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ABSTRACT

Decisions made by machine learning systems have increasing influence on the
world, yet it is common for machine learning algorithms to assume that no such
influence exists. An example is the use of the i.i.d. assumption in content recom-
mendation. In fact, the (choice of) content displayed can change users’ perceptions
and preferences, or even drive them away, causing a shift in the distribution of
users. We introduce the term auto-induced distributional shift (ADS) to describe
the phenomenon of an algorithm causing a change in the distribution of its own
inputs. Our goal is to ensure that machine learning systems do not leverage ADS
to increase performance when doing so could be undesirable. We demonstrate that
changes to the learning algorithm, such as the introduction of meta-learning, can
cause hidden incentives for auto-induced distributional shift (HI-ADS) to be
revealed. To address this issue, we introduce ‘unit tests’ and a mitigation strategy
for HI-ADS, as well as a toy environment for modelling real-world issues with HI-
ADS in content recommendation, where we demonstrate that strong meta-learners
achieve gains in performance via ADS. We show meta-learning and Q-learning
both sometimes fail unit tests, but pass when using our mitigation strategy.

1 INTRODUCTION

Consider a content recommendation system whose performance is measured by accuracy of predicting
what users will click. This system can achieve better performance by either 1) making better predic-
tions, or 2) changing the distribution of users such that predictions are easier to make. We propose
the term auto-induced distributional shift (ADS) to describe this latter kind of distributional shift,
caused by the algorithm’s own predictions or behaviour (Figure 1).

Figure 1: Distributions of users over time. Left: A distribution which remains constant over time,
following the i.i.d assumption. Right: Auto-induced Distributional Shift (ADS) results in a change
in the distribution of users in our content recommendation environment. (see Section 5.2 for details).

ADS are not inherently bad, and are sometimes even desirable. But they can cause problems if they
occur unexpectedly. It is typical in machine learning (ML) to assume (e.g. via the i.i.d. assumption)
that (2) will not happen. However, given the increasing real-world use of ML algorithms, we believe
it is important to model and experimentally observe what happens when assumptions like this are
violated. This is the motivation of our work.

In many cases, including news recommendation, we would consider (2) a form of cheating—the
algorithm changed the task rather than solving it as intended. We care which means the algorithm
used to solve the problem (e.g. (1) and/or (2)), but we only told it about the ends, so it didn’t know
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not to ’cheat’. This is an example of a specification problem (Leike et al., 2017; Ortega et al., 2018):
a problem which arises from a discrepancy between the performance metric (maximize accuracy)
and “what we really meant”: in this case, to maximize accuracy via (1).

Ideally, we’d like to quantify the desirability of all possible means, e.g. assign appropriate rewards
to all potential strategies and “side-effects”, but this is intractable for real-world settings. Using
human feedback to learn reward functions which account for such impacts is a promising approach to
specifying desired behavior (Leike et al., 2018; Christiano et al., 2017). But the same issue can arise
whenever human feedback is used in training: one means of improving performance could be to alter
human preferences, making them easier to satisfy. Thus in this work, we pursue a complementary
approach: managing learners’ incentives.

A learner has an incentive to behave in a certain way when doing so can increase performance (e.g.
accuracy or reward). Informally, we say an incentive is hidden when the learner behaves as if it
were not present. But we note that changes to the learning algorithm or training regime could cause
previously hidden incentives to be revealed, resulting in unexpected and potentially undesirable
behaviour. Managing incentives (e.g. controlling which incentives are hidden/ revealed) can allow
algorithm designers to disincentivize broad classes of strategies (such as any that rely on manipulating
human preferences) without knowing their exact instantiation.1

The goal of our work is to provide insights and practical tools for understanding and managing
incentives, specifically hidden incentives for auto-induced distributional shift: HI-ADS. To
study which conditions cause HI-ADS to be revealed, we present unit tests for detecting HI-ADS in
supervised learning (SL) and reinforcement learning (RL). We also create an environment that models
ADS in news recommendation, illustrating possible effects of revealing HI-ADS in this setting.

The unit tests both have two means by which the learner can improve performance: one which creates
ADS and one which does not. The intended method of improving performance is one that does not
induce ADS; the other is ’hidden’ and we want it to remain hidden. A learner "fails" the unit test if
it nonetheless pursues the incentive to increase performance via ADS. In both the RL and SL unit
tests, we find that introducing an outer-loop of meta-learning (e.g. Population-Based Training (PBT)
Jaderberg et al. (2017)) can lead to high levels of failure. Similarly, recommender systems trained
with PBT induce larger drifts in user base and user interests. These results suggest that failure of
our unit tests indicates that an algorithm is prone to revealing HI-ADS in other settings. Finally, we
propose and test a mitigation strategy we call context swapping. The strategy consists of rotating
learners through different environments throughout learning, so that they can’t see the results or
correlations of their actions in one environment over longer time horizons. This effectively mitigates
HI-ADS in our unit test environments, but did not work well in content recommendation experiments.

2 BACKGROUND

2.1 META-LEARNING AND POPULATION BASED TRAINING

Meta-learning is the use of machine learning techniques to learn machine learning algorithms. This
involves instantiating multiple learning scenarios which run in an inner loop (IL), while an outer
loop (OL) uses the outcomes of the inner loop(s) as data-points from which to learn which learning
algorithms are most effective (Metz et al., 2019). The number of IL steps per OL step is called the
interval. Many recent works focus on multi-task meta-learning, where the OL seeks to find learning
rules that generalize to unseen tasks by training the IL on a distribution of tasks (Finn et al., 2017).
Single-task meta-learning includes learning an optimizer for a single task (Gong et al., 2018), and
adaptive methods for selecting models (Kalousis, 2000) or setting hyperparameters (Snoek et al.,
2012). For simplicity in this initial study we focus on single-task meta-learning.

Population-based training (PBT; Jaderberg et al., 2017) is a meta-learning algorithm that trains
multiple learners L1, ..., Ln in parallel, after each interval (T steps of IL) applying an evolutionary
OL step which consists of: (1) Evaluate the performance of each learner, (2) Replace both parameters
and hyperparameters of 20% lowest-performing learners with copies of those from the 20% high-

1Note removing or hiding an incentive for a behavior is different from prohibiting that behavior, which may
still occur incidentally. In particular, not having a (revealed) incentive for behaviors that change a human’s
preferences, is not the same as having a (revealed) incentive for behaviors that preserve a human’s preferences.
The first is often preferable; we don’t want to prevent changes in human preferences that occur “naturally”, e.g.
as a result of good arguments or evidence.
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performing learners (EXPLOIT). (3) Randomly perturb the hyperparameters (but not the parameters)
of all learners (EXPLORE).

