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ABSTRACT

We generate code-switched speech by minimally editing monolingual utterances
with a pretrained diffusion model guided by two differentiable modules: a multilin-
gual LID classifier (where/how much to switch) and a contrastive segment encoder
(what to insert). The method requires no parallel code-switched data—constraints
steer retrieval and replacement of foreign-language segments while iterative denois-
ing preserves fluency and speaker identity. On a semantically aligned corpus span-
ning five African languages, it achieves strong scores (segment-level COMET 0.815,
LaBSE 0.880) and robust speaker consistency (EER 6.7%). The system repro-
duces natural code-switching patterns—frequency, placement, alternation—without
explicit supervision and, to our knowledge, is the first to support controlled multilin-
gual infusion within a single utterance. These results position guided diffusion as a
flexible, plug-and-play approach for multilingual, low-resource speech generation.
Audio samples: github.com/codeSwitchLugha/CodeSwitch.

1 INTRODUCTION

Code-switching (CS)—the alternation of languages within an utterance—is pervasive in African
speech communities [Biswas et al.|(2022); Sitaram et al.| (2019). Yet modern speech systems (ASR,
S2ST, SLU, speech LLMs) remain largely monolingual because high-quality CS corpora are scarce;
collecting spontaneous CS audio is costly and often yields unnatural interactions [Tarunesh et al.
(2021)); Hsu et al.[(2023)). Speech-level synthesis of CS is especially under-explored.

We propose a retrieval-augmented, constrained denoising diffusion model (DDPM) that transforms
monolingual audio into realistic code-switched utterances via minimal, semantically coherent edits.
Starting from noise, the model iteratively denoises while two differentiable controls guide where and
how to infuse foreign segments:

1. ¢1(z,y): aLanguage Identification (LID)-based controller that decides where and how much
to switch;

2. ¢o(x,y): aretrieval-based controller that uses a multilingual encoder to find semantically
matched foreign-language segments and blend them into selected spans with a time-ramped
coefficient (blend-and-write-back), subject to prosody/context checks.

This realizes sampling from

p({L‘|y) X p(l’) cl(x,y) 02($7y), (1)
where p(z) is a pretrained DDPM prior and ¢y, ¢co provide differentiable guidance during mode-
seeking inference (see App. . The infusion specification is y = (Linf, Tswitchy Psrc, R ), €N-
coding the infusion language set, a prior over switch placement/amount, source semantics (text or
embeddings), and the retrieval index. We apply guidance by minimizing a free-energy bound in
which — log C(z,y) = —log ¢1 — log ¢y is time-ramped during inference (§2.2).

Contributions. (1) A plug-and-play, retrieval-augmented diffusion framework for CS speech that
requires no parallel CS data. (2) Two complementary controls—LID-based switching (c;) and
semantic, prosody-aware segment infusion (ca)—with explicit blend-and-write-back and late-commit
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schedules. (3) An evaluation suite for semantic fidelity, speaker consistency, and CS structure, plus
human judgments. (4) Empirical results on multiple African languages showing fluent, semantically
aligned, and speaker-consistent synthesis, enabling downstream use in low-resource ASR, S2ST, and
speech LLM training.

2 PROBLEM FORMULATION

We aim to sample from a constrained posterior p(z | y) for code-switched speech, where z is a
high-dimensional utterance (waveform) and y is the infusion specification:

Yy = (['infa Tswitch ¢src; R)v

with Liy¢ the infusion language(s), Tswitch @ prior over where/how much to switch, ¢g.. source
semantics (text or embeddings), and R a retrieval index. We impose two differentiable soft constraints:
¢1(z,y) (switch plausibility: where/how much) and co(z, y) (semantic consistency: what to infuse),
and write C(z,y) = ¢1(x,y) ca(x, y). For clarity, the constraints consume (overlapping) subsets of
Y

C1 ((E7 y) = Cl(xv ‘Cinfy 7Tswitch)7 C2 (xv y) = CQ(I’, »Cinf7 ¢src> R) .

We assume C(z,y) > 0 and Ey(,[|log C(z,y)|] < oo.

Introducing diffusion latents h (noise variables and timestep indices) and a variational distribution
q(z, h), we optimize the free-energy bound

= KL((](I, h) Hp(x,h)) - ]Eq(:v) [logC’(x,y)] ) p(l‘,h) = p(h) p(:l) | h) (2)

The first term encourages samples likely under the pretrained diffusion prior; the second provides
plug-and-play guidance for satisfying the constraints. In practice (see §2.1)), we adopt a mode-seeking
choice g(z) = d(x —n), so —log C(n, y) enters DDPM updates as a simple additive guidance signal.
A full derivation from the ELBO, including the role of A and the reduction to equation |2} appears in

Appendix [A]
2.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM5s)

DDPMs learn to reverse a fixed forward noising process that transforms a clean sample x( into
Gaussian noise 7 ~N (0, I). The forward marginals satisfy

q(z¢ | z0) = N(l‘t§ Vay xo, (1— @t)I)» oy = Hi:1 Q.

The reverse process is a Markov chain pg(z:—1 | 2¢); in the noise-prediction parameterization
the model ég(x¢,t) is trained with an MSE denoising loss that is equivalent (up to constants) to
maximizing the variational bound |Ho et al.| (2020).

Following |Chung et al.|(2023)), we adopt a mode-seeking variational family in which the marginal
collapses to a point, g(x) = d(z — 7). This avoids integration over latent trajectories and enables
plug-and-play use of pretrained DDPMs with external constraint guidance; in our case, — log C(n, y)
enters the denoising updates as an additive guidance term (see App. [B).

2.2 FREE-ENERGY INSTANTIATION FOR DDPM

Under the mode-seeking approximation ¢(z) = 6(x — ), the free-energy bound (Eq.|2)) becomes the
standard DDPM loss minus a time-ramped log-constraint term:

F(n;0) = Eivvnitfa,...,1) {Hée(mt, t) — 60”2} — EiJw(t) log C(n,y)],
)

o~ N (0,1 (3)
where 2, = Voun+ V1 = apeo, C(n,y) = c1(n,y) c2(n, y).
If separate control weights are desired, —log C'(n,y) = —A1logci(n,y) — Aalogca(n,y) with

A1, A2 > 0. Because cj, cy are differentiable, we update the clean point 1 by backpropagating
through — log C'(n), y) while keeping €y fixed (pretrained). See App. for details.
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3  DIFFUSION-BASED CODE-SWITCHING MODEL (DCSM)

The DCSM transforms a monolingual utterance z into a code-switched one while preserving fluency
and coherence. It approximates the constrained posterior in Eq. equation [I| by iteratively refining
with a pretrained DDPM, guided by two differentiable constraints:

* ¢1(z,y) — LID-based switch controller: decides where and how much to switch.

* co(z,y) — Semantic segment infusion: retrieves segments in L, ¢, then blends and writes
back them with a time ramp w(t) (prosody/context-aware).

Together with the DDPM prior, these constraints reshape = toward natural code-switching under the
free-energy objective in Eq. equation 3] We detail ¢; in §3.1]and ¢ in §3.2}

3.1 CONSTRAINT ¢ (z,y): LANGUAGE IDENTIFICATION AND INFUSION DECISION

The first constraint decides whether a monolingual utterance x; should undergo foreign-language

infusion, and by how much. We segment z; into n spans {s(i) 1, (e.g., short log-Mel windows)
and run a frozen multilingual LID classifier f.; that outputs posteriors over Lan = {€mono } U Lint(y)
with Linf(y) = {£1, C ,ém}:

p(l]sD) = fa(sD),, > op(t]sD)=1

LeLan

(Here the “monolingual language” is the language of x;; languages eligible for infusion come from y
via Einf-)

Per-segment foreignness and global presence.

ul = 3" p(|s) €0,1],  Proeign(x;) = %z @ ¢ [0,1].

