Under review as a conference paper at ICLR 2026

ACTION-CONDITIONED TRANSFORMERS FOR

DECENTRALIZED MULTI-AGENT WORLD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent reinforcement learning (MARL) has achieved strong results on large-
scale decision making, yet most methods are model-free, limiting sample effi-
ciency and stability under non-stationary teammates. Model-based reinforcement
learning (MBRL) can reduce data usage, but planning and search scale poorly with
joint action spaces. We adopt a world model approach to long-horizon coordina-
tion while avoiding expensive planning. We introduce MACT, a decentralized
transformer world model with linear complexity in the number of agents. Each
agent processes discretized observation—action tokens with a shared transformer,
while a single cross-agent Perceiver step provides global context under centralized
training and decentralized execution. MACT achieves long-horizon coordination
by coupling the Perceiver-derived global context with an action-conditioned con-
trastive objective that predicts future latent spaces several steps ahead given the
planned joint action window and binding team actions to their multi-step dynam-
ics. It produces consistent long-horizon rollouts and stronger team-level coordi-
nation. Experiments on the StarCraft Multi-Agent Challenge (SMAC) show that
MACT surpasses strong model-free baselines and prior world model variants on

most tested maps, with pronounced gains on coordination-heavy scenarios.

1 INTRODUCTION

Model free multi-agent algorithms such as

QMIX [Rashid et al.| (2020), QPLEX [Wang et al.
(2020), and MAPPO |Yu et al.| (2022)) can achieve

robust long term returns, but they do so at the
cost of millions of environment interactions. Two
structural factors drive this sample hunger: the
exponential growth of the joint observation ac-
tion space as team size increases
and the non stationarity that emerges when each
agent’s data distribution changes in response to its
teammates’ evolving policies|Gronauer & Diepold|
(2022). For example, consider a ‘focus fire’
movement on the StarCraft multi-agent Chal-
lenge [Samvelyan et al| (2019) (SMAC) environ-
ments, where a group of units must be commanded
to attack a single enemy to eliminate it faster. Suc-
cess depends on understanding the delayed con-
sequences of the team’s joint actions. This is the
type of long horizon reasoning that models trained
on one step prediction have a hard time grasping.
In single agent settings, model based reinforce-
ment learning (MBRL) addresses similar issues by
training a latent world model |Ha & Schmidhuber]
(WM) that can be rolled forward in imagi-

SMAC: Mean Win Rate Across Maps

Core Architecture
mm= Transformer-based WM
EmE RNN-based WM
80 = Model-free

Mean Win Rate (%)

SMAC: Median Win Rate Across Maps

81.5%

Median Win Rate (%)

pCT SN
e M)

MN{\E

oo
@015\

20
Y\wﬂ\ o

MR
e \7_07_&\

\7_07_1\
Figure 1: Mean (top) and median (bottom) win

rates across SMAC maps. Bars are color-coded
by their used learning methodology.

nation, thereby replacing expensive real transitions with synthetic ones, like Dreamer [Hafner et al.
(2019). The Dreamer transformer based successor TWISTER [Burchi & Timofte| (2025), and the

Under review as a conference paper at ICLR 2026

domain robust DreamerV3 Hafner et al.|(2025) show that accurate latent dynamics can cut sample
cost by an order of magnitude when the objective encourages multi step predictive structure.

Transferring this promise to multi-agent scenarios has proved difficult. MAMBA [Egorov & Shpil-
man)| (2022) swapped Dreamer’s recurrent core for an agent aware LSTM, yet all agents still shared
the same latent state, so the model scaled poorly beyond a handful of entities. A more scalable
design arrived with MARIE [Zhang et al.| (2025), which assigns each agent its own transformer for
local token dynamics and injects joint context through a lightweight Perceiver cross attention layer.
However, both MAMBA and MARIE supervise their models with one step token reconstruction
losses, so the learned representations often capture only short term correlations and struggle when-
ever rewards depend on delayed or coordinated effects.

TWISTER showed in the single agent domain that a transformer equipped with action-conditioned
contrastive predictive coding (AC-CPC) can exploit its full representational capacity. Instead of only
reconstructing the next latent state, the model predicts a sequence of future latents {z¢11, . . ., 2t+x }
conditioned on the planned actions {ay, . .., a;+x } and learns by contrasting the true future against
negative samples in the batch. This long horizon objective rewards temporal abstractions that carry
information several steps ahead and was critical for surpassing DreamerV3 on Atari 100k.

Our goal is to bring the benefits of model based learning to cooperative control without sacrificing
simplicity or scale. We present MACT, a Multi-agent Action-Conditioned Transformer that predicts
several future latent states given a planned joint action sequence. Each agent is processed locally by a
shared transformer, and a single Perceiver pass supplies light team context, which keeps computation
near linear in team size. Figure[I|previews the results: across SMAC maps, world model approaches
including MACT increase mean win rate under tight data budgets. In this paper we describe the
objective and training procedure, evaluate on SMAC with ablations on horizon length and context,
and analyze the coordination patterns that emerge.

