020b), changing 371

Mean Squared Error with Cross Entropy Loss. 372

5 Experiments 373

5.1 Tasks & Details 374

We conduct experiments on various conditional 375

generation datasets. Detailed explanation of the 376

conditional generation datasets are in Appendix F.1. 377

In particular, we focus on two datasets that signifi- 378

cantly differ in their level of conditional constraints: 379

RocStories (Mostafazadeh et al., 2016), which is 380

relatively open-ended, and Paradetox (Logacheva 381

et al., 2022), which imposes the strongest condi- 382

tional constraints. We select the conditional dataset 383

that GPT-2 faces in generating sentences of ap- 384

propriate length under specified conditional con- 385

straints. The maximum lengths of Paradetox and 386

RocStories is set to 64, based on data statistics, and 387

other details are in Appendix F. We test 20 condi- 388

tions with 5 outputs in total 100, which is not used 389

for training. The number of steps of our model is 390

configured to 5 with a naive categorical sampling 391

with a sample size of 20 and select final 5 samples 392

based on Perplexity score. We use 1 A100 GPU 393

with the batch size as 256. 394

5.2 Baselines 395

We employ RoBERTa-base (Liu et al., 2020) as 396

MLM with learning rate 5e-4. Next, we com- 397

pare Diffusion-EAGS with four categories of base- 398

lines of similar size to RoBERTa-base: Auto- 399

regressive Models (ARMs), Conditional Masked 400

Language Models (CMLMs), Continuous Diffu- 401

sion Language Models (CDLMs), and Discrete 402
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Diffusion Language Models (DDLMs). Note that403

our primary goal is to investigate the architecture’s404

capabilities; any baseline approach in the direc-405

tion of scalability or bypassing the architecture’s406

limitations goes beyond our research scope.407

For ARMs (Vaswani et al., 2023), we em-408

ploy GPT-2 (Radford et al., 2019) and GPT-3.5-409

turbogpt-3.5-turbo* with four-shot prompt. More410

experimental details of GPT-3.5 can be found in411

Appendix J. For CMLMs, we utilize CMLM-412

Mask-Predict (Ghazvininejad et al., 2019a) and413

DisCo-Easy-First (Kasai et al., 2020), which are414

transformer-based NAR models. For CDLMs,415

our baseline includes DiffuSeq (Gong et al.,416

2023a), LD4LG (Lovelace et al., 2023), and DI-417

NOISER (Ye et al., 2024). DiffuSeq and DI-418

NOISER is designed for sequence-to-sequence ap-419

plications, and LD4LG adopt pre-trained BART420

as denoising init point. For DDLMs, we utilize421

DiffusionBERT (He et al., 2022), applying pre-422

trained BERT into DDLMs, AR-Diffusion (Wu423

et al., 2023), and SEDD (Lou et al., 2024), using424

the pre-trained version and fine-tune it. More de-425

tails are in Appendix F.3.426

5.3 Metrics427

Quality metrics : In addition to our theoretically428

guided methods, we evaluate performance using429

multiple metrics. Specifically, we use Perplexity430

(PPL) based-on GPT-2 Large and GPT-2 XL as an431

automated metric, MAUVE (Pillutla et al., 2021)432

to assess style consistency between the training433

data and generated outputs, SOME (Yoshimura434

et al., 2020) to score the grammar, Mean Opinion435

Score (MOS) from human evaluations to gauge436

text quality, and LLM score such as LLM-c (Lin437

and Chen, 2023) to measure the plausibility of the438

narratives as a sub-metric.439

Diversity Metrics : Following our quality as-440

sessment, we evaluate diversity through three differ-441

ent measures: an automatic frequency-based metric442

n-gram Vendi Score(VS n-gram) (Friedman and Di-443

eng, 2023), a neural network–based semantic met-444

ric SimCSE Vendi Score (VS emb), and a human445

evaluation score MOS. The detailed descriptions446

of metrics are provided in Appendix F.3 and H.1.447

6 Results448

In Tables 1, 2, and 3, our model consistently demon-449

strates strong text quality and diversity compared450

*https://platform.openai.com/docs/models/
gpt-3-5

Model
Text Quality

Step PPL ↓ MAUVE ↑ MOS ↑
AR model
GPT-2 1 389.1 0.503 0.83
GPT-3.5 w/ 4-shot 1 104.375 0.175 1

CMLMs
CMLM w/ Mask-Predict 10 669.9 0.0234 -
DisCo w/ Easy-First 10 716.1 0.0344 -

Diffusion models
DiffusionBERT 2000 775.9 0.737 0.88
AR-Diffusion 20 ≥ 1k 0.768 -
DiffuSeq 2000 ≥ 1k 0.683 -
SEDD 1024 ≥ 1k NA -
LD4LG 2000 579.9 0.556 0.91
DINOISER 20 124.8 0.255 0.91

Diffusion-EAGS 5 109.3 0.811 0.97

Table 1: Text quality of conditional generation out-
puts. We report Perplexity (PPL) for sentence fluency,
MAUVE for condition alignment, and Mean Opinion
Score (MOS) for semantic coherence. Models with PPL
exceeding 600 were excluded from human evaluation.

Model Text Quality Diversity

PPL ↓ SOME ↑ LLM-c ↑ VS(ngram) ↑ self-bleu ↓
Original Data 100.6 0.895 1

GPT-2 88.5 0.856 0.88 4.722 0.124
DiffusionBERT 318.2 0.783 0.72 4.735 0.088
SEDD 273.2 0.827 0.59 4.859 0.044
Diffusion-EAGS 67.3 0.844 0.87 4.837 0.058

Table 2: Results on the open-ended RocStories (ROC)
dataset. We report perplexity (PPL) for fluency, SOME
and LLM-c for text quality, and both VS(ngram) and
self-BLEU for diversity.

to various baselines across a wide range of condi- 451

tional generation tasks. 452

Text Quality : Table 1 shows that our model 453

achieves notable improvements in perplexity (PPL) 454

and obtains high MAUVE and MOS scores, indi- 455

cating that the generated texts are both fluent and 456

coherent. Although GPT-3.5-turbo is capable of 457

generating high-quality text, the MAUVE metric 458

indicates that few-shot prompts alone are insuffi- 459

cient for accurately replicating the dataset’s inher- 460

ent characteristics. On the other hand, CMLMs, 461

DiffuSeq, and DINOISER can handle conditional 462

constraints but sometimes struggle with semantic 463

drift or high PPL. In contrast, Diffusion-EAGS 464

achieves both lower PPL and strong human evalu- 465

ation scores (MOS), suggesting that it effectively 466

balances condition satisfaction with text quality. Ta- 467

ble 2 further demonstrates our model’s capability 468

on the open-ended RocStories dataset. Even with 469

minimal constraints, Diffusion-EAGS maintains 470

competitive scores compared to GPT-2, demon- 471

6
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Model
Diversity

Step VS(ngram) ↑ VS(emb) ↑ MOS ↑
AR model
GPT-2 1 3.925 2.640 2.65
GPT-3.5 w/ 4-shot 1 3.098 1.915 2.2

CMLMs
CMLM w/ Mask-Predict 10 1.000 1.000 -
DisCo w/ Easy-First 10 1.000 1.000 -

Diffusion models
DiffusionBERT 2000 3.101 2.058 2
AR-Diffusion 20 3.101 2.088 -
DiffuSeq 2000 2.059 1.465 -
SEDD 1024 4.746 4.063 -
LD4LG 2000 1.914 1.425 1
DINOISER 20 2.287 2.174 1

Diffusion-EAGS 5 4.417 3.311 4.6

Table 3: Diversity evaluation for generated outputs. We
report the n-gram-based Vendi Score (VS(ngram)), the
embedding-based Vendi Score (VS(emb)), and a Mean
Opinion Score (MOS) for diversity. Higher values indi-
cate greater diversity.

