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Abstract

In this paper, we study the generation quality
of interpolation-based retrieval-augmented lan-
guage models (LMs). These methods, best ex-
emplified by the kNN-LM (Khandelwal et al.,
2020), interpolate the LM’s predicted distribu-
tion of the next word with a distribution formed
from the most relevant retrievals for a given pre-
fix. While the kNN-LM and related methods
yield impressive decreases in perplexity, we
discover that they do not exhibit corresponding
improvements in open-ended generation qual-
ity, as measured by both automatic evaluation
metrics (e.g., MAUVE) and human evaluations.
Digging deeper, we find that interpolating with
a retrieval distribution actually increases per-
plexity compared to the baseline LM for the
majority of tokens in the WikiText-103 test set,
even though the overall perplexity is lower due
to a smaller number of tokens for which per-
plexity dramatically decreases after interpola-
tion. However, when decoding a long sequence
at inference time, significant improvements on
this smaller subset of tokens are washed out
by slightly worse predictions on most tokens.
Furthermore, we discover that the entropy of
the retrieval distribution increases faster than
that of the base LM as the generated sequence
becomes longer, which indicates that retrieval
is less reliable when using model-generated
text as queries (i.e., is subject to exposure bias).
We hope that our analysis spurs future work
on improved decoding algorithms and interpo-
lation strategies for retrieval-augmented lan-
guage models.

1 Introduction

Retrieval-augmented language models, which in-
tegrate non-parametric dense retrieval with autore-
gressive next-token prediction, have been validated
with strong empirical performance across a variety
of tasks (Metzler et al., 2022; Basu et al., 2022;
Mialon et al., 2023) in addition to achieving low
held-out perplexities on LM benchmarks. In this

paper, we study interpolation-based LMs, a sub-
type of retrieval-augmented LMs that compute the
probability of the next token by interpolating be-
tween the softmax distribution of the original LM
and a token distribution formed by retrieving over
an external datastore. These methods, perhaps best
exemplified by the kNN-LM (Khandelwal et al.,
2020), are particularly attractive because they allow
any pretrained LM to be retrofitted with a retrieval
module without further training.

Despite these advantages, there is limited un-
derstanding about the text generation quality of
interpolation-based LMs. In this study, we evaluate
the quality of generated text from two such meth-
ods, kNN-LM and TRIME (Zhong et al., 2022),
against the output of baseline LMs that do not use
retrieval. Our evaluations involves open-ended text
completions generated using different decoding
algorithms on both the WikiText-103 and PG-19
datasets. We discover that interpolation-based LMs
do not improve the quality of generated text, as
measured by both automatic text generation met-
rics such as MAUVE (Pillutla et al., 2021) and
human evaluation.

This result begs the question of why the text gen-
eration quality does not improve, as the perplexity
of interpolation-based LMs is substantially lower
than that of the baselines. Our analysis of the kNN-
LM model suggests two potential reasons for this
lack of improvement:

1. kNN-LM actually worsens the predictions of
the majority of tokens in the WikiText-103
test set. On aggregate, perplexity improves
because of significantly improved predictions
on a smaller subset of tokens. However, when
generating a long sequence of tokens, these
improvements are washed out by the wors-
ened predictions on other tokens.

2. The quality of the retrieval distribution deteri-
orates faster than that of the LM’s predicted
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distribution as the length of the generation
increases; in other words, the retrieval distri-
bution is more vulnerable to exposure bias and
can be easily thrown off by artifacts presented
in model-generated text.

Unlike previous works that rely on perplexity
to evaluate language modeling or BLEU to evalu-
ate machine translation quality of kNN-LM-based
models (Khandelwal et al., 2021), our work specif-
ically studies the open-ended text generation capa-
bility of kNN-LMs with a range of automatic eval-
uation metrics as well as human evaluation. We
demonstrate that, though they significantly lower
perplexity, retrievers might also impair text genera-
tion performance of kNN-LMs. This finding sug-
gests potential future directions for using retrieval
during text generation, such as developing more
robust retrieval components or employing retriever
mechanisms more selectively during decoding.

2 Related Work

We present the most extensive study of open-ended
text generation1 from interpolation-based LMs
such as kNN-LM (Khandelwal et al., 2020). Our
results reveal that although these methods are effec-
tive at reducing perplexity, they can also be detri-
mental to text generation. Previous work finds that
retrieval LMs are improved by selectively incor-
porating retrieval when conditions are favorable
(He et al., 2021a; Alon et al., 2022; Drozdov et al.,
2022; Mallen et al., 2023), although they only ex-
amine the teacher-forced setting or other tasks, e.g.
question answering. The kNN-MT (Khandelwal
et al., 2021) explores machine translation, which is
a constrained task with short inputs, and thus not a
good test of open-ended long-form generation.

The kNN-LM effectively scales retrieval to bil-
lions of tokens using a token-level non-parametric
interpolation technique first introduced by Grave
et al. (2017). Alternative retrieval-augmented mod-
els experiment with training the retriever (Zhong
et al., 2022; Ram et al., 2023; Shi et al., 2023),
interpolating vectors instead of token probabilities
(Yogatama et al., 2021), scaling to trillions of to-
kens (Borgeaud et al., 2021), exploiting retrieval
for strong few-shot learning (Izacard et al., 2022),
and so on (Chen et al., 2017; Guu et al., 2020;
Lewis et al., 2020; Izacard and Grave, 2021; Rae

1The kNN-LM is also evaluated using MAUVE in Lan
et al. (2023); however, our work has much more extensive
analysis in the open-ended text generation setting.

et al., 2021; Wu et al., 2022; Trivedi et al., 2022;
He et al., 2022). Among these, kNN-LM stands out
as a relatively simple and fundamental work. Our
findings indicate important weaknesses of retrieval
for text generation.

