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Abstract

Mixture-of-Experts (MoEs) achieve scalability by dynamically activating subsets of
their components. Yet, understanding how expertise emerges through joint training
of gating mechanisms and experts remains incomplete, especially in scenarios
without clear task partitions. Motivated by inference costs and data heterogeneity,
we study how joint training of gating functions and experts can dynamically allo-
cate domain-specific expertise across multiple underlying data distributions. As an
outcome of our framework, we develop an instance tailored specifically to decen-
tralized training scenarios, introducing Dynamically Decentralized Orchestration
of MoEs or DDOME. DDOME leverages heterogeneity emerging from distributional
shifts across decentralized data sources to specialize experts dynamically. By inte-
grating a pretrained common expert to inform a gating function, DDOME achieves
personalized expert subset selection on-the-fly, facilitating just-in-time personal-
ization. We empirically validate DDOME within a Federated Learning (FL) context:
DDOVME attains from 4% up to a 24% accuracy improvement over state-of-the-art
FL baselines in image and text classification tasks, while maintaining competitive
zero-shot generalization capabilities. Furthermore, we provide theoretical insights
confirming that the joint gating-experts training is critical for achieving meaningful
expert specialization.

1 Introduction

Due to the success of large-scale deep learning [28) 12, 13| [15] 5] [18]], it is now widely accepted
as a design philosophy that “the larger (model/dataset), the better". Yet, the computational and
economic costs associated with training and deploying large monolithic models raise concerns:
Are we wisely allocating resources by training a single, monolithic model rather than employing
specialized submodels that operate efficiently and adaptively?

Mixture of experts (or MoEs) [10, [12]] represent a well-known model architecture that embodies
this principle. Unlike traditional ensemble methods [[7]], MoEs train expert submodels jointly, using
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a gating function to selectively activate subsets of experts based on input data. Recent successful
instances of MoEs demonstrate impressive scalability benefits by leveraging sparse activation of
network layers [30, 15} [18}, 27} 25| [32]].

Despite these successes, achieving semantic specialization —where experts learn distinct functions—
remains challenging in single-domain tasks, where data does not naturally partition into subtasks or
distinct distributions. Recent findings even suggest that sophisticated gating strategies might offer
limited benefit compared to random gating functions in such single-domain contexts [36], indicating
that explicit specialization does not emerge without additional mechanisms or constraints. Existing
methods [19} 6] addressing meaningful specialization primarily focus on distinct task boundaries
and separate datasets per expert to facilitate explicit expert specialization. This observation leads to
a fundamental question: How can we effectively foster meaningful specialization within MoEs in
single-domain scenarios, where clear task boundaries are not naturally available?

Understanding this question has broad implications for real-world settings where data exhibits subtle
variations rather than clear domain boundaries. For instance, consider pretraining a model to predict
the type and stage of cancer from CT scans. In this case, cancer prediction is the shared task, while
the clients—different hospitals or clinics—each possess private datasets reflecting their own data
distributions (e.g., one may specialize in prostate cancer, another in breast cancer). Similar situations
arise in personalized content recommendation, language modeling across dialects, and client-specific
adaptation in decentralized environments. Studying this phenomenon can lead to strategies for
dynamically allocating computational resources, thereby improving both model efficiency and overall
performance.

Main hypothesis and our contributions. We explore how joint training of gating mechanisms and
experts within MoE frameworks can enable adaptive specialization under single-domain settings.
We hypothesize that MoEs can leverage implicit data heterogeneity to achieve expert specialization,
guided by a dynamic gating function that learns concurrently with experts.

As an instance, we introduce a decentralized MoE framework designed to leverage data characteristics
across different nodes for personalized expert specialization. We dub this system Dynamically
Decentralized Orchestration of MoEs or DDOME, a distributed MoE system tailored for decentralized
learning scenarios (Figure [T). DDOME maintains a collection of independent expert models (we
consider image and text classification tasks in this work), adaptively selected by a gating function
influenced by shared representations from a pretrained common expert. This design allows DDOME to
dynamically specialize subsets of experts across heterogeneous data distributions without explicit
task annotations. Some of our findings include:

* We theoretically show decoupling the training of the gating and expert modules leads to suboptimal
specialization, highlighting the necessity of joint training for effective expert allocation.

» DDOME effectively leverages implicit client-specific data characteristics to dynamically specialize
experts during joint training, without the need for explicit task definitions.

* DDOME can dynamically select experts and achieve just-in-time personalization on unseen clients
during testing. DDOME accurately classify unseen data with small adaptations.

* We achieve these reducing the overall communication cost by not sending the whole MoE module
to all clients, compared to state-of-the-art methods [29].

* Some highlights of DDOME in practice: Within a Federated Learning (FL) setup, DDOME achieves
~ 95% accuracy on FL CIFAR10, ~ 78% accuracy on FL. CIFAR100, and ~ 75% on FL Yahoo!
Answers text classification as a just-in-time personalization method on unseen clients, where the
second best SOTA method achieves ~ 71%, ~ 74%, and ~ 69% respectively.

2 Background

Notation. Vectors and matrices are represented with bold font (e.g., x), while scalars by plain font
(e.g., x or S). Capital letters distinguish matrices from vectors (e.g., W vs w). Calligraphic uppercase
letters denote sets (e.g., D); the cardinality of D is represented as |D|. [N]is [N] = {1... N}.

Problem formulation. Let S be the total number of training clients. Each client s has its own

local data, denoted as Ds. We will assume that D, = {x;, y; } L-Zsll, where x; is the ¢-th input sample
and y; its corresponding label in a supervised setting. Abstractly, let W denote the collection of
trainable model parameters. The goal is to find values for W that achieve good accuracy on all data
D = U;Ds, by minimizing the following optimization objective:
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W* € argmin { L(W) := L L(W.,Dy) 5,
€ argn {() s;( 7()}
where ¢ (W, D) = lDils\ > xiwiyen, L (W, {xi,y;}). Here, with a slight abuse of notation,
¢ (W, D) denotes the local loss function for user s, associated with a local model W (not in-
dicated above), that gets aggregated with the models of other users. W could be a full copy of the
global model at the current training round or a selected submodel out of the global one, randomly
chosen or based on the client’s characteristics.

It is desired that the trained global model W ~ W* is applied to unseen test clients that come
with different non-i.i.d local data. Previous approaches handling a similar scenario [33} 31] assume

we have access to part of the new client’s labeled local data and fine-tune W. We consider this a
limitation since new users are likely unwilling/unable to provide accurate labeled data and might not
have sufficient resources to contribute to a fine-tuning phase of the whole model.

3 The Necessity of Joint Router-Expert Training

To motivate our system, we first examine whether joint training of a gating function and experts is
necessary for such specialization to emerge. This question is nontrivial, as it remains unclear whether
decoupled training can support effective expert allocation in the absence of explicit task boundaries.
We provide a theoretical justification for this necessity by studying a simplified scenario with top-1
routing and linear experts on Gaussian input data.

Formally, consider a ground-truth orthonormal list v}, ..., v’ € R? This partitions R? into m
subsets, denoted by:

Cj:{xeRd x v7>zm[ax]xTvz}' Vi € [m].
€

We consider learning a function f* that maps the input space R¢ to labels in R that depends on which
region C; an input data x is sampled from. In particular, we consider there exists another orthonormal

list wi, ..., wy, that connects the input data x with the output data y € R by:
m
y = Z]I{x € C;} ~XTw;; XNN(O, %ild) )
j=1

Our goal is to learn an MoE model parameterized by 8 = {(v;, wj)};.n:1 where {v; };nzl are the
parameters of the gating function, and w is the parameter of the jth expert:

Z]I{ i X > max v, x} W;rX.
Le[m)]

In particular, given an input vector x, we define the output of the jth expert as ijx, and
the vector Vx = [vlTx V,T,LX} the gating output. Therefore, the indicator function

I {v X 2 maXyem] Vy x} can be seen as the top- 1 routlng based on the gating function’s output.
fjormu]ate the training of the MoE model as minimizing the following MSE loss:

m

£(0) = %E(x,y) (7 (8,%) ~v)*| = %E(x,y) 31 {vj X > max v] x } (w/x—y)’

. te[m]

Jj=1
Note there exists 8* such that £ (6*) = 0, by defining 8% = {(v;—, W]*) };_”:1. To this end, the
theorem below characterizes the limitation of the disjoint training of experts and gating parameters.

