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ABSTRACT

Recent progress in large reasoning models for challenging mathematical reason-
ing has been driven by reinforcement learning (RL). Incorporating long chain-
of-thought (CoT) data during mid-training has also been shown to substantially
improve reasoning depth. However, current approaches often utilize CoT data
indiscriminately, leaving open the critical question of which data types most ef-
fectively enhance model reasoning capabilities. In this paper, we define the foun-
dation model’s reasoning potential for the first time as the inverse of the num-
ber of independent attempts required to correctly answer the question, which is
strongly correlated with the final model performance. We then propose utilizing
diverse data enriched with high-value reasoning patterns to expand the reason-
ing potential. Specifically, we abstract atomic reasoning patterns from CoT se-
quences, characterized by commonality and inductive capabilities, and use them
to construct a core reference set enriched with valuable reasoning patterns. Fur-
thermore, we propose a dual-granularity algorithm involving chains of reasoning
patterns and token entropy, efficiently selecting high-value CoT data (CoTP) from
the data pool that aligns with the core set, thereby training models to master rea-
soning effectively. Only 10B-token CoTP data enables the 85A6B Mixture-of-
Experts (MoE) model to improve by 9.58% on the challenging AIME 2024 and
2025, and to raise the upper bound of downstream RL performance by 7.81%. []_-]

1 INTRODUCTION

Recent progress in large reasoning models (LRMs) for challenging mathematical reasoning has
largely been driven by post-training optimization, particularly via RL frameworks that improve
problem-solving abilities through exploratory feedback (Zeng et al.| |2025; [Zheng et al., [2025}
Schulman et al.| [2017; [Shao et al., 2024a)). Empirical studies (Chen et al., 2025} [Yue et al., [2025;
Liu et al.l 2025a; [Zhao et al., 2025b; [Wen et al., 2025) have revealed some critical insights that
the parameter space of the foundation model inherently contains latent pathways for challenging
reasoning and RL training effectively operationalizes the explicit manifestation of these implicit ca-
pabilities. In other words, the reasoning capability learned in foundation models directly influences
and limits the upper bounds of RL performance, with certain open-source foundation models like
Llama (Grattafiori et al., 2024)) displaying unstable RL performance, emphasizing the urgent need
for a thorough exploration of foundation model reasoning capabilities.

Recent studies suggest that blending question-answer (QA) data with chain-of-thought (CoT) during
the mid-training stage, especially long-CoT samples, can markedly enhance the depth of reasoning
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(a) The CoTP framework that selects long-CoT data similar to the core (b) Graph of core set reason-
set based on the chains of reasoning patterns and token entropy. ing pattern chains.

Figure 1: Illustration of the CoTP framework. The left figure shows the overall process of the CoTP
framework, while the right figure shows the graph of reasoning chains. The patterns with higher
TF-IDF weights are important, while the remaining patterns are considered normal. The CoTP
framework selects the minimum distance chain from the source data pool.

needed to tackle challenging problems (Wang et al.| [2025b} [Zhang et al., 2025b; [Tu et al.l [2025).
Prevailing approaches primarily focus on augmenting datasets with challenging problems to gener-
ate long-CoT trajectories through knowledge distillation. However, these methods typically employ
CoT data in a coarse-grained manner, lacking a thorough investigation into the inherent paradigmatic
characteristics and deeper essence of reasoning within CoT sequences for nuanced and differenti-
ated applications. Therefore, elucidating the reasoning paradigms that can significantly expand the
reasoning potential of foundation models represents a pivotal research direction.

Building on these insights, our research focuses on how to effectively enrich reasoning patterns
during mid-training to expand the reasoning potential of foundation models. We first theoretically
define the reasoning potential of the foundation model and demonstrate that expanding this poten-
tial is equivalent to reducing the average number of reasoning attempts needed to correctly answer
the question. We then abstract atomic reasoning patterns from CoT sequences, characterized by
commonality and inductive capabilities, and use these to construct a core reference set enriched
with valuable reasoning patterns. We propose a dual-granularity algorithm using weighted Dynamic
Time Warping (DTW) to select long-CoT data exhibiting high-value reasoning patterns similar to
those in the core set based on both the chains of reasoning patterns and token entropy.

Extensive experiments demonstrate that mid-training on just 10B high-value reasoning data can
significantly expand the reasoning potential of the 85A6B Mixture-of-Experts foundational model
(MoE-6B-85B) and substantially raise the upper bounds of RL performance. In summary, our con-
tributions are as follows:

1. We theoretically define the reasoning potential of the foundation model for the first time as
the inverse of the number of independent attempts required to correctly answer the question
and abstract reasoning patterns that exhibit commonality and inductive capabilities from
CoT data, guiding the construction of a high-value core reference set.

2. We propose a dual-granularity algorithm involving chains of reasoning patterns and token
entropy, which efficiently selects CoT data with high-value reasoning patterns that aligns
with the core reference set from the data pool, to effectively enrich reasoning patterns and
expand the reasoning potential of foundation models.

3. We construct a long-CoT reasoning dataset, CoTP, which enables the 85A6B MoE model to
maintain general performance while achieving a 9.58% improvement on the challenging
AIME 2024 and 2025 and raising the upper bound of downstream RL performance by
7.81%.
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2  COTP: HIGH-VALUE REASONING PATTERNS FOR EFFICIENT REASONING

Our research aims to train the foundation model My to learn a wide variety of high-value reason-
ing patterns during the mid-training stage, thereby expanding the reasoning potential of M and
incentivizing RL performance. We begin by theoretically defining and analyzing the reasoning po-
tential of the foundation model. By abstracting atomic reasoning patterns from CoT sequences, we
construct a core reference set enriched with valuable reasoning patterns to approximate the oracle
reasoning data. As depicted in Figure [Ta] our CoTP framework effectively selects long-CoT data
similar to the core set from the source data pool using chains of reasoning patterns and token entropy,
aided by a dual-granularity algorithm involving weighted DTW.

2.1 PROBLEM FORMULATION

We theoretically define and analyze the model potential. Unlike conventional deterministic model
evaluation, we assess the model potential by adopting the sampling mode inference multiple times to
capture the stochastic nature of model performance. The model potential is then defined as follows:

Definition 1 (Model Potential) For a given model M in sampling decoding mode and a question
gi, we define the model potential ®(M, q;) as the probability that the model generates the correct
answer for question q; when sampling from its output distribution:

(M, @) = P[frla:) = ail, (1)

where faq(q;) denotes the sampled output and a is the correct answer. The overall model potential

D(M, Deyai) is defined as the expected potential on an evaluation dataset Deyar = { (¢, ai)}fv:“i’“l :

Neval
1 cva

(I)(M, Deval) = ]E(q,a)NDm;az [CD(Ma Q)] = N . Z (I)(Ma Q'L) (2)
eval ;T

There is a fundamental relationship between model potential and expected reasoning cost.

Corollary 1 Ler K; denote the first-passage time for question q;, representing the number of inde-
pendent attempts required to solve q;. Suppose each attempt is an independent Bernoulli trial with

success probability ®(M, q;), so that K; ~ Geom (P (M, q;)). Then,

E[K;]

In other words, the model potential is the inverse of the expected first-passage time and a smaller
K indicates higher model potential.

