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ABSTRACT

We address code-switched speech generation by editing monolingual utterances
with a pretrained diffusion-based speech model guided by linguistic constraints.
Our method requires no parallel code-switched data. Instead, generation is con-
ditioned on two differentiable modules—a multilingual language classifier and a
contrastively trained segment encoder—that jointly guide where to insert semanti-
cally coherent, sociolinguistically appropriate foreign segments. During reverse
diffusion, the system iteratively refines noisy speech representations, performing
targeted segment substitutions while preserving fluency, prosody, and speaker
identity.
On a semantically aligned corpus spanning five African languages from three lan-
guage families, our approach achieves strong performance: segment-level COMET
0.815, LaBSE similarity 0.880, and 6.7% Equal Error Rate (EER) for speaker
identity preservation. The model also reproduces natural code-switching pat-
terns—frequency, temporal distribution, and alternation rates—without explicit
supervision for such behaviors. To our knowledge, this is the first system to enable
controlled multilingual infusion within a single utterance, highlighting guided
diffusion as a flexible, plug-and-play framework for low-resource multilingual
speech generation. Audio samples are available at: https://github.com/
codeSwitchLugha/CodeSwitch.

1 INTRODUCTION

Code-switching—the fluid alternation between languages within an utterance—is widespread among
African speakers Biswas et al. (2022); Sitaram et al. (2019). Yet most speech technologies (ASR,
S2ST, SLU, speech LLMs) still rely mainly on monolingual data, as high-quality code-switched
corpora are scarce. Code-switched speech synthesis remains relatively underexplored, and collecting
spontaneous code-switched audio is costly and often yields unnatural speech Tarunesh et al. (2021);
Hsu et al. (2023). We address this gap with a method that transforms monolingual corpora into
realistic code-switched utterances via minimal, semantically coherent edits. Our approach samples
from a constrained denoising diffusion model (DDPM): starting from noise, the model iteratively
refines an utterance while two differentiable controllers guide generation:

(a) c1(x, y): a language-ID (LID) controller that decides where and how much to switch;
(b) c2(x, y): a multilingual segment encoder that determines what foreign-language content to

insert by swapping in semantically matched segments.

We follow the plug-and-play diffusion paradigm: instead of retraining the generative model, we keep
the diffusion prior p(x) frozen and attach external constraint modules that steer sampling at test time.
Formally,

p(x | y) ∝ p(x)C(x, y), C(x, y) = c1(x, y) c2(x, y), (1)
where x denotes an utterance-level waveform and y encodes the infusion specification (host/foreign
language set, switch prior, optional source semantics, retrieval index). The prior p(x) models
natural speech (speaker identity, prosody), while C(x, y) modulates when/how much to leave the
host language (c1) and what foreign content to insert (c2). Guidance is implemented as a short,
time-ramped penalty during sampling; the full derivation is given in App. B.
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Experiments on four African languages plus English show that the synthesized speech is fluent, se-
mantically aligned, and speaker-consistent according to automatic metrics (SacreBLEU, BERTScore,
COMET, LaBSE, ECAPA-TDNN EER) and human judgments. The method can supply code-
switched data for low-resource speech recognition, speech-to-speech translation, and multilingual
LLM training. Our contributions are:

1. Retrieval-augmented, plug-and-play diffusion for code-switched speech that requires no parallel
CS data and offers controllable where/what switching via external controllers on a frozen diffusion
prior.

2. Two complementary controllers: LID-based switching (c1) and retrieval-based semantic infusion
(c2) with late-commit and blend-and-write-back schedules.

3. Evaluation suite covering semantic fidelity, speaker consistency, prosody continuity at switch
boundaries, code-switch structure, and human ratings.

4. Empirical results on five languages (Swahili, Luo, Kikuyu, Nandi, English) showing fluent,
semantically aligned, speaker-consistent code-switching and downstream utility.

2 METHOD

2.1 PROBLEM FORMULATION

Our goal is to sample code-switched utterances from the constrained posterior in Eq. 1. Here, x
denotes a waveform and y is an infusion specification that encodes how code-switching should occur.
We write y = (Sinf , πswitch, ϕsrc, R), where Sinf is the allowed foreign-language set, πswitch is a
prior over where/how much to switch, ϕsrc is a semantic representation of the host utterance, andR
is a retrieval index over foreign-language segments. The constraint term C(x, y) (Eq. 1) factorizes as
c1(x, y)c2(x, y), where c1 encourages plausible switch locations given πswitch and the LID model,
and c2 enforces semantic consistency between the edited utterance and the host. The prior p(x)
is implemented by a pretrained DDPM vocoder (Sec. 2.2), which ensures natural speaker identity,
prosody, and acoustic realism.

Direct inference in p(x | y) is intractable because the diffusion prior introduces a sequence of latent
noise variables. We therefore augment x with diffusion latents h = {x1, . . . , xT } and work with the
joint model p(x, h) = p(h) p(x | h), leading to the variational free-energy objective

F (q) = KL
(
q(x, h) ∥ p(x, h)

)
− Eq(x)[logC(x, y)], (2)

where q(x, h) is a variational distribution over utterances and diffusion trajectories. The KL term
favors utterances that are likely under the diffusion prior p(x, h), while −Eq(x)[logC(x, y)] steers
samples toward satisfying the code-switching constraints. A step-by-step derivation of Eq. 2 from
Eq. 1 and the DDPM joint model p(x, h) is given in Appendix A.

2.2 FREE-ENERGY OBJECTIVE IN THE DDPM FRAMEWORK

We use a standard denoising diffusion probabilistic model (DDPM) Ho et al. (2020) as a frozen
speech prior. The forward process gradually corrupts clean speech x0 to noise, q(xt | x0) =
N
(
xt;
√
ᾱt x0, (1 − ᾱt)I

)
, t = 1, . . . , T, and the reverse process is parameterized as pθ(xt−1 |

xt) = N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
, xT ∼ N (0, I). As in Ho et al. (2020), maximizing log pθ(x0)

is equivalent (up to constants) to minimizing the noise-prediction loss

LDDPM = Et,ϵ0

[
∥ϵ̂θ(xt, t,M)− ϵ0∥22

]
, xt =

√
ᾱt x0 +

√
1− ᾱt ϵ0, (3)

where ϵ0 ∼ N (0, I) and M denotes conditioning inputs (speaker, text, etc.).

To incorporate linguistic constraints without retraining the prior, we target the constrained posterior
in Eq. 1, where p(x) is the DDPM prior, y encodes the infusion specification, and c1, c2 are our
controllers (Sec. 1). Direct inference in Eq. 1 is intractable because p(x) is defined via the latent
diffusion trajectory h = {x1, . . . , xT }. Following Chung et al. (2023), we adopt a mode-seeking
variational family q(x) = δ(x− η), so that the free-energy objective in Eq. 2 reduces to a function of
a single clean sample η.
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Reparameterizing xt =
√
ᾱt η +

√
1− ᾱt ϵ0 and sampling t ∼ U(1, T ), we obtain the practical

plug-and-play objective used in our guided sampler:

F (η) = Et,ϵ0

[
∥ϵ̂θ(xt, t,M)− ϵ0∥22

]
− logC(η, y), (4)

where the first term pushes η toward high-likelihood speech under the prior and − logC(η, y) adds
soft guidance from the switch and semantic controllers. In practice, this corresponds to standard
DDPM reverse updates augmented with constraint gradients, realizing plug-and-play code-switching:
the diffusion prior p(x) remains frozen and the linguistic controllers steer generation at test time.
Appendix B provides the complete derivation from the joint model p(x, h) to Eq. 4.

3 DIFFUSION-BASED CODE-SWITCHING MODEL (DCSM)

3.1 CONSTRAINT c1(x, y): LANGUAGE IDENTIFICATION AND INFUSION DECISION

The first constraint c1(x, y) decides whether a monolingual host utterance xj should undergo foreign-
language infusion, and if so, how strongly. Utterances that already contain substantial foreign
material are left as they are, while mostly clean monolingual speech is treated as a candidate for
code-switching.

Segment-level foreignness. We segment xj into n short spans {s(i)xj }ni=1 (e.g., log-Mel windows).
Each span is fed to a frozen multilingual LID classifier fcl, which outputs a posterior over the
host language ℓmono and the infusion-eligible languages Sinf(y) = {ℓ1, . . . , ℓm}: p(ℓ | s(i)xj ) =

fcl(s
(i)
xj )ℓ, ℓ ∈ Sall = {ℓmono} ∪ Sinf(y). For each segment we define a foreignness score

u(i) =
∑

ℓ∈Sinf (y)
p(ℓ | s(i)xj ) ∈ [0, 1], and aggregate these into an utterance-level measure

Pforeign(xj) =
1

n

n∑
i=1

u(i) ∈ [0, 1]. (5)

Here, Pforeign(xj) ≈ 0 indicates that the classifier sees xj as strongly monolingual in ℓmono, while
larger values signal that many segments already exhibit foreign-language characteristics (existing
code-switches, borrowings, or noisy labels).