Our contributions are described as follow:

* We designed an action-conditioned, multi-step contrastive learning objective for decentral-
ized MARL: each agent predicts future Perceiver latents from its own short action window
and current team context, with augmented positives to avoid trivial matching.

* On SMAC under tight data budgets, MACT yields higher mean and median win rates than
strong model-free and prior world-model baselines, with the largest gains on coordination-
heavy maps.

» Ablations show that moderate prediction horizons and light observation augmentation help,
and that per-agent conditioning consistently outperforms team-aggregated conditioning.

2 RELATED WORK

Model-free multi-agent reinforcement learning (MARL) has progressed through value-factorization
methods (VDN |Sunehag et al.|(2018)), QMIX |Rashid et al.|(2020), QPLEX Wang et al.|(2020)) and
policy-gradient variants (MAPPO |Yu et al.| (2022), HAPPO [Kuba et al. (2021)). All of them follow
the centralized-training and decentralized-execution (CTDE) recipe: global information is used dur-
ing learning, but each agent runs a local policy at test time. Because every joint configuration must
still be sampled, their data budgets remain in the millions. This is an obstacle that our world model
approach seeks to overcome.

Single-agent model-based RL pre-trains a generative model of environment dynamics and then im-
proves a policy inside that model. Early versions such as SimPLe [Kaiser et al.| (2019) employed
LSTMs, while Dreamer switched to a recurrent state-space model and introduced symlog rewards.
DreamerV3 Hafner et al.| (2025) refined the recipe, achieving domain robustness without per-task
tuning. Several groups replaced RNNs with transformers to exploit parallel training: IRIS Micheli
et al.|(2022) maps each frame to a 4x4 grid of VQ-VAE [van den Oord et al.| (2017)) tokens and
processes the result with a spatial-temporal transformer; TWM |Robine et al.| (2023) concatenates
observation, action, and reward tokens and trains a Transformer-XL; STORM |Zhang et al.| (2023))
adds stochastic latent variables to a GPT-like backbone and reports strong human-normalized scores
on Atari-100k. These works validate transformers as world model cores but still rely on next-step
prediction and therefore do not fully tap long-horizon capacity.

Under review as a conference paper at ICLR 2026

Contrastive objectives address this limitation. CPC|Oord et al.|(2018)) maximizes mutual information
between present and future representations by contrasting the true future against negatives. In visual
Reinforcement Learning (RL), the approach of using contrastive learning in combination with RL
was popularized by the method CURL |Laskin et al.| (2020), which treats different data-augmented
views of the same observation as a positive pair to learn spatial features but do not pay attention to
the temporal and action-conditioned nature of control tasks. Building on temporal and action-driven
features, TACO|Zheng et al.| (2023)) introduces a temporal, action-driven contrastive loss designed to
predict the future. TACO maximizes mutual information between a current state paired with a future
action sequence and the resulting future state, which allows TACO to learn both state and action
representations. A similar principle that applies in AC-CPC, which also includes the planned action
sequence, removing ambiguities in passive video prediction. TWISTER |Burchi & Timofte| (2025)
is the first to pair AC-CPC with a transformer world model, showing that long-horizon objectives
unlock transformer capacity and surpass RNN baselines in low-data regimes.

Multi-agent world models face an additional scalability challenge: the joint observation—action
space grows exponentially with team size. MAMBA [Egorov & Shpilmanl| (2022 adapts Dreamer to
SMAC but keeps a single shared latent state, which limits scalability. MARIE Zhang et al.| (2025)
distributes token dynamics over agent-specific transformers and injects global context through one
step of Perceiver cross-attention, achieving linear complexity in the number of agents. Other meth-
ods have explored augmenting the transformer world models with a teammate predictor module
(MATWM) [Deihim et al.| (2025) or using learned models from value-decomposition data meth-
ods Xu et al|(2022). However, a common weakness in this prior works is the shallow one-step
reconstruction loss, which causes rollouts to drift after a few steps, especially when rewards depend
on coordinated actions spread over time.

3 METHODOLOGY

On SMAC environments, each map is modeled as a Dec-POMDP (S, AYYN P, R, QN ~). Attime
t every allied unit i € {1:N'} receives a feature vector o/ € R% containing its own hit-points, cool-
down, terrain height, relative distances to the nearest enemies and allies, and boolean flags. This
boolean flags can be for example “enemy in range”. The raw dimensionality is modest, around
d, =~ 70 for map 3s_vs_5z, but the joint observation space Q'Y = Q x ... x QN still grows
exponentially with V. The agent then chooses a discrete action a; € A*: move-direction, attack-
enemy, stop, and etc. Executing the joint action a}"V through the unknown kernel P yields the
next state sy and the shared reward ;. An episode ends when one army is eliminated or a time-
limit is reached. The goal is to maximize the discounted return E[Y",° ~'r] while respecting
decentralized execution. An overall view of our method is described in Figure