To achieve a lower K for any given question, a promising approach is to extensively expose the
model to a wide range of effective reasoning paradigms and enable it to internalize them. This
insight motivates us to construct an ideal oracle dataset for training LLMs, which consists of samples
that exhibit high reasoning efficiency, i.e., those with low- K characteristics.

Objective. Formally, assume there exists an ideal oracle training dataset D ,. that enables the

foundation model to achieve maximal reasoning potential. Our goal is to select a training subset

Dj, 4 containing M samples from a given source dataset Dyoyree = {(g5, ¢5, a;j, Kj)}év:l to min-
imize the gap between the reasoning potential of the model trained on Dy, ., and that trained on
DZracle:
D;kracle = arg mgx [(I)(MDa Deval) - CI)(MO, Deval)] (4)
chrain = arg min ‘(I)(M'D,Deval) - (I)(MD;racle7Deval)| ) (5)

DCDsources|P|I=M

where Mp denotes the model trained on dataset D, c; and a; are the CoT and answer for question
g;, and £; denotes metadata labels such as subject and difficulty.
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2.2 CORE SET APPROXIMATES ORACLE

Since it is difficult to determine D}, .., we propose approximating it using a carefully constructed
reference core set consisting of CoT data rich in diverse high-value reasoning patterns, as shown in

Figure[Tb] This core set will guide the selection of Dyyqir, from Dsoyree.

We propose capturing the reasoning properties of each CoT sample at two granularities: using pat-
tern chains to capture highly abstract reasoning paradigms (Chen et al., 2025)), and using entropy
chains to capture token features with high reasoning gain (Wang et al.,[2025a; |Cui et al., [2025).

Definition 2 (Reasoning Pattern and Pattern Chain) A reasoning pattern p is an atomic cogni-
tive operation representing a fundamental reasoning step applicable across diverse problem do-
mains (see Figure . And a pattern chain C = [p1, pa, . . ., pn] is an ordered sequence of reasoning
patterns extracted from a CoT sequence (see Figured).

We employ Deepseek-V3 (Liu et al., [2024) to annotate the reasoning pattern chain for each CoT
sequence (detailed in Appendix [E). The entropy of each token in the CoT sequence is computed
as hy = — ) cype(v)logps(v), where pi(v) denotes the probability of token v at position .
Consequently, the entropy chain is represented as H = [hq, ha, ..., hp]. [lustrative examples of
annotated reasoning pattern chains and entropy chains for CoT data are provided in Appendix|[G.3]

Formally, we define extraction functions £ : C — P* and 1) : C — R”', mapping each CoT sequence
c to its pattern chain £ (c) and entropy chain 7)(c). (1) To construct the core set, we first filter questions
from the source dataset Dg,yce, annotated with difficulty levels and problem types. Questions are
randomly sampled to match the expected distribution. We then employ multiple strong reasoning
models to independently generate answers, using majority voting to determine the correct ones, and
filter out low-quality data, such as unsolvable questions, yielding Q@ = {q,...,qjo|}. (2) For each
¢; € Q, we employ a strong reasoning model to generate r CoT sequences denoted as {c; ; }§=1-
We extract the pattern chains £(c; ;) and assess the importance of each pattern py, for the question g;
using the TF-IDF weighting scheme:

w(pk | ¢i» Q) = TF(pr, ¢;) x IDF(py, Q), (6)

where the calculation details for TF and IDF are provided in Appendix [B.1] (3) From the remain-
ing CoT sequences with correct answers, according to the importance scores of different patterns,
we manually select those exhibiting distinctive, high-importance patterns to construct the core set
Ceore = {(qi,ci,ai,£;)}:_, (see Figure , where each instance is accompanied by its pattern
importance weights Q; = {w(px. | ¢, Q) } for pi. € &(c;).

2.3  SELECT TRAINING DATA WITH HIGH-VALUE REASONING PATTERNS

Given Ceore = {(qf, ¢, a$,£5)}:_,, we construct a training dataset Dy;.q;y, Of size T by selecting

instances with similar CoT sequences from the source dataset Dgyyrce = {(q3q , c?, a} K?) é\le_ For
analytical convenience, we set T' = t - 0, where T' < N, ensuring each core instance is associated
with o source instances. We formulate this as an assignment problem with capacity constraints. Let

D € R™¥, where D;; denotes the distance between CoT sequences c§ and c;. We seek to optimize

a binary matrix S € {0,1}**%, where S;; = 1 signifies the assignment of source instance j to core
instance i. The objective is given by:

t N
Insin Z Z Dij Sij

i=1 j=1

N . (7
st Y Sij=o¥ie Lty > S; <1,¥j €[1,N]; S € {0,1}

j=1 i=1

The distance D;; is the weighted sum of pattern chain and entropy chain distances, with A € [0, 1]:

Dij = Adpaern (§(¢7), §(¢5)) + (1 = A) denropy (n(c5), n(c5))- ()
For distance computation, we employ DTW for both dimensions:
d(x,y) = WeightedDTW(z, y, w, 9). )
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We set the parameters as follows: for the pattern chain distance, z = £(c§), y = & (cj), w =,
and 6 = dygram (see Figure E]); for the entropy chain distance, = n(cf), y = n(c?), w = 1, and
0 = dabs. The distance computation and WeightedDTW are detailed in Algorithmsand

To efficiently solve this optimization problem, we reformulate it as a standard linear assignment
problem by replicating each core instance o times, resulting in an expanded cost matrix of size
t -0 x N with entries D;;. The optimal assignment is then obtained using the Hungarian algorithm
(Kuhnl, [1955; Mills-Tettey et al.l [2007). This transformation guarantees optimality, as each source
instance is assigned to at most one core, and the replication ensures that each core receives exactly
o assignments (see Appendix for proof). The overall data selection procedure of our CoTP
framework is summarized in Algorithm [T} Note that it is domain-agnostic and theoretically appli-
cable to any scenario decomposable into atomic reasoning patterns (see Appendix for pattern
visualization in STEM domains).

Algorithm 1 Hungarian Data Selection Algorithm
Input: Source dataset Dp0;; Core Set Coore; Weight parameter A
Output: Final selected dataset Dgeject

1: Initialize Dseect — 0, D € RIProot[X[Ceorel

2: for each (q;?, s, aj,ﬁj) € Dpoot, © = 1 tom do
3: dpaern  WeightedDTW (£(c5), £(c5), Qi dngram) // refer to Algorithmand
4 denopy < WeightedDTW (n(c5),1(c), 1, daps) // refer to Algorithm
5: D[]v Z] — A dpattern + (1 - )\) : dentropy
6
7
8

: assignment; < Hungarian(D;) // Input: cost matrix; Output: optimal assignment
: Dsereet + {(q5,¢5,a5,£3) : s € selected indices from assignmentj}

ERAaC R}

: return Dgepect

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Data Construction. To construct a high-quality reasoning data pool, we integrate diverse math-
ematical QA datasets as follows and conduct rigorous n-gram deduplication: (1) OpenR1-Math-
220k (Hugging Facel 2025) (OpenR1-Math) comprises 220k math problems, each expanded with
two to four reasoning traces generated by DeepSeek-R1 (Guo et al., [2025); (2) AM-DeepSeek-
R1-Distilled (Zhao et al., 2025a) (AM-Distilled) focuses on general reasoning tasks, with detailed
thinking traces; (3) BoostQA (Zhang et al. [2025b) consists of large-scale QA pairs of different
difficulty levels. We specifically select high-difficulty H4/H5-level questions from BoostQA and
employ DeepSeek-R1 to generate long reasoning CoT, maintaining consistency with OpenR1-Math
and AM-Distilled, with a maximum output length set to 32k tokens. In industrial production, the use
of multiple reasoning models is encouraged to enrich the variety of reasoning patterns. We construct
the LongCoTPool (see Figure by excluding truncated or unanswered data, annotating chains of
reasoning patterns, and ensuring no overlap with the core set. Following |Shao et al.| (2024b)), we
employ exact 10-gram matching and embedding-based similarity filtering to mitigate contamination
of questions and answers originating from benchmarks.