2.2 DISTRIBUTIONAL SHIFT AND CONTENT RECOMMENDATION

In general, distributional shift refers to change of the data distribution over time. In supervised
learning with data x and labels y, this can be more specifically described as dataset shift: change
in the joint distribution of P (x, y) between the training and test sets (Moreno-Torres et al., 2012;
Quionero-Candela et al., 2009). As identified by Moreno-Torres et al. (2012), two common kinds
of shift are: (1) Covariate shift: changing P (x). In the example of content recommendation, this
corresponds to changing the user base of the recommendation system. For instance, a media outlet
which publishes inflammatory content may appeal to users with extreme views while alienating more
moderate users. This self-selection effect (Kayhan, 2015) may appear to a recommendation system
as an increase in performance, leading to a feedback effect, as previously noted by Shah et al. (2018).
This type of feedback effect has been identified as contributing to filter bubbles and radicalization
(Pariser, 2011; Kayhan, 2015). (2) Concept shift: changing P (y|x). In the example of content
recommendation, this corresponds to changing a given user’s interest in different kinds of content.
For example, exposure to a fake news story has been shown to increase the perceived accuracy of (and
thus presumably future interest in) the content, an example of the illusory truth effect (Pennycook
et al., 2019). For further details on such effects in content recommendation, see Appendix 8.

3 AUTO-INDUCED DISTRIBUTION SHIFT (ADS)

Auto-induced distribution shift (ADS) is distributional shift caused by an algorithm’s behaviour. This
is in contrast to distributional shift which would happen even if the learner were not present - e.g.
for a crash prediction algorithm trained on data from the summer, encountering snowy roads is an
example of distributional shift, but not auto-induced distributional shift (ADS).
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(a) RL:
Incentives for ADS are
present; pursuing them is
desirable

a1 a2

s1 s2

r1 r2

(b) Myopic RL:
Incentives for ADS are
present; pursuing them
is undesirable

ŷ1 ŷ2
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(c) SL with ADS:
Incentives for ADS are
present; pursuing them
is undesirable
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(d) SL with i.i.d. data:
Incentives for ADS are
absent

Figure 2: The widely studied problems of reinforcement learning (RL) with state s, action a, reward
r tuples, and i.i.d. supervised learning (SL) with inputs x, predictions ŷ and loss l (a,d) are free from
incentive problems. We focus on cases where there are incentives present which the learner is not
meant to pursue (b,c). Lines show paths of influence. The learner may have incentives to influence
any nodes descending from its action, A, or prediction, ŷ. Which incentives are undesirable (orange)
or desirable (cyan) for the learner to pursue is context-dependent.

We emphasize that ADS are not inherently bad or good; often ADS can even be desirable: consider
an algorithm meant to alert drivers of imminent collisions. If it works well, such a system will help
drivers avoid crashing, thus making self-refuting predictions which result in ADS. What separates
desirable and undesirable ADS? The collision-alert system alters its data distribution in a way that is
aligned with the goal of fewer collisions, whereas the news manipulation results in changes that are
misaligned with the goal of better predicting existing users’ interests (Leike et al., 2018).

In reinforcement learning (RL), ADS are typically encouraged as a means to increase performance.
On the other hand, in supervised learning (SL), the i.i.d. assumption precludes ADS in theory. In
practice, however, the possibility of using ADS to increase performance (and thus an incentive to
do so) often remains. For instance, this occurs in online learning. In our experiments, we explicitly
model such situations where i.i.d. assumptions are violated: We study the behavior of SL and myopic
RL algorithms, in environments designed to include incentives for ADS, in order to understand when
incentives are effectively hidden. Fig. 2 contrasts these settings with typical RL and SL.
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4 INCENTIVES

For our study of incentives, we use the following terminology: an incentive for a behavior (e.g. an
action, a classification, etc.) is present (not absent) to the extent that the behaviour will increase
performance (e.g. reward, accuracy, etc.) (Everitt & Hutter, 2019). This incentive is revealed to (not
hidden from) a learner if it would, at higher than chance levels, learn to perform the behavior given
sufficient capacity and training experience. The incentive is pursued (not eschewed) by a learner if
it actually performs the incentivized behaviour. Note even when an incentive is revealed, it may not
be pursued, e.g. due to limited capacity and/or data, or simply chance. See Fig 3.

Figure 3: Types of incentives, and their rela-
tionship to ADS.

For example, in content recommendation, the incen-
tive to drive users away is present if some user types
are easier to predict than others. But this incentive
may be hidden from the learner by using a myopic
algorithm, e.g. one that does not see the effects of
its actions on the distribution of users. The incen-
tive might instead be revealed to the outer loop of
a meta-learning algorithm like PBT, which does see
the effects of learner’s actions.

Even when this incentive is revealed, however, it might not end up being pursued. For example, this
could happen if predicting which recommendations will drive away users is too difficult a learning
problem, or if the incentive to do so is dominated by other incentives (e.g. change individual users’
interests, or improve accuracy of predictions). In general, it may be difficult to determine empirically
which incentives are revealed, because failure to pursue an incentive can be due to limited capacity,
insufficient training, and/or random chance. To address this challenge, we devise extremely simple
environments (“unit tests”), where we can be confident that revealed incentives will be pursued.

4.1 HIDDEN INCENTIVES FOR AUTO-INDUCED DISTRIBUTIONAL SHIFT (HI-ADS)

Following from the definitions in Sections 3 and 4, HI-ADS are incentives for behaviors that cause
Auto-induced Distributional Shift that are hidden from the learner, i.e. the learner would not learn
to perform the incentivized behaviors at higher than chance levels, even given infinite capacity and
training experience.

Like ADS, HI-ADS are not necessarily problematic. Indeed, hiding incentives can be an effective
method of influencing learner behavior. For example, hiding the incentive to manipulate users from
a content recommendation algorithm could prevent it from influencing users in a way they would
not endorse. However, if machine learning practitioners are not aware that incentives are present, or
that properties of the learning algorithm are hiding them, then seemingly innocuous changes to the
learning algorithm may reveal HI-ADS, and lead to significant unexpected changes in behavior.