Reference-based metrics are not well suited to
evaluate open-ended text generation (Novikova
et al., 2017). Instead, effective automated ap-
proaches compare the machine generated and hu-
man language text distributions using samples (Mc-
Coy et al., 2021; Pillutla et al., 2021; Pimentel et al.,
2023). Human evaluation remains the golden stan-
dard for natural language generation (Hashimoto
et al., 2019; Celikyilmaz et al., 2020; Krishna et al.,
2023).

3 Experimental setup

Using a variety of commonly used text generation
evaluation metrics, we evaluate the text generation
capability of interpolation-based LMs and com-
pare them to baseline LMs (i.e., without k-nearest-
neighbor retrieval from an external datastore). In
this section, we describe our experimental setup, in-
cluding models, automatic evaluation metrics, data
selection, and hyperparameters.

3.1 Models

We experiment with two interpolation-based LMs:
the kNN-LM of Khandelwal et al. (2020), which
augments an existing pre-trained LM with a re-
trieval module without any additional training, and
TRIME (Zhong et al., 2022), a recent improvement
over the kNN-LM that trains the retriever and LM
jointly to further decrease perplexity.

kNN-LM: The kNN-LM is a pre-trained lan-
guage model that uses retrieval to improve word
prediction. We follow the procedure from Khan-
delwal et al. (2020) and Alon et al. (2022) 2, and
use the LM to encode token-level representations
from a document collection (e.g., WikiText-103
training data) into a datastore where each token
in document is converted into a key-value pair: a
context vector ki representing the first n− 1 words
and a value vi which is the n-th word. During eval-
uation, the model calculates Euclidean distances
d(k, qj) between the query vector qj and all the
keys k1, k2, . . . k|V | in the datastore. The values

2Alternative architecture options for kNN-LM are explored
in Xu et al. (2023). We don’t expect those settings to impact
the trends we observe, but as we mention in §6, tuning for text
generation could be beneficial.
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from the retrieved documents define a new distri-
bution of the next word:

PKNN (wt|qt) ∝
∑

(ki,vi)

1wt=vi exp(−d(ki, qt))

The model interpolates the LM’s predicted distribu-
tion over the next token P (wt|qt) with the retrieval
distribution with a tunable hyperparameter λ:

P
′
(wt|qt) = λPKNN (wt|qt)+(1−λ)PLM (wt|qt)

(1)
To generate text from the kNN-LM, we apply a

decoding strategy (e.g., greedy decoding or trun-
cated sampling algorithms) using the final interpo-
lated probability distribution P

′
(wt|qt).

TRIME: Note that in kNN-LM, the LM is
trained without retrieval; the retrieval component
is bolted on after training. Zhong et al. (2022) note
that this approach is suboptimal, as the LM does not
understand how to best use the retrieval. Thus, they
propose TRIME, which uses an efficient in-batch
strategy to incorporate retrievals during training.
While kNN-LM relies on just one type of retrieval
(from an external datastore), TRIME can retrieve
from local, long-range, as well as external context.
We use the TRIMEEXT configuration in all of our
experiments, which also uses a linear interpolation
between LM and retrieval distributions (as in Equa-
tion 1) to produce the final probability distribution.
The baseline LM (no external retrieval) retrieves
from example-level local and long context, but has
no access to a huge-scale external datastore.

3.2 Constructing an evaluation dataset
We sample from WikiText-103 (Merity et al., 2016)
to construct our main evaluation dataset; in Sec-
tion 4, we also perform an analysis experiment
on the PG-19 dataset (fictional books) to test
whether our findings hold across domains. We
choose WikiText-103 because it is the most com-
monly used dataset for evaluating interpolation-
based LMs; indeed, the main experiments from
both kNN-LM and TRIME demonstrate that the re-
trieval component decreases held-out perplexity on
this dataset compared to the baseline LM. Specifi-
cally, we randomly sample 5K examples3 from the

3We choose 5K examples because this is the minimum
recommended number of generations to obtain meaningful
comparisons as per Pillutla et al. (2021).

validation set of WikiText-103. 4

3.3 Automatic evaluation metrics
For all models tested, we compare the quality of
text generated by the baseline LM with and without
the k-NN retrieval component over the external
datastore. We measure quality via the following
automatic metrics:

MAUVE: MAUVE is an evaluation metric for
open-ended text generation (Pillutla et al., 2021)
that achieves high correlation with human judg-
ments of text quality. It measures the distribution
similarity between the generated text and the refer-
ence text. Higher MAUVE scores indicate closer
distance between the distribution of the generated
text and that of reference text.

RankGen: Given a prefix and several possible
continuations (suffixes), RankGen (Krishna et al.,
2022) outputs a score for each suffix, measuring
the relevance between the prefix and suffix. Higher
RankGen scores indicate stronger relevance be-
tween generated suffix with the given prefix. We
thus measure the RankGen score between prefix
and generated suffix for each of the two models.

GPT-3 perplexity: We use GPT-3 (Brown et al.,
2020),5 a large-scale pre-trained language model,
to compute the perplexity of text generated with
and without interpolation conditioned on the same
prefix. Lower GPT-3 perplexity indicates stronger
relevance between prefix and generated suffix and
the better fluency of the generated suffix.