Vector-to-token conversion. First, MACT converts each agent’s continuous observation vector into
a more structured sequence of discrete tokens. To do this, we use a small vector-quantized auto-
encoder (E, D, Z). This process creates a learned vocabulary for the features of the environment.
The encoder takes the full observation vector oti, splits it into K = 8 smaller pieces, and for each
piece, it finds the best-matching “word”, a code-book index xg ; €{1:256}, from its learned vocab-
ulary. The result for this process is a compact sequence of K tokens:

@/ = (x/,...,0l k) with =/ €Z¥ ey

Using discrete tokens instead of raw continuous numbers brings two practical advantages: it stabi-
lizes training, because predicting the correct “word” from a fixed 256-entry vocabulary is a standard
cross-entropy classification problem that avoids the large, unstable gradients of direct regression.
At the same time, it exposes useful compositional structure, since treating observations as a to-
ken sequence lets the model learn language-like dependencies. One example is to make connec-
tions between a token for “small distance to an enemy” that will be often followed by “enemy in
range”. Finally, to form the input for a single time step, the K observation tokens are concatenated
with the agent’s one-hot action a; and a placeholder aggregation token *; to yield the step block
X} =[zf, af, x|

Local Transformer dynamics. The transformer process an agent’s history and produce a summary of
its current situation. To prepare the input, token blocks are taken for each agent ¢ individually from
the start of the episode up to the current time 0:¢ and flattened into a long sequence.

Under review as a conference paper at ICLR 2026

predicted Z{,, 2 Tzl
AC-CPC Predictor p; |— @
observation o}

projected % @ projected 24 projected 24 @

A Projection gy ‘ Projection gy Projection gx
o A]
i e N
aggregation token ¢;{1* [aggregation token ¢; (5" [aggregation token ¢;3* (]
Encoder E N ' , N
i [Perceiver \ ‘ Perceiver ‘ Perceiver

N
3 E B E t K o '
% ooo Shared Transformer \ Tokens x/} \ Tokens x!% \ Tokens x\%
© i . ooooa . Doooo . ooooa
aci , acton token], action token .
y A) +

A

. b t
W
Tokens x;™ | 4%%@% + +% Encoder E Encoder E Encoder E
(]] [[] 0’14
obs tokens x|, ac aggregation
token ¢!

i tion token a!

Parameters description:
Decoder D

i [observation token [JAsgregation token

Reconstructed obs fz,] o [Action-conditioned feaure [Action token

noisy observation 0/4*

Figure 2: MACT. Tokenize observations with VQ, a shared Transformer plus a single Perceiver
layer provides per-agent state i, and global context e;. AC-CPC aligns 2, ' With projected Per-
ceiver latents from a dropout-augmented future, given [h/; e/; al, +h_1] for k=0:Kcpe—1 with geo-
metric weights. Default MACT’s action-conditioning methodology is per-agent, in Section .1 we
conducted an ablation study utilizing team aggregation.

A block-sparse Transformer ¢ processes this sequence. The block-sparse design is important: it
restricts self-attention so that each agent’s Transformer only focuses on its own history. In this stage,
the transformer cannot see the raw history of other agents. But after reading its entire history, the
model produces a single vector that summarizes the current step. This vector is the local summary,
hj € RP=. This summary is simply the Transformer’s output state at the position of the aggregation
token. Here D, is the token-embedding width (256).

Centralized latent aggregation. To inject team-level information we perform one Perceiver-style
cross-attention update. We concatenate every agent’s current tokens and embed them with Wg to
form

U, = [g:t{l, . ,xt{K,atl, .. ,:ct{\g, . ,:ct]YK,atN}WE e RIxP= L=N(K+1). (2
We also maintain a learnable per-agent query matrix Q = [¢%;...;¢"V] € RV*Pe with ¢* € RP
(D.=256). A single cross-attention layer then produces
UT
(ef, ..., elN) =Q+ softmax(?/ﬁt)Ut, 3)

so each global latent e, mixes information from all agents. Finally, the e; vectors are appended as
extra tokens to the next step’s Transformer input, propagating global context forward.

Prediction heads and one-step losses. Following MARIE, the prediction heads attach directly to
tokens produced by the local transformer. The observation head reads the k-th latent slot, not e/,
and outputs a categorical distribution over the code-book to predict &/ +1, conditioned on xét
al,, el,, and the previously generated slots 2 +1,<k- This auto-regressive factorization across the
K slots captures intra-step structure such as the geometry of nearby units. The reward head maps
the aggregation-slot hidden state i, through an MLP to produce a scalar reward prediction, 7] ~
po(P¢ | h}). The discount head shares parameters with the reward head and predicts the Bernoulli
continuation flag, 4/ ~ ps(9; | h/). Finally, the one-step likelihood objective Ly, is the sum
of token cross-entropies, a SmoothL.1 reward loss, and continuation binary cross-entropies over a
replay segment of horizon H:
H
Layn = Z(CE(J:«; ' 1.%/y1.) + SmoothL1(#/, symlog(r:)) +BCE(%/, 7).)
t=1