strating its robustness in narrative generation. Di-472

versity : Diffusion-EAGS excels at generating di-473

verse outputs. As illustrated in Table 3, our model474

consistently excels in both n-gram and embedding-475

based diversity metrics (VS(ngram) and VS(emb)),476

surpassing other baselines and even larger LLMs.477

The model’s higher MOS for diversity further in-478

dicates that humans also perceive its outputs to479

be more varied and engaging. In line with these480

observations, we conduct additional analyses (Ap-481

pendix G.4) including the comparison ours with482

large LLMs, where our approach produces a wider483

range of coherent yet distinct responses. These find-484

ings underscore the effectiveness of our entropy-485

adaptive sampling strategy in avoiding repetitive486

outputs and semantic collapse, thereby delivering a487

superior quality-diversity trade-off.488

Overall, Diffusion-EAGS consistently demon-489

strates strong performance across diverse condi-490

tional generation tasks, combining low perplexity491

and high human evaluation scores with the ability492

to generate richly varied text. Detailed results are493

in Appendix G and examples are in Appendix I.494

7 Analysis495

7.1 Quality-Diversity Tradeoff496

Balancing quality and diversity is a fundamental497

challenge in text generation. AR models typically498

achieve high fluency but suffer from low diversity,499

while non-autoregressive models, such as CMLMs500

and diffusion models, often struggle to generate501

coherent outputs. Our proposed Diffusion-EAGS502

effectively balances these factors by leveraging a503

Figure 3: Quality–diversity tradeoff across various mod-
els. The x-axis (1/PPL) reflects generation quality,
while the y-axis (VSemb) indicates diversity. Green
points represent AR models, yellow points represent
diffusion models, and blue points represent CMLMs.
Our Diffusion-EAGS variants, marked by purple stars,
achieve the best overall tradeoff.

structured diffusion process. 504

Figure 3 presents the quality-diversity tradeoff 505

among various models, where quality is measured 506

using perplexity (PPL) on the x-axis (inverted 507

as 1/PPL for better visualization) and diversity 508

is quantified using VS_emb on the y-axis. Our 509

model (Ours_Deon, Ours_Para, marked with pur- 510

ple stars) achieves the best tradeoff, outperform- 511

ing prior approaches in both high-quality gener- 512

ation and diversity. Compared to Diffuseq, Dif- 513

fusionBERT and CMLMs, our method achieves 514

significantly better diversity without compromis- 515

ing generation fluency. This improvement stems 516

from our Entropy-Adaptive Gibbs Sampling 517

(EAGS), which ensures controlled token selec- 518

tion, and Entropy-based Noise Scheduling (ENS), 519

which stabilizes the generation process. The results 520

highlight that integrating MLMs into the diffusion 521

framework enables high-quality, diverse, and con- 522

trollable text generation. 523

7.2 Keyword Based Generation 524

Our model operating within discrete space enables 525

us to manipulate the output sequences using ex- 526

plicit instructions. To further explore this capabil- 527

ity, we conduct the generation of sequences based 528

on keywords positioned in the middle and at the 529

end of masked sequences, which is challenging for 530

AR models (Keskar et al., 2019). They inherently 531

struggle with controllability due to their inability 532

to revise past steps based on future ones—an induc- 533

tive bias of AR models. Initially, we provide the 534

same contextual input while varying the keywords. 535

In the masked states, we randomly select positions, 536

replacing them with the specified keywords. The 537

results in Table 4 demonstrate that the generated 538

sequences seamlessly integrate the keywords with 539
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Context
Jake was playing with his toys. He accidentally broke his favorite one.
He cried a lot over it. His parents decided to replace it for him.

Keyword
not stop Jake just could not stop crying.
Jake feel It made Jake feel So much better.
would enjoy Jake said he would enjoy the new toy

Context
Neil was in Sofia, Bulgaria. He was enjoying a trip backpacking through Europe.
... He thought the food and culture in Sofia were the best.

Keyword Bulgaria! Things were looking great in Bulgaria!

Context
Karen wanted to go on a trip to France. She started doing research on the trip.
She decided to book a week long trip. She left the next day for her tripsx.

Keyword her trip She spent almost a week there during her trip.

Table 4: Examples of keyword-based generation. Each row shows a Context and a specified Keyword, which is
inserted into a masked position. The resulting outputs demonstrate how our model seamlessly integrates keywords
into coherent narratives.

context-specific semantics.540

7.3 Ablation Study541

Dataset PPL MAUVE SOME VS(ngram) VS(emb)

Diffusion-EAGS
Deont 55.1 0.412 0.835 4.898 4.009
Roc 67.3 0.87 0.844 4.837 3.999

w/o EAGS
Deont 667.9 0.022 0.617 4.767 3.928
Roc 1084.9 0.035 0.613 4.874 3.957

w/o Gibbs Sampling
Deont 1426.7 0.011 0.584 2.378 1.923
Roc 1293.1 0.010 0.534 1.531 1.338

w/o Pre-trained MLM
Deont ≥2K 0.005 0.645 4.758 3.402
Roc ≥2K 0.004 0.604 4.315 2.994

Table 5: Ablation study on the Deontology (Deont) and
RocStories (Roc) datasets. “w/o EAGS” uses naive
Gibbs sampling (no entropy estimation), “w/o Gibbs
Sampling” removes diffusion process, and “w/o Pre-
trained MLM” omits the pre-trained MLM entirely.

To explore the effectiveness of our model’s com-542

ponents, we conduct ablation studies focusing on543

three key elements: EAGS, Gibbs Sampling, and544

pre-trained MLM in Table 5. The examples of each545

ablation factor are in Appendix L.546

The result of w/o EAGS shows a severe decline547

in text quality, producing degenerated results sim-548

ilar to those of traditional CMLMs. Such phe-549

nomenon suggests that the naive application of550

MLM within the diffusion process fails to fully551

harness the capabilities of it.552

Next, removing the use of the diffusion genera-553

tion process (w/o Gibbs Sampling) leads to a dras-554

tic reduction in overall performance, with increased555

PPL and reduced diversity scores. These results im-556

ply that relying solely on MLM for text generation557

introduces considerable limitations.558

Without the pre-trained MLM, outputs become559

highly degenerated, underscoring the need for pre-560

cise entropy estimation.561

In the process of selecting our highest-entropy-562

based scheduling in Diffusion-EAGS, we consider563

three alternatives: lowest entropy selection, ran-564

dom position selection following ENS training, and565

highest entropy selection. Experiment on the pa-566

radetox dataset yielded PPL scores of 1193, 183, 567

and 112, respectively. A subsequent heuristic eval- 568

uation confirms that the quality aligns with these 569

PPL values. Consequently, we adopt the highest- 570

entropy-based selection strategy. The process of 571

schedule selection is detailed in Appendix C. 572

With EAGS, our model shows a substantial per- 573

formance improvement. To verify the effectiveness 574

of our model in guiding stable energy reduction, 575

we examine the entropy flow during the generation 576

process in Appendix D. Our findings demonstrate 577

that EAGS contributes significantly to a gradual 578

decrease in entropy, enabling the generation of sen- 579

tences in a stable manner. 580

8 Conclusions & Discussions 581

In this work, we introduce Diffusion-EAGS, an ap- 582

proach that integrates MLMs with diffusion models 583

for conditional generation, yielding improved text 584

quality, enhanced diversity, broad applicability, and 585

precise token-level control. 586

Investigation of Other PLMs We conducted a 587

toy experiment using T5 on the Paradetox dataset; 588

however, the results showed no significant improve- 589

ment over GPT-2 fine-tuning (see Appendix G.1, 590

Table 15). We hypothesize that T5’s generation 591

is heavily influenced by its initial decoder to- 592

kens (Wang and Zhou, 2024), which leads to lower 593

diversity. This suggests that developing a theoreti- 594

cal framework to integrate encoder-decoder mod- 595

els with diffusion processes may be a promising 596

direction for future research in conditional gener- 597

ation. By devising methodologies that align the 598

training objectives of other PLMs with diffusion 599

loss—similar to our approach—, we can further 600

accelerate progress in diffusion-based NLP. 601

Limitations 602

While Diffusion-EAGS demonstrates significant 603

improvements in conditional generation tasks, 604
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there are several limitations. First, as our method605

is currently focused on text generation tasks, its606

applicability to text classification tasks, such as607

Named Entity Recognition and Part-of-Speech Tag-608

ging, remains unexplored. Future research could609

explore extending this method to other NLP tasks.610

Second, although our current efforts concentrate611

on developing and validating our framework using612

MLM, the potential integration of ARMs remains613

unexplored. With a proper methodology that aligns614

AR pre-training and diffusion training objectives,615

AR models would be another good initialization.616

Third, although the bias embedded in pre-trained617

models can be directly propagated, recent studies618

show that data-balancing strategies can effectively619

address this issue. Consequently, it is essential620

to account for these factors when deploying such621

models. Finally, in our work, we adopt categor-622

ical sampling to investigate the model’s inherent623

capabilities, which may result in minor decoding624

errors such as case inconsistencies or punctuation625

mistakes. However, such issues can be effectively626

mitigated through MAP decoding at each step or627

by employing constrained sampling methods.628
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A Necessity of Energy Update in cMRF1027

Generation1028

We observe a significant increase in log-potential1029

values for sequences when guided by the RocSto-1030

ries conditions, as shown in Figure 4. Additional1031

experiments supporting this observation are de-1032

tailed in Appendix B.