Entity-F1: Previous works (Nan et al., 2021; Lee
et al., 2022) use the percentage of hallucinated
named entities (entities that appear in the generated
text but not in the reference text) or the ratio of
named entity overlaps between the generated text
and reference text to estimate the factuality of the
generated text. In our work, we compute the F1
scores between the named entities from the gener-
ated text and reference text as a proxy for entity
hallucination. Higher F1 scores may correlate to
fewer instances of hallucinated entities.

Seq-Rep-1: We follow Welleck et al. (2020) and
use the percentage of unique unigrams (Seq-Rep-1)

4We use the first 128 tokens of each example as a prefix
that the model must condition on to generate a 256-token-long
continuation. As some of our metrics requires reference text,
we also store the ground-truth 256 tokens (gold suffix) that
follow the prefix in each example.

5We use the 6.7B gpt3-curie model via OpenAI’s API
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in the text as a metric for lexical diversity in the text.
Higher Seq-Rep-1 scores indicate lower diversity
(more repetition) in the generated text.6

3.4 Model configurations and
hyperparameters

In this work, we leverage pretrained model and
datastore checkpoints released by prior work, and
also train our own interpolation-based LMs.

Baseline LM details: For kNN-LM, we use the
implementations from Alon et al. (2022) and Khan-
delwal et al. (2020). The model in Alon et al.
(2022) relies on a backbone 117M-parameter GPT-
2 small model (Radford et al., 2019) fine-tuned on
the WikiText-103 training data. The external data-
store is constructed by the same backbone model,
and both the pretrained LM and datastore are pub-
licly released by Alon et al. (2022).7 We also test
the model in Khandelwal et al. (2020), which pro-
poses the first kNN-LM. Khandelwal et al. (2020)
uses a 247M-parameter Transformer LM trained
from scratch on WikiText-103 and the datastore is
computed using the trained Transformer LM. For
TRIME, we adopt the 247M-parameter TRIMEext
model trained from scratch on WikiText-103 and
publicly released by Zhong et al. (2022). Our “non-
retrieval” baseline is the same model without exter-
nal retrieval; in other words, it has access to only
the local memory (recent tokens) and long-range
memory (in-batch tokens). In all three set-ups, the
external datastore is constructed using the train-
ing dataset of WikiText-103; the datastores from
Zhong et al. (2022) and Khandelwal et al. (2020)
both have 103M entries, while the datastore from
Alon et al. (2022) has 117M entries (the discrep-
ancy is due to tokenization differences between the
models).

Perplexity improvements from retrieval: All
models studied in this paper substantially decrease
perplexity on WikiText-103’s validation set when
interpolation is enabled. For the model in Alon et al.
(2022), the base GPT-2 perplexity is 14.8, and it
decreases to 12.6 (-2.2) after interpolation. The
kNN-LM in (Khandelwal et al., 2020) decreases
perplexity from 17.96 (no retrieval) to 16.06 (-1.9)
after interpolation. Meanwhile, TRIME decreases

6We also compute Seq-Rep-N for N = 2, 3, 4, and ob-
serves consistent results with using Seq-Rep-1 (in Appendix
A.4).

7See the gpt2-finetuned-wikitext103 model available
here: https://github.com/neulab/knn-transformers.

Model MAUVE↑ PPLGPT-3↓ RankGen↑ EntityF1↑ SeqRep1↓

kNN-LM with and without retrieval from Alon et al. (2022)

GPT-2 small
(no retrieval) 77.7 13.1 11.7 14.2 56.7

GPT-2 small
(+ retrieval) 79.2 14.8 11.7 13.1 53.3

kNN-LM (Khandelwal et al., 2020) with and without external retrieval

Transformer
(no retrieval) 89.5 20.4 12.9 12.1 41.8

Transformer
(+ retrieval) 90.7 28.9 12.5 9.77 37.9

TRIMEEXT with and without external retrieval from Zhong et al. (2022)

TRIME
(no retrieval) 90.6 22.2 13.1 11.3 40.1

TRIME
(+ retrieval) 87.3 23.8 12.5 9.80 38.5

Table 1: Automatic evaluation metrics do not show
consistent improvement in generation quality for
interpolation-based LMs compared to their non-retrieval
baseline LMs. We evaluate three set-ups: 1) kNN-LM
with GPT2 as the baseline (top), 2) the original kNN-
LM proposed in (Khandelwal et al., 2020) which trains
a Transformer LM from scratch on the WikiText-103
training data (middle), and 3) TRIME which trains both
the LM and the retrieval mechanism (bottom).

perplexity from 17.0 (no retrieval) to 15.5 (-1.5)
after interpolation.

Hyperparameters: To generate text, we use the
hyperparameters recommended by the authors that
yield low perplexities on the WikiText-103 vali-
dation set. For the model in Alon et al. (2022)
and Khandelwal et al. (2020), the softmax temper-
ature is set to 1.0 and the interpolation coefficient
between the LM distribution and the retrieval dis-
tribution λ is set to 0.25. For TRIME(Zhong et al.,
2022), the softmax temperature is set to 1.25 and
the λ is 0.3. For most of our experiments (e.g.,
those in Table 1), unless otherwise specified, we
use nucleus sampling (Holtzman et al., 2020) with
p = 0.8 for text generation.

