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ABSTRACT

Deploying ML systems with only a few real samples makes operational metrics
(such as alert rates or mean scores) highly unstable. Existing uncertainty quantifi-
cation (UQ) methods fail here: frequentist intervals ignore the deployed predictive
rule, Bayesian posteriors assume continual refitting, and conformal methods offer
per-example rather than long-run guarantees. We introduce a forecast-first UQ
framework that blends the empirical distribution with a frozen pretrained generator
using a unique Dirichlet schedule, ensuring time-consistent forecasts. Uncertainty
is quantified via martingale posteriors: a lightweight, likelihood-free resampling
method that simulates future forecasts under the deployed rule, yielding sharp,
well-calibrated intervals for both current and long-run metrics without retraining or
density evaluation. A single hyperparameter, set by a small-n minimax criterion,
balances sampling variance and model-data mismatch; for bounded scores, we
provide finite-time drift guarantees. We also show how this framework informs
optimal retraining decisions. Applicable off-the-shelf to frozen generators (flows,
diffusion, autoregressive models, GANs) and linear metrics (means, tails, NLL), it
outperforms bootstrap baselines across vision and language benchmarks (WikiText-
2, CIFAR-10, and SVHN datasets); e.g., it achieves ~90% coverage on GPT-2
with 20 samples vs. 37% for bootstrap. Importantly, our uncertainty estimates
are operational under the deployed forecasting rule agnostic of the population
parameters, affording practicable estimators for deployment in real world settings.

1 INTRODUCTION

When a machine learning system is deployed, it must begin operating on real-world data, often with
only a handful of examples available. Despite this data scarcity, practitioners still need to answer key
operational questions early on regarding how the model will behave in the long run. For example:

» What fraction of cases will trigger an alert if we keep using the system? (e.g., for an
automated trading setup, the proportion of minutes that would hit a safety stop)

» What is the expected value of a particular score or metric in the long term? (e.g., for a
new health program or app, the long-run average outcome per person, such as “high blood
pressure”.)

Formally, let Y € ) be a future outcome and h : ) — R a fixed score function. Ideally, to respond

to these questions, we would calculate the expected value of the score function under the true (but
unknown) data distribution Y ~ F™*:

O(F*) = /hdF*.

This includes quantities like Pr{h(Y") > 7} (a tail) and E[h(Y")] (a mean). However, with only a
small sample Y7.;, the empirical distribution Fj is unstable and yields unreliable estimates.



Published as a conference paper at ICLR 2026

Throughout, let n denote the number of real observations actually seen in the new deployment
environment. In staged rollouts and safety-gated launches, n is intentionally small at the beginning
due to human quality checks, rate limiting, and policy restrictions. Our methods are expressly
designed for this small-n regime, where classical resampling often undercovers.

A practical workaround (used in domains such as translation, vision, and medical imaging
let al., 2016} [Azizi et al.l 2023} Y1 et al.| is to borrow stability from a pretrained generative model
trained on similar data (see section E| in the Appendix for more details). Let () be the distribution
defined by such a model. Importantly, we do not assume (4 = F™*; instead, we use it as a prior-like
stabilizer that fades out as more real data arrives.

1.1 CONTRIBUTIONS

(Summary of our contributions h
New forecasting method:
Prequential Blend Section
Theoretical Analysis:
Adjusting the blend Section
Adjusting the predictive horizon Section E
Main algorithm (Martingale Posterior adaptation) Section
A use case of the framework:
Optimal retraining of deployed generative models Section
Experiments:
Two Moons|[C.1] GPT-2[C.2| CIFAR-10 (ID[C.3.1)) and SVHN (OOD|C.3.2) ~ Section[8]
§ T ( ( )

Operationally, our target is the long-run metric under the deployed rule, 6, rather than the population
parameter 6(F™*).

Given this setting, how do we integrate the "synthetic" data generated by this generative model Q¢
with the data we start receiving from the real distribution F*? How do we do it in a way that is
mathematically sound and rigorous? And even more, are there multiple ways of doing this or just
one? To answer these questions, we propose a prequential forecasting approach
[Fortini & Petrone] [2025)), where at each time step ¢ (each new data point/batch arrives) we blend the
empirical data distribution with the fixed generator one:

—~ . o
Pi:(l—Ai)Fi+)\iQ¢, with /\i:m,a>0.

showing in section [3]that this Dirichlet-style blending rule is the only affine combination that ensures
time-consistent forecasts: for any bounded score h, the sequence {0(FP;)} forms a martingale. This
means forecasts are stable early on (shrinking toward the model) and gradually revert to empirical
behavior as data accumulates.

Reality vs. Surrogate Forecasting

We do not claim that real data follows our forecasts. The true data distribution F* may
differ from both the generator and the blended forecast P;. We deliberately choose this
surrogate forecasting system to stabilize small-sample metrics. Our theoretical results (on
coherence, martingales, and uncertainty quantification) apply to this surrogate process and its
operational targets 6(P;), not to §(F™).

Crucially, this same mechanism enables uncertainty quantification (UQ) without retraining or likeli-
hoods. By simulating future forecasts under the deployed rule and tracking only the score values,
we construct in section 5| a martingale posterior (MP) 2023)), a calibrated predictive
distribution over the long-run metric 6. This yields lightweight, coherent uncertainty intervals that
reflect what operations actually act on: the forecasted score under the deployed blend.
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Furthermore, we also give a principled way of choosing the hyperparameter « in our blend (section[4)
as well as the predictive horizon to simulate our MP resamples (section [6). Finally, we leverage our
theory to analyze how our framework may be used to optimally decide when to retrain a deployed
generative model.

Why not employ standard Uncertainty Quantification (UQ) techniques? Frequentist intervals
target population parameters of the unknown data law and ignore the deployed predictive rule, often
becoming conservative at small n. Bayesian posteriors integrate parameter uncertainty and typically
presume continual refitting, which conflicts with frozen deployments. Conformal prediction provides
per-example coverage rather than uncertainty for long-run rates under a fixed rule (Vovk et al., [2005}
Angelopoulos & Bates|, 2023). Raw model likelihood is unreliable under shift (e.g., flows giving
higher likelihood to out-of-distribution (OOD) samples than in-distribution (ID) ones), and likelihood-
ratio fixes still rely on density modeling (Nalisnick et al.,[2019; Ren et al.| [2019; |Kirichenko et al.,
2020). A more in-depth discussion of these techniques can be found in section [A]of the Appendix.
These limitations of the standard methodologies motivate our approach.

Scope. The method applies to any frozen generator with a fixed sampler and evaluable score h:
explicit-density models (flows, VAEs; with h(y) = —log g4(y) when available), diffusion/score-
based models with fixed schedules, autoregressive LMs with fixed decoding, implicit samplers
(GANSs), and EBMs with a frozen MCMC kernel. Not for: online updates to parameters/decoding/M-
CMC/prompts (breaks coherence); targeting population parameters of F™* (prefer frequentist tools);
or per-example coverage (prefer conformal prediction (Angelopoulos & Bates| [2023))). We assume a
frozen generator (Q: the parameters ¢ are fixed at deployment start, so )4 is J;-measurable for all 7;
any internal sampling randomness (e.g., diffusion noise or a GAN latent z) is taken conditional on
Q4 and is not updated online. Because we only require sampling X ~ ()4 and evaluating h(X), the
procedure is architecture-agnostic and applies under both domain and semantic shifts.

2 PRELIMINARIES

At a glance. We set up the prequential (forecast-first) framework and notation. Under (scalar)
prequential coherence, the one-step forecasts (P;) make the scalar functional #(P;) = [hdP; a
martingale for any bounded (or L?) score h, hence §(P;) — .. This justifies targeting the long-run
operational metric 0., and using the martingale posterior (MP) I\p (- | JF,) for uncertainty; a
Freedman-type deviation bound later sizes simulation horizons and provides a conservative drift
diagnostic.

This section recalls the prequential (forecast-first) viewpoint and the minimal martingale machinery
we use later. Mainly, this point of view of statistics puts our source of uncertainty in the outcomes we
have not seen yet (Y;, 1, Yy, 12, ...) contrary to the Bayesian approach, which puts it on the parameters
of our distribution; see [Dawid) (1984} and surveys such as |Fortini & Petrone|(2025) for background.
For martingale posteriors see |Fong et al.[(2023)).

Data stream and forecasts. Let (Y, 5) be a measurable outcome space and Y7, Y3, . . . the observed
sequence with F; = o(Y1.;). A forecasting system is an F;—adapted sequence of probability measures
P : Q= PY), 1> 0,

meaning that for every A € B the map w — P;(w)(A) is F;—measurable. Equivalently, (P;) is a
stochastic kernel from (2, F;) to (Y, B). At time i+1 P; is computed and then Y;; is realized,;
under ideal calibration one has

Pl( ) = PI‘(YH_l (S | ]:1)
Prequential calibration (scalar coherence). A one-step forecasting system (F;) is (scalar) coher-
ent for a class H of test functions if, for every h € H,
E[h(Yiq1) | Fi] = [hdPi (i >0).

We will take H to contain at least all integrable h.



Published as a conference paper at ICLR 2026

Linear functionals and martingales. Fix a (bounded or square-integrable) score h. Define the
linear functional §(F) = [ h dF and the process

o) = [nar (=0

Under calibration, E[0(Pit+1) | Fi] = 6(F;), so ((F;)) is a martingale. If h is bounded, or
sup; E [ h? dP; < oo, Doob’s martingale convergence theorem yields

O(P;) — 0 almost surely and in L?,

where 0 is the long-run value of the operational metric under the given forecasting system (Doob),
1953).