Under review as a conference paper at ICLR 2026

Action-conditioned contrastive prediction (per-agent). Next-step supervision does not force the
aggregation state i, to carry information about how this agent’s planned actions will shape its future
when teammates are also moving. Our AC—CPC objective therefore asks each agent to predict, in
latent space, what its Perceiver context will be several steps ahead given its own action window.
Concretely, for k € {O:chc— 1} we form the context

hti | eti | ati:t+k71 (€ RD=+Detk 4])s @)

Transformer Perceiver Agent actions

where h} € RP+ is the aggregation-slot hidden state of agent 7 at time ¢, e/ € RP< is its
Perceiver-derived global context, and ati:75 1ko1 € {0, 1}’“'“4‘ is the concatenation of the next k£ one-
hot actions of agent i, while |.A| is the per-agent discrete action vocabulary. A two-layer MLP
pi : RP=+De kAl _y Re- maps this concatenation to a projected prediction and a two-layer projec-
tor i, : RP — R produces the projected target,

s = ([P il adinn])s zin = aledn). 5.1)

To avoid trivial token matching and encourage action-relevant invariance, the target e, 'k 1s com-
puted from an augmented observation view. With a minibatch of () positives (agent—time pairs),

let Zisr, = [z, -, 2 2)] € R%XQ. The InfoNCE term uses dot-product logits 2\%) Z; 1 and
Cross-entropy over the index of the positive:

Q
L CHEA) 52)

Intuitively, the predictor must learn a causal association: “if agent i executes a/,, ,,_, while embed-
ded in team context e/, its future context should look like 2,/ - This resolves temporal ambiguity
(the action window disambiguates which future is correct), mitigates credit assignment by linking an
agent’s actions to its own future state, and reduces non-stationarity because teammates’ reactions are
already absorbed into e;. We include a same-step term (k=0) to align spaces and stabilize training,
and weight farther horizons geometrically with A.p.=0.75:

Kepe—1)\k

L= 3 ©
k=0 Z Cpc)\CJPC

ensuring gradients from distant steps remain present yet do not dominate.

Available-action regularizer and total loss. SMAC disables actions that are not possible through
an “available-action” mask. Without extra care the logits of masked actions drift to large negative
values, harming optimization. We add an auxiliary head that predicts next-step action availability.
The head is trained with cross-entropy, and its contribution is added to the overall objective. Finally,
the MACT loss is composed by the unweighted sum of token, reward, discount, availability, and
AC-CPC terms:

CMACT = Etoken + »Crewa.rd + »Cdiscount + ['av-act + »Ccpc~ (7)
We found the natural scales of these terms to be comparable and therefore use equal weights. Train-
ing details and hyperparameters are deferred to Appendix

Imagination-based actor—critic. After every world model update we hold its weights fixed and
unroll Hyoy = H latent steps. At each latent step every agent samples an action from a decen-
tralized actor wé(ht’, et), the world model produces synthetic rewards and continuation flags, and

rolls forward to the next latent. A central value network V(e ..., e/Y) evaluates global returns.

Thus, A-returns are back-propagated through the latent trajectory to train actors by advantage policy-
gradient with an entropy bonus, and critics by symlog mean-squared error. Gradients do not flow
through the frozen world model, ensuring stability.

4 EXPERIMENTS

We evaluate MACT on the StarCraft Multi-Agent Challenge (SMAC). The benchmark suite cov-
ers both easier micro scenarios (2m_vs_lz, 2s_vs_lsc, 3m, 8m, so_many_baneling) and

Under review as a conference paper at ICLR 2026

Table 1: Comparison of methods on SMAC. Values report median (std) win rate (%) over seeds.

Ma Steps MACT MATWM MARIE MAMBA MBVD MAPPO
P P (Ours) Deihim et al.|(2025) | |Zhang et al.|(2025} | [Egorov & Shpilman|(2022) | [Xu et al.|(2022) | |Yu et al.|(2022)
Med Std | Med Std | Med Std | Med Std | Med “Std | Med “Std

2m_vs_lz 50K [950 0.0 | 98.0 32 95.0 4.4 91.0 6.2 41.0 20.7 51.0 10.3
2s_vs_lsc 50K | 98.7 22 | 96.0 5.7 90.0 9.1 80.0 7.3 0.0 1.2 18.0 7.6
253z 50K | 650 1.7 | 80.0 9.0 71.0 8.6 68.0 12.1 28.0 17.5 13.0 3.0
3m S0K | 96.7 3.4 | 83.0 104 78.0 14.1 68.0 7.7 60.0 9.2 54.0 6.3
3s_vs_3z 50K | 80.0 34 | 87.0 19.4 85.0 21.8 71.0 23.7 0.0 0.0 0.0 0.0
3s_vs_4z S0K | 4.1 72 | 12.0 4.8 0.0 0.8 4.0 1.4 0.0 0.0 0.0 0.0
8m 50K | 950 50 | 67.0 24.9 72.0 7.1 68.0 6.4 52.0 189 38.0 49
MMM 50K | 392 326 | 7.0 4.7 1.0 1.6 3.0 35 0.0 0.0 0.0 0.0
so_many_baneling 50K | 944 7.9 | 86.0 229 73.0 12.4 66.0 14.2 27.0 12.3 31.0 7.6
3s_vs_5z 200K | 65.0 11.7 | 64.0 26.5 66.0 28.0 6.0 10.1 0.0 0.0 0.0 0.0
Mean — 73.3 68.0 — 63.1 — 53.1 — 20.8 — 20.5 —