Theorem 1. Assume that m < \/d. Assume the gating parameters are initialized according to
vio~N(0 ( 2Id) independently for all j € [m]. Let 6 be the parameter obtained by training the
experts first, and then the gating function. Formally, let @ = {(wy, \A/j)}m be defined as:

T 2
{W]}j L= ?rgimn E(x v) {ZH {va)Ox > ng[%i(] VZOX} (WJ»TX — y) ] 1
ifj=1 j=1
{Qj};r;l = a{rg}rgin %E(xy {Z {V x> 512% vy x} (W]Tx — y)ﬂ 2)



Then with probability at least 1 — exp (—© (m?)), we have that Efv,01m, [ij - w5 2] > Q(1)
forall j,j' € [m], and that Ev, 01, {Lﬁ (é ] > Q(1).
Remarks: Here, (1) describes the process of training the experts’ parameters {w; };":1, while fixing

the gating’s weights at initialization {v; o}7",. After the experts parameters are learned, l| trains
the gating’s parameters, while fixing the experts’ weights at {w };”:1 learned in li What Theorem |1
demonstrates is that training experts first followed by the training of gating function with the trained

expert weights frozen incurs a test loss that is lower bounded by a constant factor. Note that w7 has
unit norm; then, by the standard concentration property of Gaussian random vectors, almost all labels
y should have constant magnitude. Therefore, even a trivial choice of the parameters by choosing
all v; and w; to be 0 will incur a constant loss. This means that the joint training of the expert and
the gating’s parameters will not improve upon the trivial choice of the parameters by more than a
constant factor, motivating the need to perform joint training of the two parts. The proof of TheoremlT]
—with all the details of the assumptions made- is provided in Appendix [

Guided by this result, we now turn to the design of our proposed system, DDOME. DDOME operational-
izes this principle in a decentralized learning setup and leverages data heterogeneity across different
nodes to achieve expert specialization, even within a single domain.

4 Overview of DDOME

System components. Our system is depicted in Figure[I] with components grouped across the server
(using purple boxes) and client (using cyan boxes).

Server-side. Parts (a), (b), (f), (h) in Figure The server maintains two key modules: i) a pool of
M experts (MoE module), each initialized with the same architecture (e.g., TinyBert); and i) a gating
function that ranks experts based on data characteristics. The experts can be randomly initialized or
be pretrained; their weights are denoted as W, for ¢ € [M]. The gating function is a small MLP
with parameters W,. that outputs a relevance score for each expert based on input representations.

Client-side. Parts (c), (d), (e), (g) in Figure Each client has access to the same frozen, pretrained
common expert that serves as a local feature extractor. This common expert transforms raw inputs
into embeddings, which are further fed into server’s gating function. Note that the common expert
is not retrained during our procedure but used as an embedding mechanism. The result of the
gating function is a sparse-enforced selection of experts. The selected experts, say experts ¢ and j,
are dispatched to the client to be locally trained. Each client jointly updates the assigned experts’
parameters —denoted as W ,¢e_, With a slight abuse of notation— along with the gating function W,..
Finally, the updated parameters W<, and W,. are sent back to the server to be aggregated with
other updates coming from other participating clients during the training round.

The gating function. The gating function consists of two components: i) a pretrained common
model that acts as a feature extractor, converting each client’s local data samples into embeddings. By
design, our gating function should be model agnostic to the pretrained common expert. This model
is treated as a fixed, black-box encoder and does not require further training. i) an expert-ranking
network, which takes the extracted embeddings as input and outputs a relevance score for each expert.
This network is updated locally by each participating client in that training round using its own data.
The expert-ranking network aggregates scores across local data samples and selects the most relevant
experts to be sent to each active client. This sparse-enforced, per-round selection ensures that each
client only interacts with a targeted subset of experts, promoting both efficiency and specialization.

Expert-Client relationship. To encourage early and stable specialization, we introduce a client
activation strategy, called anchor clients. This strategy serves two key purposes: ) it guides experts
toward meaningful initial specialization, and i) it helps the gating function better characterize each
expert’s behavior. Specifically, given M experts in the system, we pre-select M clients (out of a much
larger S > M) to act as anchor clients. Each anchor client is persistently aligned with a specific
expert in a one-to-one fashion and is activated more frequently than regular clients. During training,
these clients are optimized with an independent loss. This design encourages consistent, distinctive
expert behaviors; this strategy improves convergence stability and expert diversity (Section [3).

4
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Figure 1: For each client: i) The server uses the gating function to select a subset of experts based on
the local data distribution (parts (a), (b), (d), (e)); #4) The client updates expert and gating function’s
weights (part (g)) and sends these back to the server. iii) the server aggregates and update the new
weights (part (h)). The above are repeated for all FL rounds.

Module details

Pretraining. Each client utilizes a pretrained common expert with parameters W.. E.g., such an
expert could be a pretrained model on ImageNet for image classification purposes. We restrict our
methodology such that: 4) we ensure our algorithm is agnostic to both the common expert’s architec-
ture and performance; i) we assume only access to the common expert’s embedding capabilities;
and #i7) we do not modify/retrain the common expert. The common expert is sent to/downloaded by
all clients only once, before training. For client s, we perform one-time inference on all local data
using the common expert and store the corresponding output features, noted as %; for each x; € D;.

The set of expert models. Our methodology involves M experts, each being an independent model
of the same architectureﬂ For the i-th expert, ¢ € [M], we denote its parameters as W and the
corresponding model function as f(-, W;)). See also Figure a). We consider two cases in our
experiments for completeness: The M experts are randomly initialized in our image classification
experiments to provide full plasticity during training, while for text classification the M experts are
initialized using weights transferred from a pretrained TinyBERT model. In each round, different
subsets of experts are selected to be communicated to and updated by active clients based on their
local data (see Figure[T[f)). Per round, the updated experts are sent back to the server to be aggregated
before the next round starts; see Figure h).

The gating function mechanics. We randomly initialize an expert-ranking network with parameters
W... This is a small-scale, two-layer MLP that, for each active client, takes embeddings from the
common expert and predicts a relevance score over all M experts. Specifically, for client s, we denote
the score as g(%3, W,.) € RM, for the i-th data sample, based on:

g(%$, W,) = Softmax(MLP(X;, W,)) € RM.
The final decision on the top- K experts is made via the rule:
e = TOPK( Z g(x3, WT)>7
over all embedded local data samples x§, ¢ € [|Ds|] where the TOPK(-) function selects the

dominating experts, based on the current state of W, and {X{}1_,.

The “anchor clients” mechanism. Given M experts, we designate a subset of M clients, with
roughly distinct local data distributions, as anchor clients. E| All remaining clients are referred to as
normal clients. Each anchor client is pre-assigned to a unique expert in a one-to-one relationship,

SThis choice is made for simplicity. Diverse architectures per expert are left for future work.
8The anchor client selection process is detailed in Appendix A.



Algorithm 1 DDOME

Parameters: 7" rounds, S training clients, U test-
ing clients, M experts, ¢ local iterations, experts’
function and parameters f (-, W), gating function’s
function and parameters g(-, W), common ex-
pert’s parameters W.

& Pretraining &
Send W to all clients;
//Data embedding
fors=1,...,5do
X = f(x7, We)
end for

& Training &
fort=0,...,7 —1do
Activate N, anchor and N, normal clients;
Send g(-, W) to all activated clients;

fors=1,...,N.do
Select a subset of experts e, for client s;
es = ToPK (3% g (%7, W)):
Send experts W, 7 € e to client s;

foril=1,...,41do
oL(W,, Wice.,D
Wi = W - p2lWrWice, D2 S ),
& )
L(Wr,Wice, ,Ds
WiEes = Wiees -n Wice, . >
end for
end for

/l Send to server for aggregation

W, = Aggregate(W;, W7), Vg, s;

W, = Aggregate(Wick,, Wice, ), Vg, 5;
end for

& Testing &
foru=1,...,Udo

forg=1,...,N,do
Send expert Wy, to client g; Send g(-, W) 8‘.1;(1 ‘common expert, We;
forl=1,...,0, do e, = TOPK (3 ;1 g(f(xi, We), Wr));
W1 — W — SC(WT,’DQ). Send experts W, j € e, to client u;
zivf’. ’) // Perform inference
aL(Wy,,Dg) | i’ = max;ce x;', W.), W.)l;;
Wi, = Wi =0 ey
end for end for ’
end for

and we denote the index of the expert assigned to the g-th anchor client as I;. At the beginning of
each communication round, a subset of IV clients are activated and are selected to participate, where
N < S and S is the total number of clients in the system. We divide the NV active clients into two
groups: N, anchor clients and N, normal clients, such that N = N, + N.. Anchor clients N, are
sampled from the set of M anchor clients, and normal clients N, from the remaining S — M cl1ents[]

The idea is that, since M < (S — M), we more frequently sample the anchor clients. This frequent
activation, coupled with fixed expert assignments, encourages each expert to specialize to the data
distribution of its associated anchor client. In other words, experts are consistently trained on similar
data distributions, fostering more stable and distinct specialization over time.