Martingale posterior (MP). Following|Fong et al.[(2023), the martingale posterior for the target
is the conditional law of the limit:

Oyp (- | Fn) == Law(fs | Fy).

Operationally, one approximates IIyip by predictive resampling|[I} starting from the observed history
and the forecasting system (P; ), simulate future one-step forecasts and outcomes, track the functional
0(P;) forward, and use long-horizon values as draws from the MP. This keeps inference forecast-
centric and likelihood-agnostic.

Deviation bounds. When A is bounded, the increments A; 1 := 6(P; 1) — 6(F;) are bounded,

and their conditional variances accumulate as V; := Zf;ll E[A?,, | Fi]. Freedman’s inequality
gives, forany § € (0,1) and all ¢ > n,

|6(P) —0(P,) | < \/2Vilog(2/6) + £log(2/5) with probability at least 1 — 6,

where ¢ bounds |A; | almost surely (see [Freedman, [1975)). This provides a generic, prequential
“drift” control between the current forecasted functional and future values.

What to keep in mind. (i) Prequential analysis is forecast-first: objects of interest are the issued
P;’s and functionals thereof, not parameter posteriors. (ii) Calibration implies martingale structure
for 8(P;), enabling convergence and uncertainty quantification via MPs. (iii) Concentration tools for
martingales provide finite-time, deviation controls that we will use to size simulation horizons and
report conservative drift terms.

3 THE PREDICTIVE RULE

At a glance. Among affine empirical-model blends with predictable weights, requiring forecasts
that “do not move on average” (scalar prequential coherence) forces the Dirichlet schedule \; =
/(i + ). This makes 6(P;) = [ hdP; a martingale for bounded (or L?) scores h, s0 6(P;) — 0.
We will later use this to size MP horizons (via deviation bounds) and to connect the conditional mean
E[fs | Fy] to the familiar shrinkage point.

As stated, we study a simple, transparent prequential rule for the deployed forecasts P;:
Pi= (1-XN)FE + \Qy,  F=1) 0y,
k=1

with predictable weights \; € [0, 1] (measurable w.r.t. 7;_1). The data are generated prequentially:
Pr(Y; € A| Fi—1) = P,_1(A) (Dawid, [1984).
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Intuition: forecasts that don’t move on average

In the prequential view, today’s forecast should be the best predictor of tomorrow’s forecast.
Testing only scalar quantities, this says that for every bounded score h,

E[/thi ]-'i_l] z/thi_l.

Within affine blends with predictable weights, this forces the Dirichlet/Pélya pseudo-count
schedule \; = /(i + «) (Blackwell & MacQueen, |1973}; [Ferguson, [1973); early forecasts
borrow from ()4 and then fade to the empirical law.

Theorem 1 (Coherence < Dirichlet; scalar consequences). Fixn € N, F; = 0(Y1.;), and assume
Qg is Fp-measurable (frozen post-training). For i > n let P; = (1 — \)F; + \Qy with )
predictable, and suppose the prequential law holds for i > n+1.

Then the following are equivalent:
(A) Scalar coherence for all bounded h: E[ [ hdP; | Fi—1] = [ hdP,_1 forall i > n+1.
(B) Dirichlet weights: \; = /(i + «) for some oo > 0 and all i > n.

Under either condition, for any bounded (or L?) score h the process 0(P;) := [ hdP; is a martingale
and
n

Pi oo -0 .LQ ]Eoo n] = — _ ﬁn L/ ’
0(P) — 0 as.andin L*, [Ooo | Fnl n+a/hd +n—|—a hdQ

Why this matters. (i) Scoped uniqueness. If you want an interpretable empirical-model blend
with predictable weights and you want forecasts that “don’t move on average,” you must use
Ai = a/(i + «). (ii) Direct operational payoff. For any fixed score h, 0(P;) = [ hdP, is the
quantity operations care about (mean rate, tail mass, NLL). The limit 6, is its long-run value, and
its conditional mean equals the familiar shrinkage point. Convergence and the mean identity follow
from standard martingale theory (Doob) [1953).

Practical tie-in (MP and resampling). We quantify uncertainty for 6, via the martingale posterior
(the conditional law of 6, given F,,) using predictive resampling in the spirit of [Fong et al.|(2023):
simulate forward under the rule \; = «/(i + «) with P; = (1 — )\Z)ﬁz + A\ @y, track only running
values of h, and use long-horizon values as MP draws (see Algorithm|[T). For a conservative stopping
rule for the simulation horizon, see Section[6} for a principled retraining trigger, see Section

What breaks if we violate scope. Fixed )\ (no decay) or non-predictable weights violate scalar co-
herence on generic histories; the martingale property fails. Updating ¢ online breaks J,,-measurability
of Q4 and the coefficient recursion that yields the Dirichlet schedule.

4 HOW TO CHOOSE « OPTIMALLY

We want a single, transparent way to pick the knob « that sets the coherent shrinkage weight

~

A = «a/(n + «a) in the estimator 0(P,,) = (1 — ) 8(F,) + A0(Qy) for the linear functional
9(F) = [ hdF when only a few observations are available. In this regime, error has two sources:

~

the sampling noise of the empirical plug-in #(F,,) and the potential bias if the frozen generator ()
is misspecified for the target functional. Our plan is to make this trade-off explicit by formalizing

precisely what uncertainty we allow at small n. We assume Y7., Hd proand place the unknown
truth in an ambiguity set that contains all data laws whose score variance is at most 0 and whose
target functional differs from the model’s by at most A,

o2

G(o%, A) = {F : Varp [B(Y)] < 02, 0(Qy) — 0(F*)| < A}, ai=2

This codifies the two forces at play: a controls sampling variability and A controls model-data
mismatch on the very quantity we care about. For any fixed blend A € [0, 1], the squared error of
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the shrinkage estimate 6, = (1 — )\)G(ﬁn) + A 0(Qy) against §(F*) decomposes into a variance
piece scaled by (1 — \)? and a bias piece scaled by A2, so it is natural to choose A by minimizing the
worst-case version of this trade-off over G(o2, A); doing so yields an exact small-n minimax weight,
which matches the coherent prequential schedule A = «//(n + «) and thus identifies the optimal
pseudo-count « in closed form.

Theorem 2 (Exact minimax shrinkage). Fixn € N and set a = o2 /n. For A € [0, 1], define the
shrinkage estimator

0 = (1=X)0(F,) + A0(Qy),

and its squared-error risk

R(\F*) = Ep[(0x — 0(F*))?].
For every F* € G(0?%, A),
RO\ FY) < (1-=X)%a + A2 A%
Moreover,
a A2 a
inf N = ined A= ——.
,\g&m] F*6212£)27A) R(\, F™) WA attained at TTA

Under the coherent schedule A = o/ (n + «) this corresponds to the pseudo-count

2
o = % (independent of n).

The bound is tight, achieved by a two-point least-favourable F* with 16(Q4) — 0(F*)| = A.

In practice, we do not know o2 or A, so we pick them in a way that preserves the same conservative
spirit: we estimate the score variance by the sample variance 52 and we upper bound the model—data
gap by padding the observed difference with a high-probability safety margin, A = }9(Q¢) —
Q(ﬁn)| + t,, where for bounded |h| < H an empirical-Bernstein radius adaptively reflects the
observed variability while accounting for bounded range,

262 log(2 2H 2
S log2/5) | 2T 2
n 3n 1)

t, =

Alternatives with different regularity assumptions are Hoeffding’s ¢t,, = H+/log(2/4)/(2n) or a
sub-Gaussian/normal choice t,, = z1_5/2 6/+/n; if 0(Qg) is computed by Monte Carlo with m

draws, we also add a model-side margin t,,, inside A.

With these plug-ins, we turn the minimax prescription into a concrete weight by setting & =
clip(62/A%; Qmin, Omax) and A = a/(n + @) (€.2., Qmin=5, Qmax=200), where clip(; L, U) :=
min{max{xz, L}, U}. This automatically increases shrinkage toward @), when the observed variance
is larger or the inferred mismatch is smaller, and because « is n-independent, the prequential weights
A = o/ (i + «) fade on their own as data accrue.

The following result shows that, with high probability, this data-driven weight essentially preserves
the oracle minimax risk, up to second-order terms from estimating o2 and padding A.

Proposition 3 (Near-oracle risk with data-driven weight). Letd = A? > 0, d= A% a=62 /n, and

X =a/(@+ d). On the high-probability event £ = { |§(F),) — 0(F*)| < t, } and when clipping is
inactive,
A2 N 52 2)2
% < sup R\ F*) < R + Ct2 + %,
a * n
FreG(o2,A)

R* (oracle minimax)

for an absolute constant C.

