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Abstract

In medical data analysis, human practitioners have long excelled at adopting a
holistic approach, considering a wide range of patient information, including
multiple imaging sources and evolving medical histories. A prime example can
be found in tumor boards, where, among others, radiologists evaluate a multitude
of images while taking into account dynamic patient narratives. However, within
the domain of medical image analysis, the current focus often narrows down to
individual images, or if longitudinal data is used, the task is to infer non-dense
predictions, like classification. However, if we can leverage multiple time points
and model a patient trajectory, we can predict patient status on an image level at an
arbitrary time point in the future. It could not only lead to better predictions for
the current time point, i.e. for image segmentation, but it can also lead to a more
holistic approach in medical image analysis, more akin to the human approach. In
response to this disparity, our work motivates the need for longitudinal medical
image analysis and we present a model that can deal with sparse and irregular
longitudinal series, and without sacrificing generality, generate images.
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1 Introduction

In recent years, the realm of artificial intelligence has witnessed a meteoric rise, such as large language
models (LLMs) Brown et al. [4] or image generation models like in Rombach et al. [13]. The medical
field, too, has experienced profound transformations owing to the integration of AI, as explored in
Anaya-Isaza et al. [2]. Yet, while these successes are prominent, they are still far away from human
analysis of medical problems. One such example are tumor boards, where the experts consider
patient histories and multiple modalities, as described in as described in Okasako and Bernstein [11]
and Mano et al. [9]. It is important to note that longitudinal medical images, in particular, exhibit
more sparsity compared to natural videos due to e.g. factors such as the high cost of individual MRI
acquisitions, which can reach up to 1430$ in the USA as of 2017 [1]. Furthermore, the acquisition
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of medical images is often irregular, as scans are conducted based on resource availability or in
medical emergencies to diagnose underlying issues, and not during regular time intervals. Yet, the
majority of deep learning models primarily analyze individual time points, or if longitudinal data is
used, it is typically used for downstream tasks like as classification. So in this study, we take initial
steps towards a more holistic patient analysis, by modelling patient trajectories to generate images of
patient images at arbitrary time steps.

2 Data and pre-processing steps

Our research benefits from the extensive dataset offered by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), which is accessible at https://adni.loni.usc.edu/. While our research is
not exclusively reliant on the ADNI dataset, including Alzheimer patients, its longitudinal aspects
make it particularly suitable for our investigation of modeling longitudinal trajectories in the context
of medical imaging. It’s worth noting that we do not presume our data originates from an Alzheimer’s
dataset; instead, we utilize it for methodological validation. For repeatability of experiments, we
describe data pre-processing, and we will later publish the model and the pre-processing here 1. For
the pre-processing, we convert the DICOM images using plastimatch, if applicable, registration to
the MNI space using flirt Jenkinson et al. [7], brain extraction using HD-BET from Isensee et al. [6].
An illustrative pre-processed example is depicted in 1, and these pre-processing steps facilitate our
model’s training process.

(a) raw MRI (b) pre-processed MRI

Figure 1: This figure illustrates brain MRI data processing from the ADNI database. (a) displays
a raw image obtained from a random patient. (b) shows a pre-processed MRI brain, where we’ve
registered the image to the MNI space and extracted the brain.

3 Related work

We draw inspiration from the following approaches that serve as the foundation for our work. One
similar work is found in Benoît and Durrleman [3], which leverages the ADNI database as its
foundation. Their model is based on a Variational Autoencoder (VAE), augmented with a pre-defined
geodesic function in the bottleneck whose parameters are learned during training. The use of defining
a geodesic simplifies the latent trajectory, which yields among others, values like disease onset
for Alzheimer disease, but it also needs prior knowledge of the specific disease. In Petersen et al.
[12], their work focuses on predicting segmentation masks for glioblastoma, with a model that is
independent from disease-specific predictions. However, since their data is non-public, their model
cannot be used directly as a baseline out of the box. Also, apart from the constraints imposed by data
limitations, their architecture choice has an added drawback; it is limited to inputs of 2D + t due to