Median — 872 — | 815 — 72.5 — 68.0 — 13.5 — 15.5 —

maps that demand tighter coordination or longer horizons (2s3z, 3s_vs_3z, 3s_vs_4z, MMV,
3s_vs_5z). Following the low—data protocol used by prior world model work Burchi & Timofte
(2025);|/Zhang et al.[(2025), we focus our main comparison on a 5 x 104 environment-frame budget.
For a map that is particularly hard like 3s_vs_5z it was extend the training to 2 x 10° frames to
allow for a clear performance difference. During training, we evaluate every 1,000 steps by comput-
ing the median win rate over 30 episodes. The final results are averaged across 3-4 random seeds.
For instance, we use observation-dropout augmentation with p=0.03. The action-conditioned CPC
horizon is K,.=8 on all maps except so_many_baneling and 2s3z, where K.=5. Baselines
include MAPPO |Yu et al.| (2022), MAMBA [Egorov & Shpilman| (2022) and MARIE [Zhang et al.
(2023), MATWM Deihim et al.|(2025)), and an MBVD variant Xu et al.|(2022). Table[T|summarizes
end performance, and Appendix |A|shows the learning curves.

Across tasks, MACT attains the best average performance (Mean row of Table [T} 73.3% vs.
68.0% for MATWM and 63.1% for MARIE) and ranks first on five of the ten maps. Gains
are largest on coordination-heavy settings: on 8m MACT reaches 95.0% median win rate, on
somany-baneling 94.4%, and on MMM 39.2%. Relative to MARIE, the improvements are +23.0
points on 8m and +21.4 on so_many_baneling; relative to MATWM, the improvement on MMM
is +32.2. MACT also converges rapidly on easier maps, achieving 98.7% on 2s_vs_1sc and 96.7%
on 3m. Differences are small where performance saturates, as in 2m_-vs_1z (95.0% vs. 98.0% for
MATWM). On the 200k-frame 3s_vs_5z evaluation, MACT is comparable to MARIE (65.0% vs.
66.0%).

The learning curves indicate faster rise within the 50k-frame budget on the easier maps and larger
seed variance on MMM, which is expected given the heterogeneous-unit interactions. MACT trails
MATWM on 2s3z, 3s_vs_3z, and 3s_vs_4z (by 15.0, 7.0, and 7.9 points, respectively). These
scenarios emphasize short tactical bursts and precise per-agent micro. A single Perceiver aggregation
step may propagate less fine-grained context than required, and the shorter K,.=5 for 2s3z may
contribute. Overall, the results support our central claim: coupling a Perceiver’s global context with
action-conditioned, multi-step prediction improves coordination under tight data budgets. Detailed
analyses are presented in the following ablation studies.

4.1 ABLATION STUDIES

We conduct ablation studies to isolate the impact of MACT’s key components. We chose to perform
these studies on the 3m and 8m maps, as these are representative scenarios where our model achieved
great performance. All ablations keep the architecture, optimizer, and implementation protocol fixed
to Table[2] For all the conducted experiments, only the factor under test is varied. Panels (a)—(c) in
Figure [3| correspond to the three experiments described in this section.

CPC horizon. We vary the action-conditioned CPC horizon K, € {4, 8,12} on 3m (Figure).
The K'=8 model rises quickly and reaches the highest plateau, indicating that an 8-step action win-
dow is sufficient to cover the reaction—recovery cycle needed for coordinated focus fire. K =4 learns
fastest at the very beginning but plateaus lower, consistent with under-specifying longer exchanges.
K =12 eventually approaches the =8 ceiling but starts noticeably slower and exhibits wider vari-
ability, reflecting heavier predictors and longer input action windows per InfoNCE term. Overall, an
intermediate horizon balances temporal coverage and optimization stability.

Under review as a conference paper at ICLR 2026

1.0
— Per-agent
Aggregated

0.8|

°
o

Win Rate
Win Rate
Win Rate

I
S

p=0.0

— p=0.03

— p=0.1

0.0y Ted 264 364 768 504 Ted 264 364 768 504 0% Ted 264 364 768 504
Steps Steps Steps

0.2] — K=8 0.2]
— K=12

°
N

o
==

(a) Different K levels. (b) Different noise levels. (c) Per-agent and team aggregated.

Figure 3: Ablations study conducted on 3m and 8m SMAC environments.