LELing
Global controller (scalar ¢1). Given the desired infusion rate msyitch € [0, 1],

clzy,y) = U(oq [ Poreign (%) —Wswitch]),

with sharpness vy > 0. This scalar enters the free-energy objective via — log ¢;.

Local soft gates (for segment selection).
g(l) = U(al [u(z) — Tswitch ]))

used as masks to prioritize segments during retrieval/blend in c5. Optionally, derive straight-through
hard gates z(*) € {0, 1} from g() at inference while keeping gradients through the sigmoid.

Loss from c; (scalar).
£c1 (xja y) = - log C1 (xja y) = - IOg U<a1 [Pforeign (Ij) — Tswitch ]) . (4)

During sampling, L., is added to the free-energy with a (possibly time-ramped) weight w(t).

3.2 SECOND CONSTRAINT: c¢o(x,y) — FOREIGN SEGMENT INFUSION

At each denoising step we edit a single span selected by c1. Let i* = argmax; g be the chosen

source segment in utterance x ;. Constraint c; replaces sgc ) with a semantically matched, prosodically

compatible segment from an infusion language.
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Notation. f.,.: pretrained, frozen multilingual segment encoder (outputs ¢3-normalized embed-
dings); Sim(a,b) = a'b (cosine similarity); D: FAISS index of candidate segments 519,?) with
language labels ¢(-) and metadata; Li,¢(y): infusion language set specified by y; g(): per-segment
gate from c¢p; ¢* = arg max; g(” djj), Oij duration and onset of source segment sij), d,.: mean

d(m)

segment duration in x;; dy,, ’, O(m) duration and onset of candidate sék ), Ry, P;; and Ryk , Py,

speech-rate and prosody proxies (e g., syllables/s, median FO/energy) for the source and candldate
utterances; w: neighbor window size (segments); A € [0, 1): duration tolerance; AT = |d,, — dy, |:
onset tolerance; «, 3, y: weights in the infusion loss (defaults « = 8 =1, v = 0.1); ay: time- ramped
blend coefficient; M: (optional) soft retrieval beam; 7t > 0: retrieval temperature.

Retrieval (top-1 replacement). Encode the query ¢ = fenc(sg(f:)) (frozen fe,) and query D
restricted to Z(syk ) € Lint(y). Select
m* = arg max Sim(q, fenc(sézl))), s = s(y’k”*).

Optional (early steps): use a soft top-M mixture and anneal 7, J. 0 to hard top-1 late.

Prosodic compatibility. Normalize the target duration by tempo/prosody:

Roy  DPu i g6
Sratio = Ryk . Pyky d = dxj Statio-
Define hinge penalties:
Ao —d| — A d o) — o8| — A
Laur = max( | - | d ), Lon = max( | | T).
d AT
Semantic and contextual consistency. Let N/ (3*) = {s(t) )t —i*) <w, t #i*}. Define
Lsem - Slm(fenc( ) fenc( ))7 Ectx = ( Z Slm fenc )7 fenc(sl))~
.s 'eN(i*)

Per-step loss and write-back. Gate by ¢(*") and form the infusion loss:
Loy = 9" Loom + B L + 7 (Laur + Lon)] -
Perform blend-and-write-back with ramp «;:
sgj*) — (1—o)sy (Z ) 4 ay 5%,

then reassemble the utterance and continue DDPM den01smg. Gradients flow through the inputs to
fenc and the edited segment (hence to 77), while fe,. weights and the FAISS index remain fixed.

3.3 END-TO-END OBJECTIVE AND INFERENCE

Pretrained components. We reuse a pretrained, frozen DDPM prior €9 and frozen controllers f
(LID) and fepe (segment encoder). No DDPM retraining is required.

Free-energy objective (mode-seeking). Under the mode-seeking approximation ¢(z) = §(z — 1),
we optimize the clean point ) at inference by minimizing

-7(77) = Ethnif{l:T},eowN(O,I) [||€9(a;t,t | M) —60||§] + M\ ﬁcl (xj,y) + )\2(75) £C2 (ffjay)v (5)

where ©; = v/a: ) + /1 — &y €9, M denotes optional acoustic conditioning (e.g., Mel), Az(¢) is a
time-ramped weight, and ¢* is the single edited span selected by c; at step ¢ (minimal CS policy,
K=1). The DDPM parameters 6 are fixed; gradients flow to 7 only.

Schedules (stability and late commit). We use a blend ramp o, 1 (small early, larger late) when
writing the retrieved segment back, and a guidance ramp A2 (t) 1 to delay the effect of ¢ until the
sample is less noisy. This stabilizes generation and encourages gradual linguistic modulation.
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Inference loop (one-segment-per-step). At each denoising step t = 7' — 1: (i) segment 7 and
compute gates g(i) with ¢;; pick ¢* = arg max; g(i); (ii) retrieve one candidate segment in Lins(y),
compute L., and blend-and-write-back with a; (iii) form z;, predict ég (¢, t | M), and update

n < n—%nVyJIn).

Repeat until =1 to obtain the code-switched sample.

Notes. We optionally anneal retrieval from soft (top-M) early to hard top-1 late, keep A; fixed, and
apply c1/cs only in the edited window (plus a small temporal neighborhood) to avoid global drift.
See Appendix |l|for the full inference procedure.

3.4 SPEAKER IDENTITY HARMONIZATION

To standardize timbre, pitch, and rhythm across edited spans without changing content, we apply
a short identity-harmonization pass with the pretrained, frozen DDPM prior. We condition on a
reference speaker/prosody descriptor extracted from the source utterance and/or the current sample:

dspk = ECAPA(Zmono),  dmer = MelStats(z),
and run a shallow denoising refinement:

Tfinal = Reﬁnee(ﬂf | Gspks ¢mel)7 (6)
using T;.¢=150 diffusion steps with a low-noise schedule (late timesteps only).

During refinement we disable segment edits (A2=0) and keep the LID rate term weak (small A1) to
preserve semantics and switch structure. In practice, conditioning can be implemented via feature
concatenation or FiLM-style modulation in the DDPM U-Net, with 6 kept fixed. Alternative variants
(e.g., adding a cosine speaker-embedding penalty L4 computed by a frozen ECAPA on sliding
windows) yield similar improvements; see Appendix [E] for details.

4 EVALUATION

5 DATASET

We curate a proprietary speech corpus from the Kenya Broadcasting Corporation (KBC), which
operates 11 radio stations delivering aligned news content across multiple Kenyan languages. News
bulletins are authored in English and translated into local languages, then read by native presen-
ters—yielding semantically aligned monolingual utterances across languages.

Scope and acquisition. The collection spans 2018-2023 and focuses on the daily 7 pm bulletins,
which are typically the most content-rich. To preserve real-world variability, we retain advertisements,
presenter intros, and ambient segments. Each bulletin is segmented with an over-segmentation VAD
pipeline Duquenne et al.[(2021)), producing silence-bounded units of 3-20s.

Languages. We target five major languages—Swabhili, Luo, Kikuyu, Nandi, and English—chosen
for geographic and typological coverage within Kenya. Swahili and Kikuyu are Bantu (Niger—Congo),
while Luo and Nandi are Nilotic (often grouped under Nilo—Saharan). English serves as a lingua
franca across stations.