Remark 4 (Robustness when t,, > A). If t,, < A the excess is O(t2). Without this mild condition
one obtains the same conclusion with an additional O(#4) term by replacing A with (A + t,,) in the
intermediate bounds.
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Algorithm 1 Martingale Posterior sampling

1: Inputs: observed data Y7.,,; frozen generator (); score h; pseudo-count a; horizon M; number
of replicates B

2: For each replicateb=1,..., B:

3:  Initialize: scores_b + {h(Y7),...,h(Y,) }; sum_b + > 1" h(Y;); count_b <+ n

4: form =1to M do > advance one prequential step

5: i<n+m; A—a/(i—1+a)

6: forb =1to B do

7 Draw U ~ Bernoulli()\)

8

: if U = 1 then > model branch
9: draw X ~ Qy; 2z h(X)
10: else > empirical branch
11: sample z uniformly from scores_b (i.e., resample-with-replacement)
12: Append z to scores_b; sum_b ¢ sum_b +2; count_b ¢+ count_b +1

13: Return: MP draws ) < sum_b / count_b forb=1,...,B

Putting it all together, the implementation is a single pass over observables: compute z; = h(Y;),
their mean z = % >, #i, and the sample variance 62; evaluate 6(Q,) (adding %, if it is Monte

Carlo-estimated); form the conservative gap A = 10(Qg) — Z| + tn; set & = 62/ A? with mild
clipping and A = &/(n + &); report the shrinkage estimate

0(P,) = (1-X) 2+ A0(Qy),

and pass & to the MP sampler so that uncertainty quantification follows the same deployed, coherent
rule.

5 SAMPLING THE MARTINGALE POSTERIOR (GPU-PARALLEL)

Following [Fong et al| (2023) in Algorithm [I, we approximate the MP for the long—run value
oo = lim;_,, [ h dP; by simulating the same one-step prequential rule forward and tracking only
the functional state. Each replicate keeps a running sum s, a count ¢, and its own pool of past
h-values; no inputs are stored, so the memory footprint is small and the implementation is graphics
processing unit (GPU)—friendly. Note that MP quantifies uncertainty for the surrogate 6., under F;,
not for §(F*). We size the simulation horizon M using the deviation bound in Section@

Remark 5 (Linear metrics (in F): Dirichlet-mean shortcut for MP). Two computational regimes
arise, depending on whether the operational metric is linear in I’ or not. For any operational metric
that is linear in the distribution, O(F) = [ h dF, under the coherent blend P; = (1 — )\Z)ﬁz + XiQs
with \; = «a/(i + «), the martingale—posterior for the long—run value 6, = f h dP,, admits a
closed—form sampling scheme that avoids forward simulation. Importantly, & need not be linear; it
can be any bounded (or L?) score. Let z; = h(Y;) and let Hy be the pushforward of Q4 by h (if
X ~ Qg then Zy = h(X) ~ Hy). Drawing

(wg, ..., wy) ~ Dirichlet(c, 1,...,1), Zy ~ Hy, 0®) = wyZy + ZIUiZi

i=1

yields i.i.d. samples ) ~ Law(f., | F,). Thus, for linear-in-F metrics this Dirichlet-mean
sampler produces exactly the same posterior as MP, but with substantially lower compute, while MP
remains the general tool for non-linear or path-dependent objectives and policy simulations.

6 WHEN DO WE STOP RESAMPLING?

We want a principled way to decide how far to push the martingale—posterior (MP) resampling before
additional simulation stops changing the answer in a practically meaningful way. Concretely, our
operational target at step ¢ is the linear functional 6(P;) = f h dP;, and we would like to control,
with high probability, how much this target can drift from its current shrinkage point 6(P,,) to any
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future value 6(P;) under the very same deployed prequential rule. The handle we use is a finite-time
deviation bound that applies whenever the score is bounded, ||/|| < H, and the forecasts follow the
coherent Dirichlet schedule A\; = «/(i + «) (with a > 0), which together yield an anytime guarantee
valid simultaneously for all future times ¢ > n:

Theorem 6 (Finite-time deviation for bounded & (tightened)). Assume ||h||oc < H and the coherent
Dirichlet schedule \; = o/ (i + «) for i > n (with o > 0). Then, for any § € (0,1),

21og(2/0) 2H
0(P)—0(P,)| < H
fgg‘ (P)—0(Pn)| < n+a + 3n+a+1)

2
logg with probability at least 1 — 6.
This result tells us exactly what we need for stopping: the maximum future drift is controlled only by
the score range H and the effective sample size n+a, and it shrinks at the rate O((n—f—a)_l/ 2). To
turn it into a practical rule, fix a confidence level § and read the bound as a uniform certificate that,
no matter how far we continue the prequential run, the gap ’9(Pt) -0 (Pn)’ remains below

2log(2/6) 2H
H n+a + 3(n+a+1)

log% forall t > n.

We then pick the MP simulation horizon M so that this theoretical drift bound is smaller than the MP
Monte Carlo error, ensuring further resampling cannot move the forecast more than our sampling
noise; and we report the same drift term alongside the MP interval for 6., as a simple calibration
diagnostic. Because the right-hand side tightens monotonically as either « or n increases, extending
the prequential run can only improve (never worsen) the guaranteed gap, which makes this criterion a
safe and transparent stopping rule.

Operational rule (horizon selection). In simple words, this tells us that we can choose M in algorithm
[ as the smallest value for which the right-hand side in Theorem [6]is below the empirical Monte
Carlo error of the MP quantiles you will report; also include that bound alongside the interval as a
drift diagnostic.

7 USING OUR FRAMEWORK TO DECIDE WHEN TO RETRAIN

We want an auditable, deployment-aligned answer to a simple question: will retraining a frozen
generator pay for itself over the next H uses? The plan is to monitor the same linear key performance
indicators (KPIs) 9(F) = [ h dF under the very rule used in production, summarize the current state
with a coherent shrinkage estimate and its MP uncertainty, and then compare the certified per-use
improvement from switching models to the all-in retraining cost. We keep forecasts coherent by
blending empirical evidence with the frozen model, the unique predictable affine schedule whose
KPI forecasts are martingales (Sec. [3); at step n we compute

2= 13 AV, &= Y (V) 2% A= 0(Qs) 2|+t
i=1

i=1
choose the pseudo-count

A S (A2 /N2,

a = Chp(g /A 5 Omin, amax)a

and calculate the coherent shrinkage point together with MP intervals for the long-run value (Sec. [3):
0(Pn) = 755 2+ 795 0(Qq).

With weights wy, over KPIs and total retraining cost Cy¢, we then compare expected per-use loss
under the deployed rule before vs. after retraining, using a pilot when available or a certified minimax
proxy otherwise, and we trigger only if the H-use gain exceeds Ci:

Checklist (one pass).

1. Compute z; = h(Y;), the mean z = % >, %> and the sample variance 62,

2. Evaluate 9(Q¢); if Monte Carlo with m draws, add a model-side margin tom.
3. Form the conservative gap A= |9(Q¢) — 2| + t,, (choose t,, per Section .
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4. Seta = clip(62/A%; Qmin, max) and A = &/(n + @).

5. Report 0(F,) = 35 2 + ﬁ 6(Q4) with MP intervals (Sec. .

6. Compare current vs. candidate model using either a pilot MP comparison or the minimax proxy
below; trigger only if the H-use gain exceeds C\y.

Decision rule (expected gain vs. cost)

With a pilot (operational target). Run two MPs (current ) vs. pilot Q4+ ), each with its
own pseudo-count « set by the small-n minimax rule (Sec.[d), and trigger if

HY wy (EHMP(‘|Q¢)[L(9oo,k)] *]EHMP(‘|Q¢+)[L(9oo,k)]) > Ci.
k

No pilot (certified proxy). Use the small-n minimax risk R*(a, A) = a8’ with a = o2 /n

a+A?
and plug-ins a ~ 62 /n, A =~ A (Thm.IZI):

HY wy (R (63/n,Ay) = R*(63/n,A)) > Cu.
k

Here AZ is your planned post-retrain mismatch (from a small side-pilot, historical effects, or
a minimum effect size you require).

Proposition 7 (Worst—case—safe proxy trigger). Let 0(F) = [ hdF be a linear KPI and let G(o°, A) be
the ambiguity set of Sec.| Set a = o2 /n. Suppose retraining changes the model-data mismatch on the target
functional from A to AT < A while the data law F* is unchanged. Consider the coherent Dirichlet-weighted es-
timator with the minimax weights before/after retraining, i.e., \*(a, A) and \™*(a, A™). For the truth—centered
squared loss L, (0) = c (6 — 0(F*))%, ¢ > 0, one has the tight worst—case bounds

sup }E[L*(é\)] = c¢R*(a,A),
F*eG(o2,A)

sup E[L*(é\Jr)] = ¢R*(a,A"),
F*eg(o2,At)

where R*(a,A) = a“JrA:Q. Consequently, the worst—case per—case expected loss drops by c(R*(a,A) —

R*(a, A™)), and over H cases, triggering when
Hc(R*(a,A) — R*(a,A")) > O

is worst—case cost—effective.

Intuition: at small n (number of observed cases) the two levers that matter are variance a = o2 /n
(noise per case, where o is the variability of the KPI scores h(Y') under the true data) and mismatch
A (the systematic gap on the KPI between the frozen model and reality, i.e., |0(Qg4) — 6(F*)|); any
blend has worst-case risk (1 —\)2a+A2A? (variance term scaled by how much we trust the data, plus
squared bias scaled by how much we trust the model), where X\ € [0, 1] is the shrinkage weight (the
fraction of trust placed on the model forecast versus the data); this is minimized by \* = %5 to
R*(a, A) (the best achievable risk given noise level a and mismatch A); a retrain leaves a unchanged
(same sample size n, same data noise) but aims to reduce the mismatch from A to A* (the planned
post-retrain gap on the KPI), so the guaranteed gain is exactly R*(a, A) — R*(a, A™); multiplying
by H (the number of future uses one cares about) and comparing to C\y, (the all-in retraining cost)
turns this into a direct, stakeholder-friendly trigger.