Hiding incentives for ADS may seem counter-intuitive and counter-productive in the context of
reinforcement learning (RL), where moving towards high-reward states is typically desirable. How-
ever, for real-world applications of RL, the ultimate goal is not a system that achieves high reward,
but rather one that behaves according to the designer’s intentions. And as we discussed in the
introduction, it can be intractable to design reward functions that perfectly specify intended behavior.
Thus managing (e.g. hiding) some incentives can provide a useful tool for specification, even in RL.

We have several reasons for focusing on HI-ADS: (1) The issue of HI-ADS has not yet been identified,
and thus is liable to be neglected in practice. Indeed, our “unit tests” are the first published empirical
methodology for assessing whether incentives are hidden or revealed by different learning algorithms.
(2) Machine learning algorithms are commonly deployed in settings where ADS are present, violating
assumptions used to analyze their properties theoretically. This means learners could exploit ADS
in unexpected and undesirable ways if incentives for ADS are revealed. Hiding these incentives
heuristically (e.g. via off-line training) is a common approach, but potentially brittle (if practitioners
don’t understand how HI-ADS could become revealed). In particular, meta-learning can reveal
HI-ADS in online learning settings. (3) Substantial real-world issues could result from improper
management of learner’s incentives. Examples include tampering with human-generated reward
signals (Everitt & Hutter, 2018) (e.g. selecting news articles which manipulate user interests), and
creating “self-fulfilling prophecies” (e.g. driving up the value of an asset by publicly predicting its
value will increase (Armstrong & O’Rorke, 2017)).
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4.2 REMOVING HI-ADS VIA CONTEXT SWAPPING

We propose a technique called context swapping for removing incentives for ADS. The technique
trains N learners in parallel, and shuffles the learners through N different copies of the same (or
similar) environments.We use a deterministic permutation of learners in environment copies, so
that the i-th learner inhabits the j-th environment on time-steps t where j = (i + t) mod N ,
makes an observation, takes an action, and receives a reward before moving to the next environment.

Figure 4: Context swapping (right).

When N is larger than the interval of the OL opti-
mizer, each learner inhabits each copy for at most a
single time-step before an OL step is applied. Under
the assumption that different copies of the environ-
ment do not influence each other, this technique can
address HI-ADS in practice, as we show in Sec. 5.1.1.

5 EXPERIMENTS

In Section 5.1, we introduce ‘unit tests’ for HI-ADS. Our primary goal with these experiments is
to convey a crisp understanding of potential issues caused by revealing HI-ADS. Put simply, our
experiments show that you can have a learner which behaves as intended, and just by using meta-
learning (e.g. PBT), without changing the performance metric (e.g. loss or rewards), the learner’s
behavior can change completely. We also show that context swapping is an effective mitigation
technique in these environments. On the practical side, the unit tests can be used to compare learning
algorithms and diagnose their propensity to reveal incentives.

In Section 5.2, we model a content recommendation system. The goal of these experiments is to
demonstrate how HI-ADS could create issues for real-world content recommendation systems such
as news feeds, search results, or automated suggestions. They also validate the usefulness of the unit
tests: algorithms that failed the unit tests also reveal HI-ADS in this setting. We emphasize that ADS
takes place in this environment by construction. The point of our experiments is that meta-learning
can increase the rate and/or extent of ADS, by revealing this incentive. We find that context swapping
is not effective in this environment, highlighting the need for alternative mitigation strategies.

5.1 HI-ADS UNIT TESTS

Unit test 1: Supervised Learning. This unit test consists of a simple prediction problem. There are
no inputs, only an underlying state s ∈ {0, 1}, and targets y ∈ R2 with y1, y2 ∼ N (0, s∗σ2),N (0, 1),
with corresponding predictions ŷ1, ŷ2. Additionally, st+1 = 0 iff ŷ2 > .5. We use Mean Squared
Error as the loss function, so the optimal predictor is ŷ1, ŷ2 = (0, 0). However, predicting ŷ2 > .5
reduces the variance of ŷ1, i.e. reduces future loss. The baseline/IL predictor learns ŷ1, ŷ2 as
parameters using SGD with a learning rate of 0.001. For experiments with meta-learning, PBT is the
OL (with default settings, see Section 2.2), used to tune the learning rate, with negative loss on the
final time-step of the interval as the performance measure for PBT.

Unit test 2: Myopic RL. This unit test is based on a modification of the prisoner’s dilemma
(Prisner, 2014) where an agent plays each round against its past self. The reward function is presented
in Table 1. An agent in this environment has a long-term, non-myopic, incentive for cooperation
(with its future self), but a current-time-step, myopic, incentive for defection (from its future self).

Table 1: Rewards for the RL unit test. Note that
the myopic (defect (D)) action always increases
reward at the current time-step, but decreases
reward at the next time-step - the incentive to
(cooperate (C)) with one’s future self is hidden
from the point of view of a myopic learner.

at = D at = C
st = at−1 = D −1/2 −1
st = at−1 = C 1/2 0

The unit test evaluates whether a agent reveals the
non-myopic incentive even when the agent is meant
to optimize for the present reward only (i.e. uses
discount rate γ = 0). Naively, we’d expect the non-
myopic incentive to be hidden from the agent in
this case, and for the agent to consistently defect;
learning algorithms that do so pass the test. But
some learning algorithms also fail the unit test, re-
vealing the incentive for the agent to cooperate with
its future self. While aiming for myopic behavior
may seem odd, myopic learners have no incentives to cause distributional shift, since it can only
improve future performance. And while making learners myopic may seem like a ’brute-force’
guaranteed way to manage HI-ADS, we show it is in fact non-trivial to implement. See Appendix 9.1
for details and experiments varying the reward structure.
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5.1.1 HI-ADS UNIT TESTS EXPERIMENTAL RESULTS AND DISCUSSION
We first show that agents trained with PBT fail the unit tests more often than “vanilla” algorithms
which do not use meta-learning. We initialize the learning rate log-uniformly between 0.01 and 1.0 for
all experiments (whether using PBT or not). We expect and confirm that the following two factors lead
to higher rates of unit test failure: (1) Shorter intervals: These give the OL more opportunities to
influence the population. (2) Larger populations: These make outliers with exceptional non-myopic
performance more likely, and OL makes them likely to survive and propagate.