Training Details. We conduct mid-training experiments using the 85A6B MoE (Jiang et al.|[2024)
foundation model, which is pre-trained on 14T-token corpora. During the mid-training stage, the
model decays on a mixture of 30B-token specialized experimental reasoning data and general-
domain data, KnowEdu (Zhang et al.| 2025b) at a 1:2 ratio. The reasoning data follows a structured
format of {question}\n{cot_answer} with final answers encapsulated in \boxed{}. In scaling ex-
periments, the data volume is expanded to 60B tokens while maintaining the same data blend ratio.
We further conduct SFT using the same collected dataset of 60k long-CoT entries to enhance the
models’ capability to generate long-CoT sequences. This step is crucial for ensuring fair compar-
isons across models, as it prevents underestimation of models that initially lack the ability to produce
long-CoT outputs (see analysis in Appendix[D.2). Moreover, the SFT stage facilitates smooth transi-
tions to RL by establishing a robust foundation in CoT reasoning for effective rollouts. Importantly,
we apply the same SFT data across all models to eliminate any variances and uphold consistency
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Table 1: General performance and average pass@1 accuracy (%) of models. The best and second-
best are in bold and underlined, respectively. Abbreviations: Beyond = BeyondAIME.

Dataset | General | AIME2025 AIME2024 HMMT2025 Beyond MATHS500 AVG.
KnowEdu 64.39 | 0.33£0.35 1.22+0.68 5.10£1.40 0.00+0.00 45.80+4.37 10.49+1.36
BoostQA 63.29 | 0.52£0.46 1.46+0.76 4.06£1.25 0.40+0.39 54.00+4.37 12.09%1.45

JiuZhang3.0 64.32 | 0.83+£0.57 1.25+£0.71 2.924+1.06 0.10£0.20 56.00+4.36 12.22+1.38
MegaMathQA | 64.79 | 0.21£0.29 2.19+£0.93 4.17£1.25 0.40+0.39 51.80+4.38 11.75+1.45
OMlInstruct-2 | 66.24 | 3.44+1.15 8.02+1.73 5.42+1.44 1.20+£0.67 72.204+3.93 18.06+1.78
OpenR1-Math | 66.58 |23.96+2.74 29.694+2.92 16.04+2.34 9.10+1.79 87.80+2.87 33.324+2.53
AM-Distilled | 67.97 |23.12+£2.70 25.52+2.79 18.02+2.46 8.30+1.72 87.204+2.93 32.43+2.52

LongCoTPool | 65.95 |21.89+2.46 24.90+2.85 15.63+2.31 7.90+1.72 85.40+3.10 31.14+2.49
CoTP (Ours) 66.08 |28.02+2.88 37.924+3.09 20.73+2.58 10.20+1.88 90.80+2.54 37.53+2.59

in evaluation conditions. Furthermore, we conduct experiments to verify that the expanded reason-
ing potential of the foundation model can enhance downstream RL performance. Specifically, we
apply the same experimental settings to foundation models trained on different datasets to evaluate
their subsequent RL performance, where the RL algorithm adopts GSPO (Zheng et al., 2025). The
detailed setup is provided in Appendix

Evaluation. We conduct a comprehensive evaluation of mid-trained models to assess their capa-
bility to sustain general performance after exposure to reasoning-intensive data, including bench-
marks such as MMLU (Hendrycks et al.,|2021a), CMMLU (Li et al., 2024), C-Eval (Huang et al.,
2023)), WinoGrande (Sakaguchi et al| 2021), HellaSwag (Zellers et al., 2019), ARC-C (Clark
et al., 2018), BIG-Bench (Suzgun et al., 2023) and DROP (Dua et al., 2019). Furthermore,
we conduct assessments of the SFT models on downstream challenging mathematical reason-
ing tasks to examine the reasoning potential of the foundation models. The benchmarks include
AIME 2025 & 2024 (MAA), HMMT 2025 (HMMT), BeyondAIME (ByteDance-Seed, 2025), and
MATHS500 (Hendrycks et al.,[2021b), each repeated multiple times for statistical robustness (detailed
in Appendix @ Pass@k (Chen et al.| [2021) curves are drawn to provide a detailed visualization
of model performance dynamics with increasing attempts k. For the RL stage, the same benchmarks
are employed to evaluate the enhancements in reasoning capabilities.

Baselines. Baselines can be divided into two categories, which differ in mid-training data with the
same other settings. The first paradigm evaluates the 30B-token general corpus KnowEdu (Zhang
et al.,2025b), a high-quality knowledge-rich educational dataset. The second paradigm assesses the
QA blend following the same 1:2 blend ratio between QA data and KnowEdu. BoostQA (Zhang
et al.l 2025b) contains QA data without CoT sequences. The short-CoT QA datasets include Ji-
uZhang3.0 (Zhou et al., 2024), MegaMathQA, a QA subset from MegaMath-Synthetic (Zhou et al.,
2023])), and OpenMathlInstruct-2 (Toshniwal et al., 2024) (OMInstruct-2). The long-CoT QA datasets
include OpenR1-Math, AM-Distilled, and our curated data pool, LongCoTPool. (detailed in TableE])

3.2 MAIN RESULTS

Only 10B high-value reasoning data selected by CoTP can significantly improve multiple chal-
lenging mathematical reasoning tasks by an average of 6.39 %, reaching SOTA results and sub-
stantially raising the upper bound of RL performance. As depicted in Table|I| CoTP not only
sustains performance across general benchmarks, but also surpasses baselines on multiple challeng-
ing mathematical reasoning benchmarks, with average gains of 4.21% compared to OpenR1-Math
and 5.10% compared to AM-Distilled. More detailed discussions on general performance are shown
in Appendix[D.T] It offers an average improvement of 6.39% over LongCoTPool, with a remarkable
9.58% enhancement on AIME 2025 & 2024. Furthermore, LongCoTPool, as a mixed data pool,
shows a slight decline in average performance relative to OpenR1-Math and AM-Distilled, indicat-
ing that a simple mixing of reasoning data might be insufficient to expand the model’s reasoning po-
tential. In contrast, CoTP, curated from LongCoTPool, achieves optimal performance, underscoring
the importance of selecting high-value reasoning data and the advantages of our CoTP framework.