8 EXPERIMENTS

We evaluate three settings with frozen generators and linear operational metrics: (i) Language (in-
distribution, ID): GPT-2 (117M) on WikiText-2; score h is teacher-forced negative log-likelihood
(NLL) per token; target O(F') = E[h]. (ii) Vision (in-distribution / out-of-distribution, ID/OOD):
CIFAR-10 (ID) and SVHN (OOD) with a CIFAR-10-pretrained generator; score h is CLIP-rarity
(protocol in App.[C); target §(F) = E[h]. We choose a strong shift (CIFAR-10—SVHN) to stress
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GPT-2 on WikiText-2: Predictive coverage @ 90% vs n SVHN (0O0D), 6 = E[CLIP rarity]: Predictive coverage @ 90% vs n

~&— Bayesian Bootstrap Jackknife
@~ Nonparametric Bootstrap &~ DWS
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(a) GPT-2 (WikiText-2): coverage@90% vs ng. (b) SVHN: OOD coverage@90% vs no

Figure 1: Predictive coverage @90% versus the number of initial real samples ng. The dashed line
marks the nominal 0.90 target.

calibration at small n. (iii) Toy (Two Moons): alert-rate and mean-score functionals. Baselines:
nonparametric bootstrap (NPB), Bayesian bootstrap (BB), Jackknife (JK). Our methods: DWS
(Dirichlet-weighted shrinkage with the minimax «) and MP (martingale posterior). For linear 6 we
use the Dirichlet-mean shortcut (exact law of 6,). Full protocols and extended results are in App.

Results at a glance.  Figure [T|shows coverage @90% versus ng: the share of runs where the 90%
predictive interval for 6., (under the deployed rule) contains a large-sample reference from an
independent truth pool; error bars = p+1.964/p(1 — p)/R. On GPT-2 (WikiText-2) (Fig. , DWS
is consistently closest to nominal in the small-n regime (reaching ~ 0.90 by ny=20 and remaining
stable through ny=100), whereas NPB/JK markedly under-cover for ng < 50, and the plain Dirichlet—
mean (without the minimax «) under-covers at very small n. The right panel (Fig. summarizes
the same trend across methods with error bars. Figures [2aH2b|illustrate how uncertainty behaves
under the deployed rule: at no=50 the MP draws place the shrinkage mean between empirical and
model; by ng=3000 the forecast has faded to empirical behavior and the 90% band has contracted.
On vision (see App. [C): on CIFAR-10 (ID) methods tend to cluster with near-nominal coverage;
on SVHN (OOD) DWS is best-calibrated for small n (near 90% when others under-cover). Across
datasets and sample sizes, the intervals from DWS/MP decrease steadily as ng grows, reflecting the
increased effective sample size ng+« and yielding progressively sharper yet calibrated forecasts.

Why our method wins when n is small. (i) Coherent pseudo-counts: the unique predictable
affine blend \; = «/(i+«) makes 0(P;) a martingale, stabilizing early forecasts while ensuring
fade-out. (ii) Minimax «: a single, data-driven knob trades off sampling variance against model—
data discrepancy, curbing the under-coverage typical of bootstrap at tiny n. (iii) Right target:
MP/Dirichlet-mean quantify uncertainty for the operational limit 6, under the deployed rule, which
is what operations act on.

MP draws for 8, = Pr(Y> > T) at np =50 MP draws for 61 = Pr(Y> > T) at no = 3000
20.01
! Empirical = 0.080 Empirical = 0.051 I
17.54 | —:= Model = 0.061 200 4 —-- Model = 0.061 I
! —— Shrinkage mean = 0.070 —— shrinkage mean = 0.051
15.0 i MP 90%: [0.033, 0.109] MP 90%: [0.047, 0.055]]
12.5 1 150 4 |
z i z ‘
£ 10.04 i g i
° H T 100 .
7.5 4 I |
] 1 |
0 I 50 4 i
251 i i
1 |
0.0 T T T T T T T 0 T T T T T 7 T
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.0450 0.0475 0.0500 0.0525 0.0550 0.0575 0.0600
value value
(a) MP draws at ng=>50. (b) MP draws at ny=3000.

Figure 2: Behavior of the martingale posterior (MP) for an alert-rate functional: shrinkage and wider
bands at small n (left), fade-out to empirical and tighter bands at large n (right).
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Reproducibility Statement. All implementation details, hyperparameters, and full experimental
protocols are provided in Appendix|[C] including exact configurations for all settings (language, vision,
and Two Moons). We will make our code public upon acceptance.

LLM Usage. We used a large language model sparingly for polishing the abstract.
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A  RELATED WORK

Pretrained generators as small-n stabilizers. A common small-data tactic is to borrow stability
from a pretrained generator trained on a nearby domain: back-translation in MT (Sennrich et al.|
2016), diffusion-backed augmentation in vision (Azizi et al.| 2023)), and GAN-based synthesis in
medical imaging (Y1 et al., 2019). Generators are routinely used frozen across flows, diffusion models,
VAEs, and GANs for sampling/monitoring (Papamakarios et al.,[2021} |Ho et al., [2020; Kingma &
Welling| [2014} Goodfellow et al.,2014). Yet explicit likelihoods can misalign with semantic OODness
(notably in flows) (Nalisnick et al.,2019; [Ren et al., 2019} [Kirichenko et al., 2020), motivating targets
that operate on the deployed predictive sequence and support density-free metrics (e.g., CLIP rarity;
FID-style distances) while recovering NLL when available (Radford et al.l [2021; |Heusel et al., 2017).

Prequential viewpoint and coherent shrinkage. The prequential (forecast-first) program evaluates
one-step predictive sequences rather than parameters (Dawid, 1984 (Geisser, [1993). Dirichlet-Pélya
predictives give canonical pseudo-count shrinkage that ensures scalar prequential coherence, so for
any bounded score h, 8(P;) = f h dP; is a martingale (Ferguson, [1973; [Blackwell & MacQueen,
1973} [Fortini et al.| |2000; Berti et al.| [2004). Martingale posteriors (MPs) operationalize inference
on functionals of the predictive limit via predictive resampling (Fong et al., 2023} |[Fortini & Petrone,
2023). Fong et al. (Fong et al., [2023) take the predictive sequence (P;) as given and show how to
construct MPs for general prequential limits. Building on this, our work (i) identifies the unique
Dirichlet prequential blend for frozen generators that yields scalar-coherent forecasts, (ii) provides a
small-n minimax rule and plug-in estimator for the pseudo-count ¢, and (iii) uses the resulting MP
machinery to target deployment-aligned functionals 6, and to derive an auditable retraining trigger.

Position relative to broader UQ. Parameter-centric UQ (ensembles, SWA/SWAG, Laplace) inte-
grates or perturbs parameters (Lakshminarayanan et al. 2017} [Izmailov et al.| [2018; Maddox et al.|
2019; Daxberger et al.,2021); bootstrap captures sampling variability of the empirical law (Efron &
Tibshiranil [1994)); conformal offers distribution-free per-sample guarantees under exchangeability
(Vovk et al.| 2005} |/Angelopoulos & Bates|, 2023). Our angle is forecast-centric: a coherent pseudo-
count blend for the deployed rule and MP-based resampling to quantify uncertainty for operational
linear functionals.

B PROOFS

B.1 PROOF OF THEOREM[I]

Fix n € Nand let F; = 0(Y1.;). Let Q4 be F,,-measurable (frozen after training). For ¢ > n define
. 18 N
F == Zéyk, P, = (1-X)F; + XiQg, X €[0,1] predictable (F;_;-measurable).
)
k=1

Assume the prequential law Pr(Y; € A | F;_1) = P,_1(A) for all Borel A and i > n+1 (Dawid,
1984).

Auxiliary identity. For i > n+1,
~ 1—1 4 1
E|F | Fin] = == Pt + =Py, (M

Proof. For bounded measurable f,

]E{/fdﬁi

by the prequential law, which is precisely equation|[T}

i-1 .
]:ifl] = 1;]‘@@) + %E[f(yi) | Fic1] = ! _Z 1/fdﬁiq + %/fdpz;h

13
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(B) = (A) (Dirichlet weights imply scalar coherence). Suppose A\; = «/(i + «) for some o > 0
and all ¢ > n. For any bounded h,

E[/th,»

Using equationand P_i=(1- )\i_l)ﬁi_l + Xic1Qo,

E[/thi

A direct substitution of \; = a/(j + «) yields the coefficient identities (1 — \;) i_AZ.""l =1-X 21
and (1 — )\i))"‘.’l + Xi = \;_1, hence

EUthi

i.e., scalar prequential coherence holds.

fi_l} = (1 —/\i)/hd]E[E | Fi_i] +Ai/th¢.

f“] - [a —)\Z-)H%}/hdﬁ,l + (1 - a2 +)\Z}/th¢.

.7-"7;_1} :/th,;_l for all bounded h,

(A) = (B) (scalar coherence forces the Dirichlet schedule). Assume scalar coherence: for every

bounded h and 7 > n+1,
E[/thi -7:1'—1] z/thi_l.