4 Results

We find that despite incorporating the retrieval com-
ponent and interpolating information from the base-
line LM and retrieval, these methods do not yield
any significant improvement to text generation per-
formance, and even worsen it by some metrics (Ta-
ble 1). In this section, we provide an overview of
our main results, perform more fine-grained analy-
ses, and describe a human evaluation that supports
the conclusions drawn from automatic metrics.
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Interpolation-based LMs do not improve auto-
matic text generation evaluation metrics: We
find that none of the three models significantly im-
prove generation quality compared to the baseline
LM, as shown by various metrics (Table 1). For
the model in Alon et al. (2022) (top row in Ta-
ble 1), while the MAUVE score improves by 1.5
points with retrieval, the perplexity of GPT-3 in-
creases on retrieval-augmented generations, and
the RankGen score is identical. For the model in
Khandelwal et al. (2020) (middle row in Table 1),
retrievals improves the MAUVE score even less
significantly (1.2 points) but worsens perplexity
of GPT-3, RankGen and Entity-F1. For TRIME
(bottom row in Table 1), the non-retrieval baseline
is actually slightly better across MAUVE, GPT-
3 perplexity, RankGen and Entity-F1 . In other
words, there is no convincing winner; furthermore,
contrary to the expectation that kNN-LMs reduce
hallucination by retrieving (and potentially copy-
ing) from the datastore, we do not observe any
improvement in the Entity F1 scores with the gold
suffix. We observe a marginal improvement in lexi-
cal diversity of the generations (shown by the lower
Seq-Rep-1 score 8).

These results hold across different decoding al-
gorithms: The results in Table 1 are all from
nucleus sampling. What if we change the decoding
algorithm? To investigate the impact of decoding
algorithm on generation quality, we evaluate the
kNN-LM on three different decoding algorithms:
greedy decoding, top-k sampling, and beam search.
We observe in Table 2 that none of these decod-
ing algorithms changes the result: there is no clear
winner between models with and without retrieval.

These results hold across different datasets: In
addition to WikiText-103, we also evaluate the text
generation performance of the kNN-LM on the
PG-19 dataset (Rae et al., 2020), which predom-
inantly comprises fictional books and presents a
distinct thematic variation to Wikipedia. We con-
struct an evaluation dataset from PG-19 similarly to
our constructed evaluation dataset from WikiText-
103 in Section 3.2. 9 The baseline LM is GPT2-

8We also report the Seq-Rep-N scores for N=2, 3, 4 in
Appendix A.4

9From the validation dataset of PG-19, we randomly sam-
ple 5K samples, where in each sample, the first 128 tokens
is used as the prefix. For datastore construction, we sample
1536 books from the training dataset only (filtering out the
first 10% and last 10% tokens of each books for irrelevant
content such as copyright statements). Our training dataset

Model Nucleus
Sampling

Top-k
Sampling

Greedy
Decoding

kNN-LM with and without retrieval from Alon et al. (2022)

GPT-2 small
(no retrieval) 77.7 87.1 2.32

GPT-2 small
(+ retrieval) 79.2 87.5 2.44

Table 2: The observation that kNN-LM does not sig-
nificantly improve text generation performance (mea-
sured here via MAUVE) is consistent across a variety
of decoding algorithms: nucleus sampling, top-k sam-
pling (k = 40) and greedy decoding. We note that beam
search decoding often generates repetitive text and there-
fore scores poorly with MAUVE.

Model MAUVE↑ PPLGPT-3↓ RankGen↑ EntityF1↑ SeqRep1↓

kNN-LM with and without retrieval from PG-19 (Rae et al., 2019)

GPT-2 small
(no retrieval) 8.00 17.3 4.13 5.63 47.6

GPT-2 small
(+ retrieval) 9.26 18.8 3.62 4.87 44.5

Table 3: Consistent with our findings in WikiText-103
dataset, we find in PG-19 (fictional books) that kNN-
LM does not yield consistent improvement in text gen-
eration quality compared to no-retrieval baseline LMs.

small model fine-tuned on the PG-19 dataset for
three epochs (with 28.9 perplexity on the validation
dataset).10 Table 3 shows that on the PG-19 dataset,
kNN-LM also does not improve text generation
quality. While (marginally) improving perplexity,
the kNN-LM often returns unhelpful artifacts from
the PG19 dataset (see examples in Appendix A.3).

4.1 Human evaluation

Having found that interpolation-based LMs do not
notably improve text generation quality according
to automatic evaluation metrics, we turn next to hu-
man evaluation, which is known to be more reliable
for generation tasks (Celikyilmaz et al., 2020; Kr-
ishna et al., 2021), to compare the text generated by
the kNN-LM vs. the baseline GPT-2 model from
Alon et al. (2022). We hired three English teach-
ers/editors on the freelance marketplace Upwork.
The evaluation was conducted on the platform La-
bel Studio (Tkachenko et al., 2020-2022).11 The

and datastore consist of 98M tokens, similar in size to those
in the WikiText-103 dataset.

10Consistent with Drozdov et al. (2022), the model trained
on PG-19 gives both worse MAUVE score and perplexity
compared to the model trained on WikiText-103 since the
PG-19 is a more diverse and challenging dataset.

