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We propose a plug-and-play (PnP) method that uses deep-learning-based denoisers as regularization priors for
spectral snapshot compressive imaging (SCI). Our method is efficient in terms of reconstruction quality and speed
trade-off, and flexible enough to be ready to use for different compressive coding mechanisms. We demonstrate
the efficiency and flexibility in both simulations and five different spectral SCI systems and show that the pro-
posed deep PnP prior could achieve state-of-the-art results with a simple plug-in based on the optimization frame-
work. This paves the way for capturing and recovering multi- or hyperspectral information in one snapshot,
which might inspire intriguing applications in remote sensing, biomedical science, and material science. Our
code is available at: https://github.com/zsm1211/PnP-CASSI. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.411745

1. INTRODUCTION

Real scenes are spectrally rich. Capturing the color, and thus the
spectral information, has been a central issue since the dawn of
photography. Correspondingly, many strategies have been con-
sidered. Since the advent of solid-state imaging, the color filter
array and especially the red–green–blue (RGB) bayer filter have
been the dominant strategy [1]. These filter arrays usually only
capture red, green, and blue bands and thus limit the spectral
resolution. When the number of sampled wavelengths becomes
large, bandpass filters, push-room, and other strategies may be
desirable. These systems usually have limited temporal resolu-
tion due to the inherent scanning procedure. Advances in
photonics and 2D materials give rise to compact solutions
to single-shot spectrometers at a high spectral resolution
[2–5]. More recently, it has been applied for spectral imaging
via combining stacking [6], optical parallelization [7], and com-
pressive sampling [8] strategies, where the trade-off between the
spatial pixel and spectral resolution still remains a challenge.
Thanks to compressive sensing (CS) [9–11] and the advent
of decompressive inference algorithms over the past couple
of decades, there is substantial interest in hyperspectral color

filter arrays [12–14]. Such sampling strategies capture localized
coded image features and are well-matched to sparsity-based
inference algorithms [15–17]. With these advanced algorithms,
this technique has led to single-shot imaging for hyperspectral
images (HSIs), and we dub it snapshot compressive imaging
(SCI) [16,18]. In this paper, we focus on the spectral SCI,
which aims to measure the �x, y, λ� data cube.

Spectral SCI is a hardware encoder plus software decoder
system, where the hardware encoder denotes the optical system,
which compresses the 3D �x, y, λ� data cube to a snapshot mea-
surement on the 2D detector, and the software decoder denotes
the reconstruction algorithms used to recover the 3D data cube
from the snapshot measurement.

The underlying principle of the spectral SCI hardware is to
modulate different bands (corresponding to different wave-
lengths) in the spectral data cube by different weights and then
integrate the light to the sensor. To perform the modulation,
which should be different for different spectral bands, various
techniques have been used. The pioneer work of coded aperture
snapshot spectral imaging (CASSI) [12] used a fixed mask (coded
aperture) and two dispersers to implement the band-wise
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modulation, termed DD-CASSI; here DD means dual disperser.
Following this, the single-disperser (SD) CASSI was developed
[19], which achieves modulation by removing a disperser.
Following CASSI, various spectral SCI systems have been built
using disperser/prism and masks [20–24]. Recently, motivated
by the spectral variant responses of other media, spatial light mod-
ulators [25], ground-glass-based light field modulation [26], and
scatters [27] have also been employed for spectral SCI. In addi-
tion, some compact systems have also been built [28,29].

The software decoder, i.e., the reconstruction algorithm,
plays a pivotal role in spectral SCI as it outputs the desired data
cube. At the beginning, optimization-based algorithms devel-
oped for inverse problems such as CS were employed. Since
spectral SCI is an ill-posed problem, regularizers or priors
are generally used, such as the sparsity [30] and total variation
[15]. Later, the patch-based methods such as dictionary learn-
ing [25,31] and Gaussian mixture models [32] were developed
for the reconstruction of spectral SCI. Recently, by utilizing the
nonlocal similarity in the spectral data cube, group sparsity [17]
and low-rank models [16] have been developed to achieve state-
of-the-art results. The main bottleneck of these high perfor-
mance iterative optimization-based algorithms is the low
reconstruction speed. Since the spectral data cube is usually
large-scale, sometimes it needs hours to reconstruct a spectral
data cube from a snapshot measurement. This precludes the
real applications of spectral SCI systems.

To address the above speed issue in optimization algorithms,
and inspired by the performance of deep-learning approaches
for other inverse problems [33,34], convolutional neural net-
works (CNNs) have been used to solve the inverse problem of
spectral SCI for the sake of high speed [35–39]. These net-
works have led to better results than their optimization counter-
parts, given sufficient training data and time, which usually take
days or weeks. After training, the network can output the
reconstruction instantaneously and thus lead to end-to-end
spectral SCI sampling and reconstruction [39]. However, these
networks are usually system-specific. For example, different
numbers of spectral bands exist in different spectral SCI sys-
tems. Further, due to the different designs of masks, the trained
CNNs cannot be used in other systems, while retraining a new
network from scratch would take a long time.