Observation dropout. We tested how adding a small amount of noise, by feature-dropout, to the
observations affects learning (Figure). We tried feature-dropout probability p € {0.0,0.03,0.1}
applied only when forming CPC positives on 8m. Without augmentation (p=0), learning onsets
later and saturates lower, suggesting the contrastive task can be solved by brittle token matching.
A small corruption (p=0.03) improves both speed and final win rate, pushing the predictor toward
action-relevant invariance tied to Perceiver context rather than exact feature memorization. A heavier
masking (p=0.1) can accelerate mid-training on some seeds but introduces oscillations and a slight
late-stage drop, indicating that excessive noise erodes import information. A small, targeted amount
of augmentation provides the best trade-off, encouraging the model to learn more robust features.

Per-agent vs. team aggregated conditioning. For completeness we test an agent-agnostic variant
that replaces own actions with an aggregated joint-action summary at each step:

a‘t‘:t—i—k—l = Agg(atlz:t]ik—l)a Agg € {mean, sum, max}.

To keep inputs comparable, the query features are also aggregated to team level (™ = % ¥ hi,
eteam = Agg(elV)) before applying the same Eq. (5)—(6).

On 8m, conditioning the CPC head on each agent’s own future actions clearly outperforms using
an aggregated joint-action summary (Figure). The per-agent curve lifts off roughly 1 x 10 steps
earlier, climbs steadily through mid-training, and reaches ~ 0.9 median win rate by 5 x 10* steps
with tighter seed bands. The aggregated variant lags by about 1—1.5 x 10* steps and plateaus lower
(= 0.75—0.8) with higher variance. We attribute this gap to identity-agnostic pooling blurring who
executed which maneuver: AC-CPC learns best from a precise mapping between an agent’s action
window and the evolution of its Perceiver latent, while global team context is already provided by
e;. Adding a coarse joint-action summary appears redundant and noisier, increasing predictor input
dimensionality and weakening contrastive alignment. We therefore adopt per-agent conditioning as
the default conditioning methodology in MACT.

5 LIMITATIONS

This work offers an initial look at MACT rather than a definitive account. We focused our evaluation
on a subset of SMAC with an emphasis on medium difficulty maps, extending the budget only for
one harder scenario. A better picture, especially of scalability under very hard settings will require
broader testing across the SMAC suite and additional cooperative benchmarks. Our experiments
also use structured, vector observations, whereas the action-conditioned CPC objective that inspired
our design was originally validated in visual single agent Atari. Understanding how MACT behaves
with pixel inputs, where representation learning, tokenization, and optimization dynamics differ, is
a natural next step (for example, visual SMAC variants or multi agent visual control tasks). Finally,
our ablations were run on 3m and 8m, where we observed the clearest gains. While this choice
improves measurement sensitivity, the patterns we report for horizon length, observation dropout,
and per agent versus aggregated conditioning may not transfer unchanged to maps with different
coordination structure. We view these as opportunities for extension, and systematic tests on harder
environments and visual-based benchmarks will help establish the limits of the approach.

Under review as a conference paper at ICLR 2026

6 CONCLUSION

MACT is a decentralized action-conditioned transformer world model that couples a shared per-
agent transformer and a single Perceiver step with an AC-CPC objective to tie planned actions to
multi-step latent dynamics. On SMAGC, it outperforms strong model-free and world model base-
lines, with the largest gains on coordination-heavy maps. Ablations indicate that intermediate CPC
horizons, light observation dropout, and per-agent action-conditioning are key to the improvement.
MACT can be integrated into imagination-based MARL pipelines. By adding a CPC head and con-
ditioning on short action windows, the model develops a richer long-horizon structure and achieves
stronger team coordination.

REFERENCES

Maxime Burchi and Radu Timofte. Learning transformer-based world models with contrastive pre-
dictive coding. In The Thirteenth International Conference on Learning Representations, 2025.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In Proceedings of the International Conference on
Learning Representations (ICLR), 2016.

Azad Deihim, Eduardo Alonso, and Dimitra Apostolopoulou. Transformer world model for sample
efficient multi-agent reinforcement learning. arXiv preprint arXiv:2506.18537, 2025.

Vladimir Egorov and Alexei Shpilman. Scalable multi-agent model-based reinforcement learning.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Sys-
tems, pp- 381-390, 2022.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895-943, 2022.

David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, pp. 1-7, 2025.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Jakub Grudzien Kuba, Ruiqging Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. In International
Conference on Learning Representations, 2021.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International conference on machine learning, pp. 5639—
5650. PMLR, 2020.

Dingbang Liu, Fenghui Ren, Jun Yan, Guoxin Su, Wen Gu, and Shohei Kato. Scaling up multi-agent
reinforcement learning: An extensive survey on scalability issues. IEEE Access, 12:94610-94631,
2024.

Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample-efficient world mod-
els. In The Eleventh International Conference on Learning Representations, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1-51, 2020.

Under review as a conference paper at ICLR 2026

Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. In The Eleventh International Conference on Learning
Representations, 2023.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085-2087, 2018.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Advances in Neural Information Processing Systems, volume 30, 2017.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2020.