Global controller and gating. We use Pforeign(xj) to control whether and how much the utterance
should be edited. Given a target switch rate πswitch ∈ [0, 1], we define c1(xj , y) = σ

(
α1 [πswitch −

Pforeign(xj) ]
)
, with sharpness α1 > 0 and sigmoid σ(·). When the utterance is less foreign than

the target (Pforeign(xj) < πswitch), c1(xj , y)≈ 1 and the constraint encourages infusion; when it
is already more foreign than desired, c1(xj , y) shrinks toward 0 and suppresses further switching.
For stricter control, we optionally use a hard gate zinfuse = 1

(
Pforeign(xj) ≤ τ

)
, with tolerance

τ ∈ [0, 1]. Only utterances whose foreignness is below τ are considered for code-switching; those
with Pforeign(xj) > τ are left untouched.

Local soft masks for segment selection. The same foreignness scores also provide soft, per-
segment priorities for where infusion should happen. We define local gates g(i) = σ

(
α1 [πswitch −

u(i) ]
)
, so segments that look more monolingual (low u(i)) receive higher weights g(i) and are

preferred as candidates for replacement inside the infusion constraint c2. At inference time, one
may derive hard gates z(i) ∈ {0, 1} from g(i), while keeping gradients through the sigmoid during
backprop.

Contribution to the guided objective. In the guided sampling objective, c1 contributes via the
scalar penalty

Lc1(xj , y) = − log c1(xj , y) = − log σ
(
α1 [πswitch − Pforeign(xj) ]

)
, (6)

which is added to the guided objective in Eq. 4 with weight λ1. This directly ties the LID-based
controller to the diffusion trajectory: utterances that are too monolingual relative to πswitch are

3
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nudged toward more foreign infusion, while utterances that are already highly foreign are protected
from further editing. The classifier fcl is pretrained and frozen during diffusion. It is trained to detect
segment-level foreign-language presence using a standard cross-entropy objective; we provide the
full training loss and label specification in Appendix H.

3.2 CONSTRAINT c2(x, y): FOREIGN SEGMENT INFUSION

At each denoising step, we edit a single host span chosen by c1. Let i⋆ = argmaxi g
(i) be the

selected segment in utterance xj ; constraint c2 replaces s
(i⋆)
xj with a foreign segment that is (1)

semantically similar and (2) prosodically compatible.

Semantic retrieval. We encode the source segment with a frozen multilingual encoder, q =

fenc(s
(i⋆)
xj ), and query a FAISS-based vector database Johnson et al. (2019) D. The database

stores pre-segmented foreign-language spans, each with an ℓ2-normalized embedding fenc(s
(m)
yk ) and

metadata (duration, onset, language tag). During retrieval, we restrict candidates to the infusion-
eligible language set Sinf(y) and select the best match under cosine similarity:

m⋆ = argmax
s(m)
yk

∈D

ℓ
(
s(m)
yk

)
∈Sinf (y)

Sim
(
q, fenc(s

(m)
yk

)
)
, s⋆ = s(m

⋆)
yk

.

Appendix C describes an optional soft top-M variant with a temperature schedule that anneals from a
mixture to hard top-1 retrieval.

Prosodic compatibility. To avoid audible glitches, we require the retrieved segment to match the
host in duration and timing. We estimate an expected candidate duration d̂ from global speech-rate
and prosodic statistics of the host and candidate utterances, then define hinge penalties for duration
and onset mismatch:

Ldur = max
(
0,
|d(m

⋆)
yk − d̂| − λdd̂

d̂

)
, Lon = max

(
0,
|O(m⋆)

yk −O(i⋆)
xj | −∆τ

∆τ

)
,

where λd ∈ [0, 1) and ∆τ are tolerance parameters. Full expressions for d̂, λd, and ∆τ are given in
Appendix D.

Semantic and contextual consistency. Beyond segment-level similarity, we require the injected
segment to be coherent with its local context. We define a semantic loss

Lsem = − Sim
(
fenc(s

(i⋆)
xj

), fenc(s
⋆)
)
,

and a contextual loss over neighboring host segments N (i⋆):

Lctx = − 1

|N (i⋆)|
∑

s′∈N (i⋆)

Sim
(
fenc(s

⋆), fenc(s
′)
)
.

The neighborhood definition and window size are specified in Appendix E.

Per-step loss and blend-and-write-back. The infusion loss at this step is

Lc2 = g(i
⋆)
[
αsem Lsem + αctx Lctx + αpro (Ldur + Lon)

]
,

with fixed weights αsem = αctx = 1 and αpro = 0.1. We then apply a time-dependent blend-and-write-
back update s

(i⋆)
xj ← (1− ρt) s

(i⋆)
xj + ρt s

⋆, where the ramp ρt increases over reverse-diffusion steps
so that semantic edits are committed only after coarse acoustic structure has stabilized. Gradients
flow back to the clean sample η via the inputs to fenc, while both fenc and the retrieval indexD remain
frozen.

4
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3.3 GUIDED SAMPLING OBJECTIVE AND INFERENCE

During generation, we implement the free-energy objective in Eq. equation 4 by optimizing the
clean sample η while keeping the DDPM vocoder and constraint networks fixed. At a given reverse-
diffusion step t, the guided loss is

Lstep(t) = ∥ϵ̂θ(xt, t,M)− ϵ0∥22 + λ1 Lc1 + λ2(t)Lc2 , (7)

where xt =
√
ᾱt η +

√
1− ᾱt ϵ0 and ϵ0 ∼ N (0, I) as in Eq. 3. The first term is the DDPM noise-

prediction loss; the constraint losses Lc1 and Lc2 are defined in Sections 3.1–3.2, and λ2(t) ∈ [0, 1] is
a time-dependent weight that ramps constraint guidance over diffusion steps. The DDPM parameters
θ remain frozen; gradients flow only to η.

To regulate when foreign segments are infused, we use two schedules: (i) a blending coefficient
ρt that increases over denoising steps, so that semantic edits are only fully committed once coarse
acoustic structure has stabilized; and (ii) the guidance weight λ2(t), which delays the effect of Lc2
until early noise has largely dissipated. These mechanisms stabilize generation and support gradual
linguistic modulation.

Inference proceeds by iteratively denoising a Gaussian sample while selectively modifying one span
per step: at each t, c1 selects a candidate segment, c2 retrieves and blends in a foreign segment using
ρt, and we update η by taking a gradient step on Lstep(t). Over time, this process converges to a
fluent, code-switched utterance. The full inference procedure is given in Appendix F.

3.4 SPEAKER IDENTITY HARMONIZATION

To standardize timbre, pitch, and rhythm across edited spans while preserving content, we apply a
short identity-harmonization pass with the pretrained, frozen DDPM prior. Given a monolingual
reference utterance xmono and the current code-switched sample x, we extract speaker/prosody
descriptors

ϕspk = ECAPA(xmono), ϕmel = MelStats(x),

where ECAPA(·) is a frozen ECAPA-TDNN and MelStats(·) denotes summary statistics (e.g., mean
and variance) of log-Mel features. We then run a shallow denoising refinement

xfinal = Refineθ
(
x
∣∣ϕspk, ϕmel

)
, (8)

using Tref = 150 diffusion steps with a low-noise schedule (late timesteps only).

During this refinement we disable segment edits by setting λ2(t) = 0 and keep the LID-based rate
term weak (small λ1), so as not to alter semantics or the code-switch pattern. In practice, conditioning
can be implemented via feature concatenation or FiLM-style modulation inside the DDPM U-Net,
with θ kept fixed. Alternative variants (e.g., adding a cosine speaker-embedding penalty Lid computed
by a frozen ECAPA on sliding windows) yield similar improvements; see Appendix G for details.

4 EVALUATION

4.1 DATASET

We collected a proprietary speech dataset from the Kenya Broadcasting Corporation (KBC), which
operates 11 radio stations delivering aligned news content across multiple Kenyan languages. News
bulletins are authored in English and translated into local languages, then read aloud by native
speakers—yielding semantically aligned monolingual utterances across languages. Our corpus spans
2018–2023 and focuses on the 7 p.m. bulletins, which are typically the most content-rich. We
retain advertisements, presenter introductions, and other ambient segments to preserve real-world
variability. Each bulletin is segmented using an over-segmentation VAD pipeline Duquenne et al.
(2021), producing speech units bounded by silence and ranging from 3 to 20 seconds.

We focus on five languages—Swahili, Luo, Kikuyu, Nandi, and English—selected for their regional
and typological diversity. Swahili and Kikuyu belong to the Niger–Congo phylum, while Luo and
Nandi are Nilo–Saharan; English, though non-indigenous, functions as a lingua franca and appears
in every station’s programming. Table 1 summarizes dataset statistics by language, and Table 2

5
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reports segment-level details. Bulletins are read by multiple presenters, capturing a range of accents,
pitch ranges, and prosodic patterns, which improves generalization for synthesis, translation, and
recognition models. We apply a 70/30 split of segments per language for training and evaluation, and
zero-pad each segment to a fixed length of 20 seconds for model training.