Bearing the above concerns in mind, i.e., optimization-
based and deep-learning-based algorithms each have their
own pros and cons, it is desirable to develop a fast, flexible,
and high accuracy algorithm for spectral SCI. Fortunately,
the plug-and-play (PnP) framework [40,41] has been proposed
for inverse problems with provable convergence [42,43]. The
idea of PnP is intuitive, since the goal is to use the state-of-the-
art denoiser as a simple plug-in for recovery. The rationale here
is to employ recent advanced deep denoisers [44–46] in the
iterative optimization algorithm to speed up the reconstruction
process. Since these denoisers are pretrained with a wide range
of noise levels, the PnP algorithm is very efficient and usually
only tens or hundreds of iterations would provide promising
results [18]. More importantly, no training is required for dif-
ferent tasks and thus the same denoising network can be di-
rectly used in different systems. Therefore, PnP is a good
trade-off for reconstruction quality, speed, and flexibility.

However, since most existing flexible denoising networks are
designed for natural images, i.e., the gray-scale or RGB images,
directly using these networks into spectral SCI systems would
not lead to good results. To address this issue, in this paper, we
propose training a flexible denoising network for multispectral/
HSIs and then apply it to the PnP framework to solve the
reconstruction problem of spectral SCI.

Our proposed approach enjoys the advantages of speed, flex-
ibility, and high accuracy. We apply the proposed method in five
different real systems (three SD-CASSI systems [39,47,48], one
mutispectral endomicroscopy system [36], and one ghost imag-
ing spectral system [26]) and all of them have achieved promising
results. To compare with other state-of-the-art algorithms, sim-
ulations are also conducted to provide quantitative analysis.
Spectral sensor design and fabrication [2,4–8] may benefit from
our method by taking inspiration from the coding mechanisms
and the simple plug-in for recovery.

Note that the PnP framework has been used in other inverse
problems such as video CS [18], which emphasized the theo-
retical analysis of PnP for SCI problems in general and used an
off-the-shelf denoiser (FFDNet) [46] to demonstrate its
capability in video SCI. No spectral SCI results have been
shown therein because spectral SCI is more challenging in
terms of its various coding mechanisms and no off-the-shelf
denoiser could provide a fast, flexible, and high-accuracy sol-
ution. As a matter of fact, this observation serves as the initial
motivation for this paper. Towards this end, the novelty of this
paper is twofold. First, we propose a CNN-based deep spectral
denoising network as the spatio-spectral prior, which is flexible
in terms of data size and the input noise levels. Second, we
summarize the image-plane and aperture-plane coding mech-
anisms for spectral SCI and use the PnP method combined
with our proposed deep spectral denoising prior for both
simulations and five different spectral SCI systems (including
image-plane and aperture-plane coding-based ones).

The paper is organized as follows. Section 2 introduces dif-
ferent spectral SCI systems. The proposed PnP method is de-
rived in Section 3. Extensive results are shown in Section 4, and
Section 5 concludes the entire paper.

2. SPECTRAL SCI

The basic idea of SCI is to encode 3D or multidimensional
visual information onto 2D sensor measurement. For spectral
SCI, a 3D spatio-spectral data cube is encoded to form a snap-
shot 2D measurement on the charge coupled device (CCD) or
complementary metal oxide semiconductor (CMOS) sensor, as
shown in Fig. 1.

A. SCI Forward Model
The forward model of SCI is linear. For spectral SCI, the spec-
tral data cube of the scene X ∈ RW ×H×B , where W , H , and B
denote the width, height, and the number of spectral bands,
respectively, is encoded onto a single 2D measurement
Y ∈ RW ×H (or similar size) via spectrally variant coding. By
vectorizing the scene’s spectral cube and measurement, that
is, x � vec�X � ∈ RWHB and y � vec�Y � ∈ RWH , we can
form a linear system for spectral SCI,

y � Ax � ε, (1)
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where A ∈ RWH×WHB and ε ∈ RWH denote the sensing ma-
trix and the measurement/sensor noise, respectively, as shown
in Fig. 1.

The spatio-spectral coding mechanism is characterized by
the sensing matrix (or transport matrix from the light transport
perspective), i.e., A of the optical system, where each column of
the sensing matrix A is the vectorized image on the measure-
ment plane by turning on the corresponding one voxel of the
scene, as shown in the highlighted purple column of Fig. 1.

B. Spectral SCI Systems
To encode spectral information onto a single-shot measurement,
the sensing matrix must be spectrally variant. To this end, spec-
tral SCI systems need to involve spectral dispersion devices
(dispersers), like prisms, diffraction gratings, or diffusers.

Different spectral SCI systems distinguish each other by
varying the coding mechanisms, which contribute to different
structures of the sensing matrices. According to the coding
mechanisms, i.e., the relative position of the coded mask, spec-
tral SCI systems could be categorized into two types, i.e., im-
age-plane coded masks and aperture-plane coded masks. The
key difference here is whether one spatio-spectral voxel (e.g., the
purple voxel on the left of Fig. 1) contributes to only one
element of the sensing matrix A or not.

1. Image-Plane Coded Mask
For image-plane coding, the coded mask is typically located at
the conjugate image plane of the sensor plane, where one spa-
tio-spectral voxel is directly modulated by one pixel on the
coded mask and then relayed to one pixel on the detector.
Therefore, there is a voxel-to-pixel mapping between the scene
and the corresponding column of the sensing matrix.