The training process. For both normal and anchor clients, the server sends the current copy of
parameters of the gating function, W,.. The gating function selects a subset of experts; the output
e, abstractly contains the set of chosen experts W; for client s, where ¢ € e,. The server receives
e, and sends the parameters W, for ¢ € eg, to the corresponding client s; this routine reduces the
communication cost —as compared to existing methods [29]]— and encourages expert specialization.
We provide a theoretical analysis of the communication cost in Appendix [K]|

Per training round, each normal client, using the standard cross-entropy loss, will locally update both
W, and W,’s. Formally, this amounts to (see also Figure[T} part (g)):

=mr 2 g(Z
{x;,y;}€D; \i€e;

On the other hand, for an anchor client g, we only send the I, expert to encourage expert specialization.
Such an expert is trained regularly on the anchor’s local distribution. Accordingly, we encourage the
expert ranker network to recognize such rough specialization of the selected expert by using a simple
independent loss. The two loss functions for anchor clients are as follows:

IDq Z (s \D\ Z (g, Wy, 14, )

{xi,9i}€Dq {xi,y:}€Dq

E(thi@e s LW )] f(xj>Wi)’ yj) :

L (Wi, Dq f(xi, Wi),yi), L£(Wr,Dy)

where 1j_ is the one-hot encoding indicating I,.

"The anchor-to-normal sampling ratio is discussed in Section



After all clients finish the local training round, the server applies a simple aggregation step to average
the updated copies of W, and W’s. Adapting the MoE loss to this setting is non-trivial. After expert
selection, each client only observes and trains a small subset of experts (KX < M), posing a major
challenge for the gating function: if it selects “incorrect” experts, it may not only harm performance
but also interfere with the specialization process by misaligning the experts. Despite this, we find that
the gating function is able to learn effective expert assignments.

Test-time generalization to unseen clients. We are given new clients with unseen local data
distributions during testing. We only send K experts to each test client, and we cannot get access to
local test data labels to perform fine-tuning. We first send W,. to the test client and select the top- K
experts, according to aggregated expert ranking score. Then, for each test sample, instead of using
the weighted average of the output of all selected experts, we use the output of the expert with the
highest expert ranking score to fully utilize the specialization of the expert. L.e., both experts might
be utilized for different data samples instead of averaging their performance. See Algorithm [I]

5 Experiments

The learning scenario we consider. We focus our experiments on supervised image and text
classification learning tasks within a Federated Learning (FL) setup [23} 21} [13]], as FL offers a
practical and representative environment for evaluating our system. We use the CIFAR data suite
[L7, 18] and EMNIST [4] for image tasks, and the Yahoo! Answers dataset [35] for text. Following
common FL practice, we partition data by class to transform the full datasets into non-i.i.d. subsets.
We assume the FL server-client protocol, where clients participate in training using local data; we
assume there are 100 clients while we can only activate 10% clients per round. However, our system
deviates from traditional FL implementations [23} 21} [13]]; in those, one assumes a sole global model
that is being shared with active clients, and updates to this model are being aggregated by the server
per synchronization round. E.g., in image classification scenarios a large, ResNet-type network —like
ResNet34, ResNet101, or ResNet200— could be used [9]. For our system, the “global” model consists
of multiple independent models (experts), all sharing the same architecture. The pretrained common
expert, architecturally identical to the task-specific experts, supports on-the-fly expert selection. In
our experiments, we assume between 5 and 10 experts per deployment.

Task and model description. For the image classification task, we use ResNet-34 as the expert
model architecture [9] for the federated CIFAR experiments, and a two-layer MLP for the federated
EMNIST experiments. For text classification, we use TinyBERT [[11]]. In all cases, the gating function
is implemented as a two-layer MLP followed by a softmax layer, which outputs relevance scores
over all experts. For the image classification, clients are trained using the SGD optimizer with
momentum (SGDM), with a learning rate of 0.01, momentum of 0.9, batch size of 256, and one local
epoch per round. For text classification, all client models are trained using SGDM with identical
hyperparameters. All clients use a batch size of 16, and one local epoch per round. The gating
function is trained using an SGD optimizer; for image classification, this uses a fixed learning rate of
0.001, while for text classification the same initial learning rate is used but it incorporates a step decay
learning rate schedule. The model aggregation on the server side is performed with FedAvg [24].

System. Experiments were conducted on different hardware setups. For image classification tasks,
we used an NVIDIA RTX A6000 GPU with 46GB of VRAM. Training the default configuration
with 10 experts required approximately 6 hours. For text classification tasks, we used an NVIDIA
A40 GPU with 48GB of VRAM, and training the default configuration with 5 experts required over
100 hours (using 2 workers) due to the increased computational cost. Training was performed in a
distributed fashion using between 2 and 10 workers.

Dataset. We conduct experiments on CIFAR10, CIFAR100 [[17], EMNIST [4], and Yahoo! An-
swers [35]. For EMNIST, we use the “ByClass” split, which contains 814,255 character images
across 62 unbalanced classes. For Yahoo! Answers, we randomly sample 50,000 training and 10,000
test examples to create a dataset of the same size as CIFAR, with an equal number of samples per
classﬂ To increase task difficulty, we exclude the answer text and train models solely on the question
title and content. For all cases, the training dataset is randomly partitioned across 100 clients. We
followed the same procedure for the anchor clients but avoided replacement, aiming to preserve
the label diversity in each subset. We establish a one-to-one mapping between these clients and the
experts, corresponding to each group of labels. This path allows to ¢) have one expert available for

8Full dataset training is computationally expensive, given the hardware configuration we had.



each group; and %) retain the flexibility to activate the anchor clients during the training rounds. The
complete client distribution for all datasets is detailed in Appendix

Zero-Shot Personalization. Let us first describe the baselines to compare againstﬂ

* FedMix [29] trains an ensemble of models adapted to the data space’s sub-regions. By definition,

FedMix sends all the experts to each client to specialize them, heavily increasing communication

costs. For this implementation, we initialized the common expert from the initial pretrained model

checkpoint, and we used it to embed local data in the gate function and help the routing.

FedAvg [24]] is the de facto approach for FL and allows a fair comparison regarding fixed commu-

nication cost. Here, we initialize the global model with the initial common expert checkpoint and

aggregate the updates from all sampled clients per iteration.

FedProx [22] tackles heterogeneity by introducing a regularization term that limits the distance

between local/global models at the cost of additional computation overhead per round. We follow

the same strategy for initialization with FedAvg.

Scaffold [14] handles non-iidness by applying control variates for the server and clients at the

expense of doubling communication cost per round compared to FedAvg. This method tends to

become unstable during training, as previous studies have shown [20]. We follow the same strategy

for initialization with FedAvg.

* The Average Ensembles [16] train two models (initialized from the common expert) as in
FedAvg, but with different random seeds. It then combines them by averaging output probabilities.
While it provides flexibility with respect to resources, it has higher inference costs.

| CIFAR 10 | CIFAR 100
Method #Clients | Rounds M K  Acc. Acc. | Rounds M K  Acc. Acc.
Common Expert - | - - - T3% 8% | - - - 67% 73%
FedMix [29] 100 1250 2 2 313% 429% 2000 2 2 497% 48.3%
FedAvg [24] 100 1250 - - 31.2% 58.4% 2000 - - 729% 74.0%
FedProx [22] 100 1250 - - 727% 71.4% 2000 - - 728% 74.0%
Avg Ensembles [16] 100 - - - 239% 53.7% - — - T28% 74.1%
DDOME 100 ‘ 1250 5 2 91.8% 95.7% ‘ 2000 10 2 75.7% 78.6%

Table 1: Average zero-shot personalization score for unseen test clients on CIFAR10/100. See subfigures (d) and
(b) of Figure[5]in Appendix [C|for statistical significance of the respective results. We use two different pretrained
common experts as feature extractor for each dataset: a) The lower bound model at which the gating function can
outperform the initial common expert accuracy, illustrated in Figure[§]in Appendix; b) The average model that
represents a good accuracy that is relatively easy to achieve using ResNet-34 architecture. Sampling is performed
under the scheme of N, = 5 anchor and N. = 5 normal clients per training round; here, N = N, + N, = 10.
See Appendix [E]for DDOME gating function’s effectiveness on individual samples.