In addition to news bulletins, we collected 7,255 naturally occurring code-switched Swahili–Luo
utterances from radio call-in segments. For evaluation, each utterance was manually re-recorded in a
monolingual version: 4,044 were rendered in Swahili and 3,211 in Luo, depending on the dominant
language of the original speaker.

Table 1: Monolingual speech dataset sum-
mary.

Language Family Daily Bulletins
(2018–2023) Total Hours

Swahili Niger-Congo 2190 1353
Luo Nilo-Saharan 2190 1284

Kikuyu Niger-Congo 2190 1304
Nandi Nilo-Saharan 2190 1256

English – 2190 1206

Table 2: Segment statistics per language.
Language Avg. Segment

Length (s)
Total

Segments
Luo 16.5 601,112

Nandi 17.1 594,503
Kikuyu 15.6 643,001
English 15.0 665,578
Swahili 15.2 638,944

4.2 TOOLS AND RESOURCES

Tools and Models. Our system relies on four frozen modules: (i) a multilingual segment-level LID
classifier; (ii) a contrastively trained speech encoder for semantic retrieval and contextual matching;
(iii) the SegUniDiff model for conditional speech generation and refinement; and (iv) lightweight
ASR and MT systems used only for evaluation. Full architectural specifications, training details, and
performance metrics for all components are provided in Appendix H.

4.3 EVALUATION METRICS AND FRAMEWORK

We evaluate both segment-level and utterance-level code-switched speech using four complementary
metrics that capture lexical accuracy, semantic preservation, and cross-lingual coherence: Sacre-
BLEU Post (2018) for surface correspondence, BERTScore Zhang et al. (2019) for contextual
similarity, COMET Rei et al. (2020) for semantic adequacy, and LaBSE cosine similarity Feng et al.
(2022) for cross-lingual embedding alignment. For each metric, we report mean scores with 95%
confidence intervals obtained through bootstrap resampling. Full metric definitions, evaluation setups,
and the resampling protocol are provided in Appendix I.

4.4 SEGMENT-LEVEL EVALUATION WITH CONFIDENCE INTERVALS

We assess segment-level semantic fidelity using the metrics defined in Section 4.3. Our evaluation
covers 8,500 synthetic utterances and 7,255 naturally occurring code-switched utterances (primarily
Swahili–Luo) collected from radio call-ins. For each utterance x, we extract VAD-based segments
(Section 4.1), apply the LID classifier fcl to detect foreign segments, and pair each detected code-
switched segment s(k)xc (segment k of the code-switched utterance xc) with its corresponding source
segment s(k)x . Segment pairs are transcribed with ASR, translated to English, and scored on semantic
fidelity. Table 3 reports results with 95% confidence intervals from 1,000 bootstrap samples; the
resampling protocol is detailed in Appendix J.

Table 3: Segment-level evaluation of synthetic and natural code-switched utterances across four
metrics. Scores include 95% confidence intervals from 1,000 bootstrap samples.

Source SacreBLEU (↑) BERTScore (↑) COMET (↑) LaBSE (↑)
Swahili (Synthetic) 38.4 [36.9, 39.6] 0.814 [0.809, 0.818] 0.831 [0.822, 0.843] 0.890 [0.882, 0.897]
Luo (Synthetic) 35.7 [34.2, 37.1] 0.805 [0.801, 0.810] 0.809 [0.798, 0.819] 0.876 [0.869, 0.884]
Kikuyu (Synthetic) 36.8 [35.0, 38.4] 0.808 [0.802, 0.813] 0.817 [0.806, 0.828] 0.881 [0.874, 0.888]
Nandi (Synthetic) 34.5 [33.1, 35.7] 0.801 [0.795, 0.806] 0.804 [0.794, 0.814] 0.872 [0.865, 0.880]
Luo (Natural) 36.2 [35.4, 37.0] 0.822 [0.818, 0.841] 0.833 [0.827, 0.843] 0.885 [0.879, 0.891]
Swahili (Natural) 39.0 [38.2, 39.7] 0.836 [0.831, 0.841] 0.845 [0.841, 0.864] 0.898 [0.892, 0.904]
Average (Synthetic) 36.4 [35.2, 37.4] 0.807 [0.804, 0.810] 0.815 [0.807, 0.823] 0.880 [0.873, 0.886]

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Synthetic utterances closely approximate natural ones across all metrics. For Swahili and Luo, the
COMET gaps between synthetic and natural segments are only 0.014 and 0.024, respectively; LaBSE
gaps are similarly small (0.008 and 0.009). These results show that our guided segment substitution
preserves cross-lingual semantics without requiring naturally code-switched training data. The narrow
confidence intervals further indicate that performance is stable and not driven by outliers.

4.5 UTTERANCE-LEVEL EVALUATION WITH MASKED AND FULL VARIANTS

To assess overall fluency, inter-segment coherence, and disruptions introduced by code-switching,
we evaluate at the utterance level. This complements segment-level analysis by capturing prosodic
mismatches, semantic drift, and syntactic incongruities that emerge only in longer contexts. We
evaluate both synthetic code-switched utterances and natural ones collected from Swahili and Luo
radio call-ins. For each code-switched utterance xc, we apply the language classifier fcl to identify
foreign-language spans and evaluate under two variants:

• Full reconstruction (unmasked): Foreign segments are translated into the source language
and reinserted, yielding a reconstructed monolingual utterance xr.

• Masked evaluation: Foreign segments are removed from xc, yielding xm, which isolates
preservation of the monolingual portions.

Each variant is compared to the clean reference utterance using ASR+MT to obtain transcriptions,
followed by SacreBLEU, BERTScore, COMET, and LaBSE similarity. Table 4 reports mean scores
with 95% confidence intervals; the resampling protocol is detailed in Appendix K.

Table 4: Utterance-level evaluation of code-switched speech. Each source shows masked and full
scores with 95% confidence intervals.

Source Type SacreBLEU (↑) BERTScore (↑) COMET (↑) LaBSE (↑)

Swahili (Synthetic) Full 36.6 [35.3, 37.8] 0.762 [0.757, 0.766] 0.669 [0.660, 0.681] 0.882 [0.875, 0.888]
Masked 34.9 [33.5, 36.0] 0.737 [0.732, 0.737] 0.642 [0.631, 0.655] 0.854 [0.846, 0.860]

Luo (Synthetic) Full 33.9 [32.6, 35.3] 0.753 [0.747, 0.758] 0.647 [0.637, 0.657] 0.871 [0.864, 0.878]
Masked 32.2 [30.9, 33.6] 0.728 [0.722, 0.733] 0.620 [0.609, 0.631] 0.844 [0.837, 0.854]

Kikuyu (Synthetic) Full 35.0 [33.4, 36.4] 0.756 [0.750, 0.761] 0.655 [0.644, 0.666] 0.876 [0.870, 0.882]
Masked 33.3 [31.8, 34.6] 0.731 [0.725, 0.736] 0.628 [0.617, 0.639] 0.850 [0.843, 0.857]

Nandi (Synthetic) Full 32.7 [31.5, 33.9] 0.749 [0.743, 0.756] 0.643 [0.633, 0.653] 0.869 [0.861, 0.875]
Masked 31.2 [29.9, 32.4] 0.724 [0.717, 0.731] 0.615 [0.604, 0.625] 0.841 [0.834, 0.849]

Swahili (Natural) Full 37.3 [36.5, 38.1] 0.785 [0.780, 0.791] 0.701 [0.692, 0.710] 0.896 [0.890, 0.902]
Masked 35.5 [34.7, 36.3] 0.760 [0.755, 0.765] 0.667 [0.658, 0.676] 0.867 [0.860, 0.873]

Luo (Natural) Full 35.2 [34.1, 37.3] 0.772 [0.767, 0.778] 0.682 [0.673, 0.691] 0.884 [0.878, 0.891]
Masked 33.6 [32.5, 35.6] 0.745 [0.740, 0.751] 0.654 [0.645, 0.662] 0.856 [0.850, 0.862]

Average (Synthetic) Full 34.5 [33.5, 35.6] 0.755 [0.751, 0.759] 0.653 [0.645, 0.661] 0.874 [0.870, 0.878]
Masked 32.9 [31.9, 34.0] 0.730 [0.726, 0.734] 0.626 [0.617, 0.635] 0.847 [0.843, 0.852]

As expected, utterance-level scores are lower than segment-level ones (Table 3), since longer contexts
expose more opportunities for prosodic and discourse mismatches. Nevertheless, the model retains
strong fluency and coherence: synthetic full-utterance scores are close to their natural counterparts
(e.g., Swahili COMET 0.669 vs. 0.701 and LaBSE 0.882 vs. 0.896). The masked variant shows
that unaltered monolingual content is largely preserved, with only modest drops relative to the full
reconstruction. Taken together, these results indicate that our guided diffusion model can introduce
foreign segments while maintaining global utterance quality without access to naturally code-switched
training data.