As mentioned before, CASSI [12,19,47,48] was the first spec-
tral SCI system, to the best of our knowledge. And CASSI sys-
tems can be categorized into image-plane coded masks, whether
they use dual dispersers or a single disperser. The key success of
CASSI is to use a coded mask for spatial coding and implement
a spectral shearing with a disperser (a prism [12,19,27,47,48],
a grating [20], or other spectrally variant devices like spatial light
modulators (SLMs) [25,49,50]) to encode 3D spatio-spectral in-
formation onto a snapshot measurement on a 2D detector.

DD-CASSI [12] preshears the spectral cube of the scene via
the first prism and then spatially encodes it using a coded mask
at the image plane, where the coded spectral cube is finally un-
sheared to match the size of the original spectral cube via the
second prism. Thereby, each voxel of the scene spectral cube
would correspond to one element in the sensing matrix, and

the encoded spectral cube is unsheared and thus has the same
spatial size as the 2D measurement thanks to the usage of two
complementary prisms, as shown in the first row of Fig. 2.
Single disperser, or SD-CASSI [19,47] does not preshear the
scene spectral cube and only performs the spatial coding
and spectral shearing with a coded mask and a prism succes-
sively, as shown in the upper part of Fig. 3. In this way, the
encoded spectral cube is sheared and contains some zero rows
along the shearing boundaries, as shown in the second row
of Fig. 2.

The common advantage of spectral SCI systems based on an
image-plane coded mask is that since one spatio-spectral voxel
contributes to only one element of the sensing matrix, the final
sensing matrix is a concatenation of diagonal matrices, that is,

A � �D1,…,DB �, (2)

where Db � diag�vec�Cb�� ∈ RWH×WH with Cb being the
(calibrated) coded mask for the bth spectral band, b � 1,…,B.
Therefore, AA⊤ is a diagonal matrix with each element the

DD-CASSI

SD-CASSI

Image plane
coded mask

Aperture plane
coded mask

Speckle PSF (Optica'17)/
Diffracted rotation (ToG'19)

Spatially-invariant

GISC spectral camera/
Prism (ToG'17)

Spatially-variant

Fig. 2. Comparison of image-plane coding (upper) and aperture-
plane coding (lower) spectral SCI systems in terms of sensing matrix.
Here each color block denotes the corresponding transport matrix at
that spectral band.

Initialization

Projection

Proposed plug-and-play (PnP) algorithm

Pre-trained HSI denoising network

Scene
(spectral cube) Coded mask Disperser Coded

scene cube
Snapshot

measurementCamera

Recovered scene
(spectral cube)

Fig. 3. Image formation process of a typical spectral SCI system,
i.e., SD-CASSI and the reconstruction process using the proposed
deep PnP prior algorithm.

Scene
(spectral cube)

Spectral SCI system
(compressive encoding)

Snapshot
measurement

x
y

Fig. 1. Generalized image formation (left) and the discrete matrix-
form model (right) of spectral SCI. Here color denotes the correspond-
ing spectral band.
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element-wise square sum of the spectrally variant coded masks,
i.e., AA⊤ � PB

b�1 DbD⊤
b . This key property of image-plane

coding-based SCI systems benefits the reconstruction algo-
rithms significantly by reducing the computational complexity,
especially for projection-based algorithms [16,51]. We will fo-
cus on the SD-CASSI case for simulations and real experiments
due to the efficient hardware design.

2. Aperture-Plane Coded Mask
Spectral SCI systems using an aperture-plane coded mask
achieve spatial encoding at the aperture plane. Each spatio-
spectral voxel in the scene spectral cube is propagated to the
whole sensor plane, whereas only one point is propagated
for the image-plane coded mask. In this way, the sensing matrix
of aperture-plane coding is a dense matrix and AA⊤ is generally
not diagonal, thus less computationally efficient for projection-
based algorithms. As a general method for spectral SCI, the
proposed deep PnP prior can be integrated to tackle challenges
brought by various coding mechanisms (thus being flexible) by
retaining efficiency at the same time; this will be discussed in
Section 3.

There are two types of implementations for aperture-plane
coding of a spectral SCI. The main difference is whether the
point spread function (PSF) of each spatio-spectral voxel of the
scene spectral cube is spatially invariant or not. Typical spatially
invariant implementations are using speckles along with
memory effect [52,53] and a diffractive optical element (DOE)
[28] for spatially invariant PSFs, as shown in the third row of
Fig. 2. Less calibration is involved for spatially invariant imple-
mentations, which would also suffer from this assumption
mismatch. Spatially variant PSFs are more general, with a ghost
imaging via sparsity constraints (GISC) spectral camera [26,54]
and the compact prism-based spectral camera [29] as two rep-
resentatives, as shown in last row of Fig. 2. We will talk about
both the algorithm for aperture-coding-based spectral SCI
(Section 3.A) and the experimental results on the GISC spectral
camera [54] (Section 4.B.3) as well.

3. METHODS

Recovering 3D or multidimensional information from 2D SCI
measurements is an ill-posed linear inverse problem. The main
take-away from the CS [9,10,55,56] community is that sub-
Nyquist sampling and reliable recovery could be achieved by
constraints of the sampling/sensing matrix [55,57] and proper
priors of the signal. The performance bound of the SCI-
induced sensing matrix has been proved in Ref. [58]. And
the fact ion that denoisers using deep neural networks could
serve as the prior of natural images with certain constraints
on the network training process is getting wide attention [43].