6
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Table 2: Comparison of the performance of models mid-trained on different datasets.

| AIME 2025 | AIME 2024 | HMMT 2025 | Beyond AIME | MATH500 |  AVG.

Dataset
| SFT RL | SFT RL |SFT RL |SFT RL |SFT RL |SFT RL
KnowEdu 033 031|122 083|510 125 |0.00 0.00 |45.80 44.60|10.49 9.40
LongCoTPool |21.89 31.88|24.90 44.38|15.63 3531 | 790 16.40 |85.40 90.20|31.14 43.63
CoTP (Ours) |28.02 40.81|37.92 58.65|20.73 41.35 [10.20 23.20 |{90.80 93.20|37.53 51.44
AIME 2025 BeyondAIME As depicted in Figure [2| in the pass@k
- evaluation, models mid-trained on CoT
50-5 041 datasets, particularly CoTP, show consis-
2 04 03 tent and progressive improvement as the
., number of attempts k increases, along
Yy 021 with superior performance as the RL
g“ training steps increase, consistent with
2 ol St 1 — findings from OctoThinker (Wang et al.,
O ol 0.0 e -~ 2025b). This growth highlights the ex-
12 4 8 162 e 12 4 8 162 s panded model potential during the mid-
Number of Samples k  Number of Samples k training stage (see Table B]) which can
T e N congtatbocl substantially raise the upper bound of
RL performance. = This demonstrates
w0 25 that the improvements introduced dur-
% as o ing mid-training can be effectively car-
S ried over to RL, rather than being prema-
Z 15 turely acquired during mid-training and
< e e 4. . .
52 thereby diminishing the distinct benefits
3 2 10 typically observed in RL, which would

otherwise result in no significant differ-
éjmm-mhwm] éjr"‘*mA-«MMwm] ence in final model performance. Our
0 100 200 30 0 100 200 300 CoTP dataset stands out by exhibiting
RL Steps RL Steps superior mathematical reasoning capabil-
. . ities, with an average improvement of
Figure 2: The comparison of pass@k and RL perfor- = g1, ver LongCoTPool and 42.04%
mance across different datasets. over KnowEdu. This highlights its ef-
ficacy for expanding challenging mathe-

matical reasoning potential, thereby incentivizing RL performance.

CoTP exhibits exceptional scalability in challenging mathematical reasoning tasks. As illus-
trated in Figure [3] (detailed in Appendix [D.3), when scaled to 60B tokens—with additional data
incorporated by relaxing the similarity threshold—the model sustains its upward performance tra-
jectory, achieving a 4.72% average improvement on AIME 2025 & 2024 compared to the results
at 30B tokens. This suggests that CoTP effectively expands the model’s potential in challenging
mathematical reasoning tasks even at larger data volumes while maintaining general performance,
demonstrating its continuous effectiveness in recalling high-value reasoning data.

3.3 ABLATIONS

We conduct ablation studies to analyze the impact of various components in the CoTP framework.
For efficiency and rapid validation, these ablation experiments are performed on the 12B-token QA
blend, maintaining the same 1:2 ratio between QA data and KnowEdu and and using the same
experimental settings as in the main experiments. The results are shown in Table 3]

Entropy-based selection enhances the quality of reasoning data accessed. By employing a
reference model to perform an offline evaluation of the information content of each token within
the CoT reasoning data (Wang et al., [2025a)), entropy-based selection enables a more fine-grained
capture of token-level reasoning paradigms. The utility of this approach is further illustrated by the
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Figure 3: Scalability of data volume examining the SFT performance of models mid-trained on
datasets of varying volumes. The dashed lines represent the performance of each dataset configured
under the 30B-token setting.

Table 3: Ablation results. CoTP uses n=1 or 2 for n-gram setting, A=0.8 for entropy. And w/o
entropy denotes A=1.

Dataset | AIME 2025 AIME 2024 HMMT 2025 BeyondAIME MATH500 AVG.

CoTP | 21.84+2.68 25.76+2.70 13.90+2.27 6.70£1.55 85.20+3.25 30.68+2.49
w/o entropy | 21.4642.63 25.634+2.78 11.8842.06 6.30£1.51 84.40+3.18 29.931+2.43
n-gram n=2 | 18.334£2.48 25.4242.77 11.5642.04 6.50+£1.53  83.80+3.23 29.124+2.41
w/o importance | 19.69+2.54 24.17+£272 13.65+£2.19 6.60+£1.54  84.20£3.20 29.66+2.44

entropy visualization in Appendix [G.2] which provides deeper insights into the structural nuances
captured. This enhanced quality correlates with improved model performance, underscoring the
pivotal role of entropy-based selection in fostering advanced reasoning capabilities.

For n-gram pattern similarity, n=1 or 2 yields superior outcomes, providing a more balanced
evaluation of pattern similarity. This configuration integrates the broader contextual encapsula-
tion of n=1 with the detailed specificity of n=2, offering a comprehensive representation of pattern
alignments. Notably, unlike English, each character in Chinese carries intrinsic semantic meaning
and we demonstrate that Chinese pattern representation exhibits clear distinctions between unrelated
pattern pairs under the character-level n-gram method (detailed in Appendix [F.2), which makes it
more suitable for calculating distances between pattern entries in Algorithm 2} Consequently, we
employ Chinese for annotating reasoning pattern chains.

Importance scores play a critical role in the CoTP framework. The model lacking importance
weighting shows poorer performance, underscoring the significance of pattern importance scores. It
highlights the distinction of normal and important reasoning patterns, due to their different contri-
bution to reasoning potential.

4 ANALYSIS

Our CoTP-trained model demonstrates an enhanced mastery over a broader array of correct
and key reasoning patterns. To validate whether CoTP enables models to learn key reasoning
patterns closer to the ideal ones, we conduct a comparative analysis of reasoning patterns exhibited
by models trained on various datasets, taking AIME 2025 & 2024 as examples. Specifically, we
consider the model trained on the oracle set as the ideal model, whose generated reasoning traces
encompass comprehensive patterns. Our core set serves as an approximation of this oracle. Through
the data selection algorithm, we select training data that aligns with the core set distribution. In
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Figure 5: Examples of reasoning patterns with different levels of importance.

this analysis, we use the strong reasoning model DeepSeek-R1 as a proxy for the ideal model.
Correct patterns are defined as those previously appearing in correct reasoning pattern chains.
As illustrated in Table [] (detailed in Ap-

pendix [F.T), CoTP not only increases the num-  Table 4: A comparative analysis of reasoning pat-
ber of correct patterns it utilizes but also shows  terns on AIME 2025 & 2024.

an enhanced overlap with the key patterns mas-
tered by DeepSeek-R1, with an increase of
7.25% compared to LongCoTPool. This ad-  Dataset | Patterns Correct Key
vancement suggests that our training method-  KnowEdu 4296 147 116 (1.79%)
ology effectively improves the model’s capa- LongCoTPool | 3407 2246 1345 (20.73%)
bility to 'solve ghallenglng reasoning 'tasks by CoTP | 3970 3226 1815 (27.98%)
systematically integrating and aligning with
the reasoning paradigms established by high-
performance models like DeepSeek-R1.