5 SPEAKER IDENTITY VERIFICATION

To evaluate whether code-switched speech maintains consistent speaker identity, we use an automatic
verification framework based on ECAPA-TDNN embeddings Desplanques et al. (2020). The model
is trained on 732 speakers and produces fixed-length embeddings from short segments. For each
generated code-switched utterance xc, we apply VAD segmentation (Section 4.1) and extract speaker
embeddings f(s(i)xc ) for each segment s(i)xc .

We then compute cosine similarity between all intra-utterance segment pairs (i ̸= j), treating these
as genuine pairs that should correspond to a single speaker. Impostor pairs are formed by pairing
segments from different utterances (i.e., s(i)xc and s

(j)
x′
c

), assuming different speaker prompts.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Speaker consistency is quantified using:

• Average cosine similarity (↑) between genuine and impostor pairs.
• Equal Error Rate (EER) (↓): the point where false accept and false reject rates intersect.

Table 5: Speaker verification results for code-switched utterances.
Source Avg. Cosine

Similarity (Genuine) ↑
Avg. Cosine

Similarity (Impostor) ↓
Equal Error Rate

(EER %) ↓
Swahili (Synthetic) 0.872 0.432 6.5
Luo (Synthetic) 0.861 0.418 7.2
Kikuyu (Synthetic) 0.868 0.427 6.8
Nandi (Synthetic) 0.854 0.411 7.6
Swahili (Natural) 0.903 0.391 3.6
Luo (Natural) 0.870 0.430 5.1
Average 0.868 0.426 6.7

Table 5 shows that speaker identity is generally preserved across code-switched utterances. As
expected, natural utterances perform best, with higher genuine-pair similarity and lower EERs
(e.g., Swahili: 0.903 similarity, 3.6% EER). Synthetic utterances also score well, with EERs in the
6.5–7.6% range and genuine similarities above 0.85. The relatively small gap between synthetic and
natural conditions suggests that our model retains speaker traits across substituted segments, enabling
code-switching that is both semantically faithful and vocally consistent.

5.1 CODE-SWITCHING PATTERNS ACROSS SOURCE LANGUAGES

We analyze generated utterances along four structural dimensions: (i) switching frequency, (ii)
distribution of inserted languages, (iii) temporal position of switches, and (iv) alternation points
between languages.

Switching frequency. We sample 2,000 synthetic utterances per source language, segment them
via VAD (Section 4.1), and label each segment with the pretrained classifier fcl. We then compute the
average proportion of foreign segments per utterance and compare to natural call-in data (Table 6).

Table 6: Average percentage of foreign segments per utterance (higher = more frequent code-
switching).

Source Language Foreign Segment Rate
Swahili (Synthetic) 4.8%

Luo (Synthetic) 4.2%
Kikuyu (Synthetic) 4.4%
Nandi (Synthetic) 3.9%
Swahili (Natural) 5.3%

Luo (Natural) 3.2%
Average (Synthetic) 4.3%

Synthetic utterances exhibit realistic switching rates, typically within 1–1.5 percentage points of natu-
ral baselines. Swahili shows the highest frequency in both synthetic and natural settings, consistent
with its role as a lingua franca.

Inserted language and temporal position. Table 7 shows normalized insertion frequencies by
source language. For Swahili (which allows all other languages as infusion targets), insertions are
diverse. For restricted sources (Luo, Kikuyu, Nandi), Swahili is preferred over English, reflecting
both phonological compatibility and its empirical prevalence in the data.

Table 8 reports the proportion of foreign segments per utterance quarter (Q1: start, Q4: end). Synthetic
patterns track natural ones: Swahili places more foreign material toward the end of the utterance,
whereas Luo shows a flatter distribution.

Alternation points. We define the alternation rate as the proportion of segment boundaries where
the language label changes:

Alternation Rate =
#{boundaries where language changes}

#{segment boundaries}
.
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Table 7: Distribution (%) of inserted languages
per source utterance.

Insert
Source Swahili Luo Kikuyu Nandi

English 21.2% 46.7% 48.9% 44.5%
Luo 28.5% – – –

Kikuyu 24.6% – – –
Nandi 25.7% – – –

Swahili – 53.3% 51.1% 55.5%

Table 8: Percentage of foreign segments per ut-
terance quarter (Q1: start, Q4: end).

Source Q1 Q2 Q3 Q4
Swahili (Synthetic) 18.6% 23.5% 26.1% 31.8%
Luo (Synthetic) 22.3% 25.7% 25.1% 26.9%
Kikuyu (Synthetic) 20.8% 22.0% 27.3% 29.9%
Nandi (Synthetic) 19.5% 24.6% 28.4% 27.5%
Swahili (Natural) 16.6% 22.5% 26.1% 34.8%
Luo (Natural) 18.3% 24.7% 23.1% 24.9%

Table 9 shows that alternation is rare (3–5%), with synthetic and natural values well aligned. Swahili
(Natural) alternates most, likely due to shorter, more frequent insertions, whereas Luo tends toward
longer insertions and fewer switches.

Table 9: Average alternation rate: percentage of segment boundaries where the language changes.
Source Language Alternation Rate (%)
Swahili (Synthetic) 4.7%

Luo (Synthetic) 3.6%
Kikuyu (Synthetic) 3.1%
Nandi (Synthetic) 4.1%
Swahili (Natural) 5.3%

Luo (Natural) 2.1%
Average (Synthetic) 3.9%

Across these four dimensions, our model exhibits realistic code-switching structure: it avoids over-
insertion, respects language constraints, mirrors natural switch placement, and matches alternation
rates—without any hand-crafted rules over language labels. This suggests that structural patterns are
implicitly internalized from monolingual segments plus guided diffusion.

5.2 HUMAN PREFERENCE EVALUATION: FLUENCY AND ACCEPTABILITY

To complement automatic metrics, we conduct a large-scale human study assessing the perceived
fluency, coherence, and realism of generated code-switched speech—dimensions not fully captured
by automated measures. A total of 638 undergraduate participants rated 1,437 utterances sampled
across all source languages, with six utterances per listener matched to their linguistic background
and at least four independent ratings per utterance.

Participants used a 5-point Likert scale to evaluate:

• Fluency: smoothness and naturalness;
• Coherence: semantic consistency and speaker preservation;
• Realism: resemblance to naturally occurring multilingual speech.

Table 10: Average human ratings of code-switched utterances (Likert scale). Natural examples
included for reference.

Source Language Fluency (↑) Coherence (↑) Realism (↑) Std. Dev.
Swahili (Synthetic) 4.1 4.2 4.0 0.42
Luo (Synthetic) 4.1 4.0 4.1 0.46
Kikuyu (Synthetic) 4.2 4.1 4.0 0.44
Nandi (Synthetic) 3.9 4.0 3.9 0.48
Swahili (Natural) 4.6 4.8 4.5 0.42
Luo (Natural) 4.7 4.4 4.6 0.46
Avg. (Synthetic) 4.1 4.05 4.0 0.45

Synthetic utterances receive high ratings across all dimensions (≥ 4.0) with low variance across
languages. Natural speech scores slightly higher, particularly in realism, but the gap remains modest
(typically ≤ 0.5). Overall, listeners perceive the generated speech as fluent, coherent, and plausibly
multilingual, supporting the effectiveness of our constraint-guided diffusion approach.

6 CONCLUSION

We presented a diffusion-based framework for generating fluent, coherent, and sociolinguistically
realistic code-switched speech without relying on parallel code-switched data. By guiding a pre-
trained monolingual diffusion prior with differentiable linguistic constraints—including a multilingual

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

language classifier and a contrastive segment encoder—our method performs targeted segment-level
edits while preserving fluency, semantic coherence, and speaker identity.

Extensive evaluation across five African languages shows that the system closely matches natural
code-switching behavior in frequency, structure, and temporal placement. It achieves strong segment-
level semantic fidelity (COMET 0.815, LaBSE 0.880) and speaker consistency (EER 6.7%). Human
listeners also rated the generated utterances highly across fluency, coherence, and realism.

To our knowledge, this is the first method to enable plug-and-play multilingual infusion within a
single utterance, offering a flexible approach to cross-lingual speech generation in low-resource
settings. Future work will explore richer prosodic control, expansion to additional languages, and
applications to spontaneous conversational speech.
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7 APPENDIX / SUPPLEMENTAL MATERIAL

A DERIVATION OF THE FREE-ENERGY OBJECTIVE

We seek to approximate the constrained posterior

p(x | y) ∝ p(x)C(x, y), C(x, y) = c1(x, y)c2(x, y),

where x is an utterance waveform, y is the infusion specification, and c1, c2 are soft constraints
(switch plausibility and semantic consistency). Direct inference in p(x | y) is intractable, so we
introduce latent diffusion variables h and consider the joint model p(x, h) = p(h) p(x | h).
Starting from the usual variational formulation for p(x | y) ∝ p(x)C(x, y), we define the free-energy
functional under a variational distribution q(x, h) as

F (q) = −Eq(x)

[
log p(x)

]
− Eq(x)

[
logC(x, y)

]
+ Eq(x)

[
log q(x)

]
. (9)
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To handle the latent variables, we write

log p(x) = log

∫
p(x, h) dh = log

∫
q(h | x) p(x, h)

q(h | x)
dh.