For the sparsity prior of the signal, l1 norm would be suf-
ficient for near-optimal recovery [55,56]. For natural images, or
specifically spectral images, the prior distribution of natural
spectral images is needed for a good recovery. From the stat-
istical inference perspective, we can use the maximum a poste-
riori probability (MAP) estimate, given the measurement y and
the forward model (likelihood function pyjx) to estimate the
unknown signal x in Eq. (1), that is,

x̂ � arg max
x

pxjy�xjy� � arg max
x

pyjx�yjx�px�x�
py�y�

� arg max
x

pyjx�yjx�px�x�: (3)

Given the assumption of additive white Gaussian noise
(AWGN) of the measurements ε ∼N �0, σ2ε�, the MAP form
Eq. (3) can be rewritten as

x̂ � arg max
x

exp

�
−

1

2σ2ε
ky − Axk22 � log px�x�

�

� arg min
x

1

2
ky − Axk22 − σ2ε log px�x�: (4)

By replacing the unknown noise variance σ2ε with a noise-
balancing factor λ and negative log prior function px�x� with
a regularization term R�x�, Eq. (4) can be written as

x̂ � arg min
x

1

2
ky − Axk22 � λR�x�: (5)

We further use the PnP method [40,41] based on the alter-
nating direction method of multipliers (ADMM) [59] for
image-plane coding and the two-step iterative shrinkage/
thresholding (TwIST) [15] algorithm for aperture-plane coding
to solve Eq. (5).

A. PnP Method
The basic idea of PnP method for inverse problems is to use a
pretrained denoiser for the desired signal as a prior. It builds on
the optimization-based recovery method, where the whole in-
verse problem is broken into easier subproblems by handling
the forward-model (data-fidelity) term and the prior term sep-
arately [59] and alternating the solutions to subproblems in an
iterative manner. This is why it is called the PnP method, since
the denoiser could serve as a simple plug-in for the
reconstruction process. Here, for spectral SCI, we use a pre-
trained HSI denoising network as the deep spectral prior
and integrate it into an iterative optimization framework for
reconstruction, as shown in the lower part of Fig. 3. We will
start with the PnP–ADMM method for spectral SCI with im-
age-plane coding, and then substitute the ADMM projection
with TwIST for aperture-plane coding. Note that the difference
lies in the “Projection” step in Fig. 3.

The proposed PnP method has guaranteed convergence for
SCI with a bounded denoiser [42,43] and the assumption of
estimated noise levels in a nonincreasing order [18].

1. PnP–ADMM for Image-Plane Coding
The ADMM solution to the optimization problem Eq. (5) can
be written as

xk�1 � arg min
x

1

2
kAx − yk22 �

ρ

2
kx − �zk − uk�k22, (6)

zk�1 � arg min
z

λR�z� � ρ

2
kz − �xk�1 � uk�k22, (7)

uk�1 � uk � �xk�1 − zk�1�, (8)

where z is an auxiliary variable, u is the multiplier, ρ is a penalty
factor, and k is the index of iterations. Recalling the proximal
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operator [60], defined as proxg�v� � arg min
x

g�x� �
1
2 kx − vk22, the ADMM solution to SCI problem can be
rewritten as

xk�1 � proxf ∕ρ�zk − uk�, (9)

zk�1 � proxλR∕ρ�xk�1 � uk�, (10)

uk�1 � uk � �xk�1 − zk�1�, (11)

where f �x� � 1
2
kAx − yk22. Equation (9) is the Eulidean projec-

tion with a closed-form solution, i.e., xk�1 � �A⊤A� ρI �−1 ·
�A⊤y � ρ�zk − uk��. Let σ2 � λ∕ρ, and Eq. (10) can be viewed
as a denoiser Dσ�·� with σ as the estimated noise standard
deviation.

Furthermore, recalling that AA⊤ is a diagonal matrix for im-
age-plane coding, �A⊤A� ρI �−1 can be calculated efficiently
using the matrix inversion lemma (Woodbury matrix identity)
[61], i.e.,

�A⊤A� ρI �−1 � ρ−1I − ρ−1A⊤�I � ρAA⊤�−1Aρ−1: (12)

Then the Euclidean projection can be simplified and the final
PnP–ADMM solution to the SCI problem [16,18,51] is

xk�1 � �zk − uk� � A⊤�y − A�zk − uk��⊘�Diag�AA⊤� � ρ�,
(13)

zk�1 � Dσ̂k �xk�1 � uk�, (14)

uk�1 � uk � �xk�1 − zk�1�, (15)

where Diag(·) extracts the diagonal elements of the ensued ma-
trix, ⊘ denotes the element-wise division or Hadamard divi-
sion, and σ̂k is the estimated noise standard deviation for
the current (kth) iteration. Here, the noise penalty factor ρ
is tuned to match the measurement (Gaussian) noise. For
noiseless simulation, ρ is set to 0 or a small floating-point num-
ber. For the estimated noise standard deviation for each itera-
tion σ̂k, we empirically use a large σ̂k, e.g., 50 out of 255 for
the first several iterations (10 or 20 depending on the denoiser)
and progressively shrink it during the iteration process, follow-
ing Ref. [16].