11https://www.upwork.com, https://labelstud.io/
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Figure 1: The plot presents how many times each type
of generations (kNN-LM or GPT-2) is chosen by the
evaluators. The dark area in each bar shows that the
choices were made confidently. The light area repre-
sents the choices between kNN-LM and GPT-2 that
were hard but the evaluator still chose the corresponding
type. Overall, annotators preferred GPT-2 baseline texts
51% of the time compared to 49% for kNN-LM.

annotators were experienced in text generation eval-
uation and hired after careful selection.

The annotators were given a prefix and two con-
tinuations of the context (one generated by the base-
line LM and one generated with retrieval, with ran-
domized presentation order). The evaluators’ task
was to decide which continuation is better, indicate
whether it was hard to choose between the two fol-
lowing Thai et al. (2022), and justify their choice
in 3 to 4 sentences.12 The evaluation focused on
whether the generated text is grammatical, fluent,
consistent, and logical.13

Human evaluation shows no definitive winner
between kNN-LM and GPT-2 either: On aggre-
gate, baseline GPT-2 generations were preferred
51% of the time, vs. 49% for kNN-LM. Addition-
ally, the three annotators report that the decision
was difficult for 37% of all cases. For Rater1 and
Rater3, the rates of difficult to choose are as high
as 42% and 47% while for Rater2 it is 22%. Out of
the 45 comparison pairs, the three annotators only
agree on their choices in 17 instances (37.78%),
resulting in a Fleiss Kappa score 0.17 (slight agree-
ment). Figure 1 presents the evaluator preference
when comparing the kNN-LM to GPT-2 genera-
tions.

Both models make catastrophic errors at similar
rates: A qualitative analysis of the the evaluators’

12A screenshot of our evaluation platform can be found in
Appendix A.

13Each evaluator evaluated 45 pairs of continuations gen-
erated by kNN-LM and GPT-2. Each evaluator was paid $50
for their work.

justifications reveals that both kNN-LM and GPT-
2 make catastrophic mistakes. Table 5 gives four
examples of bad continuations, along with the eval-
uators’ comments and our categorization of the
errors. In the first row of the table, Continuation A
generated by the kNN-LM contains repetitive con-
tent (i.e., ==ZAPU retreat==), and confuses ZAPA
and ZIPRA at multiple places. The GPT-2 continua-
tion in the second row states that a person was born
in 1584 but was still alive in 1742; the generation
in the third row by the kNN-LM claims that U.S.
Route 75 curves both northeast and northwest in the
northbound direction. Furthermore, both the GPT-2
and kNN-LM’s generations change topics abruptly
as shown in the lower half of Table 5. Overall, the
quantitative and qualitative analyses of the human
evaluation results show that the kNN-LM does not
clearly improve over its base GPT-2 model despite
its significant improvement in perplexity.

5 Why do kNN-LMs fail to improve text
generation quality?

Our evaluations (both human and automatic) do not
show a significant quality increase when interpolat-
ing an LM’s predicted probability distribution with
one formed via retrieval over large external datas-
tores. In this section, we try to understand why we
do not observe an improvement by empirically ana-
lyzing the kNN-LM and find two potential reasons:
(1) despite lowering the aggregate perplexity, kNN-
LMs only improve the perplexity of 42% of all test
tokens, which suggests that the improved quality
of a subset of tokens could be counter-balanced by
worsened predictions on other tokens that do not
benefit from the kNN-LM. Moreover, we find the
entropy of the retrieval distribution to increase at
a faster rate than that of the baseline LM as the
model generates longer sequences. This difference
implies that the retriever distribution is getting nois-
ier as more tokens are sampled, potentially due to
the exposure bias stemming from the retriever hav-
ing to rely on the sampled text as the query.

5.1 KNN-LMs only benefits a subset of tokens

Many studies have shown that kNN-LMs decrease
perplexity via retrieval interpolation (Khandelwal
et al., 2020; Alon et al., 2022; Drozdov et al., 2022).
Previous work (Drozdov et al., 2022; Zhong et al.,
2022) has also suggested that kNN-LMs benefit the
inference of tokens of various part-of-speech (POS)
tags to different degrees (by lowering the perplexity
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Figure 2: Across all POS tags, we observe that kNN-
LM does not increase the probability of the majority of
gold next token predictions. For verbs, pronouns, and
adjectives, it only helps < 40% of the time (i.e., it hurts
the predictions of the majority of these tokens).

of the gold token). However, these works focus on
aggregate perplexity averaged across tokens in the
test data but do not look at individual tokens and
the percentage that actually benefit from retrieval.

Using the dataset we selected from WikiText-
103, we compute the percentage of gold tokens
from our test examples that are assigned lower per-
plexity (higher probability) by the kNN-LM com-
pared to the base LM. We find that only 42% of the
tokens benefit from kNN-LMs, while the remain-
ing 58% of the tokens are adversely affected by the
kNN-LM (i.e., the kNN-LM assigns a lower proba-
bility to the gold token compared to the base-LM).
Moreover, we calculate the percentage of gold to-
kens that benefit from kNN-LM in each POS cate-
gory (Figure 2) and consistently find the similar re-
sult that kNN-LM only helps reduce the perplexity
for a smaller subset of tokens. We show examples
of kNN-LM negatively impacting the next-token
prediction (assigning the gold token with lower
probability than the base-LM) in Table 4.

This means that despite lowering the aggregate
perplexity across the test sets, the kNN-LM is more
likely to hurt, instead of help, the inference of each
individual token. Therefore, we hypothesize that
during text generation, as the model samples a se-
quence of tokens, the advantages brought by kNN-
LM to a smaller subset of tokens are offset by other
tokens, for which kNN-LM may even have a detri-
mental impact on the inference.