Applying Jensen’s inequality gives the standard variational bound

log p(x) ≥ Eq(h|x)

[
log

p(x, h)

q(h | x)

]
.

Substituting this bound into equation 9 yields an upper bound on F (q):

F (q) ≤ −Eq(x)q(h|x)

[
log

p(x, h)

q(h | x)

]
+ Eq(x)

[
log q(x)

]
− Eq(x)

[
logC(x, y)

]
.

Using q(x, h) = q(x)q(h | x), we can rewrite the first two terms as

−Eq(x)q(h|x)

[
log

p(x, h)

q(h | x)

]
+ Eq(x)

[
log q(x)

]
= Eq(x,h)

[
log

q(x, h)

p(x, h)

]
,

so that the bound takes the familiar free-energy form

F (q) ≤ Eq(x,h)

[
log

q(x, h)

p(x, h)

]
− Eq(x)

[
logC(x, y)

]
.

Motivated by this, we minimize the corresponding free-energy objective stated in Eq. 2 as

F (q) = KL
(
q(x, h) ∥ p(x, h)

)
− Eq(x)[logC(x, y)] . (10)

The first term encourages samples that are likely under the diffusion prior p(x, h); the second injects
plug-and-play guidance from the soft constraints. In practice we adopt the mode-seeking choice
q(x) = δ(x − η), so that − logC(η, y) appears as an additive guidance penalty inside the reverse
diffusion updates. This connects directly to the sampling algorithm in Algorithm 1.

B DDPMS, MODE-SEEKING APPROXIMATION, AND FULL FREE-ENERGY
DERIVATION

This appendix gives the complete derivation of the constrained free-energy objective used in our
guided diffusion framework. It unifies (i) the DDPM prior, (ii) the variational formulation of the
constrained posterior, (iii) the mode-seeking approximation, and (iv) its reduction to the practical
noise-prediction loss in Eq. 4.

B.1 DDPM FORWARD AND REVERSE PROCESSES

A denoising diffusion probabilistic model (DDPM) Ho et al. (2020) defines a forward noising process

q(h = {x1, . . . , xT } | x0) =

T∏
t=1

q(xt | xt−1), q(xt | xt−1) = N (xt;
√
αtxt−1, (1− αt)I),

with marginal

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), ᾱt =

t∏
s=1

αs.

The reverse generative process is a Markov chain

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), xT ∼ N (0, I).

Ho et al. (2020) show that maximizing log pθ(x0) is equivalent (up to constants) to minimizing the
denoising score-matching loss

LDDPM = Et,ϵ0

[
∥ϵ̂θ(xt, t,M)− ϵ0∥22

]
, xt =

√
ᾱt x0 +

√
1− ᾱt ϵ0.
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B.2 CONSTRAINED POSTERIOR AND VARIATIONAL FREE ENERGY

Our target posterior is

p(x | y) ∝ p(x)C(x, y), C(x, y) = c1(x, y)c2(x, y).

Since p(x) is defined through the latent diffusion trajectory h = {x1, . . . , xT }, direct inference is
intractable, so we use the free-energy objective in Eq. 2 to approximate it.

B.3 MODE-SEEKING APPROXIMATION

Following Chung et al. (2023), we adopt a mode-seeking variational family

q(x) = δ(x− η),

giving
q(x, h) = δ(x− η) q(h | η).

Substituting into Eq. 2 yields (up to a constant)

F (η, q(h | η)) = KL
(
q(h | η) ∥ p(h | η)

)
− logC(η, y). (11)

The KL term is precisely the DDPM variational objective; the second term injects constraint guidance.

Using the forward-diffusion posterior,

q(h | η) =
T∏

t=1

q(xt | xt−1, η), x0 = η,

the KL decomposes into per-step terms:

KL
(
q(h | η) ∥ p(h | η)

)
=

T∑
t=1

KL
(
q(xt−1 | xt, η) ∥ pθ(xt−1 | xt)

)
.

Reparameterizing
xt =

√
ᾱt η +

√
1− ᾱt ϵ0, ϵ0 ∼ N (0, I),

each term becomes a weighted denoising loss Ho et al. (2020):

KL
(
q(xt−1 | xt, η) ∥ pθ(xt−1 | xt)

)
= wt(β)Eϵ0

[
∥ϵ0 − ϵ̂θ(xt, t,M)∥22

]
.

Thus

F (η) =

T∑
t=1

wt(β)Eϵ0

[
∥ϵ0 − ϵ̂θ(xt, t,M)∥22

]
− logC(η, y) + const.

Using the standard DDPM timestep sampling t ∼ U(1, T ) and absorbing wt into the learning rate,
we obtain the practical objective used in the main text:

F (η) = Et,ϵ0

[
∥ϵ̂θ(xt, t,M)− ϵ0∥22

]
− logC(η, y), (12)

where
xt =

√
ᾱt η +

√
1− ᾱt ϵ0.

This shows that constrained sampling corresponds to standard DDPM reverse updates augmented
with the guidance term − logC(η, y), enabling plug-and-play code-switching without retraining the
diffusion prior.
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C SOFT TOP-M RETRIEVAL WITH TEMPERATURE ANNEALING

.

This appendix details an optional variant of the semantic retrieval procedure in Section 3.2. Instead
of selecting a single top-1 nearest neighbor at each denoising step, we form a soft mixture over the
top-M candidates. This stabilizes early reverse-diffusion updates when xt is still highly noisy and
the encoder embeddings may be unreliable.

Candidate Retrieval and Similarity Logits. Given a source segment

q = fenc
(
s(i

⋆)
xj

)
,

we query the FAISS index D (restricted to the infusion-eligible language set Sinf(y)) and obtain the
top-M candidates:

CM =
{
s(m1)
yk

, . . . , s(mM )
yk

}
.

For each candidate we compute cosine-similarity logits

zr = Sim
(
q, fenc(s

(mr)
yk

)
)
, r = 1, . . . ,M.

Soft Retrieval Distribution. A tempered softmax converts the logits into a probability distribution:

πr(t) =
exp(zr/τt)∑M

u=1 exp(zu/τt)
.

Large temperatures τt yield diffuse mixtures (exploration), while τt→0 collapses the distribution to
the best candidate.

Mixture-Based Segment Construction. The retrieved segment is the convex combination

s⋆(t) =

M∑
r=1

πr(t) s
(mr)
yk

.

As τt → 0, the mixture degenerates to the hard top-1 candidate:

s⋆(t) −→ s(m
⋆)

yk
.

Temperature Annealing Schedule. We anneal τt across reverse-diffusion steps so the model explores
early and commits later. A simple schedule is

τt = τmin + (τmax − τmin)

(
1− t

T

)κ

, κ ∈ [2, 4], τmin ≤ τt ≤ τmax,

where τmax ≈ 1.0−2.0 and τmin (e.g. 10−3) prevents numerical instability. Here, τt ≈ τmax when
t ≈ 1 (early noisy steps, more exploration) and decays toward τmin as t → T (later steps, sharper
selection).

Gradient Flow. Gradients propagate through the mixture weights πr(t), through the dependence of
the embeddings fenc(s

(mr)
yk ) and fenc(s

(i⋆)
xj ) on the clean sample η, and through the blend-and-write-

back update in Section 3.2. Both the FAISS index and the encoder parameters remain frozen; only
the clean sample η receives updates from Lc2 .

When Soft Top-M Helps. The soft retrieval variant is especially useful when:

• languages in Sinf(y) are phonetically similar (ambiguous nearest neighbours),
• segments are short (50–100 ms), making embeddings noise-sensitive,
• early DDPM steps (t ≈ T ) are dominated by noise.

As τt ↓ 0, the method reduces to the deterministic top-1 retrieval in the main text.
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D PROSODIC NORMALIZATION AND TOLERANCE PARAMETERS

For the prosodic compatibility terms in Section 3.2, we normalize candidate durations using simple
speech-rate and prosody proxies. Let Rxj , Pxj and Ryk

, Pyk
denote speech-rate and prosodic

statistics (e.g., syllables/s, median F0 or energy) for the host utterance xj and the candidate utterance
yk, respectively. We define a scale factor

Sratio =

√
Rxj

Ryk

·
Pxj

Pyk

and an expected candidate duration
d̂ = d(i

⋆)
xj

Sratio,

where d
(i⋆)
xj is the duration of the source segment chosen for infusion.