Speakers and variability. Bulletins are voiced by different presenters across dates and stations,
capturing diverse accents, pitch ranges, and prosodic styles. This variation supports generalization
for synthesis, translation, and recognition tasks.

Splits and standardization. We apply a 70/30 split by segment within language for train-
ing/evaluation and zero-pad segments to a fixed 20 s window for batching. (In practice, we group by
bulletin ID to avoid near-duplicate leakage across splits.)
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Table 2:
units).

Table 1: Monolingual speech dataset summary
(2018-2023, 7 pm bulletins).

Segment statistics per language (VAD

Laneus Famil Bulletins | Duration Laneuase Avg. seg. Total
anguage amuly (count) (hrs) guag length (s) | segments
Swahili | Niger—Congo 2190 1353 Swahili 152 320,400

Luo Nilotic 2190 1284 Luo 16.5 280,100
Kikuyu | Niger—Congo 2190 1304 Kikuyu 15.6 300,900
Nandi Nilotic 2190 1256 Nandi 17.1 264,600
English - 2190 1206 English 15.0 289,400

Code-switched field recordings. Beyond news, we include 4,044 Swabhili and 3,211 naturally
occurring code-switched utterances collected from morning call-in shows. For controlled evaluation,
selected items were re-recorded in monolingual Swahili and Luo by consenting speakers to create
paired counterparts.

5.1 TooLs AND RESOURCES

Tools and Models. We use standard components for classification, encoding, and synthesis: a
multilingual segment-level language classifier, a contrastive speech encoder, the SegUniDiff model
for conditional speech generation, and lightweight ASR/MT systems for evaluation. Full architectural
and training details, along with performance metrics, are provided in Appendix [F}

5.2 EVALUATION METRICS AND FRAMEWORK

We evaluate segment- and utterance-level fidelity with four text-based metrics that jointly capture sur-
face and semantic adequacy: SacreBLEU [Post (2018), BERTScore Zhang et al.| (2019), COMET Rei
et al.| (2020), and LaBSE cosine similarity Feng et al.| (2022). Text proxies are obtained via a fixed
ASR—MT pipeline used uniformly across all conditions; the intent is metric comparability, not
absolute ASR/MT quality. We report means with 95% confidence intervals from 1,000 bootstrap
samples (language-stratified, percentile intervals unless noted). Metric definitions and the resampling
protocol are in Appendix [G]

5.3 SEGMENT-LEVEL EVALUATION WITH CONFIDENCE INTERVALS

We assess semantic fidelity on 8,500 synthetic utterances and 7,255 naturally code-switched utterances
(Swahili, Luo) from radio call-ins (Sec. E]) For each utterance x, we extract VAD segments, run

the frozen LID f to identify foreign spans, and pair each detected foreign segment sgi)

with its
monolingual counterpart sfﬂk): for synthetic data, indices are known from the edit log; for natural
data, we align to the monolingual re-recording via DTW over fe,. embeddings. Both segments are
transcribed (ASR), translated to English (MT), and scored by SacreBLEU, BERTScore, COMET,

and LaBSE. We report language-wise scores with 95% Cls.

Table 3: Segment-level semantic fidelity for synthetic and natural CS (higher is better 7). Means with
95% Cls from 1,000 bootstrap samples.

Source SacreBLEU 1 BERTScore 1 COMET 1 LaBSE 1

Swahili (Synthetic) 38.4[36.9,39.6] | 0.814[0.809,0.818] | 0.831[0.822, 0.843] | 0.890 [0.882, 0.897]
Luo (Synthetic) 35.7[34.2,37.1] | 0.805[0.801,0.810] | 0.809 [0.798, 0.819] | 0.876 [0.869, 0.884]
Kikuyu (Synthetic) 36.8 [35.0, 38.4] | 0.808 [0.802, 0.813] | 0.817 [0.806, 0.828] | 0.881 [0.874, 0.888]
Nandi (Synthetic) 34.5[33.1,35.7] | 0.801 [0.795,0.806] | 0.804 [0.794, 0.814] | 0.872[0.865, 0.880]
Luo (Natural) 36.2[35.4,37.0] | 0.822[0.818,0.841] | 0.833 [0.827,0.843] | 0.885[0.879, 0.891]
Swahili (Natural) 39.0[38.2,39.7] | 0.836[0.831,0.841] | 0.845[0.841,0.864] | 0.898 [0.892, 0.904]
Average (Synthetic) | 36.4 [35.2,37.4] | 0.807 [0.804, 0.810] | 0.815[0.807, 0.823] | 0.880 [0.873, 0.886]

Our model achieves strong semantic fidelity on synthetic utterances; Swahili consistently leads, likely
due to stronger ASR/MT coverage. Synthetic scores closely track natural CS: e.g., COMET gaps are
+0.014 (Swabhili) and +0.024 (Luo); LaBSE gaps are +0.008 and +0.009, respectively. These results
indicate that minimal, guided segment infusion can recover cross-lingual semantics without access to
parallel CS training data. Full confidence-interval methodology and sensitivity to ASR/MT choice
are detailed in Appendix
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5.4 UTTERANCE-LEVEL EVALUATION WITH MASKED AND FULL VARIANTS

We assess fluency, cross-span coherence, and long-context consistency at the utterance level, comple-
menting the segment results in Sec.[5.3] We evaluate both synthetic code-switched utterances and
natural ones from Swahili/Luo radio call-ins (Sec.[5). A frozen LID f identifies foreign-language
spans in each code-switched utterance x.. We then evaluate two text-based variants against a clean
monolingual reference xf:

* Full reconstruction (unmasked). For each foreign span in z., we run ASR (fixed model) to obtain
text in the foreign language, translate it with a fixed MT system into the monolingual language,
and reinsert the translation into the original transcript positions to form a fully monolingual
hypothesis 1.

* Masked evaluation. We remove all foreign spans from z., concatenating the remaining monolin-
gual spans to form x,,5k. This probes preservation of unedited content and boundary effects.

Both zgy1 and zy,5k are compared to x,.r using SacreBLEU, BERTScore, COMET, and LaBSE.
ASR—MT systems are identical across conditions to ensure comparability (the aim is relative
scoring, not absolute ASR/MT quality). We report means with 95% CIs from 1,000 bootstrap samples
(language-stratified percentile intervals). Table 4| summarizes results (higher is better 7).

Table 4: Utterance-level evaluation of code-switched speech. Full = foreign spans translated back and
reinserted; Masked = foreign spans removed. Means with 95% ClIs from 1,000 bootstrap samples;