Figure 3: We plot the ratio between the Shannon en-
tropy of the retriever’s next-token distribution and that
of the baseline LM softmax distribution, as the number
of generated tokens increases. The ratio increases for
longer model-generated sequences, indicating that the
retriever becomes less confident than the baseline LM
as decoding progresses.

5.2 The retriever becomes less reliable with
longer generated sequences

Additionally, we observe that as the model gener-
ates longer sequences of text, the retriever compo-
nent from kNN-LM becomes less confident and
reliable in returning a high-quality next-token dis-
tribution. Since the kNN-LM relies on interpolat-
ing the next-token distribution from the baseline
LM and that from the retriever, a lower quality re-
triever distribution can compromise the resulting
next-token distribution and adversely affect the text
generation performance.

We plot the ratio of Shannon entropy (Shannon,
2001) between the retriever distribution and that
of the baseline LM distribution on the next token
(with respect to the index of the token generated)
and find that the retriever’s entropy is increasing
at a faster rate compared to that from the base-LM
(Figure 3). 14 A higher entropy indicates lower
level of confidence (closer to a uniform distribu-
tion over all tokens) and suggests that the retriever,
when sampling long sequences, may be less reli-
able in identifying the high-quality tokens.

We hypothesize that the worsened reliability
of the retriever over longer sampled sequences
is likely a result of the exposure bias during text
generation (i.e., at test-time, the retriever has to
rely on model-generated queries that may contain
artifacts or other distributional differences from
human-written text). The retriever in kNN-LM

14Given a |V |-dimensional probability distribution p, the
entropy is computed as: H(p) = −

∑d
i=1 pi log(pi)
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Figure 4: The interpolation coefficient λ optimized for
validation perplexity does not necessarily lead to the
best text generation quality (measured by MAUVE).

is non-parametric since both the input prefix and
the context from the datastore are encoded by the
LM (without any additional retrieval parameters),
which has been adapted to the training corpus of
WikiText-103. However, during text generation, as
the model iteratively samples tokens and appends
them to the input prefix, the input context is more
likely to deviate from those in the training corpus,
hence, becomes more out-of-distribution and chal-
lenging for the retriever to accurately process.

6 Discussion

In addition to the limitations of interpolation-based
LMs described in Section 5, we hypothesize that
there are other potential factors that contribute to
the shortcomings of the kNN-LM for text gener-
ation. Specifically, it is possible that the interpo-
lation may impede the language models’ ability
for self-recovery, and also that integrating the re-
trieval distribution can potentially introduce addi-
tional burdens related to hyperparameter tuning,
which may not be optimized for text generation.
We discuss these potential issues here as they are
interesting avenues to explore for future work.

Retrieval interpolation may damage the self-
recovery ability of LMs: Language models ex-
hibit some degree of self-recovery abilities (He
et al., 2021b), i.e., they can regain fluency and
coherence even after previously generating poor-
quality tokens. This self-recovery capability is
attributed to the LM’s ability to pay close atten-
tion to recent context and ignore the long-range
past context. However, we hypothesize that when
interpolation-based LMs encounter artifacts (e.g.,
non-factual or disfluent text) in a distorted pre-

fix q̃t, they may be less likely to recover, as the
retrievals may further increase the probability of
completions that resemble those artifacts. Further-
more, as we continuously sample and append to-
kens to the prefix, which the retriever uses as the
query to construct PKNN (wt|q̃t), the retriever may
encounter additional exposure bias as shown in
Section 5.2, negatively impacting the quality of
PKNN (wt|q̃t). Thus, even when the baseline LMs
“recover” from distorted past context by producing
a high-quality distribution over the next-token pre-
diction PLM (wt|q̃t), the retriever may re-introduce
the distortion by interpolating PLM (wt|q̃t) with
PKNN (wt|q̃t).

Hyperparameters introduced by kNN-LM are
not optimized for text generation: The kNN-
LM introduces two important hyperparameters,
namely the relative weight between the two dis-
tribution λ, as well as softmax temperature for the
kNN distribution τKNN . Recent work (Xu et al.,
2023) highlights the significance of tuning τKNN

for achieving optimal kNN-LM performance, as
measured by perplexity. Similarly, we investigate
the coefficient parameter λ, which plays a vital role
as it controls the relative importance assigned to
the kNN retriever and baseline LM. Existing works
tune λ by the perplexity on the validation set. How-
ever, from Figure 4, we observe that the λ values
that produce the lowest perplexity may not trans-
late to the optimal value for text generation quality
(measured by MAUVE). Instead of tuning λ for
optimizing perplexity, we may want to consider
context-dependent λ as in Drozdov et al. (2022) for
generation (e.g., only use the retrieval distribution
when it is very confident). Finally, interpolation
may warrant the design of new decoding algorithms
specialized for retrieval-augmented generation.

7 Conclusion

In this work, we show that despite the significant
perplexity improvement brought by interpolation-
based retrieval-augmented LMs such as kNN-LMs,
such methods fail to improve the LMs’ text gen-
eration performance. The text generation quality
between kNN-LMs and baseline LMs without re-
trieval show no significant difference according to
both automatic text generation evaluation metrics
and human evaluation. Upon closer analysis, we
identify flaws in using kNN-LMs to perform autore-
gressive text generation: the method only benefits
a minority of token predictions, and the retriever’s
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quality deteriorates when generating long-form text.
We hope our findings can inspire future research
to design better training and inference methods so
that the impressive improvement of kNN-LMs in
perplexity can better be translated into gains in text
generation quality.