The baseline (no meta-learning) algorithms all pass the unit tests: hidden incentives are almost never
revealed - see blue curves in Fig. 5. However, agents trained with meta-learning and large populations
often fail the unit tests: see orange curves in top rows of Fig. 5.
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(A) SL Unit Test. OL=PBT.

(B1) Myopic RL Unit Test. OL=PBT.

(B2) Myopic RL Unit Test. OL=REINFORCE

Figure 5: (A) Values of ŷ2 in the supervised learning
(SL) unit test. Larger values mean sacrificing present
performance for future performance (i.e. non-myopic
exploitation of ADS). (B) Average level of non-myopic
cooperate behavior observed in the RL unit test for
HI-ADS, with two meta-learning algorithms (B1) PBT
and (B2) REINFORCE. Lower is better, since the goal
is for non-myopic incentives to remain hidden. Despite
the inner loop being fully myopic (simple MLP in the
SL test, γ = 0 in RL test), in all cases outer-loop (OL)
optimizers reveal HI-ADS (top rows). Context swap-
ping significantly mitigates HI-ADS (bottom rows).

Furthermore, we verify that context swap-
ping significantly mitigates the effect of
HI-ADS in both unit tests, decreasing un-
desirable behaviour to near-baseline lev-
els - see bottom rows of Fig. 5. This ef-
fect can be explained as follows: Because
context swapping transfers the benefits of
one learner’s action to the next learner to
inhabit that environment, it increases the
second learner’s fitness, and thereby re-
duces the relative fitness (as evaluated by
PBT’s EXPLOIT step) of the non-myopic
cooperate behaviour. We observe some
interesting exceptions with the combina-
tion of small populations and short PBT
intervals: Although context swapping still
significantly decreases the effect of HI-
ADS, non-myopic cooperate behaviour
is observed as much as 20% of the time (for
#learners=10, T = 1; see bottom-left plot).

We also observe that PBT reveals HI-ADS
even when T = 1, where the explanation
that PBT operates on a longer time hori-
zon than the inner loop does not apply. We
provide a detailed explanation for how this
might happen in Appendix 9.1.2, but in
summary, we hypothesize that there are at
least 2 mechanisms by which PBT is reveal-
ing HI-ADS: (1) optimizing over a longer
time-scale, and (2) picking up on the cor-
relation between an agent’s current policy
and the underlying state. Mechanism (2)
can be explained informally as reasoning
as: “If I’m cooperating, then I was prob-
ably cooperating on the last time-step as
well, so my reward should be higher”. As
support for these hypotheses, we run con-
trol experiments identifying two algorithms
(each sharing only one of these properties)
that can fail the unit test. Context swapping
remains effective.

(1) Optimizing over a longer time-scale:
replacing PBT with REINFORCE as an
outer-loop optimizer. The outer-loop optimizes the parameters to maximize the summed reward of
the last T time-steps. As with PBT, we observe non-myopic behavior, but now only when T > 1.
This supports our hypothesis that exploitation of HI-ADS is due not to PBT in particular, but just to
the introduction of sufficiently powerful meta-learning. See Fig. 5 B2.
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Figure 6: Q-learning can fail the unit test, play-
ing ∼80-90% cooperate in 3 of 5 experiments
(bottom row). Each column represents an indepen-
dent experiment. Q-values for the cooperate
and defect actions stay tightly coupled in the
failure cases (col. 1,2,5), while in the cases passing
the unit test (col. 3,4) the Q-value of cooperate
decreases over time.

(2) Exploiting correlation: Q-learning with
γ = 0 an ε = 0.1-greedy behavior policy and no
meta-learning. If either state was equally likely,
the Q-values would be the average of the val-
ues in each column in Table 1, so the estimated
Q(defect) would be larger. But the ε-greedy pol-
icy correlates the previous action (i.e. the current
state) and current action (so long as the policy
did not just change), so the top-left and bottom-
right entries carry more weight in the estimates,
sometimes causing Q(defect) ≈ Q(cooperate)
and persistent nonmyopic behavior. See Fig. 6
for results, Appendix 9.1.4 for more results, and
Appendix 9.1.3 for experimental details.

5.2 CONTENT RECOMMENDATION

We now present a toy environment for modeling content recommendation of news articles, which
includes the potential for ADS by incorporating the mechanisms mentioned in Sec. 2.2, discussed as
contributing factors to the problems of fake news and filter bubbles. Specifically, the environment
assumes that presenting an article to a user can influence (1) their interest in similar articles, and (2)
their propensity to use the recommendation service. These correspond to modeling auto-induced
concept shift of users, and auto-induced covariate shift of the user base, respectively (see Sec. 2.2).

This environment includes the following components, which change over (discrete) time: User type:
xt, Article type: yt, User interests: Wt (propensity for users of each type to click on articles of
each type), and User loyalty: gt (propensity for users of each type to use the platform). At each
time step t, a user xt is sampled from a categorical distribution, based on the loyalty of the different
user types. The recommendation system (a classifier) selects which type of article to present in the
top position, and finally the user ‘clicks’ an article yt, according to their interests. User loyalty for
user type xt undergoes covariate shift: in accordance with the self-selection effect, gt increases or
decreases proportionally to that user type’s interest in the top article. The interests of user type xt
(represented by a column of Wt) undergoing concept shift; in accordance with the illusory truth
effect, interest in the topic of the top article chosen by the recommender system always increases.

5.2.1 CONTENT RECOMMENDATION EXPERIMENTAL RESULTS AND DISCUSSION

We run 20 trials using an MLP trained with SGD for the recommender system. We find that PBT
yields significant improvements in training time and accuracy, but also greater distributional shift
(Fig. 7). User base and user interests both change faster with PBT, and user interests change more
overall. We measure concept/covariate shift using the cosine distance and KL-divergence, respectively.
We observe that the distributions over user types typically saturate (to a single user type) after a
few hundred time-steps (Fig 1 and Fig. 7, Right). We run long enough to reach such states, to
demonstrate that the increase in ADS from PBT is not transitory. The environment has a number of
free parameters, and our results are qualitatively consistent so long as the covariate shift rate (α1) is
faster than the concept shift rate (α2). See Appendix 9.2.1 for details.