Tables summarize our findings on this setup. Whereas FedMix requires all experts to be transmit-
ted to each client, i.e., M = K, DDOME allows the selection of K experts, here K = 2, without the
need to send them all. This reduces communication costs and ensures the client receives the most
pertinent information from the relevant experts.

In terms of baselines, we observe that for the CIFAR datasets both behave differently. We attribute this
gap to the number of classes each client holds. In the CIFAR10 scenario, each client has fewer classes,
which can amplify the model drift problem in all baselines. Furthermore, FedAvg’s performance
deteriorates sharply when we test it on the new CIFAR10 clients that were not used for training
due to the heterogeneous data distribution during training and then in the testing phase. Similarly,
Average Ensembles faces a performance ceiling, as the ensembles inherit the limitations of the
FedAvg aggregation method. On the other hand, FedProx can surpass the initial performance of the
common expert for the CIFAR100 scenario but degrades quickly when using few labels per client, as
in the CIFAR10 setup. To the best of our ability, we attempted multiple hyperparameter settings for
Scaffold, yet we were unable to produce a useful model under this distribution; it became unstable
during training (achieving only 10% for CIFAR10 / <5% for CIFAR100). Further comparison against
domain adaptation methods, as in FedADG [34] and FedSR [26], is shown in Appendixm; for the cases
we consider, we observe that current implementations are bound to having a small number of clients
to perform competitively. These trends are not limited to vision tasks.

Note that we are aware that there are dozens more generic FL algorithms to compare against; yet, our aim is
to provide a proof-of-concept for our methodology on training and selecting the right experts in such a setting.



!
On the Yahoo! Answers dataset | Yahoo! Answers

2000 5 2 6455% 74.90%

(Table @’ we observe a similar Method #Clients | Rounds M K  Acc. Acc.

pattern. All baselines struggle =~ Common Expert - | - - - 6l% 69%

to consistently outperform the  “pequix 100 2000 2 2 58.08% 59.46%

pretrained common expert, with FedAvg 100 2000 - = 60.75% 60.18%

FedAvg again showing limited FedProx 100 2000 - - 60.15% 61.18%

generalization. However, unlike =~ Avg Ensembles 100 - - - 6242% 69.36%
|

CIFAR10, the severity of model DDOME 100
drift is reduced—Ilikely due to
clients having access to more di- Table 2: Average zero-shot personalization score for unseen test clients
verse text samples per class. De- ©On Yahoo! Answers. The structure of the table follows that of Table [Tl
spite this, the limitations FedAvg and Average Ensembles persist. As in CIFAR100, FedProx
slightly outperforms the common expert in one configuration, but fails to do so consistently.

For data diversity, we report results on the EMNIST dataset; please refer to Table [3] for more
information. We note that we have also considered lower than 73% accuracy for the common expert
(e.g., 67%). Yet, such an initial performance was too low to improve further using any of the methods
in comparison. This led to the inclusion of the 73% and 80% cases. This highlights the importance of
the common expert in our framework, underlying that our methodology does not “magically” work
for all cases. Still, proper preparation is needed to obtain favorable performance.

The global accuracy reported at | EMNIST
the end of training demonstrates
the effectiveness and consistency

Method #Clients | Rounds M K  Acc. Acc.

of DDOME in all datasets, with Common Expert - | - - - 73% 80%

significantly better performance  Fedmix 100 2000 2 2 94% 159%
than other algorithms. Please re-  FedAvg 100 2000 - - 721% T721%
fer to Appendix B]for a detailed FedProx 100 2000 - - T20% 72.0%
end-to-end performance of the Avg Ensembles 100 — — - T745% T74.4%
methods in Table[[Junder differ-  ppoME 100 | 2000 10 2 799% 80.5%

ent clients’ distribution.
Additi . . Table 3: Average zero-shot personalization score for unseen test clients
dditional ablation studies and on EMNIST. The structure of the table follows that of Table[] See Figure

experiments. Appepdix H €On- [6]in Appendix [D]for statistical significance of the respective results.
tains thorough ablation studies

on the initial conditions of the common expert and how it boosts the performance, and the value of
anchor clients and their ratio with normal clients. Appendix [E] contains assessment of the DDOME
gating function’s effectiveness on individual samples. Appendix [G]considers the incremental learning
scenario, where either the pool of clients dynamically increases over time or changes over time.
Appendix [H| considers the case where M = K and compares FedMix versus DDOME. Appendix
compares DDOME against domain generalization methods. Finally, Appendix [J]discusses how DDOME
differ from other clustering-based methods applied on similar scenarios.

6 Broader impacts and limitations

Broader impacts. Our work advances efficient and adaptive specialization of Mixture-of-Experts
models, enabling personalized ML in decentralized environments. Positive impacts include privacy-
preserving FL and resource-efficient personalized applications, reducing computational and com-
munication costs. However, we acknowledge potential risks, such as exacerbating fairness issues
if expert specialization amplifies biases inherent in heterogeneous data. Future deployment should
carefully monitor and mitigate such risks.

Limitations. Despite the practical and theoretical promise, our study exhibits several limitations that
could inform future research directions:

* Dependence on pretrained common experts: The success of our approach relies heavily on the
availability of an effective pretrained common expert (see Appendix [F).

* Communication overhead: While DDOME reduces communication costs relative to sending all
experts to clients, it still incurs higher communication overhead compared to traditional single-
model methods.



* Expert initialization and diversity: Our experiments indicate that expert diversity at initialization
significantly impacts specialization effectiveness. We primarily evaluated homogeneous expert
architectures; further study is necessary to understand the impacts of architectural heterogeneity.

* Limited scalability testing: Current experimental setup tests up to a moderate number of clients.

» Complexity of gating mechanism tuning: Finding optimal gating configurations might become
computationally expensive as scale and diversity increase.

7 Conclusions

In this work, we investigated how joint training of gating mechanisms and experts can enable adaptive
specialization in Mixture-of-Experts (MoE) frameworks under single-domain, heterogeneous data
settings. We introduced DDOME (Dynamically Decentralized Orchestration of MoEs), a distributed
MOoE architecture specifically tailored for decentralized training scenarios.

Our empirical evaluations across various datasets demonstrate that DDOME achieves state-of-the-art
performance, surpassing existing FL. methods by leveraging implicit data heterogeneity. Comple-
menting empirical findings, we provided a rigorous theoretical justification for the necessity of joint
training between gating and experts. Our analysis highlights that disjoint or sequential training
of these components significantly limits achievable specialization, reinforcing the importance of
coordinated parameter updates. Future work will explore architectural diversity among experts,
scalability enhancements, and extensions to multi-domain settings.

10



References

[1] Rugqi Bai, Saurabh Bagchi, and David I. Inouye. Benchmarking algorithms for federated domain
generalization, 2023.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[4] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending
MNIST to handwritten letters. In 2017 international joint conference on neural networks
(IJCNN), pages 2921-2926. IEEE, 2017.

[5] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. The Journal of Machine Learning Research,
23(1):5232-5270, 2022.

[6] Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. DEMix
layers: Disentangling domains for modular language modeling. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 5557-5576, 2022.

[7] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on pattern
analysis and machine intelligence, 12(10):993—-1001, 1990.

[8] Chaoyang He, Alay Dilipbhai Shah, Zhenheng Tang, Di FanlAdarshan Naiynar Sivashun-
mugam, Keerti Bhogaraju, Mita Shimpi, Li Shen, Xiaowen Chu, Mahdi Soltanolkotabi, and
Salman Avestimehr. FedCV: a federated learning framework for diverse computer vision tasks.
arXiv preprint arXiv:2111.11066, 2021.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770778, 2016.

[10] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79-87, 1991.

[11] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

[12] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural computation, 6(2):181-214, 1994,

[13] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning,
2019. URL https://arxiv.org/abs/1910.06378.

[14] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning,
2021.

[15] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Moham-
mad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. arXiv preprint arXiv:2205.05198, 2022.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436€924a68c45b-Paper . pdf.

11


https://arxiv.org/abs/1910.06378
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[17] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[18] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[19] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and
Luke Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language
models. arXiv preprint arXiv:2208.03306, 2022.

[20] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data
silos: An experimental study, 2021.

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks, 2018. URL https://arxiv.org/
abs/1812.06127.

[22] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks, 2020.

[23] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273-1282. PMLR, 2017.

[24] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera
y Arcas. Communication-efficient learning of deep networks from decentralized data, 2023.

[25] Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multi-
modal contrastive learning with LIMoE: the language-image mixture of experts. arXiv preprint
arXiv:2206.02770, 2022.