The duration tolerance parameter λd ∈ [0, 1) controls the allowable relative deviation from d̂. In the
main text, we use the hinge penalty

Ldur = max
(
0,
|d(m

⋆)
yk − d̂| − λdd̂

d̂

)
,

which becomes zero when the candidate duration lies within a (1± λd) band around d̂.

For onset alignment we define
∆τ =

∣∣d̄xj
− d̄yk

∣∣,
where d̄xj

and d̄yk
are the mean segment durations in xj and yk, respectively. The onset penalty

Lon = max
(
0,
|O(m⋆)

yk −O(i⋆)
xj | −∆τ

∆τ

)
is therefore zero when the candidate onset falls within a tolerance window of width ∆τ around the
host onset. In our experiments we set λd and any additional scaling of ∆τ via development tuning on
a held-out validation set

E NEIGHBORHOOD DEFINITION FOR CONTEXTUAL CONSISTENCY

For the contextual loss in Section 3.2, we define the neighborhood N (i⋆) of the edited segment s(i
⋆)

xj

as a fixed-radius window over adjacent host segments. Let xj be segmented into n spans {s(i)xj }ni=1,
and let i⋆ be the index selected for infusion. For a window radius R ∈ N (typically R = 1 or R = 2),
the neighborhood is

N (i⋆) =
{
s(i)xj

: max(1, i⋆ −R) ≤ i ≤ min(n, i⋆ +R), i ̸= i⋆
}
.

This definition automatically excludes segments outside the valid range [1, n] and captures local
prosodic and semantic context around the infusion site.

Special case (R = 1). For immediate left/right neighbors, the above reduces to the standard
adjacent-neighbor definition:

N (i⋆) =


{ s(i

⋆+1)
xj }, i⋆ = 1,

{ s(i
⋆−1)

xj , s
(i⋆+1)
xj }, 1 < i⋆ < n,

{ s(i
⋆−1)

xj }, i⋆ = n.

The general-radius formulation allows broader contextual windows when desired, while the R = 1
instance recovers the conventional adjacent-segment neighborhood.
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F FULL INFERENCE ALGORITHM AND GRADIENT UPDATE SCHEDULE

This appendix expands on Section 3.3 of the main text, providing full details on the inference
algorithm, segment-wise gradient updates, constraint scheduling, and hyperparameter tuning for
code-switched speech generation. We elaborate on the free-energy formulation in Eq. 4 and describe
the iterative refinement strategy that supports semantically and prosodically aligned code-switching.

F.1 INFERENCE OBJECTIVE

Recall the guided per-step loss from Eq. 7:

Lstep(t) = ∥ϵ̂θ(xt, t,M)− ϵ0∥22 + λ1 Lc1 + λ2(t)Lc2 ,

where xt =
√
ᾱt η +

√
1− ᾱt ϵ0 and ϵ0 ∼ N (0, I). The DDPM parameters θ are pretrained and

frozen; we optimize only the clean sample η. Averaging over timesteps and noise draws yields the
overall guided objective

F (η) = Et,ϵ0

[
∥ϵ̂θ(xt, t,M)− ϵ0∥22 + λ1 Lc1 + λ2(t)Lc2

]
, (13)

which instantiates the free-energy form in Eq. 4 with explicit weights on the constraint terms. Here,
Lc1 and Lc2 are defined in Sections 3.1 and 3.2, respectively.

F.2 DYNAMIC SCHEDULING FOR INFUSION

To control when and how strongly foreign segments are introduced, we define two schedules that
match the discussion in Sec. 3.3.

Time-dependent blending coefficient. We use a ramp ρt ∈ [0, 1] to blend the retrieved foreign
segment into the host segment (see Sec. 3.2):

s(i
⋆)

xj
← (1− ρt) s

(i⋆)
xj

+ ρt s
⋆.

A simple schedule is

ρt = 1− exp

(
−T − t

βT

)
, (14)

with β ∈ (0, 1) (we use β = 0.25). This ensures that early reverse-diffusion steps (t near T ) preserve
monolingual structure, while foreign infusion gradually intensifies as t decreases and the acoustic
structure stabilizes.

Constraint weight ramp-up. We factor the guidance weight as λ2(t) = λ2 w(t), where

w(t) =
t

T
, (15)

so that Lc2 is suppressed when xt is still highly corrupted and only becomes influential once a coarse
waveform has formed. In practice, this reduces the risk of semantically misaligned edits at very noisy
timesteps.

F.3 CONSTRAINT WEIGHT SELECTION

We select λ1 and the base λ2 via Gaussian process-based Bayesian optimization over the range
[0.1, 5.0], using a held-out validation set. The objective combines multiple evaluation metrics:

• Semantic fidelity: COMET, BERTScore;
• Prosodic alignment: onset and duration deviation at switch boundaries;
• Speaker consistency: cosine similarity using ECAPA-TDNN embeddings.

The optimal weights used in our experiments are λ1 = 0.35 and λ2 = 0.65.
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F.4 SEGMENT-WISE GRADIENT UPDATE

At each timestep ti, we update the clean sample η using gradients that are localized to a single
segment of the utterance. Let x̃ti = Segment(xti , L) denote a subwindow of xti of length L centred
on the segment index i⋆ selected by c1. The guided loss at step ti is

Lstep(ti) = ∥ϵ0 − ϵ̂θ(x̃ti , ti,M)∥22 + λ1Lc1 + λ2(ti)Lc2 ,

and we take a gradient step on η:

η ← η − λη∇ηLstep(ti), (16)

with a small learning rate λη (we use λη = 0.05). Because x̃ti depends on η only through the
selected span, this update predominantly affects a single localized region of the utterance at each step.
Over the course of the reverse trajectory, different segments are selected, enabling diverse foreign
substitutions while preserving global fluency and speaker identity.
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F.5 FULL INFERENCE ALGORITHM

Algorithm 1 Guided DDPM Inference for Code-Switched Speech
Require: Frozen DDPM denoiser ϵ̂θ, frozen LID classifier fcl, frozen multilingual encoder

fenc, FAISS-based vector database D, infusion specification y (incl. Sinf , πswitch), host Mel-
spectrogram M , noise schedule {ᾱt}Tt=1, step sizes {γt}Tt=1, guidance weights λ1, λ2(t), blend
ramp ρt

1: Initialize η ∼ N (0, I) {initial guess for the clean sample}
2: for t = T, T − 1, . . . , 1 do
3: // 1. Segment and compute LID-based controller c1
4: Segment η into spans {s(i)}ni=1

5: For each span s(i): compute p(ℓ | s(i)) = fcl(s
(i))ℓ over ℓ ∈ {ℓmono} ∪ Sinf(y)

6: Compute foreignness scores u(i) =
∑

ℓ∈Sinf (y)
p(ℓ | s(i)) and Pforeign(η) =

1
n

∑
i u

(i) (Eq. 5)

7: Compute global controller c1(η, y) and local gates g(i) as in Sec. 3.1
8: Set Lc1(η, y) = − log c1(η, y) (Eq. 6)
9: Choose single span to edit: i⋆ = argmaxi g

(i)

10: // 2. Retrieve and score foreign segment (c2)
11: Encode query q = fenc(s

(i⋆))

12: Query D restricted to ℓ(s
(m)
yk ) ∈ Sinf(y) and select

m⋆ = argmax
s(m)
yk

∈D

ℓ
(
s(m)
yk

)
∈Sinf (y)

Sim
(
q, fenc(s

(m)
yk

)
)
, s⋆ = s(m

⋆)
yk

.

13: Compute prosody-aware penalties Ldur,Lon (Sec. 3.2, App. D)
14: Compute semantic and contextual losses Lsem,Lctx (Sec. 3.2)
15: Form infusion loss

Lc2 = g(i
⋆)
[
αsem Lsem + αctx Lctx + αpro (Ldur + Lon)

]
16: // 3. Blend-and-write-back in the clean domain
17: s(i

⋆) ← (1− ρt) s
(i⋆) + ρt s

⋆ (update span in η)
18: Reassemble η from updated spans {s(i)}
19: // 4. DDPM denoising + guided gradient step
20: Sample ϵ0 ∼ N (0, I) and set xt =

√
ᾱt η +

√
1− ᾱt ϵ0

21: Predict noise: ϵ̂θ ← ϵ̂θ(xt, t,M)
22: Define step loss

Lstep(t) = ∥ϵ̂θ − ϵ0∥22 + λ1 Lc1 + λ2(t)Lc2

23: Update clean sample:
η ← η − γt∇η Lstep(t)

24: end for
25: return η as the code-switched waveform x0

G IDENTITY REFINEMENT AND SPEAKER HARMONIZATION DETAILS

Although the code-switched utterance x is semantically coherent after guided generation, we observe
that local segment-level gradients and cross-lingual substitutions can introduce inconsistencies in
voice quality, prosody, or timbre. To address this, we add a short identity-harmonization pass using
the same pretrained, frozen diffusion model as in the main sampler.