Zhiwei Xu, Bin Zhang, Yuan Zhan, Yunpeng Baiia, Guoliang Fan, et al. Mingling foresight with
imagination: Model-based cooperative multi-agent reinforcement learning. Advances in Neural
Information Processing Systems, 35:11327-11340, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611-24624, 2022.

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
transformer based world models for reinforcement learning. Advances in Neural Information
Processing Systems, 36:27147-27166, 2023.

Yang Zhang, Chenjia Bai, Bin Zhao, Junchi Yan, Xiu Li, and Xuelong Li. Decentralized transform-
ers with centralized aggregation are sample-efficient multi-agent world models. Transactions on
Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/
forum?id=xT8BEgXmVcC.

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III,
and Furong Huang. Taco: Temporal latent action-driven contrastive loss for visual reinforcement
learning. Advances in Neural Information Processing Systems, 36:48203-48225, 2023.

https://openreview.net/forum?id=xT8BEgXmVc
https://openreview.net/forum?id=xT8BEgXmVc

Under review as a conference paper at ICLR 2026

A APPENDIX: TRAINING RESULTS

2m_vs_l1z 2s_vs_lsc 2s3z

1.0 1.0 1.0
0.8 0.8 0.8
@ @ o
50§ 506 506
£ < <
204 So4 S04
02 02 02
0 164 264 3e4 aca Se4 0 1ea 264 3e4 aea 5¢4 00 Tea 2¢4 362 7ch 5e4
Steps Steps Steps
8m MMM so_many_baneling
1.0 1.0 1.0 - =
0.8 0.8 0.8
@ @)
50§ 506 506
£ < <
So4 So4 So4]
02 02 02
0 Tea 264 3e4 aea Se4 0 Ted 2¢a 3e4 4ea 5e4 00 Tea 2¢4 362 Y3 5e4
Steps Steps Steps
vs_3z vs_4z
1.0 3m 10 3s_vs_3: 10 3s_vs_:
0.8 0.8 0.8
@ @ @
© 0.6 0.6 5 0.6
[-4 [-4 -4
c c c
04 S04 So4
02 02 02
0 164 264 3e4 3ea Se4 0 Tea 2e4 3e4 3ea Se4 00 Tea 2¢4) Zed Se4
Steps Steps Steps
3s_vs_5z
1.0 S
0.8
@
0.6
[-4
c
£ o4
02
o.

4e4 8ed 1.2e5 1.6e5 2e5
Steps

Figure 4: Evaluation win rate across all tested SMAC environments. During training, we ran 30
evaluation episodes every 1,000 environment steps.

B APPENDIX: MACT IMPLEMENTATION

Reproducibility and setup. All ablations are run on the same implementation as our main method
and keep MARIE’s learning setup wherever applicable. To minimize environment drift, we pin the
StarCraft II client to SC2.4.1.2.60604 (the same version used by MATWM). It is worth to note that
the use of different SC2 builds can yield slightly different win rates. Unlike MARIE (Python 3.7),
our codebase targets Python 3.11 and PyTorch 2.x. Exact package versions, training scripts, per-map
configs, the CSV files used to render plots, and the plotting scripts themselves are provided in the
project repositor (see requirements.txt and the data/ folders).

Hyperparameters. We keep global training knobs identical across main and ablation runs (op-
timizer families, learning rates, clipping, entropy coefficient, etc.; see Table E]) As MARIE, for
map-specific settings we select the imagination horizon H and the number of policy updates as a
function of the number of allied agents N: for N < 3 (e.g., 2m_vs_1z, 3m, 3s_vs_5z) we use
H=15 and 4 updates; for 4 <N <5 (e.g., 2s3z) we use H=8 and 10 updates; for N >6 (e.g., 8m,
MMM, somany_baneling) we use H=5 and 30 updates. Unless stated otherwise, the tokenizer
and world model are each trained for 200 epochs, we perform 5 PPO epochs per policy update, and
the A-return uses A=0.95 with v=0.99. Map-specific overrides (e.g., Kcyc) follow Table

What to toggle for each ablation. We change one switch at a time and keep everything else
fixed. Action—conditioning is either per-agent or team (flag: cpc_mode); if team, choose how to
aggregate joint actions (mean, sum, or max via action_agg). The CPC horizon and its geometric
weighting use K_cpc and A, (defaults 8 and 0.75; map-specific overrides are in Table . InfoNCE

'Code available: https://anonymous.4open.science/status/MACT

10

https://anonymous.4open.science/status/MACT

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameters for MACT in SMAC environments.