Repeat the calculation above but now regard the two coefficients in front of [ h dﬁi,l and [ hdQy,
as unknowns. Because the identity holds for all bounded £, the coefficients must match:

P — Ni— i
%:1*&:—17 (1—x)=

(1—=Xi)

+ A= Nio1.

The second equality gives the recursion

(i =D

/\i = )
i—Ni—1

1> n+1.

Leta; :== X\;/(1 — )\;). Thena; = % a;—1, 0 a; = (n/i) a, and

a; (n/i)ay,

Ai = = =
l+a; 14+ n/Da, i+«

with « := na, > 0.

Thus the Dirichlet (pseudo-count) schedule is the unique predictable affine schedule that achieves
scalar coherence, in line with the Dirichlet—Pélya predictive updates (Blackwell & MacQueen), [1973}
Ferguson, [1973).

Under either condition (A) or (B), scalar coherence holds, hence for any bounded (or L?) score h
the process 0(P;) := [ hdP; satisfies E[§(P;) | F;_1] = 6(P,_1) and is therefore a martingale. If
h is bounded then |#(P;)| < ||h||so a.s.; if b € L? under the predictives (our standing assumption
sup; E [ h? dP; < 00), then by Jensen/Cauchy-Schwarz E[0(P;)?] < E [ h? dP; < oo, so (0(F;)) is
L?bounded. By Doob’s L? martingale convergence theorem,

O(P;) — 0 almost surely and in L?, and 0(P,) =E[f | Fnl-

(see, e.g.,|Doob, |1953). Finally, using P, = (1 — )\n)ﬁn + A\ Qg with A, = a/(n + «) gives

9(Pn):/thn: nza/hdﬁn—k a /th¢,

n -+ «

which identifies the stated shrinkage mean.

This completes the proof.
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B.2 PROOF OF THEOREM[Z]
Recall the ambiguity set
G(o®,8) = { F*: Varp-[h(Y)] < 0%, 10(Q) — 0(F)| < A},
and the shrinkage estimator
Oy = (1—-NO(F,) +20(Qy),  Ael01],

with risk R(\, F*) = E[(0x — 0(F*))?] under F*. Set a := 02 /n.
Let pi, := 0(F™) and p,,, = 0(Q,), and define the functional discrepancy § := fi,, — 4. Since
0(F,) = 157 h(Yy) and Ep« [A(Y)] = p, by linearity,

Ep[0(F,)] = s, Varp:(0(F,)) = %Varp*(h(Y)).

Therefore
Or = e = (1= M) (0(Fp) = 1) + Aptm — 1)
= (=N (O(F) = 1) + A,
so that
RO\ F*) =E[(1= 22 (0(F,) — p)"] +2(1 = NASEB(F,) - ] + X262 @)

= (1 = \)?Varp: (0(F,)) + A\262.
(The cross term vanishes since E[0(F,) — ] = 0.)

Recall a := 02 /n, p, := O(F*), fiy, := 0(Qq), and § := fi,,, — puy. By the definition of G(0%, A)

we have

02

Varp(0(F) = Var(h(V)) < & =0, |3 < A

Plugging these bounds into equationyields, for every F* € G(a?%, A),
RO\ F*) = (1= X2 Varg-(6(F,)) + 2282 < (1-X)%a + A2A%

Therefore o
sup RO\ F*) < (1-XN)2%a + N2A? = R(\).
F*eg(o2,A)

This upper bound is the quantity we minimize in X in the next step.

Recall a := o2 /n and the upper bound R(\) = (1 — A\)2a + A?A2? from Step 2. Define f()\) :=
(1 — X)2a + A2A2? for A € [0,1]. This is a convex quadratic (strictly convex if @ > 0 or A > 0).
Differentiating,

') = =2(1 = Na + 2\A%

and the unique stationary point in [0, 1] solves f/(\) = 0, i.e.

. a
a4+ A2
Since a, A? > 0, we have \* € [0, 1]. Evaluating,
a A?
)= ——— = R*.
FX) a+ A2
Therefore
_ a
inf R\F*Y) < inf R\ = R* hieved at \* = ———..
L, ROVE) S RO = R acievedat X =
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Tightness. The bound is attained by a two—point F'* with Var(h) = o2 and |0(Qg4) — 0(F*)| = A
Hence
sup RO F*) = (1-MN2a+A2A%
FreG(o2,A)
s0 \* = a/(a + A?) is truly minimax and inf supp. R(A\, F*) = R*(a, A).

Under the coherent blend, the weight is A = «//(n + «) with pseudo-count «« > 0. Equating this to
the optimizer A* and solving for « gives

na 0'2

A2 T AT

nj—a :ﬁ — ala+ A =n+a)e <= alA?’=na <= o =

which does not depend on n.

Edge cases. If A = 0, then \* = 1 and R* = 0 (trust Q) fully). If a = 0 (e.g., n — oo or
Vargs(h) = 0), then A* = 0 and R* = 0 (revert to empirical behaviour).

B.3 PROOF OF PROPOSITION[3]

Fix n € N. Leta := 0%/n and d := A% > 0. For \ € [0, 1] set
d

wa(\) = (1= \)2%a + A% =2 fim faaOV) = 20

fa,aN) == (1 =X a+Ad, A por TR fa,a(A") Vi d

By Theorem for every F* € G(0?, A) and every )\,
RO\ F*) < faa(N) = R*+ (a+d) (A= 292

Letd := A% and X := a/(a + d). Then
207 7\2 T2
d-d =P
a+d)?%(a+d) d
for a universal constant C' > 0. On the event £ := { 6(F,) — 6(F*)| < tn } (one may assume

t, < A by truncation), the triangle inequality yields |A — A| < t,, + |8(F,,) — 0(F*)| < 2t,, and
A+A < C' A. Hence

fua®) 1 = a4 ) (25— 5t) =

(d—d)? = (A= A)A+A) <CA*

n’

and therefore

faa)) < R* + Ct2  on&. 3)
Let @ := 62 /n and define \ := a/(a + d). For g(z) := x/(f—kg) we have fa7g(:\\/)\= fag(g(a)) +
(a+ d)( (@) — g(a))?. Since g is Lipschitz with |¢/(£)| = d/(€ + d)?> < 1/(£ +d) < 1/(d),
~ a—a)?
@+ 6@ - g < ¢ =20

Thus

2
a
a(fi{A)<f ()JrC’( d)'
By monotonicity in d, fa,a(A) < f, 5(A) for all A, hence

Jad) < £, 300 < £, 70 +CE=2E < f () + 0 @2l

Using equation d>d=A2on&, andd—a = (62— o2)/n,
~ . (02 _ 02)2
fa,d()\) < R* + Ctz + CT
Finally R(\, F*) < fa. d( ) forall F* € G(o?, A), which yields the claim.
Remark 8. If one sets A := a /(a + d) (no variance plug—in), Step 2 is unnecessary and the term
C(62 — 02)%/(n?A?) vanishes; the bound reduces to R(\, F*) < R* + C't2 on £.

on€.
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B.4 PROOF OF THEOREM[@]

Fix n € N. Assume ||h||oc < H and \; = /(i + «) fori > n with a > 0. Let F; = o(Y1.;) and
define 6(P;) := [hdP; and A; := 0(P;) — 0(Pi—y) fori > n+1.

Using P; = L_%a i+ e Qe and fhdﬁ,- = % fhdﬁi_l + %h(}/j), we obtain
1 i1— 1+«
0(F;) = h(Y; —0(P;_1),
(P)= o hv) + g
hence

h(Yi) — 6(P;-1)

i+ a '
Since §(P;—1) = f hdP;_, and Y; ~ P;_; conditionally on F;_; (by prequential coherence),
(0(P;))i>n is a martingale and (A,;);>,+1 are martingale differences.

Because ||h||oo < H and |0(P;—1)| < H,

A; =

2H h(Y; i H?
Al < - and E[Afm_l}:v‘j‘r( ) [ Fica) o .
ita (i + a)? (i + a)?
Therefore, for t > n,
t [e’e]
2H H? H?
= A i V, = § E[A? | Fioy] < E < =
‘ ning ’|_n+a+1’ ! Af] Fia] < (i+a)? =~ n+a

i=n+1 i=n+1

Let S := Z§=n 41 Qi = 0(P;) — 0(P,). The maximal Freedman inequality for martingales with

a.s. bounded increments (e.g., Freedman, |1975) yields, for any § € (0, 1),

Pr( sup |Sy| < v/2V log(2/9) + %10g(2/5)) > 1-4.
t>n
Substitute Vi, < H2/(n + «) and ¢ < 2H/(n + o + 1) to obtain the stated bound. O

B.5 PROOF OF PROPOSITION[7]

Fix a linear KPI (F) = [ hdF and an initial sample size n. Let a := 02 /n and consider the
ambiguity sets G(02, A) and G(o?, AT) from Sec. 4] with 0 < A+ < A. Define the (time-n)
coherent shrinkage estimators

0= (1= M)0(F) + X 0Qq), 07 == (1=X")0(F,) + X7 0(Qyr),
where \* = -9+ and AT = m are the minimax—optimal weights from Theorem (equiva-
lently, o* = 02/A? and a™* = o2 /(AT)? give the same ) via the Dirichlet schedule A = o/ (n+a);
cf. Sec.|3).