Given a monolingual reference utterance xmono and the current code-switched sample x, we first
extract a global speaker/prosody descriptor

ϕspk = ECAPA(xmono), ϕmel = MelStats(x),
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where ECAPA(·) is a frozen ECAPA-TDNN encoder and MelStats(·) denotes global statistics
(mean and variance) of log-Mel features. We bundle these into a single conditioning vector

ϕtarget = g
(
ϕspk, ϕmel

)
,

implemented as a small linear projection, and run a shallow denoising refinement

xfinal = DDPMrefine

(
x
∣∣ϕtarget

)
, (17)

for Tref = 150 late diffusion steps with a low-noise schedule. During this refinement we disable
segment edits by setting λ2(t) = 0 and keep the LID-based rate term weak (small λ1), so semantics
and the code-switch pattern are preserved.

Empirically, this post-hoc refinement corrects subtle inconsistencies without altering content. In
particular, it improves:

• Timbre smoothing — reduces artifacts from mismatched vocal-tract characteristics across
segments;

• Prosodic coherence — better alignment of pitch and rhythm across switch boundaries;
• Voice uniformity — the utterance sounds more consistently like a single speaker.

We also experimented with adding an explicit speaker-consistency loss Lid = 1 −
cos

(
ECAPA(x),ECAPA(xmono)

)
to the guided objective in Eq. 7. However, this often led to

unstable behavior and degraded convergence due to conflicts with semantic and timing objectives.
In contrast, the post-hoc harmonization pass offered better control, computational simplicity, and
training stability, while achieving comparable or better speaker-consistency scores.

H TOOLS AND RESOURCES

Multilingual Language Classifier fcl. We adopt the LECAPAT architecture Nieto et al. (2023), a
lightweight variant of ECAPA-TDNN Desplanques et al. (2020), as our multilingual segment-level
language classifier fcl. The classifier takes log-Mel spectrograms (64 bins, 25 ms window, 10 ms hop,
64 ms FFT) extracted from 24 kHz audio and predicts language identity for each segment.

The model is trained with cross-entropy over five languages for 50 epochs using Adam (lr = 10−4,
batch size 64), a 10% validation split, and early stopping (patience: 5). No data augmentation was
used. On a single NVIDIA A100 GPU, the classifier achieves 92.4% average validation accuracy.
During DCSM inference, fcl is frozen and used only to compute the foreignness scores defined in
§3.1.

Multilingual Segment Encoder fs. The multilingual encoder fs maps speech segments across
languages into a shared latent space using a SimCLR-style contrastive objective Chen et al. (2020).
Positive pairs (same-language segments) are drawn closer in embedding space, while negative pairs
(cross-language) are pushed apart. To improve robustness, 50% of training segments are augmented
with Gaussian noise. The encoder architecture includes a 1D convolutional frontend (256 filters,
kernel size 16, stride 8), followed by an EfficientNet-B0 Tan & Le (2019) backbone and global
max pooling. A projection head maps representations to a 720-dim contrastive space. The model
was trained for 1M steps using AdamW (β1 = 0.9, β2 = 0.999, ϵ = 10−8, batch size 512). Only
EfficientNet embeddings are used at inference.

Pre-trained Diffusion Model (SegUniDiff). For speech generation, we use the Segment-Aware
Unified Diffusion Model (SegUniDiff) Ochieng & Kaburu (2025), which synthesizes code-switched
utterances from paired segments (sxi

, syk
) via a denoising diffusion process. Each model is trained

per language pair, conditioned on Mel-spectrograms to capture acoustic context. We refer to Ochieng
& Kaburu (2025) for architectural and training specifics.

Machine Translation and ASR Models. To support automatic evaluation, we constructed parallel
corpora by manually aligning semantically equivalent sentences across all language pairs in our
dataset. These were used to train Transformer-base machine translation (MT) models. For automatic
speech recognition (ASR), we trained five language-specific models: Squeezeformer Kim et al. (2022)
for Nandi, Luo, and Kikuyu, and Whisper-small Radford et al. (2023) for Swahili and English.
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Table 11: Parallel MT datasets with SacreBLEU scores and ASR performance by language.
Language Pair Paired Sentences SacreBLEU (↑) Language (ASR) WER (%)

Luo–Nandi 1.76M 32.2 Luo 14.2
Luo–Kikuyu 1.18M 31.8 Nandi 13.6

Nandi–Kikuyu 1.32M 27.3 Kikuyu 14.4
Kikuyu–Swahili 1.29M 30.4 Swahili 9.8
Kikuyu–English 1.71M 24.9 English 5.3
Swahili–English 1.52M 25.4 — —

Luo–Swahili 1.43M 27.4 — —
Luo–English 1.34M 28.1 — —

Nandi–Swahili 1.44M 27.1 — —
Nandi–English 1.37M 28.6 — —

I EVALUATION METRIC DETAILS AND RESAMPLING PROTOCOL

To evaluate semantic and linguistic fidelity of generated code-switched utterances, we use:

• SacreBLEU Post (2018): Measures n-gram overlap with detokenization invariance.

• BERTScore Zhang et al. (2019): Captures contextual similarity using pre-trained trans-
former embeddings.

• COMET Rei et al. (2020): A learned metric trained on human judgments of adequacy and
fluency.

• LaBSE Similarity Feng et al. (2022): Cosine similarity between sentence embeddings from
multilingual BERT, used on English translations to assess discourse-level alignment.

J RESAMPLING METHOD FOR SEGMENT-LEVEL EVALUATION

To compute 95% confidence intervals for each metric, we adopt a bootstrap resampling proce-
dure Koehn (2004). For each source language:

1. We construct 100 test sets of 700 segment pairs (s(k)x , s
(k)
xc ) sampled from the full evaluation

pool.
2. For each test set, we perform 1,000 bootstrap iterations by sampling with replacement.
3. In each iteration, we concatenate all reference translations (from s

(k)
x ) into one string and all

hypothesis translations (from s
(k)
xc ) into another.

4. We compute SacreBLEU, BERTScore, COMET, and LaBSE similarity between these
concatenated sequences.

5. We report the 95% confidence interval as the range between the 2.5th and 97.5th percentiles
of the resulting score distributions.

This procedure ensures statistically stable estimates across a diverse evaluation population, capturing
both ASR/MT variability and segment-level diversity.

K RESAMPLING PROCEDURE FOR UTTERANCE-LEVEL EVALUATION

To compute confidence intervals for utterance-level metrics, we follow this bootstrap-based procedure:

1. Construct 100 test sets per language, each with 700 utterance pairs (x, xr) or (x, xm).
2. Transcribe all utterances using language-specific ASR systems.
3. Translate into English (if not already monolingual).
4. Perform 1,000 bootstrap iterations:

• Sample 700 utterance pairs with replacement.
• Concatenate references and hypotheses into long sequences.
• Compute SacreBLEU, BERTScore, COMET, and LaBSE similarity.

5. Report mean and 95% CI from the score distribution (2.5th–97.5th percentiles).
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K.1 TOLERANCE SELECTION FOR CROSS-LINGUAL SEGMENT SUBSTITUTION

To ensure rhythmic and temporal alignment during code-switched segment substitution, we adopt a
data-driven strategy for selecting the tolerance parameter λ. This parameter governs the allowable
deviation between the duration of a monolingual segment and that of a candidate segment drawn
from an infusion language.

For each pair of languages involved in substitution—where one provides the monolingual segment
and the other contributes the infused segment—we compute a base tolerance as the normalized
difference in average segment durations:

λbase(ℓx, ℓy) =
|d̄ℓx − d̄ℓy |

d̄ℓx

, (18)

where d̄ℓx and d̄ℓy denote the average segment durations (in seconds) for the monolingual and infusion
languages, respectively. This base ratio captures prosodic variation and relative speaking rates
between languages.

The final tolerance is then defined as:

λ(ℓx, ℓy) = max (λbase(ℓx, ℓy) + ϵ, λmin) , (19)

where ϵ is a fixed safety margin (set to 0.05), and λmin is a lower bound (set to 0.1) to prevent
over-constraining substitutions in closely matched language pairs. This formulation allows λ to scale
naturally with inter-language temporal divergence, while preserving a minimal tolerance window
across all combinations.

Table 12: Computed λ values for Swahili (ℓx) as the monolingual language. Average durations are in
seconds.

Infusion Language ℓy Avg. Duration d̄ℓy (s) λbase Final λ
Luo 16.5 0.0855 0.1355

Nandi 17.1 0.1250 0.1750
Kikuyu 15.6 0.0263 0.1000
English 15.0 0.0132 0.1000

Swahili average segment duration: d̄ℓx = 15.2 seconds

In practice, these empirically derived λ values led to high substitution success rates and prosodically
natural code-switched utterances across language pairs. The approach enabled rhythm-preserving
segment replacement while maintaining tight control over misaligned insertions.