Hyperparameter Value
Batch size for tokenizer training 256
Batch size for world model training 30
Optimizer for tokenizer AdamW
Optimizer for world model AdamW
Optimizer for actor & critic Adam
Tokenizer learning rate 0.0003
World model learning rate 0.0003
Actor learning rate 0.0005
Critic learning rate 0.0005
Gradient clipping (actor & critic) max-norm 1
Gradient clipping (tokenizer) 10
Gradient clipping (world model) max-norm 1
Weight decay for world model 0.01
A for A-return 0.95
Discount factor ~y 0.99
Entropy coefficient 0.001
Buffer size (transitions) 2.5 x 10°
Tokenizer training epochs 200
World model training epochs 200
Collected transitions between updates {100, 200}
Epochs per policy update (PPO epochs) 5
PPO clipping parameter e 0.2
Number of imagined rollouts 600 or 400
Imagination horizon H {15,8,5}
Number of policy updates {4, 10, 30}
Number of stacking observations 5
Observe agent id False
Observe last action of itself False
AC-CPC
CPC horizon K. gt
Geometric decay Acpe 0.75
Projection dimension (query/key) 512
Activation ELU Clevert et al.| (2016)
Action-conditioning Per-agent action window a/,
Negatives (InfoNCE) In-batch
Positive target Perceiver latent of augmented obs.
Vector-state augmentation dropout p=0.03

Particularly, we used f Kcpe=5o0n somany.-baneling, 2c.vs_64zg and 2s3z; 8 on all other maps.

key detachment is a simple on/off (detach_keys). Reward targets use SmoothLL1 on symlogged
values by default. MARIE-style discrete two-hot is enabled via use_ce_for_reward (only used
for 2m_vs_1z). All ablations use the same evaluation protocol and plotting code.

Pseudocode overview. Algorithm [I]summarizes MACT in three phases. (i) Experience collection
gathers short trajectories in SMAC and stores {o, a, r, v} in a replay buffer. (ii) World—model update
samples a segment, builds per-step team context with one Perceiver cross-attention to obtain e}V,
and runs the shared per-agent Transformer to produce h;. The one-step likelihood (token, reward,
discount, and optional availability heads) is combined with a per-agent action-conditioned CPC loss:
for k=0:Kcp—1, a predictor consumes [h/; ef; a/,,] (for k=0 the action window is empty)
and is trained via InfoNCE against a projected Perceiver latent from an augmented future view; terms
are weighted geometrically by Acpc. (iii) Policy learning in imagination (CTDE) freezes the world
model and unrolls H,,) latent steps; masked decentralized actors produce actions, a centralized critic
evaluates returns, and A-returns train the agents.

11

Under review as a conference paper at ICLR 2026

Algorithm 1: MACT (per-agent) training pseudocode

Input : Replay buffer D;
horizons H (model), Hyon (imagination);
CPC horizon Kpc;
decay Acpe
Modules: Tokenizer (E, D);
shared per-agent Transformer ¢;
Perceiver cross-attn 6;
CPC heads {pk, qr };
decentralized actors {7y, };
centralized critic V¢
for epoch =1,2,... do
// (i) Collect real experience
0 < ENV.RESET(); repeat
sample a’ ~ 7, (- | 0') for i=1:N (mask infeasible);
o', r,done < ENV.STEP(a');
v + [[~done];
push {0, a,r,~v} to D;
0 < done? ENV.RESET() : 0
until n steps
// (ii) Train world model
sample segment {0y ™, at™ ¢,y }IZH T ~ D
Perceiver:
er™ « PERCEIVERg(E(of'™), af')
Transformer:
h; + TRANSFORMERy([z%,, al,, e,]) fori=1:N
One-step loss:
ﬁdyn — Eloken + »Creward + Ediscoum(“"ﬁavail)
// Per—agent AC{CPC (InfoNCE with in-batch negatives)
0} + AUGMENT_VECTOR (o) // dropout/noise on vectors
e, "N < PERCEIVERg(E(0}), at) // augmented view
for k =0to K..—1do

/

fori=1toNdo
Clp [ht’; [a,f:H_k_l] // empty action window if k=0
Bl pk(cgk) // query projection
Ziw — ar(edy) // target projection (augmented future)
stack Zy 4+ [zéi)k]?:l over all time—agent pairs in the minibatch
1 ~(g)T
b 35 ZqQ=1 CE(Zii)k Zivk, q) // InfoNCE
Kepe—1 k
A
Ecpc - cpe

= T M
= j=0 cpe
Update (E, D, ¢, 6, {pk, qc }) by AdamW on Lwm = Layn + Lepe
// (iii) Train actors in imagination (CTDE)
init og ~ D,
ey < PERCEIVERg (E(00), ao);
fort =0to Hy,y — 1 do
sample a; ~ 7712 (hi, ef) (mask infeasible);
world model rolls to (x/,1, ez}) and predicts 7+,
compute A-returns from {7, 9+ };
update v by advantage PG (entropy bonus) and £ by symlog MSE

C APPENDIX: USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR 2026 LLM policies, we used LLMs only for copy-editing and for drafting
minor plotting/figure scripts. All ideas and results are the authors’ own, and all LLM output was
reviewed and any code verified before use.

12

	Introduction
	Related Work
	Methodology
	Experiments
	Ablation Studies

	Limitations
	Conclusion
	Appendix: Training results
	Appendix: MACT implementation
	Appendix: Use of Large Language Models (LLMs)