For any given (a, A) there exists F* € G(0?, A) attaining the bound R*(a, A): let Z = h(Y’) under
F* be a two—point law with mean i, and variance o2 (so Var(Z,,) = a), and set 6(Qy) = s £ A.
Then for any A € [0, 1],

E[@) - 0(F*))] = (1 - X2 + A2A%,
_ aA?

which is minimized at A* to the value R*(a, A) = %55

AT attains R*(a, AT).

The same construction with A replaced by

By the bias—variance decomposition in Theorem for every F* € G(0%, A) and A,
RO\, F*) = E[(é} - e(F*))Q} = (1-))2a+A2A%
Hence, at \*,

sup E[(@ —e(F*))ﬂ = R*(a,A). @
FreG(o2,A)
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Replacing A by AT gives

sup E[(%-@(F*)ﬂ = R*(a,AY). )
FreG(o2,At)

Let the per—case loss be the truth—centered squared loss L, (0) := ¢ (6 — 6(F*))? with ¢ > 0. Then
E[L,(0)] = cE[(§ — 8(F*))?], so from equation @—equation ,

sup E[L*(é\)} =cR*(a,A), sup E[L*(t;*)} = cR*(a,A™).
F*eG(o2,A) FreG(o2,AT)

Therefore the worst—case per—case expected loss drops by ¢(R*(a, A) — R*(a, AT)).

Over a planning horizon of H future cases, the same drop scales linearly: the worst—case fotal
expected loss decreases by H ¢ (R*(a, A) — R*(a, A™")). Trigger a retrain whenever

Hc(R*(a,A) — R*(a,A™)) > Cu,

which ensures the certified reduction is at least the all-in retraining cost Cy.

C EXPERIMENTAL DETAILS AND EXTENDED RESULTS

This Appendix documents datasets, models, metrics, protocols, hyperparameters, and complete
numerical results. It also records the exact implementation of the martingale—posterior (MP) sampler
and clarifies which choices were theory—prescribed versus compute—controlled, and our CIFAR-
10/SVHN and GPT-2 experiments should be read as cross-modality proof-of-concept demonstrations
rather than limits on the architectures or scales to which the framework applies.

Note (algorithmic choice). For operatlonal metrics that are linear in the distribution, §(F' f hdF,

and under the coherent blend P; = -~ FZ + 775 Qg with frozen @, an equivalent D1rlchlet—mean
shortcut yields the same posterior for the long-run quantity 6., while reducing runtime. For this
reason, we keep the resampling variant for pedagogical elucidation in experiment|C.T|but we change
to the Dirichlet-mean shortcut for language and vision.

Scope note (frozen sampler). All experiments assume a frozen generator Q) (fixed weights and
sampling policy during each run). Randomness in sampling is conditional on this fixed Q)4 and
independent of the observed data, which makes ()4 J,—measurable and places us in the setting
covered by Theorem 1 (scalar coherence). This “frozen” scope matches standard deployment between
retraining cycles across diffusion models, GANs/VAEs and autoregressive LMs.

Operational target and coverage metric (clarification). Our target is the operational long-run
functional

0o = lim [hdP,  Pi= i Bt 250,
i.e., the KPI under the actually deployed prequential rule. “Coverage @90%” reports the proportion of
repetitions whose 90% predictive interval for 6., contains a high-precision reference computed from
an independent held-out truth pool. Truth-pool sizes and Monte-Carlo error: language (WikiText-2)
uses 1,200 held-out texts (MC error = 3%), vision (CIFAR-10/SVHN) uses 1,000 held-out images.

Baselines and canonical references. For language and vision, we benchmark against three classic
resampling-based uncertainty methods: (i) Nonparametric Bootstrap (NPB) (Efron, |1979): repeat-
edly resamples the observed data with replacement to approximate the sampling distribution; (ii)
Bayesian Bootstrap (BB) (Rubin, |1981): assigns random Dirichlet(1, ..., 1) weights to the sample
instead of resampling; (iii) Jackknife (JK) (Quenouillel |1949;|1956; Tukeyl |1958)): systematically
leaves out one observation at a time and combines these leave-one-out estimates to assess bias
and variance. Why these baselines? They are assumption-light, plug-and-play with any estimator,
and require only the observed sample (no model refitting), making them the standard, widely used
yardstick for small-sample uncertainty when analytic formulas are unavailable (Efron, |1979).
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Reporting Format. Predictive coverage is reported as p & 1.96 SE, with SE = /p(1 — p)/R. For
each n, we bold:

» The method with coverage closest to 90%.

Runtime is reported as mean wall-clock time per repetition.

C.1 Toy EXPERIMENT (TWO MOONS): EXPERIMENTAL DETAILS AND EXTENDED RESULTS

Setup and Metrics. We evaluate the Two Moons toy setting using a frozen RealNVP generator.
Two linear operational metrics are considered:

* Alert rate: 0,(F) = Pry.p{Y2 > 7}, where 7 is the empirical 95th percentile of the
second coordinate under the target distribution.

* Mean NLL: 05(F) = Ey . p[— log ¢,(Y)], the average negative log-likelihood (nats) under
the frozen RealNVP model ¢.

For each metric, we report predictive coverage at 90% for the long-run operational target 6, and
wall-clock runtime.

Methods Compared. We compare the following uncertainty quantification methods, all evaluated
in frozen mode:

* MP: Martingale Posterior (our method),

* NPB: Nonparametric Bootstrap,

* PB: Parametric Bootstrap (sampling from the frozen generator).

Hyperparameters.

e Number of repetitions: R = 40 per (method, n),

* MP resampling: By, = 512 draws, horizon Mgefaure = 1500,

* Bootstrap resampling: Bpoor = 1000,

* Sample sizes: n € {5, 10, 20, 50, 100, 1000},

* Pseudo-count tuning: normal/sub-Gaussian plug-in radius ¢, = 26 //n with one-sided
z = 1.64 (approx. 90% confidence) with mild clipping « to [5, 200].

* MP stopping rule (anytime drift bound). The MP horizon is sized via the anytime bound
of Theorem 6: we stop once the certified future drift sup,~.,|6(P;) — 6(P,)| falls below the
Monte-Carlo error of the reported interval. In Tables a fixed Myetaur=1500 satisfies this
criterion in all runs.

Stopping rule for MP For bounded scores with range H, Theorem 6 gives an anytime bound on
future drift: sup;,,|0(P;) — 0(P,)| < H,/ 21(;13;(2&/5) + 3(nig+1) logZ. We set the MP horizon M
so this certified drift is below the Monte Carlo error of the interval; for linear metrics we instead use
the exact Dirichlet-mean shortcut, so no forward simulation is needed.

Discussion. Across both metrics, MP is typically the closest to the 90% target at small to medium
sample sizes. Table [3]and Table d] summarize MP widths across ng, showing a steady shrinkage as
n grows. For 01, MP wins coverage at n € {5, 10, 20,50} and achieves the narrowest width from
n > 20. For 62, MP consistently yields the smallest widths, while coverage alternates slightly at
some 7.

Runtime is stable across sample sizes: NPB is fastest (=8.8s), MP is mid-range (=19s), and PB
is slowest (/225s). These results confirm that MP provides calibrated predictive coverage close to
nominal with sharper intervals—especially for #3—while smoothly fading to empirical behavior as n
increases.
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Table 1: Two Moons (#;): Predictive coverage@90% and runtime (using Algorithm |1{ for MP).
Winners per n: coverage closest to 0.90 (bold in coverage column).

n  Method Predictive cov@90%  Runtime (s)
5 MP 0.825 £ 0.118 19.57
5 Nonparametric Bootstrap 0.175 £ 0.118 8.78
5  Parametric Bootstrap 1.000 £ 0.000 24.78
10 MP 0.875 £ 0.102 19.42
10  Nonparametric Bootstrap 0.275 £ 0.138 8.82
10 Parametric Bootstrap 1.000 % 0.000 24.80
20 MP 0.950 + 0.068 18.86
20  Nonparametric Bootstrap 0.675 + 0.145 8.68
20  Parametric Bootstrap 1.000 % 0.000 24.37
50 MP 0.925 + 0.082 19.31
50  Nonparametric Bootstrap 0.925 4+ 0.082 8.87
50  Parametric Bootstrap 0.875 £+ 0.102 2491
100 MP 0.975 £ 0.048 19.42
100  Nonparametric Bootstrap 1.000 £ 0.000 8.89
100  Parametric Bootstrap 0.900 £ 0.093 25.08
1000 MP 0.825 £ 0.118 19.07
1000  Nonparametric Bootstrap 0.925 + 0.082 8.94
1000  Parametric Bootstrap 0.625 + 0.150 25.18

Table 2: Two Moons (65): Predictive coverage@90% and runtime (using Algorithm |1| for MP).
Winners per n: coverage closest to 0.90 (bold in coverage column).

n  Method Predictive cov@90%  Runtime (s)
5 MP 0.825 + 0.118 19.57
5  Nonparametric Bootstrap 0.675 + 0.145 8.78
5  Parametric Bootstrap 1.000 % 0.000 24.78
10 MP 0.975 £ 0.048 19.42
10 Nonparametric Bootstrap 0.900 + 0.093 8.82
10 Parametric Bootstrap 1.000 £ 0.000 24.80
20 MP 0.875 £ 0.102 18.86
20  Nonparametric Bootstrap 0.900 + 0.093 8.68
20  Parametric Bootstrap 1.000 £ 0.000 24.37
50 MP 0.900 + 0.093 19.31
50  Nonparametric Bootstrap 0.925 + 0.082 8.87
50  Parametric Bootstrap 0.850 = 0.111 2491
100 MP 0.900 + 0.093 19.42
100  Nonparametric Bootstrap 1.000 £ 0.000 8.89
100  Parametric Bootstrap 0.750 + 0.134 25.08
1000 MP 0.825 £ 0.118 19.07
1000  Nonparametric Bootstrap 0.875 + 0.102 8.94
1000  Parametric Bootstrap 0.825 £ 0.118 25.18

no  MP Width
5 0.126
10 0.118
20 0.106
50 0.078
100 0.060
1000 0.017

20
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Table 4: Two Moons (65), MP interval widths across n.

no  MP Width
5 0.558
10 0.512
20 0.439
50 0.338
100 0.266
1000 0.071

C.2 GPT-2 (WIKITEXT-2): EXPERIMENTAL DETAILS AND EXTENDED RESULTS

Setup and Metrics. We evaluate a frozen GPT-2 (117M) model on the WikiText-2 validation
set. The operational unit Y is a text sequence tokenized using GPT-2 BPE and truncated to
max_text_length = 256. The score is the teacher-forced negative log-likelihood (NLL) per
token under GPT-2, and the operational metric is the long-run mean:

0(F) :/hdF

which is linear in F' and admits the Dirichlet-mean shortcut for the martingale posterior (see
Remark[5).