1https://github.com/NicoDisch/LongitudinalMedicalImaging
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Figure 2: Basic network architecture overview: Yellow squares are the input images. Red is the
target image. ti with i ∈ {1, . . . , n} are the input times, and tt is the target time. Green boxes
are the summation of image representations. The gray boxes are encoder and decoder, with the
blue boxes are convolutional blocks. The downward and upward arrows represent max-pooling and
bilinear upsampling respectively. The orange box is summing up the representations of each image
representation and concatenation of time representations. Note that we are free to chose a latent
function instead of the summation, e.g. a neural ODE or a predefined trajectory.

memory constraints. Lastly, we mention the Neural ODEs, which are capable of modeling temporal
irregular data, as described in Chen et al. [5]. Another noteworthy mention is research of Yıldız
et al. [14], where they model trajectories of sparse image time series, with a VAE as a backbone for
their model. Furthermore, we note the existence of other methods for longitudinal data, that solve
a different task, for example they predict e.g. disease onset, as in Lu et al. [8]. And in the work of
Zhang et al. [15], they implicitly take time as regularly sampled, which is not always applicable in
the medical field, but it simplifies network architecture and it can be used in tasks that have regularly
sampled time steps.

4 Methods

Our model architecture takes inspiration from the attentive segmentation process (ASP) introduced in
Petersen et al. [12]. An illustration of the adapted model can be seen in 2. These adaption can be seen
in the skip-connections and in the bottleneck. For the bottleneck, we employ a neural ODE after the
summation, similar to the work of Norcliffe et al. [10]. Furthermore, we are not restricted to an neural
ODE, but in principle we can include the bottleneck function as in the work of Benoît and Durrleman
[3], to leverage prior knowledge of disease progression. We note here, that for the ASP model we
use attention over whole image representations, so we are restricted to 2D in our experiments, due
to memory constraints. In their original work, the ASP consists of an attention mechanism over
the image representations, a linearly upscaled context and target time representations. Instead, we
employ a naive summation of image representations, all else being equal to the ASP model.

The ASP model employs an attention across complete image representations over the lower resolutions.
However, due to memory limitations, we are confined to 2D in our experiments. Petersen et al. [12]
original model utilizes an attention mechanism over image representations, with context and target
times linearly upscaled. This constrains the number of context times and restricts us to 2D images.
To mitigate this, we have opted for a straightforward summation of image representations, while
maintaining other aspects of the ASP model.
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5 Results and further work

The results can be seen in table 1. While preliminary, these results indicate that a simple addition
of image representation aren’t enough to entirely replace the attention mechanism, but that the
performance loss is marginal. We also note that the additional neural ODE does not significantly
improve the results of either the ASP or our model, which can be attributed that the trajectory of
Alzheimer’s disease is roughly a sigmoid, akin to natural aging. To isolate the performance of the ODE

Table 1: Results comparing different model architectures. The task is predicting a 2D slice (randomly
chosen from transverse, coronal, or sagittal axis) of a MRI patient with a randomly chosen time-point.
The loss is comparing the reconstruction error between the network prediction and the ground truth.
Trained using the SSIM loss.

Model description MSE SSIM

ASP (adapted)[12] 0.071 0.691
ASP (adapted) + neural ODE 0.070 0.691
Summed representations 2 0.072 0.695
Summed representations + neural ODE 0.066 0.692

within the network, a comparison with alternative trajectory models such as neural ODEs, Controlled
Differential Equations (CDEs), or neural flows within a VAE is warranted. Furthermore, exploring
different state representations for the neural ODE, such as an RNN in place of the current summation
approach for image representations, may yield better insights. Most importantly, expanding our
datasets beyond the ADNI cohort is a crucial priority. As our experimentation progresses, we aim
to scale our model to 3D, since the simple skip connection in our model scales better than the
attention. The scalability is important for medical applications, since MRI and CT images are 3D,
and considering medical images in their whole is superior in their performance, as explored in Zhang
et al. [16]. Even though there are more and more methods going from 2D to 3D, called 2.5D, it
remains challenging and still less performant.

We recognize that our current method, which simply sums image representations, is basic. The
temporal encoding is confined to the bottleneck, representing significantly less information than the
pixels, which are encoded in every level of the network. Future work will aim to balance the encoding
of pixel and temporal information, possibly drawing inspiration from the ASP model, but with a
focus on efficiency. Ultimately, we hope our work will not only spur new model innovations but also
encourage the collection of longitudinal data, providing accessible baselines for its utilization.
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