[26] A. Tuan Nguyen, Philip Torr, and Ser Nam Lim. Fedsr: A simple and effec-
tive domain generalization method for federated learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 38831-38843. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
£d946a6c99541fddc3d64a3ea39albc2-Paper-Conference. pdf.

[27] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, Cedric Renggli, André Susano Pinto, Sylvain
Gelly, Daniel Keysers, and Neil Houlsby. Scalable transfer learning with expert models. arXiv
preprint arXiv:2009.13239, 2020.

[28] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language
models: Methods, analysis & insights from training Gopher. arXiv preprint arXiv:2112.11446,
2021.

[29] Matthias Reisser, Christos Louizos, Efstratios Gavves, and Max Welling. Federated mixture of
experts, 2021.

[30] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[31] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Frangoise Beaufays,
and Daniel Ramage. Federated evaluation of on-device personalization. arXiv preprint
arXiv:1910.10252, 2019.

[32] Zhao You, Shulin Feng, Dan Su, and Dong Yu. SpeechMoE: Scaling to large acoustic models
with dynamic routing mixture of experts. arXiv preprint arXiv:2105.03036, 2021.

[33] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local
adaptation. arXiv preprint arXiv:2002.04758, 2020.

12


https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://proceedings.neurips.cc/paper_files/paper/2022/file/fd946a6c99541fddc3d64a3ea39a1bc2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fd946a6c99541fddc3d64a3ea39a1bc2-Paper-Conference.pdf

[34] Liling Zhang, Xinyu Lei, Yichun Shi, Hongyu Huang, and Chao Chen. Federated learning with
domain generalization, 2023.

[35] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

[36] Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao,
and Jianfeng Gao. Taming sparsely activated transformer with stochastic experts. arXiv preprint
arXiv:2110.04260, 2021.

13



A Clients distribution

We created a federated version of the datasets by introducing two partitioning strategies to split the
samples across 100 clients:

* Quantity-based label imbalance: Each client holds data samples of K labels. We first randomly
assign K different labels to each client. Then, per label, we randomly assign samples to clients
along with labels (with replacement). This way, the number of different labels for each client is
fixed. For the CIFAR100 dataset, we use X = 10. For the CIFAR10 and Yahoo! datasets, we use
K =4.

Anchor clients: We followed the same method to create the anchor clients, except we prevented
replacement when randomly selecting the labels. This way, we created a) 5 anchor clients with
K = 2 on CIFAR10 and Yahoo! and b) 10 anchor clients with K = 10 on the CIFAR100
dataset.

* Distribution-based on label imbalance: We simulated the label imbalance of each client by
allocating a portion of the samples (with replacement) of each label according to the Dirichlet
distribution (v = 0.1). As illustrated in Figure 2] the test clients are randomly unseen combinations
of K labels that never appear during training.

Anchor clients: We use the same Dirichlet distribution (aw = 0.1) to randomly create a) 5 anchor
clients on CIFAR10 and b) 10 anchor clients on the CIFAR100 dataset.

Training Clients (a =0.1) Testing Clients (o =0.1)
Labels Labels

Unseen clients during
training

Client ID

Figure 2: Example of distribution-based label imbalance partition on CIFAR10 dataset (v = 0.1)

We conducted a simulation of a federated version of 100 clients on the EMNIST dataset, using the
"ByClass" split. This split presents a greater challenge than the CIFAR10/100 datasets, as some
classes have a much larger number of samples, resulting in 62 unbalanced classes. The clients were
created in accordance with the Quantity-based label imbalance approach, with K = 5.

Note that for test users, we do not repeat any distribution from the training clients; this way, we create
an example where the distribution of the images over all users is different.

B DDOME end-to-end performance
B.1 Quantity based strategy

We begin to evaluate the performance of our method and baselines by measuring the zero-shot
personalized model accuracy on several unseen test clients with a Quantity-based label imbalance
distribution strategy, as explained in Appendix [A] The results are illustrated in Figure[3]

In Figure [3] we can observe that FedAvg cannot keep improving once it’s initialized from the
pretrained checkpoint. This surprising result stems from three major issues: ¢) the clients’ learning
rate parameters are inconsistent with previous training, i) the heterogeneous data distribution on the
training clients introduces a high degree of model variability, and ¢i7) the pretrained expert struggles
to improve or adapt to the federated distribution. Moreover, implementing FedProx required careful
fine-tuning of the p parameter to achieve good accuracy and fast convergence. On the other hand,
despite trying multiple hyperparameter settings, we could not produce a useful model using the
Scaffold method; it became unstable during training and often collapsed or got stuck in a poor
model. This suggests that our method is more robust than these baselines in the current setup.
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Figure 3: DDOME on CIFAR10 (left) and CIFAR100 (right) datasets, against FedMix, FedAvg and Average
Ensembles based on Table[T] using an initial common expert of 73% accuracy.

B.2 Distribution based strategy

Using the distribution-based strategy —detailed in Appendix [A}- we implement two additional chal-
lenging scenarios, where further heterogeneity and complexity are inserted via labels distribution: )
we use the Dirichlet probability rule to generate skewed and imbalanced label distributions, mimick-
ing real-world applications; i) we relax the assumption of disjoint labels for the anchor clients and
allow label overlap, creating a more complex scenario, given that experts are initialized from scratch.

| CIFAR 10 | CIFAR 100
Common Expert | 73.39% | 73.73%

FedAvg 51.3% 73.6%
FedProx 52.8% 73.6%
Scaffold 10.0% 01.0%
FedMix 29.8% 65.3%
DDOME 80.8% 77.8%

Table 4: Best global test accuracies from the last ten evaluation rounds reported on different non-iid algorithms
under Dirichlet distribution (o« = 0.1).

Table [] indicates DDOME leverages the common expert’s original 73% accuracy to reach up to
80% accuracy, even on highly skewed scenarios. While heterogeneity should decrease the overall
performance, DDOME outperforms the methods under comparison, where experts learn to better
generalize to unseen data.

Further, in Figure [d] we show the test accuracy envelope curves for all the algorithms under consider-
ation. It is clear that DDOME show superior performance throughout execution, often surpassing the
text accuracy of the common expert, which is already sufficiently trained, and there is limited space
for improvement. This figure also shows the behavior of the models during training: even DDOME
shows the variability of test accuracy over iterations, indicating that keeping the model at the very
end of the execution might not always be the best practice.
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Figure 4: Evaluation of different non-iid algorithms under Dirichlet distribution (o« = 0.1) on
CIFAR10 dataset.
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C Performance under different sampling ratios

There is an initial degree of randomness in the gating function. During the first couple of iterations,
it sends random top-K experts to each client while the experts learn to specialize in the different
regions of the label space. However, we found a way to keep consistency during these initial rounds:
through the anchor clients. Figure [ shows that by introducing at least 30% anchor clients during
each round, we can ensure a balance against the wrong selection of the gating function by letting them
act as regularizers. Additionally, Figure 5] shows the impact on the performance when we remove the
anchor clients rule from sampling and allow only random selection from the pool of available clients.
It is clear from Figure[5]that a “warming-up” phase is necessary for DDOME: using a sufficient number
of anchor clients, one achieves stability and better final accuracy, by warm-starting the system using
more specialized clients.

a) b) <)
_____ S— 0.8 08
A | em——
06 Ensemble 7 07 08
B > 0.6 nsemble | 5., >
19 9 Q0.6 9]
a ] ] ]
S ; ‘___',' ‘5 0.6
g 04 S 04 gos 3
< < < <
- - w 04 -
g g g g
& 02 =02 Fos =
0.2
0.2 Ensemble
0.0 0.0 Ensemble
0 1000 2000 0 1000 2000 0 500 1000 0 500 1000
Communication Rounds Communication Rounds Communication Rounds Communication Rounds
= = Baseline = = FedAvg  =—#— FedMix =& DDOMEJ

Figure 5: Global testing accuracy for CIFAR100 (a-b) and CIFAR10 (c-d) datasets on two different sampling
strategies: a) + ¢): 10 random clients without replacement per iteration. b) + d): 5 random anchor clients + 5
normal clients without replacement per iteration along different methods.

D EMNIST Byclass statistical significance results

We evaluate a two-layer MLP on the federated EMNIST dataset, running each algorithm for 1000
communication rounds across three different initialization seeds. Results show that DDOMe con-
sistently surpasses the performance of the initial common expert, demonstrating its robustness and
effectiveness across varying accuracy levels.