higher is better 1.
Source Type SacreBLEU 1 BERTScore 1 COMET 1 LaBSE 1
Swahili (Synthetic) Full 36.6 [35.3,37.8] | 0.762[0.757,0.766] | 0.669 [0.660, 0.681] | 0.882 [0.875, 0.888]
Masked | 34.9 [33.5,36.0] | 0.737[0.732,0.737] | 0.642[0.631, 0.655] | 0.854 [0.846, 0.860]
Luo (Synthetic) Full 33.9[32.6,35.3] | 0.753[0.747,0.758] | 0.647 [0.637, 0.657] | 0.871 [0.864, 0.878]
Masked | 32.2[30.9, 33.6] | 0.728 [0.722,0.733] | 0.620 [0.609, 0.631] | 0.844 [0.837, 0.854]
Kikuyu (Synthetic) Full 35.0[33.4,36.4] | 0.756 [0.750, 0.761] | 0.655[0.644, 0.666] | 0.876 [0.870, 0.882]
Masked | 33.3[31.8,34.6] | 0.731[0.725,0.736] | 0.628 [0.617, 0.639] | 0.850 [0.843, 0.857]
Nandi (Synthetic) Full 32.7[31.5,33.9] | 0.749[0.743, 0.756] | 0.643 [0.633, 0.653] | 0.869 [0.861, 0.875]
Masked | 31.2[29.9,32.4] | 0.724[0.717,0.731] | 0.615[0.604, 0.625] | 0.841 [0.834, 0.849]
Swahili (Natural) Full 37.3[36.5,38.1] | 0.785[0.780,0.791] | 0.701 [0.692, 0.710] | 0.896 [0.890, 0.902]
Masked | 35.5[34.7,36.3] | 0.760 [0.755, 0.765] | 0.667 [0.658, 0.676] | 0.867 [0.860, 0.873]
Luo (Natural) Full 35.2[34.1,37.3] | 0.772[0.767,0.778] | 0.682[0.673, 0.691] | 0.884 [0.878, 0.891]
Masked | 33.6 [32.5,35.6] | 0.745[0.740,0.751] | 0.654 [0.645, 0.662] | 0.856 [0.850, 0.862]
Average (Synthetic) | F! 34.5[33.5,35.6] | 0.755 [0.751, 0.759] | 0.653 [0.645, 0.661] | 0.874 [0.870, 0.878]
Masked | 32.9 [31.9, 34.0] | 0.730 [0.726, 0.734] | 0.626 [0.617, 0.635] | 0.847 [0.843, 0.852]

While utterance-level scores are lower than segment-level (Table [3), the model retains strong fluency
and coherence. Swahili again leads, likely reflecting stronger ASR/MT support. The masked
variant indicates that unedited content is largely preserved (small gap vs. Full), and the modest
synthetic—natural differences (e.g., Swahili COMET =~ +0.014) suggest that minimal, guided segment
infusion reproduces key properties of real code-switching without parallel CS training data. Sensitivity
to the ASR/MT choice and the bootstrap details are in Appendix [G]

6 SPEAKER IDENTITY VERIFICATION

We evaluate whether code-switched speech preserves speaker identity using fixed, pretrained ECAPA-
TDNN embeddings [Desplanques et al.|(2020) (frozen weights). For each generated code-switched

utterance x., we apply VAD (Sec. i and extract embeddings e(?) = fspk(si? ) from non-overlapping
segments of 1.5-3.0 s (segments shorter than 1.0 s are merged or discarded). To avoid trivial positives,
genuine trials exclude overlapping/adjacent segment pairs within the same utterance.

Trials and scoring. Genuine pairs are all (i # j) within the same x.. (non-overlapping). Impostor
pairs are across different utterances with different speaker prompts/ids. Scores are cosine similarities
in [—1, 1]; we optionally apply s-norm with a cohort of 2,000 embeddings. EER is computed from
balanced genuine/impostor trial sets per language; 95% Cls are from 1,000 bootstrap samples.

Results indicate strong identity preservation in synthetic code-switched speech (EER ~ 6.5-7.6%),
with natural CS forming an upper bound (e.g., Swahili: 0.903 similarity, 3.6% EER). The relatively
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Table 5: Speaker verification on code-switched utterances (higher is better 1, lower is better ). Means

with 95% Cls.
Lansuage Avg. Cosine Avg. Cosine EER %
guag (Genuine) 1 (Impostor) | 1
Swahili (Synthetic) 0.872[0.867, 0.877] | 0.43210.427,0.437] | 6.5[6.1,6.9]
Luo (Synthetic) 0.861 [0.856, 0.866] | 0.418 [0.412,0.424] | 7.2[6.8,7.7]
Kikuyu (Synthetic) 0.868 [0.862, 0.874] | 0.427[0.421,0.433] | 6.8 [6.4,7.2]
Nandi (Synthetic) 0.854 [0.848,0.860] | 0.411[0.405,0.417] | 7.6 (7.1, 8.1]
Swahili (Natural) 0.903 [0.898, 0.908] | 0.391 [0.386, 0.396] | 3.6 [3.3,3.9]
Luo (Natural) 0.870[0.865, 0.875] | 0.430[0.425, 0.435] | 5.1[4.8,5.5]
Average (Synthetic) 0.864 0.422 7.0

small gap suggests that segment-level infusion plus DDPM refinement (Sec. [3.4) maintains speaker
traits across substitutions.

Alternation Points. We define alternation rate as the proportion of segment boundaries where the
language label changes:

# Alternations

Alternation Rate =
#Segments

Table [6] shows alternation is rare (3-5%), with synthetic and natural values well-aligned. Swahili
(Natural) alternates most, likely due to short insertions. Luo shows the opposite trend—Ilonger
insertions, fewer switches.

Table 6: Average alternation rate: % of boundaries where language changes.

Source L Alternation Rate (%)
Swahili (Synthetic) 4.7%
Luo (Synthetic) 3.6%
Kikuyu (Synthetic) 3.1%
Nandi (Synthetic) 4.1%
Swahili (Natural) 5.3%
Luo (Natural) 2.1%
Avg. (Synthetic) 3.88%

Across four structural dimensions, our model exhibits realistic code-switching behavior. It avoids over-
insertion, respects language constraints, mirrors natural switch placement, and captures alternation
rates—all without explicit rules. This suggests it internalizes structural code-switching patterns via
training on monolingual segments and guided diffusion alone.

6.1 HUMAN PREFERENCE EVALUATION: FLUENCY AND ACCEPTABILITY

We complement automatic metrics with a human study targeting perceptual qualities that automatic
scores miss. We recruited /N =638 undergraduate raters (consented; uncompensated/compensated
per IRB/ethics approval) and sampled 1,437 utterances (balanced across source languages and
synthetic/natural). Raters were language-matched (self-reported proficiency in the utterance’s mono-
lingual language); each rater evaluated exactly six utterances, and each utterance received >4
independent ratings.

Protocol. Stimuli were presented in randomized order and blind to condition (synthetic vs. natural).
We enforced headphone use (HINT-style check) and included two attention checks per rater. Very
short/long items (< 3s or > 20s) were excluded for consistency. Raters used 5-point Likert scales
on three dimensions with brief anchors: Fluency (smooth, natural delivery), Coherence (semantic
consistency and perceived single-speaker identity), Realism (resemblance to naturally occurring
multilingual speech).

Analysis. We report means with 95% Cls via 1,000 bootstrap resamples (clustered by utter-
ance). Inter-rater reliability (average-measures ICC) was ICCpyency = 0.79, ICCcoherence = 0.76,
ICCreaiism = 0.74. Group differences were tested with a mixed-effects model (fixed: language,
condition; random: utterance, rater).

Synthetic utterances score > 4.0 on all dimensions with tight CIs, indicating high perceived quality.
Natural utterances remain a ceiling, especially on realism (e.g., +0.5 for Swahili), but the gap is
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Table 7: Human ratings (5=best). Means with 95% Cls; SD shown for per-utterance scores.