Figure 4: When a condition is provided, the distribution
of potential values for the samples is shifted on a loga-
rithmic scale.

1033
This observation implies that conditional se-1034

quences differ from different conditional sequences1035

in terms of randomness, making it crucial to update1036

the energy function when the conditioning changes.1037

For instance, MASK MASK author and MASK am1038

author belong to different random fields, as also1039

suggested by Goyal et al. (2022).1040

B Measuring Potential Function in MLM1041

In this section, we provide additional experimental1042

details and results to support the observation that1043

open-ended Masked Language Models (MLMs)1044

exhibit increased potentials for the same sequence1045

under different dataset constraints.1046

B.1 Experimental Setup1047

• Model We use the pre-trained BERT large1048

model (bert-large-cased) as the base1049

model for all experiments. Additionally, we1050

incorporate RocStories-conditioned guidance1051

with the pre-trained model and use a fine-1052

tuned BERT model on the RocStories dataset1053

to evaluate the impact of dataset-specific con-1054

straints.1055

• Tokenization Tokenization is performed us-1056

ing the BERT tokenizer with special tokens1057

([CLS] and [SEP]).1058

• Potential Calculation The the log-potentials1059

are obtained for each token using masked to- 1060

ken logits. 1061

• Datasets 1062

– RocStories: Structured narratives from 1063

the RocStories dataset. 1064

B.2 Results of Experiment and Implications 1065

for Conditional Generation 1066

Using the BERT-large-cased model, the average 1067

log potential value for the standard MLM was 1068

156.6150, while incorporating RocStories guidance 1069

increased this value to 175.5332, highlighting the 1070

impact of dataset-specific constraints. Additionally, 1071

fine-tuning the same model on RocStories resulted 1072

in an average potential function value of 3.7551 1073

(on an exponential scale), demonstrating substan- 1074

tial variation introduced by conditional generation 1075

settings. 1076

The results demonstrate the significant influence 1077

of dataset structure on the potential function in 1078

MLMs. Specifically, structured datasets like Roc- 1079

Stories enforce stronger narrative constraints, lead- 1080

ing to higher potentials and greater coherence in 1081

sequence generation. 1082

C The Candidates of Denoising Schedules 1083

We arrived at our proposed approach by going 1084

through several steps. The core of DDLM lies 1085

in how to define the denoising matrix. 1086

1. Initial BERT Refinement Without a Noise Ma- 1087

trix We first explored a BERT-refinement method 1088

without a noise matrix, applying the same proce- 1089

dure at every step. Unsurprisingly, we found that 1090

the model failed to denoise the [MASK] tokens, 1091

resulting in sequences such as: 1092

[MASK] [MASK] educated ... educated [MASK] [MASK] 1093

2. BERT Denoising Matrix (0.15 Masking Ratio) 1094

Next, we implemented the denoising matrix using 1095

a BERT Denoising Matrix (0.15 Masking Ratio, 1096

1− 1
T ), which led to a strong bias toward a single 1097

repeated token: 1098

wwii wwii wwii wwii wwii wwii wwii wwii 1099

3. Time-Reversal Denoising (Tweedie-Leaping) 1100

Inspired by prior literature (Lou et al., 2024), we 1101

then examined a Time-Reversal Denoising Sched- 1102

ule Tweedie τ -leaping based on score entropy. 1103

However, in the paradetox SEDD experiments, we 1104

observed NA results under strict conditional gener- 1105

ation settings. 1106
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4. Word-Frequency-Based Denoising Schedule1107

Subsequently, we applied a word-frequency-based1108

denoising schedule (He et al., 2022), but in the pa-1109

radetox DiffusionBERT experiments, this approach1110

encountered difficulties in constructing coherent1111

sentences.1112

5. Vocab-Wise Entropy Estimation Moving1113

on, instead of relying on word frequency, we pro-1114

pose a vocab-wise entropy estimation technique.1115

In particular, we construct the denoising matrix1116

as shown in 2, leveraging entropy information to1117

decide whether each word should be denoised or1118

preserved. This approach assumes that all positions,1119

including originally masked ones, can potentially1120

be denoised. Although this approach did show1121

some improvement, for instance producing:1122

wwii reassure wwii bony wwii wwii wwii wwii1123

Upon further analysis, we identified that the1124

MLM was not effectively determining which posi-1125

tions to denoise, and well-generated tokens some-1126

times are converted [MASK], and then convert all1127

[MASK] tokens into certain words in the final step,1128

leading to token replication.1129

6. Entropy-Based Estimation and Denoising1130

Hence, we introduced an entropy-based estima-1131

tion and denoising strategy. In this approach, we1132

assume that once a mask is denoised, it remains1133

fixed. Specifically, we select mask positions based1134

on an entropy schedule, sample tokens for those po-1135

sitions, and once a token is sampled (i.e., denoised),1136

we preserve it across subsequent diffusion steps.1137

7. Entropy Selection Criteria We conducted1138

three main experiments—uniform, reverse-order-1139

EAGS, and EAGS—yielding perplexities of1140

182.976 with some portion of [MASK], 1193.2291141

with degenerated results, and 112.190 for paradetox1142

dataset, respectively. These results indicate that1143

noising from the most determinative token posi-1144

tions (mask with lowest entropy) is highly effec-1145

tive. Therefore, we adopt the Selection Criteria as1146

EAGS.1147

D Entropy Flow1148

In Figure 5, we illustrate the tendency of the se-1149

quential sum of entropy for various discrete gener-1150

ation processes. The changes of entropy during the1151

generation process in Diffusion-EAGS, represented1152

by the yellow line, show that our model effectively1153

follows a gradual decrease in entropy, mirroring1154

Figure 5: Entropy behavior tracking in generation/train-
ing process.

the inverse trend of the training process. This grad- 1155

ual change in entropy facilitates successful DDLM 1156

training, which results in superior text quality per- 1157

formance compared to other diffusion models, as 1158

demonstrated in Tables 2, 8, and 9. 1159

In contrast, when entropy tracking is omitted 1160

and only Gibbs sampling is employed, convergence 1161

does not occur within a short period (20 steps). The 1162

randomness of the sampling process leads to insta- 1163

bility, resulting in lower average text quality, as 1164

shown in Table 5. Lastly, when the generation 1165

process relies on the model without sampling, the 1166

entropy of the generation process is almost deter- 1167

mined before 2.5 steps. This entropy behavior is 1168

similar to that observed in DiffusionBERT. 1169

Algorithm 1: EAGS Algorithm
EAGS Process:
Input: Sequence Length L, Total Timestep T ,

Trained Model M , Mask Sequence Generator GM ,
and Context Y

for t = T to 0 do
if t = T then

xT ← GM (L, Y ) // Initialize a sequence of L
else

fθ ← pθ(x
t, Y ) // Compute logits at timestep t

l∗ ← argmax
l

H(xt
l | Y, fθ)

// Obtain nth largest entropy tokens (Mt)

xt−1 ← pθ(x
t, l∗, Y )

// Sample from the previous timestep

end
end

E EAGS & ENS algorithms 1170

Detailed algorithms of EAGS and ENS are in Al- 1171

gorithm 1 and 2. 1172

F Experiment 1173

F.1 Fine-Grained Conditional Generation 1174

In conditional generation tasks, the level of con- 1175

ditional constraint imposed by the dataset plays a 1176
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Algorithm 2: ENS Algorithm
ENS Process:
Input: Context Y , Total Timestep T , and Dataset D
for Batch Step = 0 to N do

x ∼ D // Sample data from D

t ∼ Randint(0, T ) // Sample random timestep
f ← PLM(x | Y ) // Compute logits using the PLM
H ← H(x | Y, f) // Calculate Entropy

xt ← Forward(x0,H, t) // Forward at t

xt+1 ← Forward(x0,H, t+ 1) // Forward at t + 1

Ls = −
∑

i q(x
t
i | xt+1) log pθ(x

t
i | xt+1)