EMNIST ByClass (CE=73%) EMNIST ByClass (CE=80%)
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Figure 6: Statistical significance results for EMNIST dataset using a common expert with 73%
accuracy (left subfigure) and 80% accuracy (right subfigure).

E Gating function Per-Sample Performance

After training, we thoroughly evaluate our gating function, using the checkpoints trained with the
73% common expert on CIFAR10 and CIFAR100 datasets on the DDOME algorithm. Our fine-grained
evaluation demonstrates that our gating function can analyze the characteristics of each unseen test
client’s local sample and adaptively select a subset of experts that match those characteristics. This
is crucial in ensuring that our gating function can generalize well to new data. After selecting the
top- K experts, the gating function chooses the highest score/confidence expert to predict each test
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data sample. Our results, reported in Table[5] show that our gating function can achieve high accuracy
on the selection.

CIFAR100 CIFAR10
Client Incorrect Correct Error Rate Client Incorrect Correct Error Rate

0 278 722 27.8% 0 227 3773 5.7%
1 281 719 28.1% 1 122 3878 3.1%
2 263 737 26.3% 2 563 3437 14.1%
3 251 749 25.1% 3 103 3897 2.6%
4 261 739 26.1% 4 78 3922 2.0%
5 309 691 30.9%
6 260 740 26.0%
7 285 715 28.5%
8 255 745 25.5%
9 267 733 26.7%

Average Error Rate 27.1% Average Error Rate 5.5%

Table 5: Evaluation per-sample level on CIFAR10 and CIFAR100 datasets.

F Ablation studies

Ablation study: Initial common expert impact. We study performance tradeoffs when utilizing
different common experts for the gating function decisions. Our findings indicate that the amount
of training allocated in the initial common expert has a critical effect on the overall performance of
DDOME. For example, suppose the gating function uses a poor common expert for training. In that
case, it can lead to poor performance (collapses to selecting a single expert) and, therefore, unable to
improve beyond the baseline.

Figures|[7H8]show that the breakpoint of the gating function for the CIFAR100 dataset is approximately
66% accuracy by the common expert. In Figure[§] it becomes clear that a significant cause of this
breakpoint is that the experts cannot surpass the common expert’s initial accuracy. This is attributed
to the lack of an adequate selection of experts, which is essential for the gradient updates of each
expert to be aligned with the same part of the task. Figure|/|also reveals the following: the 67%
case, given a few more iterations, can match the performance of the 73% case. This suggests a
“phase-transition” might exist, where more effort (i.e., communication) is needed to improve beyond
the common expert’s performance. This implies that the performance of DDOME depends on the
quality of the experts.
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Figure 7: DDOME’s performance on CIFAR100 dataset, using different initial accuracy for common expert
(legends of the plot); the setup in Table[T]is used.
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Figure 8: Zero-shot personalization accuracy per expert during training on CIFAR100.

Ablation study: Common expert boosts experts’ performance. To test this, we initialized each
expert from the common expert and continued training for 2000 rounds. In Table[6] we observe the
final score of each method. Surprisingly, for DDOME, it takes a few more rounds to overcome the
baseline than when the experts are initialized from scratch. This is because the pretrained model is
optimal for the entire dataset. To successfully specialize experts, retraining the model on the specific
subset of labels is necessary.

Common Expert 73.73%
FedMix 73.78%
FedAvg 73.99%
Average Ensembles 74.10%
DDOME 83.27%

Table 6: Average zero-shot accuracy for CIFAR100 after 2000 rounds.

We also plot in Figure [8]the performance of each expert (denoted as expX) over the communication
rounds for different initial accuracies of the common expert. It is evident that, for our setting, using a
common expert with an accuracy below 67% We can outperform the other methods once the gating
function can utilize a slightly better common expert.

Ablation study: The ‘“anchor/normal” client ratio. The sampling scheme must be carefully studied
to ensure the best performance of DDOME. Each expert has a distinct distribution; i.e., their local
objectives only align with a particular subset of labels. Ensuring consistency in the experts’ updates
is essential to prevent them from drifting away from their own “task”. As mentioned, we assume we
have some control over the activation of the clients during training.
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Figure 9: DDOME_Na_X_Nc_Y means that % = %—‘c‘, and N = N, + N.. 30% anchor/normal client ratio is
enough to match baseline accuracy. However, the model becomes more inconsistent by converging more slowly.

Our solution is the use of anchor clients, whose primary purpose is to act as regularizers, ensuring
consistency in the expert updates during training. To find the optimal ratio of anchor/normal clients
%—‘Z, we conduct experiments varying this ratio; see Figure@ Sampling half of the clients per round
as anchor quickly surpasses the baseline of the common expert and maintains high consistency in
subsequent iterations. Using a lower ratio of 30% anchor clients per round also achieved similar
performance, allowing some flexibility in the sampling. Contrarily, when we sampled clients randomly

from the available pool (i.e., no “anchor clients””), DDOME shows difficulty improving performance,
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as experts’ updates become inconsistent. Appendix [C|shows the end-to-end performance difference
across different methods using these sampling ratios for both datasets.

G Incremental Learning

Incremental learning is a paradigm that aims to update and refine existing knowledge from new data
rather than discarding or retraining from scratch. This can benefit scenarios where data is dynamic,
scarce, or costly to acquire and where learning models must adapt to changing environments or tasks.
We performed a comprehensive comparison using the same benchmarking methods in Table [I] to
contrast each algorithm’s learning process.

G.1 Dynamically increase the client’s pool

For this setup, we split the CIFAR100 dataset into five groups with non-overlapping labels. Each
group held 20 different clients with random samples within the label range. Then, we allowed only
one group of labels to be trained for 200 iterations. Afterward, we increased the pool of clients with a
new group each 200 iterations, monitoring the global accuracy of the models over time. In Figure 10}
we can observe that DDOME is not affected if the entire set of clients is not present from the outset; its
gating function develops adaptively, without compromising its ability to capture the old distributions.
In contrast, Fed-Mix drops its performance by approximately 4% compared to the original results in
Table [T
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Communication Rounds

Figure 10: Incremental Learning scenario on CIFAR100, dynamically increasing the total pool of
clients.

G.2 Dynamically switch the client’s pool

We employ a cyclical learning approach based on the first setup for the second scenario. Instead of
simply increasing the total pool of clients, we only allow one of the five groups of clients to contribute
to the training process at a time. This means that every 600 iterations, we switch the pool of available
clients, allowing us to see new labels and ensuring that the labels seen during the initial iterations
will never be seen again during the training process. This cyclical approach allows us to benefit from
the data’s diversity while ensuring that the model is constantly being exposed to new information.

Figure [TT]illustrates that even when DDOME is approximately 2% below FedAvg at the end of the
training, the former continues to improve. At the same time, the other methods begin to decline over
the iterations. This is likely due to the anchor clients acting as regularizers to adjust the gradient
directions during optimization, as the client pool presents a more complex setup. The anchor clients
can provide a more stable optimization process.
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Figure 11: Incremental learning scenario on CIFAR100, dynamically switching the total pool of
clients

H Performance under matching number of experts M/ = K

We present additional experiments to compare FedMix vs. DDOME, using the same number of total
experts. L.e., M = K to disentangle our method’s behavior under different experts. The results are
shown in Table[/| where it is evident that even if we send the complete set of experts per worker, our
approach performs better. Yet, the resulting model might be less accurate than the common expert,
implying that malicious “interference” exists.

| M=K=2|M=K=5

Common Expert | 7339% | 73.39%
FedMix 42.76% 43.86%
DDOME 60.16 % 75.77 %

Table 7: Best global test accuracy reported during training on the CIFAR10 dataset under Dirichlet distribution
(o = 0.1) with a fixed number of models communicated to each client. Both methods were initialized from the
same common expert with an initial accuracy of 73.39%.

I Comparison against Domain Generalization Methods

Our scenario can also be framed as a Domain Generalization problem. Thus, we evaluate DDOME
against state-of-art methods, such as FedSR [26] and FedADG [34], that handle robustness to distri-
bution shifts on test-time. Results in Table [8]demonstrate that the ability of FedADG and FedSR to
evaluate unseen domains is tightly bound to a small number of clients. Once we increase the under-
lying distribution (e.g., 100 different clients), these methods cannot exploit the cross-relationship
among domains [[1]].

Common Expert | 93.05%

FedSR[26] 28.24%
FedADG[34] 41.83%
DDOME 87.86 %

Table 8: Best global test accuracy reported during training on the CIFAR10 dataset using quantity-based label
imbalance. We sample 10 (of 100 available) random clients during 900 iterations with replacement. All methods
were initialized from the same common expert reported in the Table.