Figure 7: Content recommendation experiments. Left: using Population Based Training (PBT)
increases accuracy of predictions faster, leads to a faster and larger drift in users’ interests, P (y|x),
(Center); as well as the distribution of users, P (x), (Right). Shading shows std error over 20 runs.
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6 RELATED WORK

ADS in practice: We introduce the term ADS, but we are far from the first to study it. Caruana
et al. (2015) provide an example of asthmatic patients having lower predicted risk of pneumonia.
Treating asthmatics with pneumonia less aggressively on this basis would be an example of harmful
ADS; the reason they had lower pneumonia risk was because they had received more aggressive care
already. Schulam & Saria (2017) note that such predictive models are commonly used to inform
decision-making, and propose modeling counterfactuals (e.g. “how would this patient fare with less
aggressive treatment”) to avoid making such self-refuting predictions. While their goal is to make
accurate predictions in the presence of ADS, our goal is to identify and manage incentives for ADS.

Non-i.i.d bandits: Contextual bandits (Wang et al., 2005) are a common approach to content
recommendation (Li et al., 2010). While bandit algorithms typically make the i.i.d. assumption,
counter-examples exist (Gheshlaghi Azar et al., 2014; Auer et al., 1995). Closest to our work is Shah
et al. (2018), who consider covariate shift caused by recommender systems’ recommendations. But
while they seek to exploit ADS, our aim is to avoid hidden incentives for exploiting ADS.

Safety and incentives: Emergent incentives to influence the world (such as HI-ADS) are at the
heart of many concerns about the safety of advanced AI systems (Omohundro, 2008; Bostrom, 2014).
Understanding and managing the incentives of learners is also a focus of Armstrong & O’Rourke
(2017); Everitt (2018); Everitt et al. (2019); Cohen et al.. While Everitt et al. (2019) focus on
identifying which incentives are present, we note that incentives may be present and yet not be
revealed or pursued - for example, in supervised learning, there is an incentive to make predictions
that are over-fit to the test set, but we typically hide the test set from the learner, which effectively
hides this incentive. While Carey et al. (2020); Everitt et al. (2019); Armstrong & O’Rourke (2017)
discuss methods of removing problematic incentives, we note in practice incentives are often hidden
rather than removed. Our work addresses the efficacy of this approach and ways in which it can fail.

HI-ADS and meta-learning: We believe our work is the first to consider HI-ADS and their
relation to meta-learning. A few previous works have some relevance. Rabinowitz (2019) documents
qualitative differences in learning behavior when meta-learning is applied. MacKay et al. (2019) and
Lorraine & Duvenaud (2018) view meta-learning as a bilevel optimization problem, with the inner
loop playing a best-response to the outer loop. In our work, the outer loop has a greater influence,
and the inner loop often fails to play best-response. Sutton et al. (2007) noted that meta-learning can
improve performance by preventing convergence of the inner loop to best response.

7 DISCUSSION AND CONCLUSION

We identify the phenomenon of auto-induced distributional shift (ADS) and problems that can arise
when there are hidden incentives for learners to induce distributional shift (HI-ADS). We show that
meta-learning can reveal HI-ADS and lead learners to use ADS as a means of increasing performance.

Our work highlights the interdisciplinary nature of issues with real-world deployment of ML systems
- we show how HI-ADS could play a role in important technosocial issues like filter bubbles and the
propagation of fake news. There are a number of potential implications for our work: (1) When
HI-ADS are a concern, our methodology and environments can be used to help diagnose whether
and to what extent the final performance/behavior of a learner is due to ADS and/or incentives for
ADS, i.e. to quantify their influence on that learner. (2) Comparing this quantitative analysis for
different algorithms could help us understand which features of algorithms affect their propensity to
reveal HI-ADS, and aid in the development of safer and more robust algorithms. (3) Characterizing
and identifying HI-ADS in these tests is a first step to analyzing and mitigating other (problematic)
hidden incentives, as well as to developing theoretical understanding of hidden incentives.

Broadly speaking, our work emphasizes that the choice of machine learning algorithm plays an
important role in specification, independently of the choice of performance metric. A learner can
use ADS to increase performance according to the intended performance metric, and yet still behave
in an undesirable way, if we did not intend the learner to improve performance by that method. In
other words, performance metrics are typically incomplete specifications: they only specify our goals
or ends, while our choice of learning algorithm plays a role in specifying the means by which we
intend an learner to achieve those ends. With increasing deployment of ML algorithms in daily life,
we believe that (1) understanding incentives and (2) specifying desired/allowed means of improving
performance are important avenues of future work to ensure fair, robust, and safe outcomes.
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APPENDICES

8 CONTENT RECOMMENDATION IN THE WILD

Filter bubbles, the spread of fake news, and other techno-social issues are widely reported to be
responsible for the rise of populism (Groshek & Koc-Michalska, 2017), increase in racism and
prejudice against immigrants and refugees (Noble, 2018), increase in social isolation and suicide
(Luxton et al., 2012), and, particularly with reference to the 2016 US elections, are decried as
threatening the foundations of democracy (El-Bermawy, 2016). Even in 2013, well before the 2016
American elections, a World Economic Forum report identified these problems as a global crisis
(Lee Howell, 2013).

We focus on two related issues in which content recommendation algorithms play a role: fake news
and filter bubbles.

8.1 FAKE NEWS

Fake news (also called false news or junk news) is an extreme version of yellow journalism, pro-
paganda, or clickbait, in which media that is ostensibly providing information focuses on being
eye-catching or appealing, at the expense of the quality of research and exposition of factual informa-
tion. Fake news is distinguished by being specifically and deliberately created to spread falsehoods or
misinformation (Merriam-Webster, 2017; Mihailidis & Viotty, 2017).

Why does fake news spread? It may at first seem the solution is simply to educate people about the
truth, but research tells us the problem is more multifaceted and insidious, due to a combination of
related biases and cognitive effects including confirmation bias (people are more likely to believe
things that fit with their existing beliefs), priming (exposure to information unconsciously influences
the processing of subsequent information, i.e. seeing something in a credible context makes things
seem more credible) and the illusory truth effect (i.e. people are more likely to believe something
simply if they are told it is true).