Our CoTP-trained model shows a notable convergence to the reasoning paradigms of the ref-
erence model, evidenced by a reduction in pattern chain distances. By conducting a compre-
hensive pattern distance analysis of models before and after mid-training against DeepSeek-R1 on
the core set, we quantify these alignment enhancements. As depicted in Figure [6a] we employ the
DTW algorithm (see Figure [d) to calculate the reasoning pattern chain distances between the CoT
responses from both the model instances before and after midtraining and those from DeepSeek-R1
within each question, then compute the Wasserstein distance between these cross-model distance
distributions for each question, and finally average the results across all questions. The average dis-
tance between the model before mid-training and DeepSeek-R1 is 0.51, whereas our CoTP-trained
model achieves a reduced distance of 0.35, marking a 31.4% improvement. Notably, CoTP acquires
sophisticated reasoning patterns (see Figure [5a). These advanced reasoning patterns reflect expert-
level problem-solving approaches and underscore that CoTP effectively facilitates the acquisition of
sophisticated reasoning capabilities critical for solving challenging mathematical problems.

The composition of CoTP closely matches the distribution of the core set. As shown in Fig-
ure[6b] the KL divergence between the problem type distributions relative to the core set decreases
from 0.18 (LongCoTPool) to 0.04 (CoTP), demonstrating improved alignment. Furthermore, as il-
lustrated in Figure [6c| the token length distribution of CoTP aligns more closely with the core set,
which generally features longer token lengths, than with LongCoTPool. This alignment highlights
the effectiveness of our CoTP framework in targeting the core set distribution.
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Figure 6: Distribution analysis.

Effective reasoning patterns not only guide the steps of chain-of-thought, but also facilitate
deeper introspective processes. We investigate the relationship between reasoning patterns and
reflection and examples in Appendix [G.T]illustrate how reflection (Shah et al., [2025) can be seam-
lessly integrated into established reasoning pattern chains, showcasing the multifaceted character-
istics of introspective processes. Our detailed examination reveals that pattern chains inherently
encompass reflective characteristics. Reflection may be encapsulated within discrete patterns, pro-
viding precise cognitive insights, or may appear as recursive loops in pattern chains, indicating
iterative thought refinement. This analysis to investigating reasoning and reflection indicates their
intertwined nature.

5 RELATED WORK

Endowing LLMs with reasoning capabilities remains challenging, particularly in the realm of com-
plex mathematical reasoning. Recent advancements in RL algorithm optimization strategies have
significantly enhanced the performance of LLMs on downstream challenging mathematical reason-
ing tasks (Chen et al.l 2025} [Yue et al., 2025} [Liu et al., 2025a). These improvements are largely
driven by exploration-feedback mechanisms that systematically elevate the problem-solving skills of
these models. Additionally, they have unveiled the inherent constraints on RL performance imposed
by the reasoning capability reserves of the foundation models. Studies investigating the interaction
between the foundation models and RL performance (Gandhi et al., 2025} [Liu et al., 2025b; Wang
et al., 2025b), such as those related to cognitive behaviors that facilitate self-improvement and in-
sights from training paradigms like R1-Zero, have demonstrated that different foundation models
exhibit diverse initial reasoning behaviors. These behaviors critically influence their ability for self-
improvement, thereby manifesting varied RL scaling characteristics.

Among these studies, OctoThinker (Wang et al., 2025b) has validated that integrating CoT QA
data, particularly long-CoT samples, during the mid-training stage significantly enhances the rea-
soning capabilities required for complex problem-solving. This approach offers a promising avenue
for enhancing the reasoning capabilities of foundation models. Notable large-scale open-source
long-CoT QA datasets include OpenR1-Math-220k (Hugging Face| [2025) and AM-DeepSeek-R1-
Distilled (Zhao et al.| | 2025a), with their long-CoT responses predominantly generated by DeepSeek-
R1. Such developments underscore the importance of strategically aligning mid-training data with
downstream tasks as a potent strategy for expanding the reasoning proficiency of LLMs.

6 CONCLUSION

In conclusion, our proposed CoTP framework presents a significant advancement in expanding LLM
reasoning potential. By defining reasoning potential as the inverse of the number of independent at-
tempts required to correctly answer the question, we have proposed a framework that constructs
high-value reasoning data. Our dual-granularity algorithm, which leverages reasoning patterns and
token entropy, efficiently selects valuable CoT data similar to the core reference set, thereby enrich-
ing reasoning patterns in foundation models. Through the construction of the CoTP dataset, we have
enabled the 85A6B MoE foundational model to achieve a 9.58% improvement on the challenging
AIME 2025 & 2024 and to raise the upper bound of downstream RL performance by 7.81%.

10



Published as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our research adheres to the ICLR Code of Ethics. We have carefully read the ethical guidelines and
ensured that our research does not present ethical concerns.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilize LLMs solely to refine our manuscript. Specifically, LLMs are employed to identify and
correct errors in spelling, grammar, punctuation, and formatting at the sentence level.

B MATHEMATICAL FORMULATIONS AND ALGORITHMS

B.1 PATTERN IMPORTANCE CALCULATION VIA TF-IDF

We employ a TF-IDF weighting scheme to quantify the importance of reasoning patterns, balancing
pattern frequency within individual questions against their global rarity across the dataset.

The importance of pattern p; for question g; is calculated using a TF-IDF weighting scheme:
count(py, in (Jj_, &(ciz))

TF ,q;) = . T
(Pk> Gi) Zp count(p in szl £(cij)) (10)
i 9
IPF(pr, Q) = log <|{Qi ok € Ujoy €lcig) ai € Q}>

where £(c; ;) represents the pattern chain extracted from the j-th CoT data of g;.

B.2 EQUIVALENCE TO PERFECT BIPARTITE MATCHING

We establish the theoretical foundation for our assignment optimization by proving the equivalence
between the capacity-constrained assignment problem and the perfect bipartite matching problem.

Theorem 2 The capacity-constrained assignment problem in Eq. (7) is equivalent to a minimum
weight perfect bipartite matching problem.

Proof. We construct a balanced bipartite graph G’ = (U’ U V', E’) where both partitions have size
N. The left partition U’ = {u;, : ¢ € [1,t],k € [1,0]} U {tudummy,e : £ € [1, N —t - 0]} contains
t - o replica nodes (each core instance i replicated o times) plus (N — ¢ - 0) dummy nodes. The right
partition V/ = {v, : j € [1, N]} contains the original N source instances.

Edge weights are defined as:
w(ui g, v;) =Dy, Vie[lt],kell,o],je[l,N] (11)
W(Udummy,¢,vj) = M, YlLe[l,N —t-o],j€[l,N] (12)
where M > max; ; D;; is a sufficiently large constant.

The transformed problem seeks a minimum weight perfect matching in G’

t o N N—-t-o N
min: > >, > DiXiwg+ D D M- Xawmny.o
i=1 k=1j=1 =1 j=1
N
S.t. ZXu’j =1, Yuée U’ (13)
=1
> Xuj=1, Vj€[LN]
uelU’
Xu,j € {Ov 1}

We establish equivalence by showing that feasible solutions correspond bijectively with identical
objective values.