// Cross entropy loss calculation

end

critical role in shaping the generation process. As1177

shown in Table 6, conditional constraints are di-1178

verse across datasets. In our task, we categorize1179

these constraints into three levels: (1) the provision1180

of context alone, requiring the continuity of the1181

prefix; (2) the provision of specific content to be1182

included in the target sequence, necessitating the1183

inclusion of certain keywords; and (3) the provi-1184

sion of semantic content formatting, such as trans-1185

forming toxic sentences into safer alternatives or1186

converting text from the source language to a target1187

language. In our study, we aim to develop a diffu-1188

sion framework capable of being applied across a1189

wide range of conditional generation tasks.1190

F.2 Dataset Explanations1191

Open-ended Generation We employ the Roc-1192

Stories dataset (Mostafazadeh et al., 2016) for1193

open ended generation with narrative understand-1194

ing tasks. This dataset contains short commonsense1195

stories that require models to generate coherent1196

and contextually relevant continuations. Each story1197

comprises five sentences, where the task is to pre-1198

dict the fifth sentence given the first four. This1199

setup evaluates the model’s ability to understand1200

and generate narratives based on sequential con-1201

text.1202

Deontology The objective of Deontology1203

(Hendrycks et al., 2023) is to evaluate the capa-1204

bility of models to make ethical judgments from1205

a deontological perspective. The dataset contains1206

scenarios focusing on interpersonal dynamics and1207

everyday occurrences.1208

Paraphrase The objective of the Quora Ques-1209

tion Pairs (QQP) (Wang et al., 2017) is to deter-1210

mine whether two questions are paraphrases of1211

each other. We process the QQP dataset by treating1212

one question as a paraphrase of another, a method1213

commonly employed to assess the effectiveness of1214

diffusion models. 1215

QG The objective of Question Generation (QG) 1216

is to generate valid and fluent questions based on 1217

a given passage and a specified answer. We em- 1218

ploy the Quasar-T dataset, introduced by Dhingra 1219

et al. (2017) in 2017, which comprises a substantial 1220

number of document-question pairs. These pairs 1221

necessitate the transformation of similar sentences 1222

into a single abstract question. 1223

DialogueSum In former experiments, it is hard 1224

to measure the performance with reference-based 1225

metrics as the limitation of traditional EM prob- 1226

lems where conditional generation’s output space is 1227

wide. Therefore, to test our model’s capability, we 1228

experiment on dialogue summarization task (Chen 1229

et al., 2021) which makes an emphasis on contain- 1230

ing some keywords or necessary information in 1231

the generated sequences. We use the experimental 1232

dataset and evaluation metric proposed in Diffu- 1233

sionCG (Xiang et al., 2024) with same experimen- 1234

tal setting as former experiments. 1235

Machine Translation Labeled datasets used in 1236

conditional generation tasks are typically limited in 1237

size and sometimes multilingual. To further assess 1238

our model’s performance in conditional generation, 1239

particularly in terms of language extension and re- 1240

source scarcity, we conduct additional experiments 1241

on a translation task. We utilize the 18k en↔de 1242

human-curated dataset by Xu et al. (2024a,b). 1243

Paradetox The objective of the Paradetox (Lo- 1244

gacheva et al., 2022) is to delete the profanities in 1245

source sentence. It comprises of toxic and neutral 1246

utterances, curated from the Jigsaw, Reddit, and 1247

Twitter datasets. 1248

F.3 Experimental Details 1249

We employ roberta-base as MLM with learning 1250

rate 5e-4. The maximum lengths for QG, QQP, and 1251

Paradetox is set to 64, while for Deontology and 1252

DialogSum set to 48 and 292, respectively, based 1253

on data statistics. We test 20 conditions with 5 1254

outputs in total 100, which is not used for training. 1255

The number of steps is configured to 5. We then 1256

perform a naive categorical sampling with a sample 1257

size of 20 and select final 5 samples based on PPL. 1258

We use 1 A100 GPU with the batch size as 256. 1259

For the case of ARMs, CMLMs, CDLMs, and 1260

DDLMs, we follow the official repositories to re- 1261

produce the results. Results are sampled multiple 1262

times with different seeds to evaluate the diver- 1263

sity. For hyperparameters, we follow the original 1264

repositories if the parameter is provided, except 1265
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Type
Dataset

RocStories Deontology Question
Generation QQP DialogSum ALMA ParaDetox

Open-ended Generation ✓ △ ✓ × × × ×
Conditional Generation ✓ ✓ ✓ ✓ ✓ ✓ ✓

– Context Provided ? ✓ ✓ ✓ ✓ ✓ ✓ ✓
– Content Provided ? × △ ✓ ✓ ✓ ✓ ✓
– Format Provided ? - × × × △ ✓ ✓

Table 6: Each dataset has a different level of conditional constraints even if they are all conditional generation tasks.
✓ indicates full support, × indicates no support, and △ indicates partial or limited support.

Quasar-T QQP ParaDetox Deontology RocStories

input output input output input output input output input output

Max 63 244 104 98 35 35 24 31 76 57
Mean 14.574 31.157 13.947 13.956 15.135 13.035 13.039 12.548 42.189 13.307

Table 7: Dataset Statistics

for modifying the number of samples as 5 and1266

max_length parameters according to data statistics.1267

Note that unlike other benchmarks, we experiment1268

with Diffuseq-v2 (Gong et al., 2023b) in translation1269

task for a broader comparison with existing base-1270

lines. Moreover, experimental details of LLMs are1271

in Appendix J, machine translation in Appendix H.1272

Quality metrics To measure the quality of the1273

generated texts, we use Perplexity based-on GPT-21274

Large and GPT-2 XL, SOME (Yoshimura et al.,1275

2020), the grammar metric based on corpus, LLM-1276

c (Lin and Chen, 2023) to measure the plausibility1277

of the narratives, LLM-t (Koh et al., 2024a) to mea-1278

sure toxicity, and MAUVE (Pillutla et al., 2021),1279

measuring a reflectiveness of training dataset char-1280

acteristics of generate outputs. MAUVE score of1281

1 indicates that the output perfectly matches the1282

training dataset as a neural database. For Mean1283

Opinion Score (MOS), we get 5 outputs from each1284

condition. For a fair MOS comparison, if GPT-3.5-1285

turbo refuses to provide an answer or if sentence1286

completeness is compromised by condition con-1287

sisting of “rtttt,” or extreme elliptical expressions,1288

we exclude such relevant condition from our eval-1289

uation target. Subsequently, hired four integrated1290

ph.d course work annotators in the university NLP1291

research lab evaluate the generated text based on1292

two criteria: (1) semantic reflectiveness of the con-1293

dition, indicating how accurately the condition is1294

represented in the text, and (2) sentence complete-1295

ness, assessing overall grammatical and semantic1296

coherence. Each criterion was rated on a scale from1297

0 to 1. Subsequently, these scores are normalized1298

and averaged to obtain a final score ranging from1299

0 to 1. In our evaluation, Fleiss’ kappa (Fleiss,1300

1971) is exceeded 0.7 as assessing sentence quality1301

is both intuitive and relatively non-controversial1302

among the annotators.1303

Diversity Metrics Traditional diversity metrics 1304

Self-BLEU (Zhu et al., 2018) and distinct-n (Li 1305

et al., 2015) are employed to evaluate the gen- 1306

erated texts. We also adopt Vendi Score (VS)- 1307

SimCSE (Friedman and Dieng, 2023), an inter- 1308

pretable diversity metric, which quantifies the ef- 1309

fective number of unique samples in a given set. 1310

Both the n-gram and embedding variations are uti- 1311

lized, where embedding VS is semantic diversity. 1312

For the diversity MOS evaluation, we adopt the 1313

same methodology used for the quality MOS but 1314

apply two distinct criteria: (1) the condition’s se- 1315

mantic reflectiveness, and (2) sentence diversity, 1316

capturing both semantic and structural variety be- 1317

yond mere word deletion or rearrangement. Ideal 1318

score of diversity MOS is 5 which means different 1319

five sequences for one condition, and lowest score 1320

is 1 which means all identical sequences. 1321

G Detailed analysis of Results 1322

G.1 Fine-Grained Comparison 1323

As shown in Table 2, 8, 9, our model consistently 1324

exhibits exceptional performance in terms of text 1325

quality while simultaneously maintaining diversity 1326

when compared to baseline models. The standard 1327

deviation of PPL in Paradetox Experiment is 61 for 1328

our model. All other PPL’s standard deviation are 1329

similar to that of Paradetox. 1330

In Table 8 Paradetox, our model demonstrates 1331

superior performance across all evaluated metrics. 1332

Such phenomenon represents that our model based 1333

on MLM shows robustness on diverse perturbations 1334

of daily dialogues. When PPL exceeds 600, the 1335

model is considered to have failed in generating 1336

natural sequences, and is thus represented in gray 1337

color. Specifically, the text quality produced by the 1338

CMLM, which is standard BERT-generation, and 1339

SEDD, which is powerful model in open-ended 1340

generation, is found to be low. 1341

Consequently, these models were excluded from 1342

subsequent experiments. In Deontology, our model 1343

exceeds the baseline models’ PPL and MAUVE 1344
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ParaDetox
Text Quality Diversity

Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 389.1 0.503 0.717 3.925 2.640 0.429 0.312 0.748
GPT-3.5 w/ 4-shot 1 104.375 0.175 0.888 3.098 1.915 0.652 0.390 0.835
GPT-4 w/ 4-shot 1 78.979 0.125 0.879 3.214 1.906 0.592 0.412 0.841
CMLM w/ Mask-Predict 10 669.9 0.0234 0.588 1.000 1.000 1.000 0.451 0.633
DisCo w/ Easy-First 10 716.1 0.0344 0.576 1.000 1.000 1.000 0.438 0.583
AR-Diffusion 20 ≥ 1k 0.768 - 3.101 2.088 0.576 0.449 0.780
DiffusionBert 2000 775.9 0.737 0.716 3.101 2.058 0.599 0.424 0.826
DiffuSeq 2000 ≥ 1k 0.683 0.703 2.059 1.465 0.841 0.410 0.820
LD4LG 2000 579.9 0.556 0.762 1.914 1.425 0.845 0.419 0.829
DINOISER 20 124.8 0.255 0.767 2.287 2.174 0.981 0.211 0.486
SEDD 1024 ≥ 1k NA 0.664 4.746 4.063 0.119 0.451 0.846
Diffusion-EAGS 5 109.3 0.811 0.760 4.417 3.311 0.256 0.407 0.810

Deontology
Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑

GPT-2 1 92.0 0.131 0.860 3.665 3.126 0.425 0.474 0.874
DiffuSeq 2000 352.8 0.005 0.703 2.273 1.915 0.753 0.267 0.745
DINOISER 20 131.3 0.008 0.740 2.287 2.174 0.824 0.309 0.713
DiffusionBert 2000 295.5 0.306 0.787 4.258 3.458 0.229 0.445 0.849
Diffusion-EAGS 5 55.1 0.412 0.835 4.898 4.009 0.056 0.418 0.806

Table 8: Social Generation – Diversity values associated with higher perplexity (PPL) are displayed in gray, as
increased perplexity typically indicates degenerate sequences.

QQP
Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 66.270 0.112 0.754 3.886 2.566 0.423 0.344 0.787
DiffuSeq 2000 124.247 0.00674 0.709 1.927 1.242 0.813 0.226 0.543
DINOISER 20 79.742 0.0042 0.821 1.421 1.126 0.935 0.264 0.542
DiffusionBert 2000 500.959 0.0709 0.618 4.489 2.836 0.196 0.321 0.761

Diffusion-EAGS 5 48.106 0.683 0.824 4.006 2.390 0.338 0.421 0.832
QG

Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 124.8 0.141 0.759 4.564 3.130 0.176 0.210 0.629
DiffuSeq 20 395.0 0.149 0.730 1.555 1.274 0.901 0.170 0.564
DINOISER 2000 155.9 0.159 0.776 1.396 1.121 0.944 0.166 0.553
DiffusionBert 2000 513.6 0.150 0.712 3.040 2.209 0.566 0.392 0.759

Diffusion-EAGS 5 80.7 0.121 0.782 4.646 3.538 0.152 0.403 0.798

Table 9: QG & QQP Generation

scores, whereas SOME score represent the suffi-1345

cient quality of text with the highest diversity score.1346

As illustrated in Table 9, Diffusion-EAGS gener-1347

ates the responses with the highest PPL score for1348

QG, and highest MAUVE and PPL score for QQP.1349

While we adhere to the standard metrics com-1350

monly used in diffusion research and integrate1351

as many additional metrics as possible, we also1352

comprehensively explore our model’s capabilities1353

across multiple dimensions. As the outputs of ear-1354

lier generation tasks are too broad to be effectively1355

evaluated using reference-based metrics, we pro-1356

vide generated examples in Appendix I and mea-1357

sure the preference of these outputs using a LLM-1358

based metric in Appendix G.2. Additionally, to1359

accommodate a scenario where reference-based1360

evaluation is applicable, we have included a more1361

extensive summarization task in Appendix G.2 and1362

translation task in Appendix G.3. These results con-1363

firm that our method consistently produces outputs 1364

that adhere to the specified conditions. 1365

Diffusion-EAGS demonstrates the highest 1366

MAUVE score in Table 8-ParaDetox, and high 1367

level of text quality surpassing that of GPT-2 in 1368

Table 9 in text quality. ParaDetox is colloquial 1369

dataset including slang, numerous abbreviations, 1370

and various perturbations, so our model demon- 1371

strate robustness to such perturbations. As for di- 1372

versity, our model consistently outperforms GPT 1373

models in VS(ngram) and VS(emb) in Table 2, 8, 1374

and 9. 1375

Notably, CDLMs demonstrate a noticeable defi- 1376

ciency in diversity. Examining the results of Dif- 1377

fuseq, it is evident that the grammar score is com- 1378

paratively lower than that of other models. This 1379

outcome is expected, as the outputs from Diffuseq 1380

frequently display inaccurate sentence structures, 1381

including duplications of words or phrases. Con- 1382
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Model ROUGE-1 ROUGE-2 MAUVE Ngram Emb Self-BLEU Distinct-1 Distinct-2

Ours 0.409 0.174 0.536 4.114 2.591 0.252 0.253 0.632
SEDD 0.179 0.032 0.999 4.216 2.576 0.211 0.200 0.609
DINOISER 0.209 0.031 0.337 1.247 1.227 0.926 0.256 0.633

Table 10: DialogueSum Experiment

versely, the outputs from Dinoiser achieve mod-1383

erate grammar scores but show limited diversity.1384

This finding, coupled with our additional experi-1385

ments concerning the beam size during Dinoiser1386

generation, suggests that Dinoiser’s performance1387

predominantly relies on memorization. In contrast,1388

our model excels at producing significantly more1389

diverse sequences. Furthermore, our models re-1390

quire only a few steps, while resulting in higher1391

quality and diversity.1392

G.2 Quality Recheck – LLM score &1393

Dialogue Summarization1394

Model PPL MAUVE vs(ngram) VS(emb) sef-bleu distinct-1 distinct-2

GENIE 134.1 0.296 2.527 1.800 0.702 0.454 0.825

Table 11: Quantitative results for the GENIE model.

LLM-t
GPT-2 0.02
GPT-3.5 0.074
GPT-4 0.18
DiffuSeq 0.03
Diffusion-Bert 0.09
DINOISER 0.1
SEDD-small NA
Diffusion-EAGS 0.01

Table 12: ParaDetox Dataset Generation – LLM-t is
the LLM-evaluation for measuring toxicity.

Paradetox w/ LLM-t on application models1395

Since our research primarily aims to enhance the1396

model’s inherent capabilities, we set up baselines1397

that revolve around (or are closely related to) noise1398

scheduling. Nevertheless, some studies employ a1399

hybrid framework integrating LLMs and diffusion1400

models (Lin et al., 2023; Xiang et al., 2024); hence,1401

we conduct additional experiments to investigate1402

this scenario. In addition, to evaluate the quality of1403

the PARADETOX output and ours diffusion-EAGS1404

still outperforms GENIE (Lin et al., 2023) in Ta-1405

ble 11. We also use the LLM-t score (Koh et al.,1406

2024b) to measure whether models successfully1407

detoxify the source condition, showing the qual-1408

ity of generated outputs from ours as shown in1409

Table 12.1410

Models Prefer Baseline Prefer Ours Tie

diffuseq vs. ours 20% 65% 15%
diffusionBERT vs. ours 20% 65% 15%
dinoiser vs. ours 0% 90% 10%
GPT-2 vs. ours 25% 65% 10%

Table 13: Evaluation results comparing our model with
various baselines.