J Clustering analysis

To provide a more extensive comparison of our expert models, it is essential to highlight that the core
idea is not to summarize clients into several models, as many clustering-related works do. Clustering
methods are limited to scenarios where clients are inherently grouped; all clients in the same group
will have similar local data distributions, while clients across groups will share few data. Instead, we
target a more realistic scenario, where each client has a non-iid and mixed-data distribution, making
client clustering based on local distributions less meaningful. To illustrate this, we have performed
an example of client clustering using K-means on local class distributions as shown in Figure
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where each dot represents one client and the annotated numbers are this client’s two main data classes.
The color represents the K-means clustering result. Clearly, clustering does not create meaningful
groups of clients, and training individual experts in each group does not provide any specialization of
experts.
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Figure 12: Clients clustering with label frequency.

K Theoretical communication cost analysis of DDOME and FedMix
Variable definitions

M : number of expert models.

R: number of communication rounds.

S number of clients.

N': active clients.

k: topk experts (k < M).

P,.: parameters of router.

P.: parameters of a single expert.

P,: parameters of common expert.

€: size to communicate an expert index.

K.1 Analysis of DDOME

Communication Cost Derivation
Total cost = initial setup + cumulative round cost.

Initial Cost (C;,,;): This one-time, server-to-client cost involves sending the common expert model

to all clients S.
Cinit =9 Pc

Per-Round Cost (C,.,,,q): For each of the R rounds, the cost is the sum of downlink (Server-to-
Client) and uplink communication (Client-to-Server).
Downlink Cost (Cj,.,1): Router (P,) and k experts to IV active clients.

Cdown:N(Pr+k'Pe)

Uplink Cost (C,,;,): top-k indices + updates for router + k experts to NV active clients.
Cuyp=Nk-e+P.-+k-P)
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Note: The communication here does not represent computational order.

The total cost for a single round is therefore:

Cround = Cvclown + Cup = N(2PT + 2kP, + kE)

Total Communication Cost (C},:,;): The total cost over R rounds is the sum of the initial cost and
the cumulative round costs.

Ctotal - Cinit +R Cround - (S Pc) +R N(2Pr +2kP€ +k€)

Since the parameter sizes are much larger than index sizes (P, P, >> ¢€), we can approximate the
total cost as:
O[O[a] ~ (SPC)+2RN(PT+]€Pe)

K.2 Analysis of FedMix

The FedMix algorithm communicates all experts in every round.
Communication Cost Derivation

Per-Round Cost (Cheung, Feamix) In each round, every active client downloads and uploads all the
models.

Downlink Cost (Cgown, Feamix): The server sends all M experts (M - P.) to each of the N active
clients.

Cdown, FedMix — N(M . Pe)

Uplink Cost (Cyp, reamix): Each of the N,y clients sends back the updated parameters of the M
experts.
Cvup, FedMix — N(M . Pe)

Total Communication Cost (Ciotal, Feamix) The total cost is the per-round cost multiplied by the
number of rounds, R.
C(lotal, FedMix — 2R - N(M . Pe)

K.3 Limit Analysis
This analysis examines the asymptotic behavior of the communication costs under the following
assumptions:
* The number of active clients is a fixed fraction of the total: N = S/c for some constant
c>0.

* The parameter size of the initial common expert is equal to that of a single expert: P, = P,.
Note: This is true in our experiments.

K.3.1 Analysis as the number of experts M/ — oo
* DDOME:

lim Ciw = lim [(S-P.)+2R-N(P, +kP,)] = (S-P,) +2R- N(P, + kP.)
M—o0 M—o0

The cost is independent of M, implying that the communication cost is bounded and does
not increase as the number of experts grow.

¢ FedMix:
lim C’total, FedMix — lim [2R : N(M : PS)} =0

M—o00 M—o0

The cost is a linear function of M. As the number of experts grows, the cost grows without bound.
This means the communication cost is unbounded, making the algorithm very unscalable compared
to DDOME.
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K.3.2 Analysis as Number of Rounds R — oo

We analyze the cost as the training process becomes infinitely long.

* DDOME The cost is of course unbounded but grows linearly with R. The rate of growth is
given by the partial derivative with respect to R:

8Cvtotal 28
——— = —(P.+ kP,
OR c (Pr + )

* FedMix The rate of growth with respect to R is:

OCoul, Feamix _ 25
—— = —(MP,
OR c (MF.)

Comparison Both costs are unbounded as R — oco. However, comparing their growth rates reveals
that for £ < M, DDOME grows significantly slower, making it more efficient for longer training
durations.
23 (Pp+kPe)
=(ry

K.3.3 Analysis as Number of Clients S — oo

In this case we will add the € term back in, as it directly depends on S.

* DDOME The rate of growth with respect to S'is:

aC’tolal R
— =P, +— (2P, + 2kP,
5 + p (2P, + 2k P, + ke)

* FedMix Algorithm The rate of growth with respect to S is:

ac’total FedMix 2R
Total. FedMix _ =2y p,
oS c ( )

Comparison. The goal is to prove that FedMix rate of change is greater. We will show that this is
indeed the case under certain (realistic) conditions.

We seek to demonstrate that: Z%M P, > P. + (2P, + 2kP, + ke)

(&

We proceed by rearranging this inequality to find the condition under which it holds true.

BloM—k) -2 - ] >1

2(M — k) — 2= — ke 5 a positive number slightly less than 2(M — k) and almost certainly greater

Pe E ’
than 1.
Thus, the inequality FedMix > DDOME holds true if:
R >

e
2(M—-k)—2Pr _ ke

e Pe
This condition is generally satisfied in practical scenario. For example we can plug in our own
experimental values from cifar10 and Yahoo!

M=5k=2c=10,R=2000 P. > P., P. > e.

In this case it is easy to see that this inequality is indeed satisfied, showing us that the rate of change
of the communication cost of FedMix, as a function of the number of clients will remain bounded
below by DDOME.

Conclusion. Across all scaling dimensions of interest—experts (M), rounds (R), and clients
(S)—DDOME communication is fundamentally more efficient and scalable.

L Missing Proof from Section 3|

Here, we first state the assumption of the theorem in Section
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Assumption 1. Let & € R¥? be a positive definite matrix. There exists a constant c,. > 0 such that

Csc
Amin (EXNN(O,E) l:][ {X[l] > Igéf[iﬁ]()([f]} XXT:|> > - - Amin (E)

Csc

For the simplicity of the analysis, we define
I (x) =I{xeC;}; If(x)=I{xeC;}

J

L.1 Analysis of the Initialized Router Weights

Letvy,..., v, ~ N (0, %Id). Write V = [vy,...,vp] € R4x™, By standard concentration of
covariance matrix, when m < d, we have that with probability at least 1 — exp (—©O (d))
VTV =T, < 22
2V/d

This gives that o, (V) > % For the simplicity of the analysis, we assume that this event happens.
Let the singular value decomposition of V be given by V = Uy, EVRI,.

Lemma 1. Let uj,...,u}, be a fixed orthonormal list, and let U* = [uj,...,u},] with some

]
m’ < d. Then with probability at least 1 — exp (—© (m*m/?)) we have that

N mm/
oot <2 =~

Proof. Since v; € N (0,31;) for all j € [m], we have that U*"v; =: a; ~ N (0,3L,).

Therefore )
m m m
VIO = D llaglls = D > ayl?
j=1 i=1 j=1
Therefore ,
E[[VTU|3] = %55 dl|uTU|[} € subE (6 (mm) € (1))

By the standard concentration inequality of Gaussian random vector, we have that

a2 omm’ _omm/ 2
Pr <HVTU HF -0 > d) =Pr (d HVTU*HF —mm’ > mm’) < l—exp (—@ (QO’Q))
Thus, with probability at least 1 — exp (—© (m?m/?)) we have that

V2mm's

viur. <
Vo, < Y2

Recall that V = Uy Xy Ry,. Therefore

1
VIO, = [RyEVOTU | i (V) U0 2 - UT 07

N mm/
[OvU*|l, <2y =~

Recall that the ground-truth router parameters v7, ..., vy, is an orthonormal list, and the concatena-
tion is denoted by V*, and that Uy, denotes the left singular vectors of V. By Lemmal[I] we have
that

I

Thus, we have that

O

[ULVe|, <2 £ <1

Vd
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when m < @. Therefore, dim (span (Uvy) +span(V*)) = 2m.  Otherwise, if

dim (span (Uvy) + span (V*)) < 2m, there exists x € span (Uy) N span (V*), which implies
that there exists s, s’ € R™ such that Uys = V*s’. This gives