Source L Fluency 1 Coherence T T Std. Dev.
Swahili (Synthetic) | 4.10 [4.05, 4.15] | 4.20 [4.15, 4.25] | 4.00 [3.95, 4.05] 0.42
Luo (Synthetic) 4.08 [4.03,4.13] | 4.02[3.97,4.07] | 4.07 [4.02,4.12] 0.46

Kikuyu (Synthetic) | 4.18 [4.12,4.23] | 4.10 [4.05,4.16] | 4.01[3.96,4.06] | 0.44
Nandi (Synthetic) | 3.94 [3.89,3.99] | 4.01 [3.96,4.06] | 3.92[3.87,397] | 048
Luo (Natural) 473[4.68,4.77) | 4.42[4.37,447) | 4.60[4.55,4.65] | 046
Swahili (Natural) | 4.59 [4.54, 4.63] | 4.82 [4.78,4.86] | 448 [4.43,4.53] | 042
Avg. (Synthetic) | 4.08 [4.05,4.11] | 4.08 [4.05,4.11] | 4.00 [3.97,4.03] | 045

modest. Mixed-effects analysis confirms a significant main effect of condition (natural>synthetic,
p < 0.01) and a language effect (Swahili>others), with no significant interaction, suggesting
consistent synthetic quality across languages.

7 CONCLUSION

We presented a diffusion-based framework for generating fluent, coherent, and sociolinguistically
realistic code-switched speech without relying on parallel training data. By guiding a pre-trained
monolingual generative prior with differentiable linguistic constraints—including a multilingual
language classifier and a contrastive segment encoder—our method performs targeted segment
replacements that preserve fluency, speaker identity, and semantic coherence. Extensive evaluation
across five African languages demonstrates that the proposed system closely matches natural code-
switching behavior in frequency, structure, and placement, while achieving strong segment-level
semantic fidelity (COMET 0.815, LaBSE 0.880) and speaker consistency (EER 6.7%). Human
listeners rated the generated utterances favorably across fluency, coherence, and realism. To our
knowledge, this is the first method to enable plug-and-play multi-language infusion within a single
utterance, offering a new paradigm for cross-lingual speech generation in low-resource settings.
Future work will explore integrating prosodic control, expanding to more languages, and applying
the approach to spontaneous conversational domains.
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8 APPENDIX / SUPPLEMENTAL MATERIAL

A FULL DERIVATION OF THE FREE-ENERGY OBJECTIVE

This appendix derives the free-energy objective used in §2] We aim to approximate the constrained
posterior p(z|y), where z is a high-dimensional utterance (waveform) and y is the infusion spec-
ification (infusion language set, switch prior, source semantics, retrieval index). Let ¢ (z,y) and
co(z, y) be differentiable soft constraints for switch plausibility and semantic consistency, and define

Clz,y) = cr@,y) ea(w, y).

Assumptions. We assume C(z,y) > 0 and E,)[|log C(x,y)|] < oo so expectations are well-
defined. We also assume absolute continuity of the variational joint g(x, h) with respect to the
model joint p(z, h) on the support of g, so that KL(q||p) is finite. The variational marginal is
q(z) = [ q(z, h) dh. For clarity, the constraints consume (possibly overlapping) subsets of y.

Free-energy objective. Consider the (negative) variational free energy
F = —Eyu|logp(x) +log C(x, y) — log q(x)], ©)

which differs from the negative log evidence by the additive constraint term log C(x, y).

Latent decomposition and Jensen. Assume p(z) admits a latent factorization with hidden variable
h: p(z) = [ p(z, h) dh. Insert the identity ¢(h|x)/q(h|z) inside the integral:

x,h
F = —Eyq) {log/q(hkc) p(x h) dh +log C(x,y) — log q(:c)} . 8)
q(hlz)
Applying Jensen’s inequality to the concave log yields
p(z, h) p(z,h)
log/q h|x dh > Eqpie {log , “
P2 gy = Ba1e) |18
and thus an upper bound on F':
p(x, h
F < —Eq(a)q(hlz) {log qihx))] — Ey|loga(z)] + Eq[log C(z,y)]. (10)

The bound is tight when g(h | ) = p(h | ).

Joint form. Writing ¢(z, ) = ¢(x) q(h|z) and rearranging,

p(z, h)
F<—-E 1 E log C . 11
— q(z,h) |:Og q(1'7 h):| + q(:r)[ Og (x7 y)] ( )
Define the free-energy bound we optimize as
=~ def
F = KL(g(z,h) | p(z,h)) — Eya)|log Cz,y)], (12)
prior-matching constraint reward

soF <F by Jensen, and we minimize Fin practice. This is the free-energy form reported in the
main text (Eq. [2).

Mode-seeking limit (used later). In we employ a mode-seeking variational family for ¢ ()
via the narrow-Gaussian limit ¢, (x) = N (x;n, 0%I) — 0(x — n), which preserves the derivation
o—

above and yields a tractable inference objective with — log C'(7), y) entering as an additive guidance
term.

B DDPM AND MODE-SEEKING APPROXIMATION

We justify the mode-seeking approximation used in our constrained diffusion framework. This
section builds on denoising diffusion probabilistic models (DDPMs) Ho et al.|(2020) and shows how
inference under guidance is simplified by collapsing the variational posterior to a point mass.

11
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DDPM recap. DDPMs generate samples by learning to reverse a fixed forward noising process.
The forward process gradually adds Gaussian noise to data over 1" steps:

T
qh ={z1,....xr} [zo) = [[alw [ we1),  a(mr | 2) = Moo vVag 21, (1= ar)I),

(13)
with a fixed variance schedule {a;}Z_;. From the forward marginal,
t
q(wy | @) :N(xth/@tan (1_5%)—7)’ oy = HOés' (14)
s=1

The reverse process is learned as a Markov chain pg(x;—1 | z;) = N(It—1; o (e, t), Xo (x4, t)),
and, in the noise-prediction parameterization, the network ép(x¢, t) is trained with a simple MSE loss
that is equivalent (up to constants) to maximizing the ELBO Ho et al.|(2020).

Constrained posterior and mode seeking. In our constrained setting we wish to sample from

p(z|y) o< p(z)ei(z,y) calw,y), (15)

where ¢y, co are differentiable soft constraints (see main text for y, the infusion specification). Direct
estimation is intractable under a diffusion prior p(x). Following |Chung et al.| (2023)), we adopt a
mode-seeking variational family via the narrow-Gaussian limit:

Go(x) = N(2;1,0°1) — q(x) = d(x —n), (16)

where 77 € R? is an inference-time optimization variable (the clean point). This collapses inference to
optimization over 7 and avoids evaluating constraints along full diffusion trajectories.

Given 7, the noised input at timestep ¢ is sampled from the forward marginal:

Ty = Vagn + V1 — & €, €0 ~ N(0,1). (17)

We then feed x; to the noise predictor ég(x¢,t). We reuse the standard denoising objective

Loppm = Eitnit{1,....T}, co~N(0,1) {ng(xt,t) - €0||ﬂ ; (18)

to define gradients with respect to n during guided sampling (the network parameters 6 are fixed).

Why mode seeking helps for guidance. Because x; is a differentiable function of 7, the con-
straint terms ¢4 (x, y), c2(z, y) contribute V, [—log C(n, y)] that can be combined with the denoising
gradients. Practically, this: (i) enables direct gradients V,, log ¢;(n, y), (ii) reduces variance and
computation, and (iii) allows plug-and-play reuse of a pretrained diffusion prior pg without retraining
under new constraints. Empirically, we find the mode-seeking approximation preserves sample
quality while enabling fine-grained control over linguistic attributes during generation.

C DERIVATION OF FREE-ENERGY OBJECTIVE UNDER DDPM

This section expands §2.2] instantiating the free-energy bound (Eq. [2) for DDPMs under a mode-
seeking variational family.

Variational family. We take the narrow-Gaussian limit around a clean point 7:
Go(x) = N(2;1,0°1) — q(x) = d(x —n),
and define the forward trajectory g(z1.7 | ) = Hthl q(zy | ®—1) with zg = n. Thus the joint

|
variational density factorizes as ¢(x,h) = q(z) q(h | ) = 6(x — n) q(z1.7 | 1) with latent path
h = Xr1.T.