Allcott & Gentzkow (2017) track about 150 fake news stories during the 2016 US election, and
find the average American adult saw 1-2 fake news stories, just over half believed the story was
true, and likelihood of believing fake news increased with ideological segregation (polarization) of
their social media. Shao et al. (2018) examine the role of social bots in spreading fake news by
analyzing 14 million Twitter messages. They find that bots are far more likely than humans to spread
misinformation, and that success of a fake news story (in terms of human retweets) was heavily
dependent on whether bots had shared the story.

Pennycook et al. (2019) examine the role of the illusory truth effect in fake news. They find that
even a single exposure to a news story makes people more likely to believe that it is true, and repeat
viewings increase this likelihood. They find that this is not true for extremely implausible statements
(e.g. “the world is a perfect cube”), but that “only a small degree of potential plausibility is sufficient
for repetition to increase perceived accuracy” of the story. The situation is further complicated by
peoples’ inability to distinguish promoted content from real news - Amazeen & Wojdynski (2018)
find that fewer than 1/10 people were able to tell when content was an advertisement, even when it
was explicitly labelled as such. Similarly, Fazio et al. (2015) find that repeated exposure to incorrect
trivia make people more likely to believe it, even when they are later able to identify the trivia as
incorrect.

8.2 FILTER BUBBLES

Filter bubbles, a term coined and popularized by Pariser (2011) are created by positive or negative
feedback loops which encourage users or groups of users towards increasing within-group similarity,
while driving up between-group dissimilarity. The curation of this echo chamber is called self-
selection (people are more likely to look for or select things that fit their existing preferences), and
favours what Techopedia (2018) calls intellectual isolation. In the context of social and political
opinions, this is often called the polarization effect (Wikipedia contributors, 2018).

12



Under review as a conference paper at ICLR 2021

Filter bubbles can be encouraged by algorithms in two main ways. The first is the most commonly
described: simply by showing content that is similar to what a user has already searched for, search
or recommender systems create a positive feedback loop of increasingly-similar content (Pariser,
2011; Kayhan, 2015). The second way is similar but opposite - if the predictions of an algorithm are
good for a certain group of people, but bad for others, the algorithm can do better on its metrics by
driving hard-to-predict users away. Then new users to the site will either be turned off entirely, or see
an artificially homogenous community of like-minded peers, a phenomena Shah et al. (2018) call
positive externalities.

In a study of 50,000 US-based internet users, Flaxman & Goel (2015) find that two things increase
with social media and search engine use: (1) exposure of an individual to opposing or different
viewpoints, and (2) mean ideological distance between users. Many studies cite the first result as
evidence of the benefits of internet and social media (Robson, 2018; Bakshy et al., 2015), but the
correlation of exposure with ideological distances demonstrates that exposure is not enough, and
might even be counterproductive.

Facebook’s own study on filter bubbles results show that the impact of the news feed algorithm on
filter bubble “size” (a measure of homogeneity of posts relative to a baseline) is almost as large as
the impact of friend group composition (Bakshy et al., 2015). Kayhan (2015) specifically study the
role of search engines in confirmation bias, and find that search context and the similarity of results
in search engine results both reinforce existing biases and increase the likelihood of future biased
searches. Nguyen et al. (2014) similarly study the effect of recommender systems on individual users’
content diversity, and find that the set of options recommended narrows over time.

Filter bubbles create an ideal environment for the spread of fake news: they increase the likelihood of
repeat viewings of similar content, and because of the illusory truth effect, that content is more likely
to be believed and shared (Pennycook et al., 2019; DiFranzo & Gloria-Garcia, 2017; Pariser, 2011).
We are not claiming that HI-ADS are entirely or even mostly responsible for these problems, but we
do note that they can play a role that is worth addressing.

13



Under review as a conference paper at ICLR 2021

incentive-compatible (β = 0.5)

incentive-orthogonal (β = 0.0)

incentive-opposed (β = −0.5)

Figure 8: Average level of non-myopic (i.e. cooperate) behavior learned by agents in the unit test
for HI-ADS. Despite making the inner loop fully myopic (γ = 0), population-based training (PBT)
can cause HI-ADS, leading agents to choose the cooperate action (top row). context swapping
successfully prevents this (bottom row). Columns (from left to right) show results for populations
of 10, 100, and 1000 learners. In the legend, “interval” refers to the interval (T ) of PBT (see Sec.
2.2). Sufficiently large populations and short intervals are necessary for PBT to induce nonmyopic
behavior.
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9 EXTRA EXPERIMENTS AND REPRODUCIBILITY DETAILS

9.1 HI-ADS UNIT TEST

We used REINFORCE (Williams, 1992) with discount factor γ = 0 as the baseline/IL optimizer.
PBT (with default settings, see Section 2.2) is used to tune the learning rate, with reward on the final
time-step of the interval as the performance measure for PBT.

Formally, the environment is not a 2x2 game (as the original prisoner’s dilemma); it’s a partially
observable Markov Decision Process (Åström, 1965; Kaelbling et al., 1998):

st, ot = at−1, {}
at ∈ {defect, cooperate}

P (st, at) = δ(at)
R(st, at) = I(st = cooperate) + β I(at = cooperate)− 1/2

where I is an indicator function, and β = −1/2 is a parameter controlling the alignment of incentives.
The initial state is sampled as s0 ∼ U(defect, cooperate). Policies are represented by a
single real-valued parameter θ (initialized as θ ∼ N (0, 1)) passed through a sigmoid whose output
represents P (at = defect).

9.1.1 ALIGNMENT OF INCENTIVES EXPLORATION

This section presents an exploration of the parameter β, which controls the alignment of incentives in
the HI-ADS unit tests (see Table 2).

To clarify the interpretation of experiments, we distinguish between environments in which myopic
(defect) vs. nonmyopic (cooperate) incentives are opposed, orthogonal, or compatible. Note that in
this unit test myopic behaviour (defection) is what we want to see.

1. Incentive-opposed: Optimal myopic behavior is incompatible with optimal nonmyopic behav-
ior (classic prisoner’s dilemma; these experiments are in the main paper).

2. Incentive-orthogonal: Optimal myopic behavior may or may not be optimal nonmyopic
behavior.

3. Incentive-compatible: Optimal myopic behavior is necessarily also optimal nonmyopic behav-
ior.

We focused on incentive-opposed environment (β = −1/2) in the main paper in order to demonstrate
that HI-ADS can be powerful enough to change the behavior of the system in an undesirable way.
Here we also explore incentive-compatible and incentive-orthogonal environments because they
provide useful baselines, helping us distinguish a systematic bias towards nonmyopic behavior
from other reasons (such as randomness or optimization issues) for behavior that does not follow a
myopically optimal policy.