QG - LLM preference For Question Generation 1411

(QG), we employ the widely adopted GPT-as-a- 1412

Judge framework (Zheng et al., 2023) to evaluate 1413

the quality of generations produced by our model 1414

and the baselines on the QG dataset. We adopt a 1415

pairwise evaluation setting, following the system 1416

and input prompts specified in Zheng et al. (2023) 1417

for the pairwise comparison. The factors specified 1418

to be evaluated are 1) coherency 2) grammatical 1419

correctness 3) semantic soundness 4) diversity and 1420

5) being a more reasonable question to the input 1421

(condition) text. We employ the gpt-4 model. The 1422

result is in Table 13. 1423

Note that since within the prompt, the base- 1424

line model’s generations are specified prior to our 1425

model’s generation, there is a significant position 1426

bias working against our favor, as noted in Zheng 1427

et al. (2023). The results above indicate that despite 1428

such bias, our model’s generations are much more 1429

favored over the baselines’ generations. 1430

Dialoguesum Experiment Our model outper- 1431

forms existing baselines in ROUGE, a reference- 1432

based metric as shown in Table 10. These findings 1433

indicate that, according to the automatic scores, our 1434

model sufficiently captures the source condition. 1435

Human Evaluation Below, we report the Mean 1436

Opinion Score (MOS) averages and standard devi- 1437

ations (std) in the following order: DiffusionBERT, 1438

LD4LG, GPT-2, Dinoiser, and our method. First, 1439

the average scores of semantic reflection are 0.98, 1440

0.90, 0.94, 0.98, and 0.97, respectively, with stan- 1441

dard deviations of 0.14, 0.30, 0.24, 0.14, and 0.16. 1442

Second, the average scores of sentence complete- 1443

ness are 0.78, 0.92, 0.72, 0.84, and 0.90, respec- 1444

tively, with standard deviations of 0.18, 0.14, 0.28, 1445

0.15, and 0.15. Third, average scores of diversity 1446

are 2, 1, 2.65, 1, and 4.6, respectively, with stan- 1447

dard deviations of 1.3, 0, 1.45, 0, and 0.7. GPT- 1448
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3.5-turbo’s std is 0 for quality MOS and 0.83 for1449

diversity MOS.1450

Model SacreBLEU COMET XCOMET

DisCo
w/ Easy-First 3.2806 0.2447 0.2414
w/ Mask-Predict 3.2862 0.2444 0.2414

DisCo-m
w/ Easy-First 3.7423 0.2468 0.2122
w/ Mask-Predict 3.7748 0.2466 0.2119

Diffuseq-v2 1.90 0.3242 0.2628
SEDD

w/ from scratch 0.14 0.2375 0.2035
w/ pretrained 0.25 0.2504 0.2076

DiffusionEAGS-NLLB 20.9297 0.5720 0.6629

NLLB-naive-600M 4.1827 0.6134 0.7818
mBART-50-FT 19.6536 0.7576 0.8748

Table 14: En-De Translation Results

G.3 Machine Translation : Bilinguality &1451

Low Resource Settings1452

Labeled datasets used in conditional generation1453

tasks are typically limited in size and sometimes1454

multilingual. To further assess our model’s per-1455

formance in conditional generation, particularly in1456

terms of language extension and resource scarcity,1457

we conduct additional experiments on a transla-1458

tion task. We conduct additional experiments on1459

CMLMs such as Mask-and-Predict and Easy-First,1460

diffusion models such as Diffuseq-v2 (Gong et al.,1461

2023b) and SEDD, traditional translation models1462

such as mBART-50 (Tang et al., 2020) and NLLB.1463

For evaluation metrics, we utilize sacreBLEU (Post,1464

2018) and neural-net scores such as COMET (Rei1465

et al., 2020) and XCOMET (Guerreiro et al., 2023).1466

More details are provided in Appendix K.1467

Table 14 shows that predicting the target se-1468

quence without leveraging a multilingual model1469

proves to be challenging. All diffusion baseline1470

models struggle to produce correct outputs. Simi-1471

lar challenges arise in NAR transformer baselines.1472

Despite constructing the vocabulary using the pre-1473

trained mBART-50 model (DisCo-m), the underly-1474

ing issues remain. On the other hand, our proposed1475

model demonstrates promising results.1476

G.4 Diversity Analysis1477

Limitation of Diversity on Traditional DDLMs1478

We summarize the generation trends of the mod-1479

els presented in Table below. We observe that1480

when a fine-tuned GPT-2 is tasked with strongly1481

constrained conditional generation, it struggles to1482

properly terminate sentences with an <eos> token.1483

In particular, it shows limitations when handling1484

semantic leaps or clearly delineated structural con- 1485

straints, leading to suboptimal conditional genera- 1486

tions. 1487

Meanwhile, other diffusion-based models ex- 1488

hibit behavior akin to simple deletions or word- 1489

level paraphrasing, resulting in nearly identical se- 1490

mantic structures across outputs. This indicates 1491

that existing methods fail to fully capitalize on the 1492

inherent diversity advantage offered by diffusion 1493

models. In contrast, our approach is capable of 1494

generating sentences in multiple ways from a given 1495

source, a benefit that is reflected in our improved 1496

diversity MOS. 1497

GPT-2

Given Source : holy shit , they
blew up a real artifact this
time ?

from GPT2 's output ended by end
token with default temperature
sampling from huggingface :

- Oh my god ,they blew a really
important artifact in this year
?????.. safe: Oh

- Oh my god , they destroyed a
really important artifact in
this year ?... safe: Oh God ,they

- they blow up something thistime
?.??. safe: Oh my god , they
destroyed a really valuable
artifact

- Oh my god , they destroyed a
really important artifact in
this year ??.?!??.?!?

- They blew an artifact that time?
They 're still in the artifact?
This time , they 're in trouble.
This

1498

Tranditional Diffusion Models

traditional diffusion model 's
output from Dinoiser , LD4LG :

- they blew up a real artifact
this time?

- they blew up a artifact this
time?

- they blew up a real artifact?
- they blew up a real artifact

this time?
- they blew up a real artifact

this time?

1499
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Ours : Diffusion-EAGS

from ours :
- aww , it is really a real

artifact this time ?
- it seems like they destroyed an

artifact in this time as well
- they have blown up a large

artifact
- they have blown up it in a

museum , this time
- they also destroyed artifacts at

the same time

1500

Figure 6: Diversity graph with increasing generation
numbers in ’Deontology’ dataset

Diversity Saturation on LLMs Inspired by the1501

observation that Diffusion-EAGS consistently ex-1502

cel in terms of diversity across all results, we delve1503

further into the diversity capabilities of our model.1504

We assess the diversity performance in conditional1505

generation compared to LLMs while quality is al-1506

ready guaranteed as shown in previous main exper-1507

iments. We measure the VS for 5 to 100 genera-1508

tions under a single condition. Such experiment1509

demonstrates the extent to which the model’s out-1510

put diversity saturates, enabling a comparison of1511

asymptotic diversity performance. The experiment1512

is conducted on the ‘deontology’ dataset which al-1513

lows high output diversity in its settings. Details of1514

using LLMs are provided in Appendix J.1515

Figure 6 demonstrates that the diversity satu-1516

ration graph for Diffusion-EAGS has a relatively1517

steep slope, while GPT models saturate at lower1518

values. The embedding VS of all GPT series satu-1519

rates below 13. This indicates that the limitation of1520

diversity is inherent to the architecture itself, rather1521

than merely a factor of scale in the GPT series. In1522

contrast, Diffusion-EAGS is capable of producing1523

significantly more diverse textual outputs.1524

G.5 Keyword Generation Results1525

As shown in Table 4, our model successfully gener-1526

ate the coherent sequences based on givel context1527

and keywords. 1528

G.6 Different PLM : BERT & T5 1529

While our primary approach integrates BERT into 1530

the diffusion framework via a theoretical cMRF in- 1531

terpretation, we also experiment with other PLMs 1532

such as BERT and T5, because the main experi- 1533

ment involved BART (LD4LG) and GPT-2. Specif- 1534

ically, RoBERTa and BERT exhibit similar trends, 1535

whereas T5 shows behavior comparable to a fine- 1536

tuned GPT-2 in Table 15. We conjecture that T5 1537

is already trained with an autoregressive strategy 1538

in its decoder whose generation process is largely 1539

influenced by its initial decoder tokens from an 1540

entropy perspective (Wang and Zhou, 2024), re- 1541

sulting in relatively low diversity. These findings 1542

suggest that our theoretical framework aligns well 1543

with MLM-based architectures, and that alternative 1544

methodologies may be required when the underly- 1545

ing architecture changes. Extending this approach 1546

remains a promising avenue for future research. 1547

H Experimental Outputs 1548

H.1 LLM Evaluation 1549

The LLM evaluation prompt for ParaDetox is pro- 1550

vided in Table 16, and the LLM evaluation prompt 1551

for RocStories is given in Table 17. 1552

ParaDetox Prompt

You are a specialized toxicity scoring machine that can only output integer
scores.
Score the Context on a scale from 0 to 1,
where a scale of zero means "language is not perfectly toxic",
a scale of one means "language is extremely toxic".
Take a deep breath and think step-by-step.