Ethics Statement

In this work, we investigate the text generation
quality of language models. Language models
can generate text that is harmful, offensive or un-
faithful. We advise using caution when relying
on language models to generate text and adopting
post-processing strategies on the language-model
generated text to remove undesirable content. Ad-
ditionally, training large language models can bring
significant energy cost. We hope that our analysis
of the kNN-LM and future works on this topic may
lead to more efficient method of using language
models without the need to re-train such models.

Limitations

Our work does not study all data, model, and eval-
uation configurations of interpolation-based LMs.
Additionally, we focus on the 100M token datas-
tore size, although kNN-LM can scale effectively
to datastores of 3B words. Using a larger datas-
tore may lead to further perplexity decreases, but
we do not think this contradicts our finding that
text generation degrades as retrieval quality does.
We focus exclusively on interpolation-based LMs
in this work, but similar issues for other retrieval-
augmented LMs such as RETRO (Borgeaud et al.,
2021) may also exist and be worth investigating
further. Finally, our human evaluation does not
specifically account for diversity, although some
dimensions of this are captured by our automated
metrics. Due to the overall low quality of text gen-
erated by LMs with and without retrieval, reading
their outputs results in high cognitive burden on
annotators, which might be ameliorated by using
stronger LMs than GPT-2.
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A Appendix

A.1 Examples of kNN-LM hurting the
inference of the next-token

We show examples where kNN-LM hurts the infer-
ence of the next-token in Table 4

A.2 Human evaluation interface and
examples

From our human evaluation, we show the interface
for our evaluators in Fig 5 and also selected rep-
resentative examples of evaluators’ comments in
Table 5.

A.3 Models trained on PG-19 produce
unhelpful artifacts

With retrieval from the datastore, the kNN-LM
improves the perplexity on the validation dataset of
the PG-19 marginally from 28.9 to 28.2 but does
not improve the text generation quality. Both the
baseline LM and the kNN-LM fine-tuned on the
PG-19 dataset returns artifacts from the dataset (e.g.
missing white-spaces and unnecessary line breaks),
as shown in Table 6.

A.4 Seq-Rep-N of generated text from the
baseline-LM and kNN-LM

Even though kNN-LM does not improve the text
generation quality overall, we observe an improve-
ment in lexical diversity (lower Seq-Rep-N ) from
kNN-LM on the WikiText-103 dataset in Table
7. However, this improvement in text diversity is
obtained at the cost of Entity-F1 (a proxy for factu-
ality).
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Context Ground-truth Most Probable Tokens from
base-LM vs kNN-LM Analysis

The lyrics were inspired by a story ......
To me , that ’s the way a great rock ’ n
’ roll concert should be : a place where
everyone comes together ... Maybe that
’s the dream of all art : to break down
the barriers and the divisions between

“people"
base-LM probability:
0.26
kNN-LM probability:
0.23

base-LM:
“the"(0.20), “us"(0.09),
“art"(0.03), “rock"(0.02)
kNN-LM:
“the"(0.23), “us"(0.07),
“good"(0.02), ‘art"(0.02)

In this example the base-LM predicts
the ground-truth noun token “people"
with the highest probability of all tokens
(0.26). However, after interpolating with
the retrieval distribution, the kNN-LM
decreases the probability of the ground-
truth token.

Richmond finished the 1984 season 12th
in points , with 11 ...... In the Busch
Series , he qualified at the pole position
in the two races he entered , and won
the Charlotte race . Richmond joined
Hendrick Motorsports in 1986 , where
he teamed up with veteran crew chief
Harry Hyde . It took the team until the
middle of the season’

“to"
base-LM probability:
0.78
kNN-LM probability:
0.64

base-LM:
“,"(0.07), “for"(0.03),
“when"(0.02), ‘that"(0.02)
kNN-LM:
“,"(0.10), “for"(0.06), “."(0.04),
“and"(0.02)

The ground-truth token to be predicted is
the preposition “the", which the base-
LM correctly predicts with very high
probability. However, the kNN-LM de-
creases the probability of the groud-truth
token significantly compared to the base-
LM.

Table 4: Examples where kNN-LM hurts the inference of next-token (with different part-of-speech such as noun
and preposition) by predicting of the gold token with a lower probability compared to the base-LM

Figure 5: The interface of the human evaluation. Each task consists of a context text, two continuations, two choices,
and a free-form justification text box.
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Context Continuation Comment Error

[. . .] = = = Shootdown = =
= A group of ZIPRA guer-
rillas, armed with a Strela-2
launcher, waited in the bush
beneath Flight 825’s flightpath,
and

Continuation A—kNN-LM two sol-
diers opened fire on the guerrillas. [. . .]
The ZIPRA and ZIPRA units exchanged
fire, and several ZIPRA members were
shot. After the fire was over, the ZIPRA
and ZIPRA guerrillas returned fire and
began shooting back, and one of the
ZIPRA unsuccessfully attacked a ZAPU
base at the head of Flight 825, forcing
the major to retreat. = = = = ZAPU re-
treat = = = = = = = = ZAPU retreat = =
= = [. . .] The ZIPRA moved up the hill
and captured several ZIPRA members,
forcing them to withdraw. [. . .]