9.1.2 WORKING THROUGH A DETAILED EXAMPLE FOR PBT WITH T = 1

To help provide intuition on how (mechanistically) PBT could lead to persistent levels of cooperation,
we walk through a simple example (with no inner loop). Consider PBT with T = 1 and a population
of 5 deterministic agents A1, ..., A5 playing cooperate and receiving reward of r(Ai) = 0. Now
suppose A1 suddenly switches to play defect. Then r(A1) = 1/2 on the next time-step (while the
other agents’ reward is still 0), and so PBT’s EXPLOIT step will copy A1 (without loss of generality
to A2). On the following time-step, r(A2) = 1/2, and r(A1) = −1/2, so PBT will clone A2 to A1,
and the cycle repeats. Similar reasoning applies for larger populations, and T > 1.

9.1.3 Q-LEARNING EXPERIMENT DETAILS

We show that, under certain conditions, Q-learning can learn to (primarily) cooperate, and thus fails
the HI-ADS unit test. We estimate Q-values using the sample-average method, which is guaranteed to
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Table 2: β controls the extent to which myopic and nonmyopic incentives are aligned.
β Environment Cooperating

< 0 incentive-opposed yields less reward on the current time-step (myopically detrimental)
= 0 incentive-orthogonal does not affect the current reward (myopically indifferent)
> 0 incentive-compatible yields more reward on the current time-step (myopically beneficial)

converge in the fully observed, tabular case (Sutton & Barto, 1998). The agent follows the ε-greedy
policy with ε = 0.1. In order to achieve this result, we additionally start the agent off with one
synthetic memory where both state and action are defect and therefor R(defect) = −.5, and we
hard-code the starting state to be cooperate (which normally only happens 50% of the time). Without
this kind of an initialization, the agent always learns to defect. However, under these conditions, we
find that 10/30 agents learned to play cooperate most of the time, with Q(cooperate) and Q(defect)
both hovering around −0.07, while others learn to always defect, with Q(cooperate) ≈ −0.92 and
Q(defect) ≈ −0.45. context swapping, however, prevents majority-cooperate behavior from ever
emerging, see Figure 11.

9.1.4 Q-LEARNING: FURTHER RESULTS

To give a more representative picture of how often Q-learning fails the unit test, we run a larger set of
experiments with Q-learning, results are in Figure 10. It’s possible that the failure of Q-learning is
not persistent, since we have not proved otherwise, but we did run much longer experiments and still
observe persistent failure, see Figure 9.

Figure 9: The same experiments as Figures 6, 10, run for 50,000 time-steps instead of 3000, to
illustrate the persistence of non-myopic behavior.
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Figure 10: More independent experiments with Q-learning, exactly following Figure 6. Q-learning
fails the unit test in a total of 10/30 experiments (including those from Figure 6).
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Figure 11: More independent experiments with Q-learning, exactly following Figure 6, except also
using context swapping. This leads to a 100% success rate on the unit test.
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9.2 CONTENT RECOMMENDATION

9.2.1 ENVIRONMENT DETAILS

The evironment has the following components:

1. User type, xt: categorical variable representing different types of users. The content
recommender conditions its predictions on the type of the current user.

2. User loyalty, gt: the propensity for users of each type to use the platform. User xt is
sampled from a categorical distribution with parameters given by softmax(gt).

3. Article type, yt: a categorical variable (one-hot encoding) representing the type of article
selected by the user.

4. User interests, Wt: a matrix whose entries W t
x,y represent the average interest user of type

x have in articles of type y.

At each time step t, a user xt is sampled from a categorical distribution (based on the loyalty of the
different user types), then the recommendation system selects which type of article to present in the
top position, and finally, the user selects an article. The goal of the recommendation system is to
predict the likelihood that the user would click on each of the available articles, in order to select the
one which is most interesting to the user.

User loyalty for xt then changes in accordance with the self-selection effect, increasing or decreasing
proportionally to their interest in the top article. The interests of user type xt (represented by a
column of Wt) also change; in accordance with the illusory truth effect, their interest in the topic of
the top article (as chosen by the recommender system) always increases. Overall, this environment
is an extremely crude representation of reality, but it allows us to incorporate both the effects of
self-selection (via covariate shift), and the illusory truth effect (via concept shift).

Formally, this environment is similar to a POMDP\R, i.e. a POMDP with no reward function,
also known as a world model (Armstrong & O’Rourke, 2017; Hadfield-Menell et al., 2017); the
difference is that the learner observes the input before acting and only observes the target after acting.
The states, observations, and actions given below.

st = (gt,Wt, xt, yt)

otpre, a
t, otpost = (xt, ŷt, yt)

The state transition function is defined by:

gt+1
xt = gtxt + α1W

t
xt,ŷt

W
t+1/2
xt,ŷt =W t

xt,ŷt + α2; Wt+1
xt =

W
t+1/2
xt

‖Wt+1/2
xt ‖2

xt+1 ∼ softmax(gt+1)

yt+1 ∼ softmax(Wt+1
xt+1)

Where ŷt is the top article as chosen by the recommender, and α1, α2 represent the rate of covariate
and concept shift (respectively). The update for Wt+1 merely increases the interest of user type xt
in article type ŷt, then normalizes the interests for that user type.

9.2.2 REPRODUCIBILITY DETAILS

For these experiments, the recommendation system is a ReLU-MLP with 1 hidden layer of 100 units,
trained via supervised learning with SGD (learning rate = 0.01) to predict which article a user will
select. Actions are sampled from the MLP’s predictive distribution. We apply PBT without any
hyperparameter selection (this amounts to just doing the EXPLOIT step), and an interval of 10,
selecting on accuracy. We use a population of 20 learners (whether applying PBT or not), and match
random seeds for the trials with and without PBT. We initialize g1 and W1 to be the same across the
20 copies of the environment (i.e. the learners start with the same user population), but these values
diverge throughout learning. For the environment, we set the number of user and article types both to
10. Initial user loyalties are randomly sampled from N (0, 0.03), α1 = 0.03, and α2 = 0.003.
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9.2.3 DETAILS OF EVALUATION

We measure concept shift (change in P (y|x)) as the cosine distance between each user types’ initial
and current interest vectors. And we measure covariate shift (change in P (x)) as the KL-divergence
between the current and initial user distributions, parametrized by g1 and gt, respectively. Results
are presented in 7 (main text). In Figure 12, we additionally plot concept shift and covariate shift as a
function of accuracy. We observe that for both types of ADS, at low levels of accuracy PBT actually
causes less shift than occur in baseline agents; HI-ADS are only observed for accuracies above 60%.
This suggests that only relatively strong performers are able to pick up on the HI-ADS revealed by
PBT (Fig. 12).