L ABLATION

L.1 EFFECT OF REMOVING THE LANGUAGE CLASSIFIER CONSTRAINT

In this experiment, we evaluate the impact of removing the first constraint c1(x, y), which guides
language identification and determines the location of foreign segment insertions. During inference,
we modify the loss function by omitting the classifier-related term, resulting in the following objective:

F = argmin
θ

Et∼U(2,T )

[
∥ϵ̂θ(xt, t,M)− ϵ0∥22

]
+ Lc2 . (20)

We analyze the behavior of this classifier-free variant along three key dimensions of code-switching:
(i) the frequency of switching, (ii) alternation points, and (iii) subjective fluency, coherence, and
realism as rated by human evaluators. From the full set of 8,500 generated code-switched utterances,
we randomly sample 2,000 utterances per source language and follow the evaluation procedures
described in Sections 5.1 and 5.2.

Table 13 presents a comparison between the full model and the variant without the language classifier
constraint. Removing Lc1 results in a substantial increase in code-switching frequency—from 4.33%
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to 18.3%—and a corresponding spike in alternation rate—from 3.88% to 17.9%. These shifts indicate
that, without a mechanism to regulate switch locations, the model overproduces foreign segments
and places them erratically throughout the utterance.

This overgeneration directly impacts speech naturalness. Human ratings reveal a marked decline
in fluency (from 4.1 to 2.7), coherence (from 4.05 to 3.3), and realism (from 4.0 to 2.6). These
results underscore the importance of the classifier constraint in producing linguistically appropriate,
contextually coherent, and perceptually natural code-switched speech.

Table 13: Comparison of code-switching behavior between the full model and the variant without the
language classifier constraint Lc1 .

Metric Full Model Without Lc1 Difference (∆)
Avg. Code-Switching Frequency 4.33% 18.3% +13.97%
Avg. Alternation Rate 3.88% 17.9% +14.02%
Avg. Fluency (Human) 4.1 2.7 -1.4
Avg. Coherence (Human) 4.05 3.3 -0.75
Avg. Realism (Human) 4.0 2.6 -1.4

L.2 EFFECT OF REMOVING TEMPORAL ALIGNMENT AND ONSET CONSTRAINTS

In this experiment, we assess the impact of removing the duration and onset components of the
constraint loss Lc2 , which enforce prosodic alignment between the inserted foreign segment and the
original monolingual utterance. These constraints ensure that inserted segments match the expected
duration and start at a position consistent with the rhythm and flow of the host utterance, thereby
preserving fluency and naturalness.

To isolate their contribution, we exclude both terms by setting γ = 0, resulting in a simplified
constraint loss:

Lc2 = α · Lsemantic + β · Lcontext.

This ablation allows the model to insert segments of arbitrary duration and onset without explicit
prosodic guidance. We generate a total of 8,500 code-switched utterances and evaluate both segment-
level and utterance-level quality using the procedures described in Sections ?? and ??. Table ??
summarizes the average performance across all synthetic languages, with and without the dura-
tion/onset constraints.

Table 14: Impact of removing duration and onset constraints on segment- and utterance-level
evaluation metrics. Scores are reported as mean values with 95% confidence intervals (CI) based on
1,000 bootstrap samples.

Level Metric Avg. With Duration/Onset Avg. Without Duration/Onset

Segment

SacreBLEU (↑) 36.4 [35.2, 37.4] 34.6 [33.3, 35.7]
BERTScore (↑) 0.807 [0.804, 0.810] 0.796 [0.792, 0.800]
COMET (↑) 0.815 [0.807, 0.823] 0.790 [0.781, 0.799]
LaBSE Similarity (↑) 0.880 [0.873, 0.886] 0.868 [0.860, 0.874]

Utterance

SacreBLEU (↑) 34.5 [33.5, 35.6] 32.8 [31.5, 33.9]
BERTScore (↑) 0.755 [0.751, 0.759] 0.743 [0.738, 0.748]
COMET (↑) 0.653 [0.645, 0.661] 0.624 [0.614, 0.634]
LaBSE Similarity (↑) 0.874 [0.870, 0.878] 0.860 [0.854, 0.867]

Table 15: Human evaluation scores comparing the full model with the variant without duration/onset
constraints. Ratings are on a 5-point Likert scale.

Metric Full Model Without Duration/Onset Difference (∆)
Avg. Fluency (Human) 4.1 3.1 -1.0
Avg. Coherence (Human) 4.05 3.3 -0.75
Avg. Realism (Human) 4.0 2.4 -1.6

Quantitative results in Table 14 show consistent declines in both segment- and utterance-level metrics
across all evaluation measures. While the degradation in segment-level scores is modest (e.g., -1.8
SacreBLEU, -0.019 COMET), utterance-level metrics are more sensitive to prosodic disruptions,
with COMET and BERTScore dropping by 0.029 and 0.012, respectively. These drops suggest that
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even minor misalignments in duration or onset can propagate across an utterance, leading to broader
semantic and rhythmic incoherence.

Human evaluations (Table 15) further confirm these effects. Fluency and realism drop significantly
(by -1.0 and -1.6 points, respectively), with listeners noting more jarring transitions and unnatural
pacing. Although semantic coherence is partially preserved (-0.75), the lack of prosodic control leads
to degraded overall acceptability.

Together, these results highlight the critical role of timing constraints in producing fluent and natural-
sounding code-switched speech. Their removal leads to audible temporal mismatches, underscoring
the need to model prosodic structure alongside semantics and context

M RELATED WORK

Code-switching is a well-documented linguistic phenomenon in multilingual communities, particu-
larly across Africa, where speakers frequently alternate between local vernaculars and national or
international languages such as English or Swahili. Foundational work by Slabbert & Finlayson
(1999) and Myers-Scotton (1993) highlighted code-switching as a communicative strategy influenced
by identity, context, and pragmatics. Poplack (1980) and Auer (1998) further explored structural
patterns and conversational dynamics, establishing typologies of alternation, insertion, and congruent
lexicalization. These studies underscore the naturalness and linguistic richness of code-switching in
African speech.

Despite its sociolinguistic prominence, code-switching has been underrepresented in computational
speech research, largely due to the lack of annotated corpora and standardized tools. While progress
has been made in code-switched text generation using statistical or neural methods (Tarunesh et al.,
2021; Gregorius & Okadome, 2022; Chi et al., 2023), the speech modality remains significantly
underexplored.

The most notable contribution to code-switched speech synthesis is by Cao et al. (2020), who proposed
a bilingual phonetic posteriorgram-based model that combines monolingual speech corpora to gener-
ate mixed-language speech. However, their method lacks explicit semantic or contextual alignment
and does not account for speaker consistency or natural prosodic transitions across languages.

In contrast, our work introduces a diffusion-based framework that synthesizes code-switched speech
by minimally editing monolingual utterances. We incorporate linguistic constraints—a pre-trained lan-
guage classifier for soft switch control and a multilingual encoder for semantic segment matching—to
guide the generation process. Additionally, we address speaker identity harmonization by introducing
a refinement step based on acoustic conditioning.

To the best of our knowledge, this is the first work that enables the infusion of multiple foreign
languages within a single utterance, allowing for rich, naturalistic multilingual code-switching
patterns. This represents a significant advancement toward realistic speech generation in low-resource
multilingual settings.

N LIMITATIONS

Our proposed framework for controlled code-switched speech generation has demonstrated strong
quantitative and human evaluation performance. However, several limitations remain:

Mismatch Between Synthesized and Natural Speech The generated utterances, while fluent and
semantically faithful, are synthesized from noise and do not inherit the rich socio-pragmatic cues,
emotional tone, or discourse-driven switching patterns present in natural conversations. This limits
the realism of certain paralinguistic features such as emphasis, hesitation, or spontaneous repairs.

No Parallel Code-Switched Supervision The model is trained entirely on monolingual utterances
without access to parallel code-switched references. This weak supervision constrains the model’s
ability to learn context-specific switching behavior beyond what is imposed by local segment similarity
and predefined constraints.
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Language and Domain Generalization Our study focuses on five Kenyan languages in a broadcast
news context. While this setting ensures clean and aligned data, the model may not generalize to
informal, multi-party, or highly emotional speech domains without further tuning or retraining.

Segment-Level Constraints Without Syntax Awareness Although segment replacement is guided by
semantic and prosodic alignment, the model does not enforce syntactic compatibility between the
inserted segment and surrounding context. This may occasionally result in grammatically awkward
utterances, particularly in morphologically rich languages.

Speaker Identity Harmonization Is Post Hoc While a refinement step is used to harmonize speaker
identity, it is applied after generation and not jointly optimized with the diffusion process. As a result,
subtle speaker inconsistencies may persist across segments in certain cases.

Metrics May Not Capture Cultural or Pragmatic Fit Automated evaluation metrics (e.g., COMET,
LaBSE) and even human Likert ratings may overlook deeper cultural or conversational appro-
priateness of switches. For instance, switching at discourse boundaries or for emphasis may be
underrepresented in synthetic data.
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