Methods Compared. We compare the following uncertainty quantification methods, all evaluated
in frozen mode:

* BB: Bayesian Bootstrap,

* NPB: Nonparametric Bootstrap,

¢ Jackknife,

* DWS: Dirichlet-weighted shrinkage (our method, using the Dirichlet-mean shortcut).

MP resampling is omitted here since € is linear in F'.

Hyperparameters.

e Number of repetitions: R = 10 per (method, n),

* Bootstrap resampling: Byoor = 160, Bpayesian = 160,

e DWS sampling: Bgys = 160,

¢ Evaluation batch size: 16,

* Validation pool size: truth_pool_size = 1200,

* Prequential horizon: M = 120 (unused for Dirichlet shortcut),

* Pseudo-count tuning (GPT-2): We use a sub-Gaussian plug-in margin based on the calibra-
tion subset:

A= ’Mmod - ,uemp‘ + CmarginV/ &2/ncalib7 Cmargin = 1.0,

and set & = clip (&2 / A2 5, 200). We did not include a separate model-side margin ,,

because the model mean used m = 200 samples and its MC error was negligible relative to
the empirical term.

Model/dataset. GPT-2 (“gpt2”, 117M) with GPT-2 BPE; WikiText-2 “wikitext-2-raw-v1”. Sequences
are truncated to max_text_length = 256, eval_batch_size = 16. Mixed precision is
enabled on CUDA. Disjoint pools. Trial pool: first 600 validation texts; truth pool: next 1,200
validation texts; calibration subset for &: 150 texts from the test split (indices 200-349), all disjoint
from trial/truth. Linear functional and exact MP shortcut. The score is teacher-forced NLL/token
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Table 5: GPT-2 (WikiText-2, 6;: NLL/token). Predictive coverage at 90% and runtime. Values are
mean £ 1.96SE over repetitions (coverage SE from Bernoulli; runtime across runs). Winners per n:
coverage closest to 0.90 (bold in coverage column).

n  Method Predictive cov@90%  Runtime (s)

5 Bayesian Bootstrap 0.000 £ 0.000 0.03 £ 0.00

5  Nonparametric Bootstrap 0.200 £ 0.248 432 £0.20

5  Jackknife 0.500 + 0.310 0.15 +0.01

5 DWS 1.000 £ 0.000 6.06 + 0.01
10 Bayesian Bootstrap 0.300 + 0.284 0.05 + 0.00
10 Nonparametric Bootstrap 0.300 £+ 0.284 7.27 £0.31
10 Jackknife 0.300 + 0.284 0.48 +0.02
10 DWS 0.800 £ 0.248 6.06 £ 0.01
20  Bayesian Bootstrap 0.400 £+ 0.304 0.10 £ 0.00
20 NPB 0.500 + 0.310 15.73 +0.39
20  Jackknife 0.400 + 0.304 2.03 £0.07
20 DWS 0.900 + 0.186 6.15 +0.05
50 Bayesian Bootstrap 0.500 £+ 0.310 0.24 £ 0.01
50  Nonparametric Bootstrap 0.500 £+ 0.310 37.30 £0.78
50  Jackknife 0.500 £ 0.310 11.60 + 0.29
50 DWS 0.900 + 0.186 6.28 + 0.04
100  Bayesian Bootstrap 0.900 + 0.186 0.46 + 0.01
100  Nonparametric Bootstrap 0.800 £ 0.248 72.18 £ 0.76
100 Jackknife 0.900 + 0.186 45.70 £0.70
100 DWS 0.900 + 0.186 6.48 + 0.01

Table 6: GPT-2 (WikiText-2), DWS interval widths across ng.

o DWS Width

5 1.259£0.128
10 0.901 £ 0.076
20  0.661 +£ 0.064
50 0.370 £ 0.038

100 0.245 £ 0.015

h(z); for linear §(F') = [ hdF, the Dirichlet-mean shortcut yields i.i.d. draws from the exact MP
for O, (no forward rollouts). Pseudo-count (small-» minimax) estimator. We use
~2

. o ~ ~

a = Ev A = ’9(Q¢)_0(Fn)| + tn,
with a conservative padding ¢,, (sub-Gaussian/EB choice) and mild clipping & € [5, 200]. For GPT-2
we estimate 6(Q ) via 200 model draws from the frozen LM, set cmargin=1, and compute &2 from the
calibration subset. The coherent schedule A; = &/(i + &) then fades model reliance automatically as

1 Grows.

Discussion. At small-n, our method DWS achieves the most calibrated predictive coverage: n = 5
(1.000), n = 10 (0.800), n = 20 (0.900), consistently closest to the nominal 90% threshold among
the compared methods.

Table [6] summarizes the DWS widths across ng. These widths shrink steadily with n, but remain
larger than bootstrap-based methods at small n, reflecting our conservative design for calibration
under uncertainty.

Atn = 50, DWS maintains best coverage (0.900), while bootstrap methods achieve narrower intervals
but with undercoverage. At n = 100, coverage ties at 0.900 across several methods, with bootstrap
yielding smaller widths and lower runtime, as expected when empirical estimates stabilize.

Overall, DWS is the clear winner in the regime that matters most: scarce initial data. It provides
well-calibrated predictive uncertainty under the deployed rule, while other methods either under-cover
or sacrifice reliability for sharpness.

22



Published as a conference paper at ICLR 2026

C.3 VISION

Implementation details (vision). Frozen generator @) is the google/ddpm-cifarl10-32
checkpoint (Diffusers). The CLIP head is openai/clip-vit-base-patch32 (ViT-B/32).
We form 10 text prompts “a photo of a {airplane,... truck}”, cache text features, and score im-
ages via CLIPRarity(y) := —log ( maxye[10) softmax((fimg(y), fiexi(k)))), with standard CLIP
preprocessing. Target and metric. All coverage numbers are for the operational long-run target
O = lim; oo f h dP; under the deployed rule; “coverage@90%” is the proportion of repeti-
tions whose 90% predictive interval for 6., contains a high-precision reference computed on an
independent held-out pool (10001200 items for language/vision). We report p + 1.96 SE with

SE = +/p(1—p)/R.

C.3.1 CIFAR-10 (ID): EXPERIMENTAL DETAILS AND EXTENDED RESULTS

Setup and Metrics. We evaluate an in-distribution (ID) vision setting using a frozen generator ()¢
on the CIFAR-10 dataset. The operational metric is the long-run mean of the CLIP rarity score:

0(F) = E[h(Y)]

where h is the CLIP rarity function. This metric is linear in F', and intervals report predictive
uncertainty for 6., under the deployed prequential rule. For linear metrics, our method uses the
Dirichlet-mean shortcut.

Methods Compared. We compare the following uncertainty quantification methods, all evaluated
in frozen mode:

* BB: Bayesian Bootstrap,

* NPB: Nonparametric Bootstrap,

¢ Jackknife,

* DWS: Dirichlet-weighted shrinkage (our method, using the Dirichlet-mean shortcut).

Hyperparameters.

* Number of repetitions: R = 30 per (method, n),
* Sample sizes: n € {5, 10, 20,50, 100},
* Predictive level: ¢ = 0.90,
* Calibration pool size: 500,
* Truth pool size: 1000,
» Evaluation batch size: 64,
* Replicate budgets: Bpayesian = 40, Bpoot = 40, Baws = 40, Byyp = 40,
* Prequential horizon: Mpequenial = 100 (unused for Dirichlet shortcut),
* Discrepancy radius: empirical-Bernstein
- 262 log(2/9) N 2H logg,
n 3n §
used to conservatively upper-bound model—data mismatch.