Figure 12: Amount of auto-induced covariate shift (left) and auto-induced concept shift (right) as a
function of performance (accuracy) averaged over all trials, learners, and time-steps. Only relatively
strong learners (those which achieve accuracy > 60%) exhibit HI-ADS.

9.2.4 CONTEXT SWAPPING IN CONTENT RECOMMENDATION

We believe context swapping is not appropriate for the content recommendation environment, since
when the environments diverge, optimal behavior may differ across environments. Nevertheless, we
ran experiments with it for completeness. The main effect appears to be to hamper learning when
PBT is not used, see Figure 13. Notably, it does not appear to significantly influence the rate or
extent of ADS when combined with PBT.

9.2.5 EXPLORATION OF ENVIRONMENT PARAMETERS

In Figure 14, we examine the effect of the rate-of-change parameters (α1, α2) of the content
recommendation environment on the results provided in the paper. As noted there, our results are
qualitatively consistent so long as (1) the initial user distribution is approximately uniform, and (2)
the covariate shift rate (α1) is faster than the concept shift rate (α2). These distributions are updated
by different mechanisms, and are not directly comparable. Concept shift changes the task more
radically, requiring a learner to change its predictions, rather than just become accurate on a wider
range of inputs. We conjecture that changes in P (y|x) must therefore be kept smooth enough for the
outer loop to have pressure to capitalize on HI-ADS.
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Figure 13: Context swapping doesn’t have the desired effect in the content recommendation
environment.
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α1 = 0.01 , α2 = 0.001 α1 = 0.1 , α2 = 0.001

α1 = 0.01 , α2 = 0.01 α1 = 0.1 , α2 = 0.01

α1 = 0.01 , α2 = 0.1 α1 = 0.1 , α2 = 0.1

Figure 14: Content recommendation results for different values of α1, α2.
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10 OFFLINE Q-LEARNING CAN REVEAL INCENTIVES FOR ADS

First, recall that this unit test is a POMDP, and the state is not observed. Since there are only 2 possible
actions, a policy is defined by a single parameter θ = p(cooperate). Now, the state distribution is
P (s = cooperate) = θ (ignoring the first state, which is appropriate in the limit of infinite data).
More specifically, the probability of each state-action combination are as follows:

Suppose we have a dataset of N examples generated by following a fixed policy.

Q(C) =
|s = C, a = C|R(s = C, a = C) + |s = D, a = C|R(s = D, a = C)

|a = C|
(1)

=
NP (s = C, a = C)R(s = C, a = C) +NP (s = D, a = C)R(s = D, a = C)

NP (a = C)
(2)

=
P (s = C, a = C)R(s = C, a = C) + P (s = D, a = C)R(s = D, a = C)

P (a = C)
(3)

=
θ2R(s = C, a = C) + θ(1− θ)R(s = D, a = C)

θ
(4)

= θR(s = C, a = C) + (1− θ)R(s = D, a = C) (5)
= θ(0) + (1− θ)(−1) (6)
= θ − 1 (7)

Q(D) =
|s = C, a = D|R(s = C, a = D) + |s = D, a = D|R(s = D, a = D)

|a = D|
(8)

=
P (s = C, a = D)R(s = C, a = D) + P (s = D, a = D)R(s = D, a = D)

P (a = D)
(9)

= P (s = C)R(s = C, a = D) + P (s = D)R(s = D, a = D) (10)
= θ(1/2) + (1− θ)(−1/2) (11)
= 1/2(2θ − 1) (12)
= θ − 1/2 (13)

So we see that Q(D) > Q(C), regardless of θ.

Now, suppose instead that we haveN examples from each of 2 different policies (given by parameters
θ1 and θ2) operating in different environments. Intuitively, this sort of data might arise in practice
from “A/B testing”, where 2 different users have been assigned to 2 different policies in order to
compare the policies’ performance. We now use DC to represent s = D, a = C, etc.

Qθ1,θ2(C) =
|CC|R(CC) + |DC|R(DC)

|C|
(14)

=
N(P θ1(CC) + P θ2(CC))R(CC) +N(P θ1(DC) + P θ2(DC))R(DC)

N(P θ1(C) + P θ2(C))
(15)

=
(P θ1(CC) + P θ2(CC))R(CC) + (P θ1(DC) + P θ2(DC))R(DC)

(P θ1(C) + P θ2(C))
(16)

=
(θ21 + θ22)R(CC) + (θ1(1− θ1) + θ2(1− θ2))R(DC)

θ1 + θ2
(17)

= −θ1(1− θ1) + θ2(1− θ2)
θ1 + θ2

(18)

=
θ21 − θ1 + θ22 − θ2

θ1 + θ2
(19)

(20)
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Qθ1,θ2(D) =
|CD|R(CD) + |DD|R(DD)

|D|
(21)

=
(P θ1(CD) + P θ2(CD))R(CD) + (P θ1(DD) + P θ2(DD))R(DD)

(P θ1(D) + P θ2(D))
(22)

=
1/2(θ1(1− θ1) + θ2(1− θ2))− 1/2((1− θ1)2 + (1− θ2)2)

2− θ1 − θ2
(23)

=
(2θ1 − 1)(1− θ1) + (2θ2 − 1)(1− θ2)

4− 2θ1 − 2θ2
(24)

Now, in Figure 15 we see that Q(C) > Q(D) when one of the policies cooperates with high
probability, and the other defects with high probability. Intuitively, the result of pooling data from 2
such policies is very similar to collecting data from an ε-greedy policy trained online (as in Figure 6).

Figure 15: Offline Q-learning can also reveal HI-ADS, when pooling data from different (policy,
environment) pairs. Yellow regions represent policy pairs for which Q(C) > Q(D), resulting in
non-myopic behavior.
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