For spectral SCI, we use a deep spectral denoiser as the prior,
as detailed in Section 3.B. This is very straightforward for DD-
CASSI. However, for SD-CASSI, there are spatial shifts
between adjacent spectral bands because the spectrum is not
unsheared by another disperser. Pratically, we calibrate spatial
shifts of all spectral bands or keep the same spatial shifts for all
adjacent bands and calibrate the corresponding wavelengths.
We take the spatial shifts into account by unshifting the spec-
tral bands before applying denoising and then reshifting them
back to match the forward model.

2. PnP–TwIST for Aperture-Plane Coding
As discussed in Section 2.B and Fig. 2, the sensing matrix of
aperture-plane coding is dense and does not get AA⊤ a diagonal
matrix. In this way, the matrix inversion lemma Eq. (12) will
not help to simplify the calculation of the inverse
�A⊤A� ρI �−1 used in ADMM. And because of the structure

of aperture-plane coding, A⊤A is not well-conditioned, which
makes ADMM both computationally inefficient and unstable
for reconstruction.

In response to the efficiency and computation stability issues
caused by ADMM projection, we use one variant of the
iterative shrinkage/thresholding algorithms (ISTAs) [62],
i.e., TwIST [15] for aperture-plane coding. ISTA and its var-
iants use A⊤ instead of A⊤�AA⊤�−1 for projection to avoid the
matrix inversion of a large matrix AA⊤. In addition, TwIST
employs another correction/acceleration step according to
the conditioning of A⊤A, where the parameter could be tuned
to match the measurement noise in real experiments. The final
PnP–TwIST solution to the SCI problem is

xk�1 � zk � A⊤�y − Azk�, (16)

θk�1 � Dσ̂k �xk�1�, (17)

zk�1 � �1 − α�zk−1 � �α − β�zk � βθk�1, (18)

where α and β are the correction parameters depending on the
eigenvalues of A⊤A, that is, α � γ̂2 � 1, β � 2α∕�ξ1 � ξ̄m�,
whereas γ̂ � 1−

ffiffi
κ

p
1� ffiffi

κ
p , κ � ξ1∕ξ̄m; 0 < ξ1 ≤ λi�A⊤A� ≤ ξm,

ξ̄m � maxf1, ξmg. In the experiment of GISC (Section 4.B.3),
we use this PnP–TwIST due to the large scale of A. After nor-
malization of each column, we use the default setting in the
TwIST code for the related parameters.

B. Deep Spectral Denoising Prior
From the idea of the PnP method for linear inverse problems,
we can see that a proper denoiser could serve as a prior of opti-
mization-based approaches, where a better denoiser would con-
tribute to higher reconstruction quality. Deep-learning-based
denoisers, especially those based on CNNs for images/videos
are among the state of the art. A key challenge for using deep
denoisers as priors is the flexibility in terms of data size and the
input noise levels. According to Eq. (14) in PnP–ADMM and
Eq. (17) in PnP–TwIST, the denoiser should be adapted to
different input noise levels. Inspired by the recent advance
of the fast and flexible denoising CNN (FFDNet) [46] and
its success applied to video SCI [18], we propose using a deep
spectral denoising network as the spatio-spectral prior, that is,
the deep spectral denoising prior. The network structure of the
deep spectral denoising prior is shown in Fig. 4.

The spectral image denoising problem can be formulated as

Dσ�v� � proxσ2R�v� � arg min
x

R�x� � 1

2σ2
kx − vk22, (19)

which basically learns the maximum prior probability of the
HSIs, given the noisy image v and the standard deviation of
the Gaussian noise σ. Similar to the fast and flexible deep image
denoiser [46,63] and the deep video denoiser [64], we perform
spectral image denoising in a frame-wise manner following
Ref. [65].

In order to consider the spectral correlation among adjacent
bands, when denoising a center spectral frame with the size of
W ×H , we take adjacent K spectral frames (K � 6 in our net-
work) as input and stack the downsampled subimages [46,63]
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of all K � 1 frames with a noise-level map initialized as the
input noise standard deviation σ to form a data cube of
W
2 × H

2 × �4K � 5�, as shown in Fig. 4. The data cube is then
transported into a CNN with 14 layers (D � 14) of convolu-
tional layers (Conv) and the rectified linear unit (ReLU) as the
activation function (except for the last layer, where nonlinearity
is not needed). We use the same size of the convolutional ker-
nel, i.e., 3 × 3, and zero padding to retain the image size after
convolution. The number of channels for the first 13 convolu-
tional layers is set to 128 and the last one to 4, so that the out-
put of the CNN has a size of W

2 × H
2 × 4. This output is

rearranged to arrive a single output spectral band with its origi-
nal image sizeW ×H . Hereby, we get the denoised single-band
image. After looping through all spectral bands, we can get all
the spectral bands denoised. To handle the boundary case of
adjacent spectral frames for the first and last few bands, we
use mirror padding. Note that the key to the flexibility of
our algorithm is that we need to enumerate sufficient noise lev-
els and spectral bands during training.