12
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Bound decomposition. Starting from Appendix [A]

F = KL(‘](I'vh) ”p(mvh)) - Eq(m)[bgc(wvy)]»

plug in the factorization and marginalize x to obtain

F(1:0) = Eya, o | log 2220 ] — log O ),
DDPM ELBO at clean point n (19)
2
where py (1, 21.7) = p(er) [ po(wi-1 | z1).
t=T
Using the standard DDPM ELBO decomposition |Ho et al.| (2020), this becomes

F(n;0) = Dxufq(zr | 1) || p(z7))

£l (20)
+ Z]Eq(mn) {DKL(Q(It—l | 2¢,m) || po (-1 | xt))} — log C(n,y),

t=2

where q(z¢—1 | x¢,n) is the closed-form forward posterior and py(- | -) is the learned reverse kernel.

MSE form. Optimizing equation[20]is equivalent (up to constants) to minimizing the denoising
MSE |[Ho et al.| (2020):

Loppm(m;0) = E¢ o[l €0 (21, ) — €ol13]
¢
where x; = va;n + V1 — &y €, dt:Has, (1)
s=1
t ~ Unif{1:T}, ¢ ~ N(0,1).

Final objective and optimization. Combining terms, the bound we optimize is

F(n;60) = Loppm(n;0) — logC(n,y) (or time-ramped — E[w(t)log C(n,y)]). (22)

In our plug-and-play setting, 6 is fixed (pretrained prior) and we optimize 7 at inference by gradient
steps:

110 = 7 Vo (Looem(1;0) = log C(1,y)),
optionally interleaving with DDPM sampling updates. When cs involves retrieval R, candidate
indices from the FAISS search are treated as constants (stop-gradient or straight-through), and we
backpropagate through the differentiable scoring. Equation equation 22]corresponds to Eq. [3]in the
main text.

D INFERENCE OBJECTIVE AND SCHEDULES (DETAILS)
We keep the DDPM prior é and auxiliaries f.1, fonc fixed. At inference we optimize the clean point
n:

mgn E i oUnit{1:7}, eooN(0,1) 160 (2, 1) — €0ll3] + A1 Ley (0,y) + Eew(t)] A2 Le,y (0, y),

where xy = Joun + /1 —apeg and oy = Hizl as. We use Adam (Ir = 2x 1073, 8,=0.9,
£2=0.999), T=1000 steps, and update exactly one span per step: i* = arg max; g‘*).

Schedules. Blend/write-back coefficient:
T—t
ap =1 —exp(— T) 8 =0.25.

Constraint ramp for ¢, (“late commit”):

w(t) =t/T, while A is fixed.

13
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Differentiability notes. We backprop through inputs to f;) and fo,. (frozen weights). Retrieval is
top-1 with straight-through (early soft top-M optional); FAISS indices are stop-grad. Gradients are
clipped to 1.0.

D.1 CONSTRAINT WEIGHT SELECTION

We tune the guidance weights A1, A2 € 0.1, 5.0] with a Gaussian—process Bayesian optimizer (100
trials, log-uniform priors). The objective is a scalarized validation score:

J = 0igem (COMET + BERTScore) — Qpros (Aonset + Adur) + Qspk COS_SimEcapa,

with agem=1, Qpros=1, qpk=1 (normalized terms). We obtain A\;=0.35, A\>=0.65 on a held-out
validation split. (Section[5.2]defines all metrics; details in App.[G])

D.2 SEGMENT-WISE GRADIENT UPDATE (INFERENCE)

At each denoising step ¢, we edit exactly one span chosen by the ¢; gate: i* = argmax; g(*). Let
m0’) e {0,1}7= be a binary mask for that span (upsampled to the waveform), and let 7 be the
current clean point. We compute

Ty =voun+vV1—age, € ~N(0,I),

and take one masked gradient step on the free-energy objective:

n<mn — o (Vn (e, t) — €olls + A1 Loy (1) + w(t) A 5(:2(77,3/)) ® m,
—
LDDPM

where 7 is the step size (we use v = 5 x 1072), w(t) = t/T is the late-commit ramp, and ©
applies the update only within the selected span. After the gradient step, we blend-and-write-back
the retrieved foreign segment with coefficient o (§3.2) and proceed to the next t—1 step. All
networks €g, fc1, fenc remain frozen; gradients flow through inputs only (FAISS indices are stop-grad;
straight-through is used if top-1 selection is required).

D.3 FULL INFERENCE ALGORITHM

Algorithm 1 Inference for Minimal-Edit Code-Switched Speech (one segment per step)

Require: Frozen DDPM noise predictor ég; frozen LID f; frozen segment encoder fe,c; FAISS
index D; infusion set Lint(y); step sizes {7 }2_;; blend ramp {a; }1_;; weights Ay, {\a(t)}1_1;
noise schedule {&;}7_,; optional conditioning M
Initialize clean point p ~ A/(0, I) // mode-seeking start
for t =T down to 1 do

Sample ¢g ~ N(0, I); set z; = \/azn+ /1 — ay €g

Segment & gate (Sec.: segment 7 — {s;?};;l; compute gates g(*)
Compute L., (z;,y) < —logci(z;,y) (Eq. equation [4)
Select span i* « arg max; g(*) // minimal CS policy (K=1)
Retrieval (Sec.[3.2):

q < fenc(szg:lj ))

m* < arg max Sim(q, fenc(sg';))); % 57(]:1 )

m: £(s) )€ Line ()

10:  Prosody & semantics (Sec.[3.2): compute Laur, Lon, Lsems Letx
11: Egz ) g(i*) [a Liem + B Lex + 7(Laur + Lon)}
12:  Blend & write-back: sng ) (1 —ay) sng ) 4+ o, s*; reassemble n
13:  DDPM loss: Loppm < ||ég(2e,t | M) — e
14 Objective: 7 (1) < Loppm + A1 Lo, (25, 4) + Aa(t) L5
15:  Update: n < n— vV, J(n)
16: end for

17: (Optional) harmonize speaker identity (Sec.
18: return gy, (assembled from 7)

R A O i ey

14
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E SPEAKER IDENTITY HARMONIZATION DETAILS

Local, segment-level edits and cross-lingual substitutions can leave small inconsistencies in voice
quality, prosody, or timbre. We therefore apply a short, content-preserving refinement with the same
pretrained, frozen diffusion prior.

Reference conditioning. We extract a global reference from the utterance to standardize speaker
characteristics:

dmel = Mel(z)  (e.g., 80-dim log-Mel, 25 ms window, 10 ms hop),
and, when available, a speaker embedding from the original monolingual audio,
¢spk = ECAPA(.rmOHO).

We condition the refinement U-Net via feature concatenation or FiLM modulation.

Refinement pass. We run 7,.+=150 late diffusion steps (low-noise regime) with DDPM parameters
fixed and constraint guidance disabled (A;=0, A2=0):

Tfinal = DDPMreﬁne(x ‘ ¢mel7 ¢spk)~
This standardizes timbre and prosody across edited spans without altering content or switch placement.

Observed effects. (i) Timbre smoothing: reduces spectral discontinuities near edit boundaries. (ii)
Prosodic coherence: aligns pitch and rhythm across spans. (iii) Single-speaker percept: mitigates
residual cross-speaker cues from retrieved segments.