Given any feasible solution S to the original problem, we construct a perfect matching X as follows.
For each core 7, let J; = {j : S;; = 1} be its assigned sources with |J;| = o. Order J; arbitrarily
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as {jy), .. ,jgi)} and set Xi’k’j,ii) = 1for k € [1,0]. This matches exactly ¢ - o sources to replica

nodes. The remaining (N — ¢ - 0) unmatched sources are matched to dummy nodes with cost M.
The objective value is:

ZDini,k,j+(N—t'0)'M:ZDijSij+(N—t~0)-M (14)
i,k,j 5

Conversely, given any minimum weight perfect matching X in G’, we construct S by setting S;; = 1
if there exists & such that X; , ; = 1 for replica node u; , and S;; = 0 otherwise. Since M >
max; ; D;;, any optimal perfect matching will minimize the use of dummy nodes. Specifically,
exactly (N — ¢ - 0) dummy nodes must be matched (due to perfect matching constraints), and the
optimal solution will match all ¢-o replica nodes to distinct sources to minimize total cost. Therefore,
each core 7 has exactly o matched replicas, giving > y Si; = o, and each source is matched to at

most one replica, giving ), .S;; < 1. The objective values satisfy:

Z D;;S;; = Z D X k. j (15)
%,

ik,

This bijective correspondence between feasible solutions with proportional objective values estab-
lishes that optimal solutions of both problems correspond exactly. m

B.3 ALGORITHM

We implement two complementary distance metrics for measuring similarity between reasoning
patterns and pattern chains: character n-gram cosine distance for lexical similarity (detailed in Al-
gorithm 2)) and weighted dynamic time warping for structural alignment (detailed in Algorithm [3).

Algorithm 2 Character N-gram Cosine Distance
Input: String a; String b; Maximum n-gram length n
Output: N-gram cosine distance dygram (@, b)
1: a + normalize(a); b < normalize(b)
2: Initialize frequency maps F,, < {}, F;, « {}
3: for k =1 ton do:
4. fori=1toa|—k+1do: Fylafi:i+k—1]] « Fylali:i+k—1]]+1
5. fori=1tol|b|—k-+1ldo: Fybli:i+k— 1]« Fp[bli:i+k—1]]+1
6
7
8
9

s dot < 37 Fulgl - Fylg]
D Ful? 2, Falgl?s 1Fol? < 32, Fylg)®
- if [|F,||? = 0 or || F||? = O then return 0.0

dot

:return 1.0 - ————
| Fall?| F5

C EXPERIMENTAL SETUP

C.1 TRAINING DETAILS

We use H800 to mid-train our pre-trained 85A6B Mixture-of-Experts foundation model, which is
pre-trained on 14T-token corpora. The model decays on 30B tokens of specialized experimental
reasoning data and general-domain data, KnowEdu (Zhang et al.l [2025bga) at a 1:2 ratio, using the
WSD scheduler with the learning rate initialized at 1e-4. The reasoning data follows a vanilla struc-
tured format of {question}\n{cot_answer} with final answers encapsulated in \boxed{} notation.
In scaling experiments, the mid-training token size is further expanded to 60B while maintaining the
same data blend ratio.

Furthermore, we utilize identical SFT data across all models, thereby eliminating the introduction of
additional variables and ensuring consistency in evaluation conditions. The SFT stage takes a batch
size of 256 and an epoch size of 3, processing inputs up to 16,384 tokens to accommodate extended
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Algorithm 3 Weighted Dynamic Time Warping Distance

Input: Sequence x = (z1,...,%,); Sequence y = (y1,...,ym); Weight vector w =
(w1, ..., wm); Distance function &
Qutput: Distance value

1: if n = 0 or m = 0 then return 1.0

2: Initialize matrices D, W € R("t1)x(m+1) with zeros

3: for: =1 to n do:

40 Do Di_10+wi-0(xi,y1); Wi < Wis10+wy
5. for j = 1 tom do:

6: DOJ‘ — DOA,j—l + wj - 5(x1,yj); WO,j — W07j_1 + wj
7: for i =1 ton do:

8. forj=1tomdo:
10: if Di—l,j—l < Di,j—l and Di—l,j—l < Di—l,j then
11: (Dprevs Wirev) <= (Di—1,j—1, Wi—1,-1)

12: elif Di,j—l < Di—l,j then
13: (Dprew Wprev) <~ (Di,j—la Wi,j—l)
14: else (Dpreva Wprev) — (Difl,‘jﬁ Wifl,j)

15: DiJ' — Dprev + wj - d; Wi,j — Wprev + wj
16: return 2z jf Wy,m > 0else 0.0

Wi, m

reasoning sequences. It is optimized by the Adam algorithm and initializes the learning rate at Se-6
with cosine decay to zero.

The RL stage runs 300 steps for all models and applies the GSPO algorithm (Zheng et al., [2025).
Its hyperparameters include a global batch size of 512, a rollout batch size of 256, and a single
epoch, optimized by the Adam algorithm with a constant learning rate of 1.0e-6. The generation
max sequence length is set to 32,768, with the sample number at 16, temperature and top_p both at
1, and GSPO-specific clip range between 0.0003 and 0.0004.

C.2 EVALUATION

We conduct an evaluation of the SFT and RL performance on challenging mathematical reasoning
tasks, similar to Balunovi€ et al.| (2025)). For statistical robustness, we use 32 repetitions for AIME
and HMMT, and 10 repetitions for BeyondAIME, once for MATHS500.

C.3 DATASETS

Table [5]shows the comparison with open-source CoT QA datasets.

Table 5: Comparison with open-source CoT QA datasets.

Dataset Target Domain CoT Date
JiuZhang3.0 Mathematical Reasoning  Short-CoT 2024 May.
OpenMathlInstruct-2 Mathematical Reasoning  Short-CoT 2024 Oct.
MegaMathQA Mathematical Reasoning  Short-CoT 2025 Apr.
OpenR1-Math-220k Mathematical Reasoning Long-CoT 2025 Feb.
AM-DeepSeek-R1-Distilled General Reasoning Long-CoT 2025 Mar.
CoTP Mathematical Reasoning Long-CoT 2025
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D RESULTS

D.1 GENERAL PERFORMANCE

Table [6] shows the detailed comparison of general performance, corresponding to the general eval-
uation results in Table [I] in Section [3.2] Our CoTP achieves better general performance than
KnowEdu and LongCoTPool, demonstrating that CoTP effectively expands the reasoning potential
of foundation models in challenging mathematical reasoning tasks while maintaining general per-
formance. Note that the performance gaps between CoTP and OpenR1-Math or AM-Distilled stem
from the heterogeneous nature of LongCoTPool, which integrates OpenR 1-Math, AM-Distilled, and
BoostQA, with BoostQA exhibiting relatively weaker general performance. Since CoTP is selected
from LongCoTPool, it inherits these performance gaps. However, this does not affect our objective
and the main conclusions of our experiments.

Table 6: General performance comparison of models mid-trained on different datasets. The best and
second-best are in bold and underlined, respectively. Abbreviations: W.G. = WinoGrande, H.S. =
HellaSwag, BBH = Big-Bench.