C. Training Details of Our Deep Spectral Image
Denoising Network
Our denoising network is trained on the CAVE data set [66]. It
contains 32 scenes with a pixel resolution of 512 × 512 and 31
wavelength bands from 400 to 700 nm with a step of 10 nm.
We cropped patches of size 256 × 256 × 7 from the original
HSIs and employed data augmentation (rotations of 90°,
180°, 270°; vertical flip; and combinations of the above rotation
and flip operations) on the extracted patches. The total number
of the patches that we finally used was 30,320. We chose seven
bands during training to make sure that our denoising network
could take into account the high spectral correlation between
adjacent bands. We use PyTorch [67] for implementation and
Adam [68] as the optimizer. The total number of training
epochs is set to 500, and the batch size is set to 64 with a learn-
ing rate of 10−3, which decays 10 times every 100 training
epochs.

Regarding the noise level σ, it is set to random values be-
tween 0 and 25 out of 255 during training. Training of the
entire network took approximately 2 days, using a machine
equipped with an Intel i5-9400F CPU, 64 GB of memory,
and an Nvidia GTX 1080 Ti GPU with 11 GB RAM.

4. RESULTS

In this section, we verify the performance of the proposed PnP
algorithm by extensive experiments. First, we conduct extensive
simulations to compare PnP with other competitive methods.
We then apply our PnP algorithm to data captured by real spec-
tral SCI systems. Since different systems have different settings
and parameters, the excellent results of our PnP verify the

flexibility of the proposed algorithm. Note that, for end-to-end
CNN methods such as λ-net [37], a different network needs to
be trained for each system. Moreover, since training these net-
works usually needs a significant amount of training data; when
the system captures large-scale measurements, it will need tre-
mendous training data and a large GPU memory, which limits
the scaling performance of these end-to-end CNNs. On the
other hand, our PnP algorithm can easily scale to a large data
set, since the denoising is performance on patches in each
iteration.

A. Simulations
Hereby, we verify the performance of PnP by simulation using
different data sets of different sizes and compare it with other
popular algorithms. For the simulation data, we generate mea-
surements following the SD-CASSI framework, as shown in the
second row of Fig. 2.

1. Data Sets
We employ the publicly available data sets ICVL [69] and
KAIST [35] for simulation. The ICVL data are of spatial size
1392 × 1300 with 31 spectral bands from 400 to 700 nm at a
step of 10 nm. The KAIST data are of spatial size 2704 × 3376
with 31 spectral bands from 400 to 700 nm at a step of 10 nm.
We select eight scenes of each data set, shown in Fig. 5. For
both data sets, we also cropped to different spatial sizes of
256 × 256, 512 × 512, and 1024 × 1024 to demonstrate the
scalability of the PnP algorithm.

2. Competing Methods and Comparison Metrics
We compare our proposed PnP algorithm with other popular
methods, including TwIST [15], generalized alternating pro-
jection based total variation minimization (GAP-TV) [51],
auto-encoder (AE) [35], and U-net [70]. Note that TwIST
and GAP-TV are conventional optimization methods employ-
ing the TV prior. Though TwIST has been used for a long time
for CASSI-related systems, GAP-TV has recently shown a faster
convergence than TwIST. AE is a deep-learning-based algo-
rithm that takes into account the two aspects of spectral accu-
racy and spatial resolution. U-net is the backbone of recently
proposed deep learning for spectral compressive imaging sys-
tems including λ-net [37], spatial-spectral self-attention net-
work (TSA-net) [39], and the one used in Ref. [36].

The U-net structure basically consists of two parts, the
encoder part and the decoder part. Each encoder block consists
of two 3 × 3 convolutional layers and a 2 × 2 max pooling op-
eration. We double the feature maps during each encoder
block. After four encoder blocks, we use transposed convolu-
tion operation followed by two 3 × 3 convolutional layers as

W

B H

Down-sampled 
w/ a noise map

W/2

H/2

W/2

H/2

W

H

B

4

4

2K

2K

Deep convolutional neural network (CNN)Noisy full bands Denoised center band Denoised full bands

Noise map

Center band
& adjacent K bands

D

Fig. 4. Network structure of the deep spectral denoising prior.

Fig. 5. Test spectral data from (a) ICVL [69] and (b) KAIST [35]
data sets used in simulation. The reference RGB images with pixel
resolution 256 × 256 are shown here. We crop similar regions of
the whole image for spatial sizes of 512 × 512 and 1024 × 1024.
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one decoder block. We have doubled the feature maps during
each decoder layer, too. We perform four blocks in the decoder
and get the reconstructed result after a last additional 1 × 1 out-
put convolutional layer. ReLU follows each convolutional layer
in both encoder and decoder as the activation function, except
for the output layer, which uses the sigmoid function. Skip con-
nections are added between the encoder blocks and decoder
blocks. Similar to our denoising network, we train U-net with
the CAVE data set [66]. The training process took 3 days for
the spatial size of 256 × 256. Due to the long training time and
GPU memory constraints, we did not train it for larger spatial
sizes up to 512 × 512 or 1024 × 1024. This already shows that a
fixed end-to-end network such as U-net is not flexible with spa-
tial sizes and compression ratios.

Both quantitative and qualitative metrics are used for com-
parison. The quantitative metrics are peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [71]. For qualitative
comparison, we plot spectral frames along with spectral curves
and compare them with the ground truth for visual verification.
Additionally, we use Pearson correlation coefficient (corr) to
assess the fidelity of recovered spectra.

3. Parameter Setting
From the hardware side, we use a binary random mask com-
posed of f0,1g with the same probability. The feature size of the
mask is the same as the camera. The measurement is generated
following the optical path of the SD-CASSI.