Table 16: ParaDetox LLM Evalution (LLM-t)

RocStories Prompt

Scoring the naturalness in a integer scale between 0 and 1,
where a scale of zero means is not natural,
and a scale of one means natural.
Take a deep breath and think step-by-step.

Table 17: RocStories LLM Evalution (LLM-c)

I Well-Generated Output Examples 1553

Generated examples of Paradetox are provided in 1554

Table 18, Deontology in Table 19, QQP in Table 20, 1555

QG in Table 21, and RocStories in Table 22. 1556

20



Model PPL MAUVE VS(ngram) vs(emb) self-bleu distinct-1 distinct-2

RoBERTa 109.3 0.811 4.417 3.311 0.256 0.407 0.810
BERT 69.5 0.773 4.755 3.659 0.126 0.475 0.834

T5 408.1 0.378 2.256 1.666 0.750 0.415 0.773

Table 15: Performance comparison of T5, BERT, and RoBERTa.

ParaDetox Generation Output Examples of Diffusion-
EAGS

Constraint Y “this pathetic story just gets worse and
worse.”
Output X1 “this story is going to get worse due to his
situation”
Output X2 “this story continues to get worse.”

Constraint Y “ fuck no!, there’s no justification for fgm.”
Output X1 “there is no justification for it.”
Output X2 “of course we cannot justify it.”

Table 18: ParaDetox generation examples

Deontology Generation Output Examples of Diffusion-
EAGS

Constraint Y “I am a doctor working in a hospital.”
Output X1 “So I should know how my patients feel.”
Output X2 “I am trained to diagnose people with complex
illnesses.”

Constraint Y “I am the owner of the apartment building.”
Output X1 “I need to rent out the whole building.”
Output X2 “So I have to rent it to others.”

Table 19: Deontology generation examples

QQP Generation Output Examples of Diffusion-EAGS

Constraint Y “What are the ten best short stories written
by Isaac Asimov?”
Output X1 “What are some great most amazing stories
written by Isaac Asimov?”
Output X2 “What are the best known fiction and books of
Isaac Asimov?”

Constraint Y “Can we ever store energy produced in
lightning?”
Output X1 “How do we store heat energy from light-
ning?”
Output X2 “How can you store energy from lightning?”

Table 20: QQP generation examples

QG Generation Output Examples of Diffusion-EAGS

Constraint Y “Besides being able to hover in place, the
hummingbird can also fly backwards.”
Output X1 “What kind of bird can fly backwards?”
Output X2 “Which bird is able to fly backwards?”

Constraint Y “A marsupium or pouch is one of the fea-
tures that characterise marsupials although not all have a
permanent pouch and a few have none at all.”
Output X1 “What is a pouch?”
Output X2 “What is the smallest animal without a pouch.”

Table 21: QG generation examples

RocStories Generation Output Examples of Diffusion-
EAGS

Constraint Y “The man grew out his hair. He saw some
gray hairs. He shaved his hair off. He bought some hair
dye.”
Output X1 “He wanted to look fresh and new.”
Output X2 “His hair was dyed back to its original color.”

Constraint Y “Jake was playing with his toys. He acci-
dentally broke his favorite one. He cried a lot over it. His
parents decided to replace it for him.”
Output X1 “Jake was not very happy about it.”
Output X2 “So he got a brand new one after all.”

Table 22: RocStories generation examples

J Details on Text Augmentation Using 1557

GPT models 1558

J.1 GPT-3.5turbo ~ GPT-4-Omni 1559

We prompt the GPT models to carry out dataset aug- 1560

mentation. To obtain quality responses that are sim- 1561

ilar to examples in the dataset, each generation is 1562

carried out in a 4-shot setting to leverage in-context 1563

learning, with the examples being randomly se- 1564

lected from the train split of the respective datasets. 1565

Furthermore, as Deshpande et al. (2023) illustrate 1566

that assigning a persona can affect the text output 1567

of LLMs to a considerable degree, and Zanella et al. 1568

(2024) show that assigning an appropriate persona 1569

can improve LLMs’ performance on the target task, 1570

albeit as automatic scorers in the anomaly detec- 1571

tion domain, we assign the persona of a "dataset 1572

augmentation machine" to each of the LLMs in 1573

the input prompt. We observe that such persona 1574

assignment greatly lowered the number of times 1575

the LLM refused to provide a valid response when 1576

the input contain toxic content, which is relavant 1577

on toxicity datasets such as the Paradetox Dataset. 1578

This finding is in-line with the results of Desh- 1579

pande et al. (2023). GPT-3.5-Turbo rejects 6.8% of 1580

the inputs on the Paradetox dataset, while GPT4, 1581

GPT4-Turbo, and GPT-4-Omni rejected none. To 1582

obtain diverse responses, all generated responses 1583

were obtained with the temperature set to 1. 1584

The prompt template is as follows: 1585

You are a dataset augmentation machine. 1586

Given the condition text, generate the 1587
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target text.1588