Implementation details (repro), CLIP rarity, and &. Generator. Diffusion DDPM checkpoint
google/ddpm-cifarl0-32 (Diffusers pipeline), frozen; images are 32x32 and normalized
to [—1,1]. Sampling RNG uses a fixed generator seed. CLIP head and rarity score. We use
CLIP ViT-B/32 (openai/clip-vit-base-patch32) with the 10 CIFAR-10 prompts “a photo
of a {class}”. Images are resized to 224x224, mapped to [0, 1], and normalized with the OpenAl
constants (mean [0.48145466, 0.4578275, 0.40821073], std [0.26862954, 0.26130258, 0.27577711)).
Let p(c | y) be the softmax over CLIP logits; the CLIP rarity is

h(y) = —log(maxp(c|y)),
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Table 7: CIFAR-10 (ID), Ocpp(mean): Predictive coverage @90% and runtime (mean + 1.96SE).
MP omitted; Dirichlet shortcut used. Winners per n: coverage closest to 0.90 (bold in coverage
column).

n  Method Predictive cov@90% Runtime (s)
5 Bayesian Bootstrap 0.567 + 0.177 0.011 + 0.001
5 Nonparametric Bootstrap 0.533 £ 0.179 0.406 £+ 0.029
5 Jackknife 0.767 £ 0.151 0.067 £ 0.007
5 DWS 1.000 =+ 0.000 26.737 £0.175
10  Bayesian Bootstrap 0.833 + 0.133 0.015 £ 0.003
10 Nonparametric Bootstrap 0.800 £ 0.143 0.510 %+ 0.086
10 Jackknife 0.833 £ 0.133 0.170 £ 0.051
10 DWS 1.000 £ 0.000 26.630 £ 0.052
20  Bayesian Bootstrap 0.867 + 0.122 0.016 £+ 0.003
20  Nonparametric Bootstrap 0.900 & 0.107 0.506 &+ 0.073
20  Jackknife 0.900 £ 0.107 0.242 £ 0.019
20 DWS 0.967 £ 0.064 26.727 £ 0.128
50 Bayesian Bootstrap 0.867 £ 0.122 0.019 +£ 0.003
50 Nonparametric Bootstrap 0.933 4+ 0.089 0.663 £+ 0.040
50  Jackknife 0.933 £ 0.089 0.775 £ 0.018
50 DWS 0.967 £ 0.064 26.538 £+ 0.021
100  Bayesian Bootstrap 1.000 £ 0.000 0.032 £ 0.001
100  Nonparametric Bootstrap 1.000 £ 0.000 1.241 +0.014
100 Jackknife 1.000 £ 0.000 3.041 £0.013
100 DWS 0.967 £ 0.064 26.731 £ 0.151

Table 8: CIFAR-10 (ID), DWS interval widths across ng.

o DWS Width

5  0.678 £0.042
10 0.500 +£ 0.025
20 0.327 £0.022
50 0.185+£0.010

100 0.116 £ 0.006

clamped below at e~ 10 for numerical stability. The operational metric is §(F) = E[h(Y)] (lin-
ear). Pools and budgets. Calibration pool from CIFAR-10 train (500 images); trial pool from
the remainder of train; truth pool from CIFAR-10 test (1,000 images); bs_eval= 64; replicate
budgets Bhayesian=DBboot=Baws=40. Pseudo-count (EB minimax). We estimate & = 52/ A? with an
empirical-Bernstein padding

t, = \/@ + 28 )0g2,  §=0.20, H=10,

and clip & € [5,200]. The model mean §(Q),;) is estimated with 512 DDPM draws. This conservative

padding enlarges A when generator—data mismatch is present, shrinking & and reducing reliance on
Q4 at small n.

Discussion. In this ID regime, the pretrained generator @)y is well-aligned with the data, so the
model—data discrepancy A is small. Our method DWS is designed for small-n» minimax performance,
balancing sampling variance and potential model mismatch via a conservative discrepancy radius
t, and a Dirichlet pseudo-count . This yields over-coverage at small n (e.g., 1.000 at n = 10),
resulting in wider intervals than bootstrap methods.

Table [§] summarizes the DWS widths across ng. While these widths shrink as n grows, they remain
larger than bootstrap-based methods at small n, reflecting our conservative design for calibration
under uncertainty.

At larger n, bootstrap methods become more competitive in coverage and runtime, but DWS remains
well-calibrated and operationally meaningful throughout.
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Remark (semantic drifts within CIFAR-10). The same prequential rule and Dirichlet-mean
shortcut apply to milder semantic shifts (e.g., restricting to classes 0—4 vs. 5-9). Since the discrepancy
A is smaller than in CIFAR—SVHN, the EB padding contracts and & increases, yielding even
closer-to-nominal coverage with narrower intervals at small n.

C.3.2 VISION: SVHN (OOD): EXPERIMENTAL DETAILS AND EXTENDED RESULTS

Setup and Metrics. We evaluate the out-of-distribution (OOD) behavior using a frozen generator
Q4 on the SVHN dataset. The operational metric is the long-run mean of the CLIP rarity score:

0(F) = E[n(Y)]

where h(y) = s(y) is the CLIP rarity score. This metric is linear in F, and intervals report predictive
uncertainty for 6., under the deployed prequential rule. For linear metrics, our method uses the
Dirichlet-mean shortcut.

OOD protocol and & (frozen CIFAR-10 policy). We probe the frozen CIFAR-10 DDPM on
SVHN to stress-test calibration under a strong domain/semantic shift. The prequential blend and the
& estimator are unchanged: EB padding with 6=0.20, H=10, & € [5,200], and 0(Q4) estimated
from 512 DDPM samples. Trial sets are drawn from SVHN; the truth pool uses up to 1,000 SVHN test
images. This fixed-policy OOD setting intentionally exercises the regime where standard bootstrap
under-covers at small n, while our conservative padding shrinks & and protects coverage.

Methods Compared. We compare the following uncertainty quantification methods, all evaluated
in frozen mode:

* BB: Bayesian Bootstrap,

* NPB: Nonparametric Bootstrap,

¢ Jackknife,

* DWS: Dirichlet-weighted shrinkage (our method, using the Dirichlet—-mean shortcut).

MP resampling is omitted here since 6 is linear in F.

Hyperparameters.

* Number of repetitions: R = 10 per (method, n),

* Sample sizes: n € {5, 10,20, 50},

* Predictive level: ¢ = 0.90,

* Calibration pool size: 500,

e Evaluation batch size: 64,

* Replicate budgets: Bpayesian = Booot = Baws = 40,

* Prequential horizon: M = 100 (unused for Dirichlet shortcut),

* Pseudo-count tuning: We use the empirical-Bernstein padding

262 2 2H 2
th = A/ T logs + “TlogZ (6 =0.20, H=10),
- 0g5+ 5, 1085 (6 =0.20 0)

and 6 = clip(52/(Ittmos = rempl + ta)*; 5, 200).

Discussion. In the scarce-data regime (n < 50), our method DWS consistently achieves predictive
coverage closest to the nominal 90% target. At n € {5,10,20}, DWS reaches 100% coverage, while
all baselines under-cover significantly (< 50%). At n = 50, DWS and Bayesian Bootstrap both reach
90%, but DWS does so with a principled minimax blend that accounts for model-data discrepancy,
whereas BB relies purely on resampling.
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Table 9: SVHN (OOD), § = E[CLIP rarity]: Predictive coverage @90% and runtime (mean +
1.96SE). MP omitted; Dirichlet shortcut used. Winners per n: coverage closest to 0.90 (bold in

coverage column).

n  Method Predictive cov@90%  Runtime (s)
5  Nonparametric Bootstrap 0.300 + 0.284 0.55 £0.03
5 Bayesian Bootstrap 0.300 £+ 0.284 0.02 £ 0.00
5 Jackknife 0.500 £ 0.310 0.10 £ 0.02
5 DWS 1.000 £ 0.000 32.00 £ 0.74
10  Nonparametric Bootstrap 0.500 + 0.310 0.59 £ 0.06
10  Bayesian Bootstrap 0.500 4+ 0.310 0.02 + 0.00
10 Jackknife 0.500 £ 0.310 0.18 £0.03
10 DWS 1.000 + 0.000 32.98 £ 0.06
20  Nonparametric Bootstrap 0.500 + 0.310 0.63 £0.13
20 Bayesian Bootstrap 0.400 £+ 0.304 0.02 £ 0.00
20  Jackknife 0.400 £+ 0.304 0.31 £ 0.04
20 DWS 1.000 £ 0.000 33.30 + 0.29
50 Nonparametric Bootstrap 0.600 4 0.304 0.62 + 0.00
50  Bayesian Bootstrap 0.900 + 0.186 0.04 £ 0.01
50  Jackknife 0.800 £ 0.248 3.04 £0.04
50 DWS 0.900 + 0.186 31.96 £ 0.53

Table 10: SVHN (OOD), DWS interval widths across 7.

no DWS Width
5 0.794 £ 0.067
10 0.620 £ 0.047
20 0.401 £0.031
50 0.141 £0.013

Tablereports the DWS interval widths across ng. Computation is slower for DWS (=~ 32s), which
is the cost of maintaining reliable calibration under distribution shift. In contrast, BB and NPB fail to
provide trustworthy coverage at small n, which is precisely when uncertainty matters most.

Atn = 100, BB matches DWS in coverage and has lower runtime, which is expected as the empirical
law stabilizes and the need for model-based regularization fades.

These results highlight that DWS is the most robust method for predictive uncertainty in low-data
OOD deployment: it avoids undercoverage, adapts to model-data mismatch, and ensures that intervals
reflect the true operational uncertainty under the deployed rule.

When to update the generator. 1f persistent mismatch inflates ﬁ, Section 7’s certified retraining
trigger (Proposition 7) recommends switching ()4 only when the guaranteed worst-case improvement
exceeds the stated cost, providing an auditable decision rule.
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