For the proposed PnP algorithm, it usually needs a warm
starting point to speed up the convergence. To address this,
for the proposed PnP algorithm, we first run 80 iterations of
GAP-TV. Since the only difference is the denoising algorithm,
TV, or deep denoising, in each iteration, we only need to switch
the denoising method in the flow chart, shown in Fig. 3.

The other important parameter of PnP is the noise level in
each iteration. One method is to estimate the noise level in each
iteration. However, this will make it computationally extensive.
Therefore, similar to other PnP methods [18], we set the noise
level manually in each iteration. This is also the reason we train
the HSI denoising network to a wide noise range. Specifically,
we set the noise level in a decreasing manner. For instance, as-
suming that the range of each pixel is [0,255], we set the noise
level to 25 for 20 iterations, followed by 15 for 20 iterations
and then tune the noise level to be smaller during the last few
iterations.

4. Simulation Results of Different Spatial Sizes
Table 1 summarizes the average results of the 16 scenes shown
in Fig. 5 with different spatial sizes. It can be seen that in all
these three spatial sizes, PnP always leads to the best results. In
particular, PnP outperforms GAP-TV by at least 2 dB in
PSNR, which is the best among other algorithms. What else
stands out in the table is that AE does not perform as well
as in the DD-CASSI system shown in Ref. [35]. We also tested
all the above algorithms using DD-CASSI; AE can achieve bet-
ter results than other algorithms except PnP.

Regarding the running time, it can be seen that for the
size of 256 × 256, most methods only need about 2 min to
reconstruct the spectral cube from a single measurement. At
this small size, it is feasible to train a U-net for the end-to-
end reconstruction. After training, the testing only needs 0.8 s, Ta
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which is efficient in real applications. When the size gets larger,
due to the limitation of GPUmemory, we cannot train an end-
to-end U-net, and thus we only show the results of the other
four algorithms. It takes about 5–20 min to reconstruct a spec-
tral cube with spatial size of 512 × 512 and about 0.5 to 1 h for
the size of 1024 × 1024. In summary, PnP achieves the state-
of-the-art results in a relatively short time.

Figure 6 shows the results of 31 bands of each algorithm
with the spatial size of 256 × 256 for the scene of color-checker
from KAIST data set. It can be seen clearly that PnP provides
the best results. Specifically, the reconstructed frames of TwIST
and GAP-TV have blocky artifacts, while the frames of AE and
U-net are not clean. By contrast, the frames of PnP have fine
details and sharp edges. We also plot the spectral curves of

several selected regions and calculate the correlations between
the reconstructed spectra and the ground truth. PnP can also
provide more accurate spectra. Figure 7 plots five selected spec-
tral frames of four other scenes. Again, it is clear that PnP pro-
vides the best results.

For other sizes of the spectral cube, in order to visualize the
recovered color, we convert the spectral images to synthetic-RGB
(sRGB) via the International Commission on Illumination (CIE)
color-matching function [72]. The results are shown in Figs. 8
and 9, respectively, for the size of 512 × 512 and 1024 × 1024.

Ground truth
PSNR/SSIM

TwIST
30.96/0.9216

GAP-TV
32.56/0.8987

AE
31.41/0.9297

U-net
33.21/0.9319

PnP
39.43/0.9743

Measurement

a b c

d

410 nm400 nm 420 nm 440 nm 450 nm 460 nm 470 nm430 nm 480 nm 490 nm 500 nm

510 nm 520 nm 530 nm 540 nm 550 nm 580 nm560 nm 570 nm 590 nm 600 nm 610 nm

620 nm 630 nm 640 nm 650 nm 660 nm 670 nm 680 nm 690 nm 700 nm

(a)

(b)

(c)

(d)

RGB reference

Fig. 6. Simulation results of color-checker with size of 256 × 256
from KAIST data set compared with the ground truth. PSNR and
SSIM results are also shown for each algorithm.

Ground truth AEGAP-TVTwIST PnP

PSNR/SSIM 36.08/0.967439.64/0.9722 42.06/0.985136.51/0.9662

30.25/0.872632.88/0.8759 34.16/0.907831.19/0.8716

27.83/0.881129.56/0.8871 30.38/0.904927.61/0.8818

29.34/0.902133.81/0.9254 36.02/0.955330.72/0.9098

a

b

c

d

(a)

(b)

(c)

(d)

Fig. 8. Simulation results of four selected scenes shown in sRGB
and spectral curves with spatial size of 512 × 512 (shown in full size
in the far left column). The spectra of the pinned (yellow) region of the
close-up are shown on the right.

Ground truth TwIST GAP-TV AE U-net PnPRGB

Measurement

PSNR/SSIM 34.82/0.9551 37.25/0.9566 31.96/0.9501 31.81/0.9147 39.15/0.9738

Ground truth TwIST GAP-TV AE U-net PnPRGB

Measurement

PSNR/SSIM 32.11/0.9093 34.87/0.9211 29.56/0.8985 25.69/0.8557 36.09/0.9479

400 nm

470 nm

550 nm

630 nm

700 nm

(a) (b)

400 nm

470 nm

550 nm

630 nm

700 nm

Fig. 7. Simulation results of exemplar scenes (top, ICVL; bottom,
KAIST) with size of 256 × 256 compared with the ground truth.
Spectral curves of selected regions are also plotted to compare with
the ground truth.