Dataset MMLU CMMLU C-Eval W.G. H.S. ARC-C BBH DROP AVG.
KnowEdu 69.83 75.59 74.30 58.00 50.50 83.50 48.86 54.50 64.39
BoostQA 69.97 75.50 73.25 54.00 44.00 84.00 47.09 58.50 63.29

JiuZhang3.0 68.71 74.94 74.51 61.50 50.50 85.00 45.37 54.00 64.32
MegaMathQA  68.80 75.43 73.71 62.00 47.50 85.00 45.85 60.00 64.79
OMlInstruct-2  68.76 75.39 74.29 62.00 50.00 85.50 49.45 64.50 66.24
OpenR1-Math  69.28 76.05 74.23 61.50 55.50 87.50 49.54 59.00 66.58
AM-Distilled  69.65 75.73 74.14 61.50 63.00 85.00 50.75 64.00 67.97

LongCoTPool 69.72 76.08 73.89 57.00 53.00 87.00 49.00 61.87 65.95
CoTP (Ours)  69.54 75.67 74.33 59.50 55.50 83.50 49.11 61.50 66.08

D.2 PAsSsS@K CURVES

As illustrated in Figure[7] the pass @k curves for both base and SFT models on the CoT dataset show
a stable increase as k becomes larger. In contrast, for the KnowEdu corpus, the pass @k values are
notably lower without the application of SFT, but they improve once SFT is applied. This indicates
that SFT ensures the model has a foundational ability to produce long CoT outputs, contributing to
a more equitable evaluation across different datasets. Given the consistent relative trend observed
before and after SFT, we exhibit our main results on the SFT models to ensure reliability and fairness
in comparison.

D.3 SCALING DETAILS
The specific accuracy values at 60B tokens in the scaling experiments are presented in Table [7]

Table 7: Accuracy of different models at 60B tokens in the experiments of data volume scale.

Dataset | AIME 2025 AIME 2024 HMMT 2025 BeyondAIME MATHS500

KnowEdu 0.10+£0.20 0.94+0.61  3.65£1.18 0.30+0.34  42.00+4.33
LongCoTPool | 27.88+2.67 32.62+2.83 18.22+£2.24  10.01£1.65 90.56+2.87

CoTP (Ours) |31.52+2.87 43.85£3.16 22.60+£2.68  14.00£2.15 91.00+2.51

D.4 TRUNCATION RATIO

The truncation ratios are shown in Table [§] We observe that the truncation rate is notably lower in
long CoT datasets, and the truncation rate decreases further in RL compared to SFT.
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Figure 7: Pass@k curves of base and SFT models.

Table 8: Comparison of truncation ratio (%).

| AIME 2025 | AIME 2024 | HMMT 2025 | Beyond AIME

Dataset

\ SFT RL \ SFT RL \ SFT RL \ SFT RL
KnowEdu 82.34 44.69|85.68 45.05|85.05 48.78 [80.75 45.67
LongCoTPool | 70.89 2.24 |73.18 2.94 [82.24 1.61 |82.70 0.90
CoTP (Ours) |61.61 5.76 |57.11 5.23 |71.51 4.61 |75.34 3.82

D.5 RESPONSE LENGTH

As depicted in Figure 8] the response lengths during RL training exhibit different characteristics.
Initially, models that have undergone SFT produce relatively longer responses. As the training
progresses, the response lengths for LongCoTPool and CoTP stabilize and converge, whereas the
lengths for KnowEdu continue to fluctuate significantly. This suggests that the RL training with
KnowEdu may be prone to instability or collapse.

AIME2025 1 AIME2024 HMMT2025 BeyondAIME MATHS500
~14 1 1l 14
) \ . \ | | 8
éu 12 \ 12 12 !
= | i
= 8 84 8
=] |8 8 \ 4
? 6 6 l“' H\“ o1
& 6 ¥ )
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Training Step Training Step Training Step Training Step Training Step
KnowEdu LongCoTPool CoTP

Figure 8: Response length (k) at the RL stage.

D.6 EVALUATION CHART ON MORE BENCHMARKS.

Figure [9] and Figure [T0] present the pass@k evaluation curves on the AIME2024 and Math500
benchmarks, respectively, illustrating the performance trajectory throughout the RL training pro-
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cess. These results serve as a complement to Figure 2] in Section [3.2] and are consistent with the
results in Figure 2]

E REASONING PATTERN CHAIN ANNOTATION

Prompt for CoT pattern chain extraction annotation

Task Objective:

Systematically explore and summarize the Chain—of—Thought (CoT) processes employed
by mainstream LLMs in reasoning tasks, analyzing the core reasoning patterns embedded
within these processes.

Analysis Instructions:

Please conduct an in—depth examination of the reasoning paths taken by various Al models
in reasoning tasks, demonstrating how different models approach and solve problems.
Your goal is to summarize and categorize the general thinking patterns reflected in these
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reasoning processes, to help understand the essential characteristics of CoT reasoning in
large models.

Analysis Steps:

For each reasoning process, please clearly identify the following elements:
1. Use of keywords and high—frequency phrases

2. Logical structure and organization of argumentation

3. Techniques or strategies used to solve the problem

4. The manner in which reasoning steps are unfolded

Classification Requirements:

Based on the following commonalities, accurately categorize similar reasoning processes
into one or more general reasoning patterns:

1. Lexical pattern (organization and use of common terms and phrases)

2. Logical framework (structure of argumentation and reasoning flow)

3. Solution pathway (methods and paths to reach conclusions)

Important Notes:

1. You are required to summarize " general thinking patterns for problem solving," not
specific problem types.

2. Each pattern should be applicable to any problem scenario, not limited to a particular
type of task.

3. Focus on the thinking method itself, rather than specific solution steps or answer content

Iustrative Examples:

You may categorize as follows:

— Knowledge retrieval-based reasoning
— Reasoning combined with verification
— Step—by—step deductive calculation

— Detailed stepwise derivation

—etc.

Attention Points:

— Precisely categorize the above reasoning processes into one or more patterns (>=1),
defining each category based on its shared characteristics, explaining its role in reasoning
for the given case, and providing examples.

— Briefly explain your analysis and classification criteria first, then output detailed
annotation for each reasoning pattern in the JSON format below. The "name" field for
each pattern must be output in Chinese.

— The "pattern_chain" field outputs a list, where the element order represents the sequence
of patterns used in this CoT solution, e.g., [1,2,3,4]. If necessary, the reasoning pattern
chain may contain loops.

— Output atomic patterns only (no pattern should contain words like "and", "or", etc.).

Output Format:
**json

{

"pattern_list": [

{"id":l "name": " " "description": nn "features": LU TI1]
sample_input_flow": " ", "role_in_this_case": "", "
corresponding_CoT_content": ["", " "], "common_elements": "", "
typical_expressions": ["", " "] },

{nidu:Z "name": "" "deSCfiptiOH": nn o nfeatures™: """
sample_input_flow": "", "role_in_this_case": "", "
corresponding_CoT_content": ["", " "], "common_elements": " ", "
typical_expressions": ["", ""] },
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I

"how_CoT_utilizes_patterns_in_this_case": {
"process_description": " ",
"pattern_chain": [],

ESENEN

Reasoning process to be analyzed: {
{extracted responses}
}

F ANALYSIS

F.1 REASONING PATTERNS ACROSS DIFFERENT MODELS

In the comparative analysis of reasoning patterns across different models on AIME 2025 & 2024, the
number of patterns is defined as size of the entire set of reasoning patterns. Correct patterns refer to
the set composed of patterns that appear in correct reasoning chains, while key patterns represent the
overlap between the correct pattern sets and those mastered by DeepSeek-R1. Notably, DeepSeek-
R1 has mastered 6,487 correct patterns, and the percentage indicates the proportion of the overlap
within this set.