Alternatives and stability. We experimented with adding a speaker-consistency penalty (cosine
distance between ECAPA embeddings of input/output) inside the main inference objective, but
found optimization conflicts with semantic/timing terms; convergence degraded. Post-hoc refinement
offered better stability and control with negligible overhead.

Sanity checks. We verify identity harmonization via: ECAPA cosine similarity (pre vs. post, higher
is better), FO CV across segment boundaries (lower is better), and MOS-like human ratings for voice
consistency.

F TooLS AND RESOURCES

Multilingual Language Classifier f.;. We use a lightweight ECAPA-TDNN variant (LECAPAT |Ni+
eto et al.|(2023)) as our segment-level LID model. Inputs are 64-bin log-Mel spectrograms (25 ms
window, 10 ms hop; audio at 24 kHz). We train with cross-entropy for 50 epochs (Adam, Ir = 104,
batch 64), early stopping (patience 5) and a 10% validation split. No augmentation is applied. The
model attains 92.4% validation accuracy averaged across the five languages on a single A100. At
inference f) is frozen; gradients flow through inputs only.

Multilingual Segment Encoder f.,.. fonc maps segments to a shared space for retrieval. We
train a contrastive encoder with a SimCLR-style objective (Chen et al.| (2020): positives are two
augmentations of the same segment; negatives are other segments in the batch. (50% of segments are
augmented with additive Gaussian noise and time masking.) The network uses a 1D conv front-end
(256 filters, kernel 16, stride 8), an EfficientNet-B0 backbone [Tan & Le[(2019), global max pooling,
and a projection head to a 720-dim space. Training runs 1M steps with AdamW (3;=0.9, 52=0.999,
batch 512). At inference we discard the projection head and use the EfficientNet embeddings,
{o-normalized; fey. is pretrained and frozen. Cosine similarity is the dot product of unit-norm
embeddings.

Pretrained Diffusion Prior (SegUniDiff). For synthesis we employ SegUniDiff|Ochieng & Kaburu
(2025), a segment-aware DDPM conditioned on Mel features. Unless stated otherwise, we use a
single multilingual SegUniDiff and condition on a language code; the model is frozen at inference
and reused as the prior in our free-energy objective. See|Ochieng & Kaburu|(2025) for architecture
and training details.
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Machine Translation and ASR. To support automatic evaluation, we built parallel text corpora by
aligning semantically equivalent sentences across our language pairs and trained Transformer-base
MT models. For ASR, we trained Squeezeformer Kim et al.[(2022) for Nandi, Luo, and Kikuyu, and
Whisper-small Radford et al.|(2023) for Swahili and English.

Table 8: Parallel MT data and ASR performance.

Language Pair | Paired Sentences | SacreBLEU (1) || Language (ASR) | WER (%)
Luo—Nandi 1.76M 322 Luo 14.2
Luo—Kikuyu 1.18M 31.8 Nandi 13.6
Nandi-Kikuyu 1.32M 27.3 Kikuyu 144
Kikuyu-Swahili 1.29M 30.4 Swabhili 9.8
Kikuyu—English 1.71IM 249 English 53
Swabhili-English 1.52M 25.4 — —
Luo—Swahili 1.43M 27.4 — —
Luo-English 1.34M 28.1 — —
Nandi-Swabhili 1.44M 27.1 — —
Nandi-English 1.37M 28.6 — —

G EVALUATION METRIC DETAILS AND RESAMPLING PROTOCOL

Text used for scoring. All metrics operate on text produced by an ASR—MT pipeline (see §5.1):
each utterance is transcribed by ASR and translated to English before scoring. For the masked
variant (§5.4), foreign spans are removed prior to ASR; for the full variant, foreign spans are kept and
translated back into English for comparison to the monolingual reference.

Metrics.

* SacreBLEU |Post| (2018): corpus-level BLEU with standardized tokenization; we report the
SacreBLEU signature and case-sensitive scores.

* BERTScore|Zhang et al.|(2019): token-level alignment via contextual embeddings; we use
the multilingual model, report F1, and apply inverse document frequency (IDF) weighting.

* COMET Rei et al.[(2020): a reference-based learned metric trained on human judgments
(adequacy/fluency). We use a publicly released COMET checkpoint and report the mean
segment score.

* LaBSE similarity |Feng et al.| (2022): cosine similarity between sentence embeddings from
the LaBSE encoder; applied on English translations to capture discourse-level semantic
alignment beyond n-grams.

Aggregation. Scores are computed per segment (for or per utterance (for and then
averaged across the evaluation set. Corpus BLEU is reported via SacreBLEU; all other metrics are
macro-averaged over items.

Bootstrap resampling and confidence intervals. We estimate 95% confidence intervals (Cls) via
nonparametric bootstrap with B=1000 resamples:

1. Sample with replacement the same number of items as the original set (segment- or utterance-
level, matching the evaluation).

2. Recompute the aggregate metric on each bootstrap sample.

3. Form the CI using the percentile method (2.5% / 97.5% quantiles).

When multiple languages are pooled, we use a stratified bootstrap (sampling within each language
and recombining) to preserve the original language mix.

Caveats. Because scoring uses ASR—MT text, absolute values may reflect downstream model
bias (e.g., stronger Swahili ASR/MT yields higher scores). Cross-condition comparisons are still
informative because the same pipeline is applied to all systems and variants.

16



Under review as a conference paper at ICLR 2026

G.1 TOLERANCE SELECTION FOR CROSS-LINGUAL SEGMENT SUBSTITUTION

To set the duration tolerance used in the ¢y hinge penalty (cf. §3.2), we estimate a language-
pair-specific threshold Ay (5, ¢, ) that reflects typical tempo/prosody differences between a monolin-
gual language ¢, and an infusion language /,,.

Base tolerance. Let d; denote a robust average segment duration for language ¢ (we use the median
over segments; trimmed mean also works). Define
—dy

dy,

’ d~£ z Y

)\base (ém ) Ey) =

Final tolerance. We add a small safety margin and enforce a minimum window:

N(lo, b)) = max()\base(&,fy) T, )\min), ¢ = 0.05, Amin = 0.10.

This A\ is used in the duration hinge of ~ Laur = maX(O7 %ﬂdd).

Notes. (i) We compute d with the tempo/prosody normalization S0 (Eq. 2?), then apply A4 to
d; this avoids double-counting rate differences. (ii) A4 is asymmetric in (¢, £, ), which matches the
directed substitution setting.

Table 9: Computed )y for Swahili as the monolingual language. Durations in seconds.

Infusion ¢, | dy, Abase Mg (final)
Luo 16.5 | 0.0855 | 0.1355
Nandi 17.1 | 0.1250 | 0.1750
Kikuyu 15.6 | 0.0263 | 0.1000
English 15.0 | 0.0132 | 0.1000

Swabhili robust duration: dy, = 15.2

H ABLATION

H.1 EFFECT OF REMOVING THE LANGUAGE-CLASSIFIER CONSTRAINT

We study the role of ¢; (x, y) (foreignness gating and global rate). In the classifier-free variant we
remove c; from the guidance and select the edited segment per step uniformly at random (one span
per step; cf. §3.2). The inference objective becomes

F(n) = Eiotmit{1:1}, comn(0,0) €0 (e, 1) = €0ll3] + w(t) Az Loy (0, y),
i.e., identical to the full model but without the ¢; term (and no g(i) gates).
Setup. From the 8,500 synthetic CS utterances, we sample 2,000 per source language (N = 8,000
total). We detect language spans with the frozen LID model f.; and compute: (i) CS frequency =
proportion of foreign frames (or ASR tokens) in the utterance; (ii) alternation rate = number of

language switches per utterance; (iii) human ratings (fluency, coherence, realism; 5-point Likert,
§6.1). We report means with 95% bootstrap Cls (1,000 resamples).