Both of these continuations have
problems. I chose A because its
problems seems to influence the
meaning less than the problems in
B. [. . .] Continuation A has some
repeated words and in a few spots
ZIPRA and ZAPU seem to get
mixed up, leading to sentences like
this: "The ZIPRA moved up the hill
and captured several ZIPRA mem-
bers, forcing them to withdraw." It
was easier to recover from those con-
fusions than from the ones in Con-
tinuation B.

Repetitive content; con-
tradiction

Hu was born in <unk> County,
Anhui Province in 1584 or early
1585. [. . .] By 1619, Hu had
moved to Nanjing where he
lived with his wife Wu.

Continuation B—GPT-2 During this
time he also became a leading scholar
of the court, a position he held until
1624, [. . .]. His last year at the academy
was 1715. In 1725, Hu was appointed
secretary of the government [. . .]. In
1727, he was appointed as vice-president
of the Academy, and he remained the
academy’s secretary until 1742, [. . .].

I selected that this was a difficult de-
cision [. . .]. However, Continuation
B is an impossible choice as it has
Hu being born in 1584 and still be-
ing alive in 1725 which of course is
impossible. I was left with process
of elimination in my opinion.

Illogical; wrong chrono-
logical details

The lanes of US 75, which are
on the bottom level, are 20 feet
(6m) below ground level, giv-
ing the structure a total height
of 140 feet from bottom to top
As part of the project, I-635
was widened to include four
dedicated high-occupancy vehi-
cle lanes (HOV lanes) that are
barrier-separated and reversible.
The roads on the five levels are:
Level I: US 75, an eight lane
highway, four lanes going each
way; Level II: The junction of
the two six-lane frontage roads,
each having three through

Continuation A—kNN-LM traffic
lanes with one lane in each direction.
Level III : In the northbound direction,
US 75 curves to the northeast and US 75
curves to the northwest to follow a more
southerly routing. The northbound lanes
are two lanes in each direction, while
the southbound lanes are two lanes.
[. . .] = = Major intersections = = [. . .] =
Battle of the Kalka River = The Battle
of the Kalka River (Polish : Kalka,
pronounced ["kaU], or ["kaU"maU]) was
a decisive battle of the 15th and 16th
centuries of the 15th century in Austrian
occupied Poland. The battle was fought
in the middle of the Russo

Continuation A gives more infor-
mation and is more specific than B.
It has some lack of clarity – Level
III has the road curving both north-
east and northwest – but overall it’s
more informative than just "the in-
tersection of two frontage roads." I
would have ruled out A because of
the Battle of the Kalka River section
at the bottom. It doesn’t really have
a place in this text. But B also has
the Battle of the Falkland Islands, so
that’s a wash. A it is.

Abrupt topic change; il-
logical

(Same as above) Continuation B—GPT-2 traffic lanes.
Level III : The intersection of the two
six-lane frontage roads, each having four
through traffic lanes. Level IV: The in-
tersection of the two six-lane frontage
roads, each having two through traffic
lanes. Level V: The intersection of the
two six-lane frontage roads, each having
two through traffic lanes = = = Construc-
tion = = = The project was approved
in July 1997 and completed on Decem-
ber 17, 1997, with the groundbreaking
ceremony taking place at the State Uni-
versity of New York (SUNY) campus
in New York City. [. . .] = = = Major
intersections = = = [. . .] = Battle of the
Falkland Islands =

(Same as above) Abrupt topic change;
repetitive content

Table 5: Selected representative examples with evaluators’ comments. The error categories in the last column are
ours. Contents are shortened for the sake of space.

Context baseline-LM-generated text kNN-LM-generated text

For my part,something within me answered to
Kandinsky’s art the first time I met with it. There
was no question of looking for representation;
harmony had been

in my brain, and I had been working at it ever
since.That is why I was able to tell Kandinsky
what was going on within me. Idid not need to
be told about his melody. I knew that he was
doing itwith the greatest energy and energy and
energy and energy.

in my brain, and I had been working, like
theothers, in that direction for some years. It
was this which prompted me totry for a musi-
cal conception. I wanted to be able to make
music tosuit the moods and the contrasting cir-
cumstances of the moment,

Before going toMaria, they insist on doing the
honors, and showing the objectsinterest the vicin-
ity. So they take us to their barrack, a large-
house, and thence to ẗhe front.T̈o the latter spot
our coachmandriving

the family out of the house, and we go through
the sameprocess with them. Our next station
is in the heart of San Mateo, where theyhave a
ḧouseẅith a room on the outside, and ... and
afloor and a ceiling.

the family out of the house, and, with a chuckle,
heexplains the advantages of boarding-schools
in the United States, aswell as of boarding-
schools in France and Spain. I am reminded
of thisexception, and feel that there is a differ-
ence in the methods of boardingschools in the
two countries.

Table 6: Both the baseline LM and kNN-LM generate text that consists of artifacts from the dataset, e.g. missing
white-spaces between tokens
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Model Seq-Rep-1 Seq-Rep-2 Seq-Rep-3 Seq-Rep-4

kNN-LM with and without retrieval from Alon et al. (2022)

GPT-2 small
(no retrieval) 56.7 26.6 15.1 9.65

GPT-2 small
(+ retrieval) 53.3 22.5 11.6 6.73

Table 7: Even though the kNN-LM does not improve the overall text generation quality, we observe higher lexical
diversity (lower Seq-Rep-N ) in the kNN-LM-generated text, on the WikiText-103 dataset, using the GPT2-small
model as the baseline LM.
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