15"l = llxlly = lisll, =[OV VS]], < [18'll,

which is a contradiction. Therefore, we can let Uy € R?*2™ to be the matrix representing an
orthonormal basis of span (Uy) + span (V*) where the top m columns are Uy,. Let Uy €

R®*(d=2m) be the orthogonal complement of Uv,. Then we can re-write x ~ A (0, %Id) as
N - 1 1
x =Uys; +Uysy; s~ N <0, d12m> ;so~ N (0, dId—2m>
We make the following assumption:
Assumption 2. Let 3 € R¥*? pe a positive definite matrix. There exists a constant cy. > 0 such that

CSC
)\min <Ex~/\/(0,2) |:]I {X[l] Z ?é?;](x[f]} XXT:|> Z j . )\min (E)

Cse
Exn(0,:) {]I {x[l] > Eré?;]()c[ﬁ]}} >

Let cs,, denote the lower bound in Assumption with Gaussian measure %
Lemma 2. Let ﬂv, Uy, s1,s9 be defined as above. If Assumptionhold, then we have that
1 T 1
Esl [IJ (X)] Z Q (m) ; )\min (Esl [Ij (X) 5181 ]) 2 Q (TTLd)
Proof. Write s; = [qlT,qu]T where q;,q2 € R™. Then we have that q1,q2 ~ N (0, 1L,,).

Moreover, by the construction of Uy, we have that g5 is independent of vy, ..., v,, and q; = Uq—,x.
Therefore

E, [I; (x)s18{ | = P1Eq, [I; (x) aq1a{ | P{ +Eq, [[; (x)] - P2Eq, [a2q, | Py

where P; = [I(’ﬂ and Py = {IO ] Recall that q; = Uy, x. Then we have that x " v; = q] Uy, v;.

Since V has the SVD
V = Uy ZvRy,

we have that U(,vj = Xyr; where r; is the jth row of Ry,. Thus

T _ T _ T
x vj=q; Yvr; = @1 XvRye;

Let 91 = RvXvq;. Then we have that q; = E{,lR\T/éu, and

1
E[@4]] =E [RvSvaia] SvRy| = SRvIE{RY

Moreover, the indicator function can thus be written as
1y = 1{ae; > maxal e | =Tl > o)
Thus, the original objective is re-written as
Es, [I; (x)s18] ] = PiZy'RyEq, [I{a1lj] > |/l } @l | RvEL' P
1 . N
+ =Eq, [[{a1[5] > la1ll,.}] P2P5

d
By Assumption[2] we have that
1 1

o (@l > a2 0 ()5 A (B (1l > o} aal]) 2 0 (o)
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Therefore, we have that

O

Proof of Theorem(l] Notice that the objective in (??) is a quadratic form with Hessian
Ex [Ij (x) xxT]. Recall that x = Uvys; + Uvysa. Thus, we can write

Ex [1; (x)xx "] = UvEs, [I; (x)s1s{ | Uy, + Eq, [[; (x)] Uy Uy,

since sy is independent of I; (x). Based on Lemma we have that the objective in (??) is a strongly
convex quadratic since the two expectation terms are strictly positive. Therefore, W, has the form

. - —1 4~ o~
W = (UVE51 [1; (x)s1s] ] Uy +Eq, [I; (x)] UVU\T,) B [1; (x) %]
Notice that for y we have
y=> I;(x)x"w}
=1

Therefore, W; can be written as

. . 1. B N 5 m . .
w; = (OVE,, [ () sisT] O3 + B, [ (0] Ov O3 ) 3B [1 (%) 17 () xx 7| w;
/=1

_ (I]'VESI [1; (x)s187] " UV + E, [I; (x)] " ﬁvfﬂ,) :

> (OVE., [ (%) IF () 151 T]OY + s, [1; (%) 7] Ov Uy ) wi
=1

=3 (OB [ () sisT) ™ By (1 () 17 () s TIOY + B, 1 ()] B, [1; (%) 1] Ov Oy ) wi
(=1

Let w} be given for any r € [m]. Then we have that
Therefore, the difference between W; and w is given by
i = O (3 1 00 B 0 091 6 U ) - GG
(=1

+ Uy Z Es, [I; (x)s1s; | - Ee, [I; (%) I} (x) 518, T] Uyw; — Uy Uy w?
=1

Due to the orthogonality between Uy and Uy, the magnitude of w; — w must be lower bounded
by the magnitude of its projection onto Uy;. Thus

Wy —will, >

UvUy (Z Es, [ ()] Es, [1; (x) I} ()] W — Wﬁ)

£=1

m

Y B, I (x)] 7 Es, (1 (x) I} (x)] Wi — w}
{=1

>

2

(1~ Oy OY) (z B, (1 ()] B, 1 (0) I ()] w — w:>
(=1

2
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Similarly, we can obtain that

mewgzﬁﬂw@ﬁamml%mwﬁwwzwg
(=1 2
> > B, [ (017 B, (1 () 17 ()] w7 = w
=1 2

(Id = ﬁvﬂ\T/) (Z Es, [I; (%)) B, [I; (%) I} (x)] W} — W?)
=1

We further notice that

D Ee [ () Es, 1 (%) I ()] wi—wi = WG Gl = B, [1; (%)] 7 B, 1 (%) 17 (x)]-1{j = €}

r=1

Therefore, we have that

Iw; = will, > [|OvOy W, |, = [OTw¢| = (1- [oTwe

) 1Gl,

By Lemma we have that with probability at least 1 — exp (—© (m*)), we have that HIAJ‘T,W* ,

3m

<

Moreover, diving deeper into |[([;, we have

o,
KM=§@MM&I&M®U®%MﬁGY
:g%wwwmw@wwﬁ%%www%mwww—ﬁ
z%&%@ﬁ@ﬁ%@%@ﬁ%@@ﬁ@%ﬁ

Since Es, [I; (x)] " s, [I; (x) I} (x)] < 1, and by Lemmal2} we have
_ 1
Bl 0] 2 0 (1)

m

Therefore, we can obtain that

2

(Bar 11 001 Bay 11,00 17 6] 1) > (2B, (1 () 1 (0] — 1)

for some constant c. This gives that

1612 < 3B 11 6 1 G (e, 11 60 1 ) 1) < [

L#£Tr
where
éil0 = Es, [I; (%) I} (x)] ifl#j
’ BRI (x) I (%))~ 1 if¢ =
This gives
: T if € #
B[] 0= {7 _| 7
Therefore,




Using a similar approach, we can conclude that

Ev [|OF (v - w)

T

J=00)

Therefore, for the test loss, we can write

£ (é) - %Ew ifj (x) (w) x — y)z}

J,j'=1
1 % * * - =+
> 3 Z Es, [IJ (x) I (x)] (WJ — Wj/)T UVU;F, (W]
J,j'=1
~ 2
> *’Uv(W] - wj) ,
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly and accurately reflect the contributions
and scope of the paper, explicitly highlighting empirical improvements and theoretical
insights. The stated claims match the provided experimental and theoretical results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A dedicated section clearly outlines limitations, including dependency on
pretrained models, communication overhead, expert initialization concerns, scalability tests,
and gating complexity.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper clearly states assumptions and provides the complete and detailed
proof of the main theoretical result (Theorem 1) in the Appendix, including references to
relevant lemmas and explicit assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper clearly discloses architectures, hyperparameters, optimizers, dataset
splits, and methodological details necessary for reproducing the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Although detailed instructions for reproducibility are provided, the paper does
not explicitly mention releasing data or code publicly.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details including datasets, data splits, hyperparameters, optimizers,
and procedures are clearly specified in the experimental section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not explicitly include error bars, confidence intervals, or other
statistical significance measures, due to computational constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper clearly describes the hardware, GPU types, memory, execution
times, and the distributed training setup for both image and text classification tasks.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no indication of ethical concerns, and the research aligns fully with
the NeurIPS Code of Ethics guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a dedicated “Broader Impact” section that explicitly dis-
cusses positive impacts, such as improved privacy-preserving federated learning, enhanced
resource efficiency, and personalized learning in decentralized environments. It also ac-
knowledges potential negative impacts, highlighting the risk of exacerbating fairness issues
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if biases present in heterogeneous data are amplified through expert specialization. The
authors clearly recommend monitoring and mitigation strategies during deployment.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve releasing datasets or pretrained models that pose
high risks of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: Although datasets and model architectures are cited, explicit mentions of
licenses or terms of use for these assets are missing.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce any new datasets, models, or code assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve crowdsourcing or human subject experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The research does not involve human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The research does not use LLMs as any original or core component.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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