Table 10: Ablation of the language-classifier constraint (c1). Means [95% CI].

Metric Full model No ¢; A
CS frequency (%) 4.33[4.10,4.58] | 18.3[17.6,18.9] | +13.97
Alternation rate (#/utt) | 3.88 [3.74,4.02] | 17.9[17.2, 18.6] | +14.02
Fluency (1) 4.10[4.07,4.13] | 2.70[2.65,2.75] | -1.40
Coherence (T) 4.05[4.01,4.09] | 3.30[3.24,3.36] | -0.75
Realism (1) 4.00 [3.96, 4.04] | 2.60[2.54,2.66] | -1.40
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Findings. Removing c; causes substantial over-switching (CS frequency +14 pp; alternation rate
+14) and markedly degrades perceived quality (fluency —1.40, realism —1.40, coherence —0.75).
This confirms that c; is essential for regulating where/how much to switch and for preserving
utterance-level fluency and discourse coherence.

H.2 EFFECT OF REMOVING TEMPORAL ALIGNMENT AND ONSET CONSTRAINTS

We quantify the contribution of the timing terms in ¢, that enforce prosodic alignment between
the inserted foreign segment and the host utterance. Concretely, we remove the duration and onset
penalties by setting v = 0 in

ch =« Esemantio + 5 Econtext + '7(£dur + ['on) (See @7
yielding the simplified guidance
£C2 = & Leemantic + 5 Lcontext-
This ablation permits insertions with unconstrained duration and onset (no explicit prosodic guidance).
We generate 8,500 code-switched utterances and evaluate both segment- and utterance-level quality

using the protocols in §5.3|and §5.4} Table[IT|reports averages across synthetic languages with 95%
bootstrap Cls.

Table 11: Impact of removing duration/onset constraints on segment- and utterance-level metrics.
Mean with 95% Cls (1,000 bootstrap samples).

Level Metric Avg. With Duration/Onset | Avg. Without Duration/Onset
SacreBLEU (1) 36.4[35.2,37.4] 34.6 [33.3,35.7]

Segment BERTScore (1) 0.807 [0.804, 0.810] 0.796 [0.792, 0.800]
COMET (1) 0.815[0.807, 0.823] 0.790 [0.781, 0.799]
LaBSE (1) 0.880 [0.873, 0.886] 0.868 [0.860, 0.874]
SacreBLEU (1) 34.5[33.5,35.6] 32.8[31.5,33.9]

Utterance BERTScore (1) 0.755[0.751, 0.759] 0.743[0.738, 0.748]
COMET (1) 0.653 [0.645, 0.661] 0.624 [0.614, 0.634]
LaBSE (1) 0.874 [0.870, 0.878] 0.860 [0.854, 0.867]

Table 12: Human ratings (Likert 1-5) comparing the full model vs. the variant without duration/onset
constraints.

Metric Full Model | Without Duration/Onset | Difference (A)
Avg. Fluency 4.1 3.1 -1.0
Avg. Coherence 4.05 33 -0.75
Avg. Realism 4.0 24 -1.6

Removing timing constraints consistently degrades both segment- and utterance-level metrics (Ta-
ble[TT). While segment-level drops are modest (e.g., —1.8 SacreBLEU, —0.019 COMET), utterance-
level scores are more sensitive to prosodic disruption (—0.029 COMET, —0.012 BERTScore), suggest-
ing that small duration/onset mismatches propagate across the utterance and impair discourse-level
fluency. Human judgments (Table corroborate this: fluency and realism decline sharply, with
listeners noting abrupt transitions and unnatural pacing. Overall, explicit timing control is crucial for
producing fluent, natural-sounding code-switched speech; semantics and context alone are insufficient
without prosodic alignment.

I RELATED WORK

Code-switching is a well-documented linguistic phenomenon in multilingual communities, particu-
larly across Africa, where speakers frequently alternate between local vernaculars and national or
international languages such as English or Swahili. Foundational work by Slabbert & Finlayson
(1999) and Myers-Scotton| (1993) highlighted code-switching as a communicative strategy influenced
by identity, context, and pragmatics. [Poplack! (1980) and |Auer| (1998)) further explored structural
patterns and conversational dynamics, establishing typologies of alternation, insertion, and congruent
lexicalization. These studies underscore the naturalness and linguistic richness of code-switching in
African speech.
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Despite its sociolinguistic prominence, code-switching has been underrepresented in computational
speech research, largely due to the lack of annotated corpora and standardized tools. While progress
has been made in code-switched text generation using statistical or neural methods (Tarunesh et al.|
2021} (Gregorius & Okadomel [2022} |Chi et al.l [2023)), the speech modality remains significantly
underexplored.

The most notable contribution to code-switched speech synthesis is by (Cao et al.|(2020)), who proposed
a bilingual phonetic posteriorgram-based model that combines monolingual speech corpora to gener-
ate mixed-language speech. However, their method lacks explicit semantic or contextual alignment
and does not account for speaker consistency or natural prosodic transitions across languages.

In contrast, our work introduces a diffusion-based framework that synthesizes code-switched speech
by minimally editing monolingual utterances. We incorporate linguistic constraints—a pre-trained lan-
guage classifier for soft switch control and a multilingual encoder for semantic segment matching—to
guide the generation process. Additionally, we address speaker identity harmonization by introducing
a refinement step based on acoustic conditioning.

To the best of our knowledge, this is the first work that enables the infusion of multiple foreign
languages within a single utterance, allowing for rich, naturalistic multilingual code-switching
patterns. This represents a significant advancement toward realistic speech generation in low-resource
multilingual settings.

J  LIMITATIONS

Our proposed framework for controlled code-switched speech generation has demonstrated strong
quantitative and human evaluation performance. However, several limitations remain:

Mismatch Between Synthesized and Natural Speech The generated utterances, while fluent and
semantically faithful, are synthesized from noise and do not inherit the rich socio-pragmatic cues,
emotional tone, or discourse-driven switching patterns present in natural conversations. This limits
the realism of certain paralinguistic features such as emphasis, hesitation, or spontaneous repairs.

No Parallel Code-Switched Supervision The model is trained entirely on monolingual utterances
without access to parallel code-switched references. This weak supervision constrains the model’s
ability to learn context-specific switching behavior beyond what is imposed by local segment similarity
and predefined constraints.

Language and Domain Generalization Our study focuses on five Kenyan languages in a broadcast
news context. While this setting ensures clean and aligned data, the model may not generalize to
informal, multi-party, or highly emotional speech domains without further tuning or retraining.

Segment-Level Constraints Without Syntax Awareness Although segment replacement is guided by
semantic and prosodic alignment, the model does not enforce syntactic compatibility between the
inserted segment and surrounding context. This may occasionally result in grammatically awkward
utterances, particularly in morphologically rich languages.

Speaker Identity Harmonization Is Post Hoc While a refinement step is used to harmonize speaker
identity, it is applied after generation and not jointly optimized with the diffusion process. As a result,
subtle speaker inconsistencies may persist across segments in certain cases.

Metrics May Not Capture Cultural or Pragmatic Fit Automated evaluation metrics (e.g., COMET,
LaBSE) and even human Likert ratings may overlook deeper cultural or conversational appro-
priateness of switches. For instance, switching at discourse boundaries or for emphasis may be
underrepresented in synthetic data.
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