Ground truth AEGAP-TVTwIST PnP

PSNR/SSIM 32.58/0.922334.23/0.9218 36.41/0.949132.67/0.9233

30.46/0.908732.86/0.9087 35.11/0.942331.26/0.9081

33.51/0.949136.79/0.9593 39.06/0.974234.34/0.9519

31.87/0.942434.65/0.9529 36.96/0.971431.76/0.9433
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Fig. 9. Simulation results of four selected scenes shown in sRGB
and spectral curves with spatial size of 1024 × 1024 (shown in full size
in the far left column). The spectra of the pinned (yellow) region of the
close-up are shown on the right.
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Fig. 10. Real data, object SD-CASSI data (256 × 210 × 33).
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It can be observed that PnP outperforms other algorithms in
both spatial details and spectral accuracy. Clear details and sharp
edges can be recovered. Please refer to the zoomed regions of
each scene.

B. Real Data
In this section, we apply our proposed PnP algorithm into five
real spectral SCI systems, namely, three SD-CASSI systems
[39,47,48], one snapshot multispectral endomicroscopy [36],

and a ghost spectral compressive imaging system [54]. Note
that our PnP framework is using the pretrained HSI denoising
network on the simulation data. Though these systems have
different spatial and spectral resolutions, PnP can be used di-
rectly to all these systems. Due to the speed consideration, we
only compare with TwIST and/or GAP-TV in these real
data sets.

1. Single-Disperser CASSI
We now show three results of SD-CASSI. These measurements
are captured by different systems built at different labs.

• Object data consists of 33 spectral bands, each with a size
of 256 × 210 pixels. The data are captured by a CASSI system
built at Duke [48]. In Fig. 10, we compare the results of PnP
with TwIST. We can see that fine details can be reconstructed
by PnP.

• Bird data consist of 24 spectral bands, each with a size of
1021 × 703 pixels, which are captured by another CASSI sys-
tem built at Duke [47] along with the ground truth captured by
a spectrometer. Figure 11 compares the reconstructed results of
TwIST, GAP-TV, and PnP with the ground truth. We follow
the similar procedure of shifting the reconstructed spectra two

GAP-TV
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TwIST

a
b
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(b)
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Fig. 12. Real data, Lego SD-CASSI data (660 × 550 × 28).
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Fig. 11. Real data, bird SD-CASSI data (1021 × 731 × 33).
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Fig. 13. Real data, plant SD-CASSI data (660 × 550 × 28).
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bands to keep align with optical calibration, as used in Ref.
[16]. For this scene, all algorithms can provide good results,
but PnP achieves the clearest frames.

• Lego and Plant data consist of 28 spectral bands of
size 660 × 550, which are captured by a recently built
CASSI system at Bell Labs [39]. Figures 12 and 13 show
the reconstructed results of PnP, TwIST, and GAP-TV.
Clearly, PnP can provide finer details than other algorithms.

2. Snapshot Multispectral Endomicroscopy
Next, we apply our PnP algorithm to the snapshot multi-
spectral endomicroscopy system built recently [36], which is
a spectral SCI system plus a fiber bundle for endoscopy. It
has 24 bands in the visible bandwidth, with a spatial size of
660 × 660. We compare the results of three samples using
TwIST, GAP-TV, and PnP in Fig. 14. It can be seen that both
TwIST and GAP-TV lead to some noisy results, while PnP can
provide clean frames.

3. Ghost Imaging Spectral Camera
Different from CASSI architecture, ghost imaging provides an-
other solution to capture the spectral cube in a snapshot man-
ner via aperture-plane coding. Hereby, we apply the PnP
algorithm to the ghost imaging data captured by the system
built in Ref. [54]. Since the sensing matrix of these data is large,
as shown in Fig. 2, we only use the bandwidth between 510 and
660 nm with an interval of 10 nm. The spatial-spectral size of

these data is 330 × 330 × 16. The results of TwIST and PnP are
shown in Fig. 15. It can be seen that PnP provides better results
than TwIST, especially on the clean background.

5. CONCLUSION

We have developed a deep PnP algorithm for the
reconstruction of spectral SCI. We trained a deep denoiser
for hyper/multispectral images and plugged it to the
ADMM and TwIST frameworks for different spectral CS sys-
tems. Importantly, a single pretrained denoiser can be applied
to different systems with different settings. Therefore, our pro-
posed algorithm is highly flexible and is ready to be used in
different real applications. Extensive results on both simulation
and real data captured by diverse systems have verified the per-
formance of our proposed algorithm.

The running time scales linearly to the number of spectral
bands because each spectral band is denoised individually by
taking its neighboring K bands as input to the network.
There are two limitations of the proposed PnP method for
spectral SCI. First, it suffers from generalization issues and data
set bias, as is common for supervised approaches (for example,
when applying it for remote-sensing applications with hun-
dreds of bands, fine-tuning, or retraining on the fine spectral
resolution data set). Second, sometimes it needs a good initial-
ization to start with. Since the denoiser is trained on Gaussian
noise, it might have a hard time dealing with large spatial shifts
in SD-CASSI. A good initialization like GAP-TV could come
to the rescue. Denoisers taking the model-induced noise into
account would be desirable for this PnP method.
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