CONDITION: <example condition 1>1589

TARGET: <example target(response) 1>1590

CONDITION: <example condition 2>1591

TARGET: <example target(response) 2>1592

CONDITION: <example condition 3>1593

TARGET: <example target(response) 3>1594

CONDITION: <example condition 4>1595

TARGET: <example target(response) 4>1596

CONDITION: <input condition>1597

TARGET:1598

K Details on Translation Results1599

K.1 Datasets & Observations1600

Specifically, we utilize the 18k en↔de human-1601

curated dataset by Xu et al. (2024a,b). For our1602

model, we employ a pre-trained NLLB (Costa-1603

jussà et al., 2022) as a non-autoregressive (NAR)1604

approach for controlling language output separately.1605

This approach is selected due to the difficulty of1606

controlling token generation in a small-scale mul-1607

tilingual BERT, which suffers from interference1608

issues (Shaham et al., 2023).1609

Interestingly, the output of the pre-trained NLLB1610

model (NLLB-naive-600M, not finetuned) reveal1611

that neural network-based metrics are susceptible1612

to the interference problem, specifically translated1613

by other languages, even though we provide the lan-1614

guage specific token. While such issues result in1615

lower BLEU scores, COMET and XCOMET often1616

interpret them as semantically coherent, indicating1617

a potential direction for future work to improve1618

translation evaluation metrics. Despite these phe-1619

nomena, a performance gap between translation1620

models and DDLM remains. This suggests that1621

future research should address the semantic capa-1622

bilities of diffusion models to help bridge this gap.1623

K.2 Comparison Between Easy-First and Our1624

Proposed Method1625

Discrete diffusion can be said to inherit1626

ideas from NAR inference algorithm Mask-1627

Predict (Ghazvininejad et al., 2019b) and1628

Easy-First (Kasai et al., 2020). Easy-First,1629

especially, and our method are similar in how the1630

probabilities of the predicted tokens are used for1631

non-autoregressive inference.1632

The difference between the Easy-First and our1633

method as follows: Easy-First, in each iteration,1634

predicts tokens in each position given previous pre-1635

dictions on the easier positions. There is no strict1636

unmasking process. This is in contrast to our model, 1637

which focuses on denoising masked states in accor- 1638

dance with the forward noising trajectory. Further- 1639

more, the inference algorithm, as implemented in 1640

the original works (Kasai et al., 2020) do not fa- 1641

cilitate the integration of PLMs, which is a crucial 1642

component in modern NLP applications. We also 1643

bridge the gap between the diffusion framework 1644

and language modeling, a direction that have only 1645

recently began to gain traction within the research 1646

community. 1647

We provide results on Easy-First, as well as 1648

Mask-Predict (Ghazvininejad et al., 2019b) on the 1649

original DisCo architecture implementation as base- 1650

lines on translations tasks in Table 14 to further 1651

elucidate the difference through empirical results. 1652

K.3 Experimental Details 1653

NAR Transformer & CMLM We utilize the offi- 1654

cial repository to produce obtain the results, with 1655

the default architecture, optimization, and infer- 1656

ence configurations. We report the performance of 1657

the DisCo transformer on both the Mask-Predict 1658

and the Easy-First inference algorithms. 1659

Diffuseq-v2 For Diffuseq-v2, we employ the 1660

vocabs of mBERT and choose 128 as max length 1661

for ende translation. Other settings are identical as 1662

official repository. 1663

SEDD The SEDD(Lou et al., 2024) model, orig- 1664

inally designed for open-ended text generation, is 1665

adapted in this study to facilitate conditional gen- 1666

eration. To align the model’s architecture with 1667

the specific requirements of the structured dataset, 1668

several modifications are implemented in both hy- 1669

perparameters and preprocessing protocols. Specif- 1670

ically, the input and output token lengths are con- 1671

strained to a range of 64 to 128 tokens, ensuring 1672

a more appropriate fit to the dataset’s structural 1673

characteristics. Moreover, distinct special tokens 1674

are introduced to clearly differentiate between in- 1675

put and output sequences, thereby enhancing the 1676

model’s ability to distinguish between these com- 1677

ponents during training. Individual data entries are 1678

further demarcated by an EOS token to delineate 1679

discrete sequences within the training process. 1680

mBART-50 & Distilled-NLLB-600M For 1681

mBART, we finetune from the checkpoint 1682

"facebook/mbart-large-50", with batch size 8, max 1683

sequence length set to 512, and with no gradient ac- 1684

cumulation. For NLLB, we set the source language 1685

to eng_Latn and the target language to deu_Latn. 1686

We employ the model "facebook/nllb-200-distilled- 1687
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600M" with a batch size of 16, gradient accumula-1688

tion set to 8, and a maximum sequence length of1689

64.1690

DiffusionEAGS For our model, we adopt the1691

denosing strategy as top1 sampling and 1 size of1692

MBR as typical translation task focuses on BLEU1693

and COMET rather than diversity score.1694

K.4 Experimental Results1695

K.4.1 NAR Transformer, DisCo1696

The results indicate that the DisCo transformer1697

performs poorly on low-resource translation tasks,1698

where the size of the dataset is small. The results1699

indicated in Table 14 are much lower than those in-1700

dicated in the original paper by Kasai et al. (2020).1701

The most likely reason for the large drop in per-1702

formance is the difference in the size of the dataset.1703

The original DisCo paper reports a BLEU score1704

of 27.39 and 27.34 respectively on the WMT141705

EN-DE dataset. Although the involved languages1706

are the same as in our paper, the WMT14 EN-DE1707

dataset is orders of magnitude larger, with 4.5M1708

pairs. Such results suggest the importance of uti-1709

lizing PLMs for conditional generation tasks, es-1710

pecially in the case where the size of the available1711

dataset is restricted1712

To account for the relatively small train set to1713

valid/test set ratio of the dataset used in our transla-1714

tion experiments, which results in a high percent-1715

age of <UNK> tokens in the valid/test sets, we also1716

provide results using the dictionary of a pre-trained1717

mBART model (Liu, 2020). The performance ben-1718

efits slightly from this change, but still lags behind1719

those of other models.1720

K.4.2 Diffuseq-v21721

It is notable that existing diffusion language models1722

perform poorly on translation tasks. In this section,1723

we introduce some observations that might aid our1724

understanding of such behaviors.1725

For Diffuseq-v2, we conduct additional experi-1726

ments using the same model trained on Paradetox.1727

We observe that the entropy of token prediction1728

probabilities in the translation model is orders of1729

magnitude higher, indicating a greater level of un-1730

certainty in its predictions. Similarly, the ratio of1731

the nearest token distance to the average distance1732

of the top five nearest tokens is significantly larger1733

in the translation model. This analysis suggests1734

that a simple rounding approach from continuous1735

to discrete space may be insufficient for machine1736

translation, at least in low-resource settings.1737

L Ablation Examples 1738

To concretely illustrate the impact of each com- 1739

ponent of our method, we provide representative 1740

examples as follows: 1741

Original

- 1) nica dared her sister nola to
jump from sandy cliff. it was

a local swimming hole but the
cliff was 21, she was in the
open deep water.

- 2) nica dared her sister nola to
jump from sandy cliff. it was

a local swimming hole but the
cliff was 21, she still wanted
to jump and swim.

1742

w/o EAGS

- 1) ... , she she 's s one of them
girls her sister did!

- 2) ... , there was only only way
! she got to a swimming !!

1743

w/o Gibbs Sampling

- 1) ... , shea '' able the the her
her her the jump!

- 2) ... , shea '' able the the her
her her the jump!

1744

w/o Pre-trained MLM

- 1) ... , realisescratic factions
lightsoko lights filter

assisted je realises unpaid
assisted

- 2) ... , realisestarian factions
lights rower lights filter

assisted cove increase leap
assisted paper

1745

These examples highlight how each ablated com- 1746

ponent critically affects the fluency, coherence, and 1747

overall quality of the generated text. 1748

M The connection between entropy and 1749

energy 1750

How is the energy defined? The sequence en- 1751

ergy at timestep t is defined as the expectation over 1752
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sequences sampled from distribution q(X(t)):1753

EX(t)∼q[Eθ(X
(t);Y )] =

∑
X(t)

q(X(t))Eθ(X
(t);Y )1754

This q(X(t)) is the distribution from which noisy1755

(partially masked) sequences are sampled during1756

the forward diffusion process.1757

The relation between energy and entropy Im-1758

portantly, the energy Eθ(X
(t);Y ) itself (as defined1759

in Equation 2 of Section 3.1) is a summation over1760

log-potentials derived from token logits:1761

Eθ(X;Y ) = −
L∑
l=1

log ϕl(X;Y )1762

and specifically, the token potential is directly re-1763

lated to MLM logits as:1764

log ϕl(X;Y ) = 1h(xl)
T fθ(X\{xl};Y )1765

where fθ are MLM logits (confidence scores), and1766

1h(xl) is a one-hot representation. Thus, energy is1767

directly derived from MLM logits.1768

Why select high-entropy tokens? Entropy1769

quantifies the uncertainty of MLM predictions for1770

a given token position:1771

Hi(X
(t)) = −

∑
x′∈V

pθ(x
′
i;X

(t)) log pθ(x
′
i;X

(t))1772

• High entropy → MLM is uncertain about to-1773

ken prediction → logits are "flat," lacking a1774

clear high-confidence candidate.1775

• Low entropy → MLM predictions are peaked1776

→ clear high-confidence token emerges →1777

low uncertainty.1778

High entropy tokens thus correspond precisely to1779

high-energy states in terms of the model’s energy-1780

based formulation because uncertain predictions1781

indicate lower log-potentials and thus higher local1782

energy.1783

How does selecting high-entropy tokens guar-1784

antee energy reduction? When high-entropy to-1785

kens (tokens in high-energy states) are replaced1786

with newly sampled tokens from the MLM distri-1787

bution, they are replaced by candidates from a dis-1788

tribution, which tend toward lower entropy (higher-1789

confidence predictions) given context. Hence, the1790

newly sampled tokens will typically yield higher1791

log-potentials (lower local energies).1792

Formally, we demonstrate this via inequality 1793

(Equation 8): 1794

E[Eθ(x
(t)
i ;X(t−1), Y )] ≤ Eθ(x

(t)
i ;X(t), Y ) 1795

That is, the expected energy at token xi after sam- 1796

pling from MLM conditioned on the context (with 1797

replaced tokens from the previous step) is lower 1798

than or equal to the original energy (before replace- 1799

ment). 1800

This is intuitively due to the fact that replacing 1801

uncertain predictions (high entropy) with confident 1802

ones (lower entropy) will reduce the uncertainty 1803

and thus the local energy. 1804
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