F.2 PATTERN REPRESENTATION ANALYSIS

We conduct a comparative analysis of the pattern representations in Chinese and English. We sam-
ple pattern pairs from the CoTP dataset, manually selecting unrelated pairs that do not share core
mathematical concept words. For example, “Problem Understanding and Information Extraction”
versus “Trigonometric Identity Transformation™ are considered unrelated because the former per-
tains to problem comprehension, while the latter involves a specific mathematical technique. In
contrast, “Verification and Confirmation” and “Verification and Adjustment” are related, as both
concern verification processes. We evaluate the similarity distributions of both related and unrelated
pattern pairs in Chinese and English representations using the n-gram method.

As shown in Table [0] and Table[I0] most pattern pairs in English are identified as either moderately
similar or highly similar, making it difficult to differentiate between unrelated patterns, while Chi-
nese offers a superior ability to distinguish between patterns. Compared with Chinese, English tends
to display more misjudgment cases, as illustrated in Table[TT]

These results demonstrate that Chinese pattern representation exhibits clear distinctions between un-
related pattern pairs under the character-level n-gram method, which is beneficial for the consistency
and controllability of large-scale extraction of patterns. Even if there is slight noise or drift between
patterns in Chinese, such as a small amount of character interference, this method is essentially
insensitive to these variants and can still identify semantically similar patterns.

Table 9: The proportion of different similarity ranges of Chinese and English

Similarity Range | Chinese | English

Low (<0.3) 88.2% | 1.4%
Medium (0.3-0.7) | 11.2% | 83.2%
High (>0.7) 0.6% | 15.4%
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Table 10: For the average similarity of unrelated pattern pairs, Chinese can score these pairs with
low similarity, whereas English tends to misjudge them as similar.

Language \ Average Similarity

Chinese 0.035
English 0.541

Table 11: Typical misjudgment cases with high similarity in English but low in Chinese.

Chinese Pattern | Chinese| English Pattern Pair English| Root Cause
Pair Simi- Simi-
larity larity
AR S(EE | 0.000 | Problem  Understanding | 0.762 | High repetition of
Bl vs =A1E and Information Extraction suffixes “-tion”,
LA vs Trigonometric Identity “-ation”
Transformation
HFEEE 7 | 0.000 | Mathematical Modeling and | 0.760 | Overlapping
3 vs 12 HBHE Equation Construction vs character-level
BRi%E Logical Elimination Method suffixes
Uk 5 B 1E vs | 0.000 | Verification and Correction | 0.758 | Common suffix
= FESEA vs Trigonometric Identity interference
Transformation

F.3 REASONING PATTERN VISUALIZATION IN DIFFERENT DOMAINS

To demonstrate the domain-agnostic nature of our CoTP framework, we visualize the reasoning
patterns with high and low TF-IDF importance scores in Figure[TT]across four representative STEM
domains: physics, chemistry, biology, and computer science. These visualizations are generated
from the TF-IDF weighted pattern distributions extracted from our training data.

These visualizations demonstrate that our pattern-based representation successfully captures
domain-specific reasoning strategies across diverse STEM domains, supporting the claim that CoTP
is applicable to any scenario that can be decomposed into atomic reasoning patterns.

G CASE STUDY

In practice, we found that, unlike English, each character in Chinese possesses inherent semantic
meaning, which makes Chinese particularly suitable for calculating distances between pattern entries
using the ngram-cosine algorithm (see Algorithm[2). Consequently, we employ a annotation prompt
(see Appendix [E) to extract pattern chain features from the CoT data, and require the annotation
model to output the patterns in Chinese, as described in Section[2.2]

For clarity in the presentation of experimental results, as illustrated in Figure[5} we have translated
the pattern entries into English. The original Chinese-to-English mapping of pattern expressions is
provided in Table

Table 12: Mapping of English and Chinese expressions in reasoning models.

Chinese Pattern English Pattern | Chinese Pattern English Pattern
ZHARNSITE Parameter Substitution Bk = Data Conversion

A Group Factorization JURTETEALAL Geometry Optimization
PAESETE Median Calculation 5T ELRER 5 Piecewise Integration
H R 5 A e Proportion Reasoning SRS E Fraction Construction
M A G Linear Combination =it A Term Calculation
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Table 12: (continued)

Chinese Pattern

English Pattern

Chinese Pattern

English Pattern

B B BRI SR
AHERAA
T HAHRTT
07 [ RS P
BRSPS
7 [ P BRA
e 2
BT AR
L LA 5

NEEBR TR

e S ok
H K [P R
ML R (R
A XFEFRIE TC

EEIES
A H A
TETFR L feT PLFC
BRI
R TEAS I
¥erTHZH
HELERIIE
WHEAHES:

Z I X RIE

GRE AR
BB
FAIRRR R I
ES1oniiEvafs

Step Function
Formula Substitution
Group Transform
Inverse Mapping
Function Inversion
Direction Mapping
Data Sorting
Currency Conversion
Convex Hull
Inequality Parsing
Modular Substitution
Basic Principle
Linear Transform
Cross Multiplication
Set Enumeration
Hint Utilization

Area Matching
Operation Simplification
Logic Reasoning
Math Tools

Numeric Verification
Logic Deduction
Multi-method Check
Result Integration
Problem Abstraction
Knowledge Retrieval
Case Verification

23 7] [X 48 73]

H oy R

R IAEURIT

EAITLE I
BT

FAFRER DT
TR RS L AL
HERADT
S5 B
EEE e
T

R 22 JL TP It

NI TR
HEPR IR

Z IR AT

Z R TT Rk
B RO
BRI

[FIRH 9375 ) fif
AR
LSRN S A
HARIATRIL

BN A
FHLAHRRE
1B e SR
A AT
JRAIBLLE i AN S

Space Partition
Percentage Conversion
Recursive Expansion
Set Comparison

Term Replacement
Conditional Probability
Exponential Matching
Relation Analysis
Function Decomposition
Path Enumeration

Term Counting

Euler Line Property
Common Factor
Exclusion Method
Polynomial Root Analysis
Multi-solution Filter
Exponential Adjustment
Conjugate Root ID
Problem Decomposition
Boundary Check
Conclusion

Goal Clarification

Math Concepts
Condition Check
Concept Definition
Generalization

Reverse Verification

G.1 RELATIONSHIP BETWEEN REASONING PATTERNS AND REFLECTION

The cases that describe the relationship between the reflection and the chains of reasoning patterns
are shown in Table[T3] including the key features and descriptions of the reflection process in LLM

reasoning.

G.2 TOKEN ENTROPY

Figure[12]and Figure T3] present two examples of entropy-granular labeling of CoT data utilizing the
open-source Qwen-7B model. High-entropy tokens frequently reflect the model’s underlying rea-
soning process. Our framework exploits the fine-grained token-level entropy distribution to identify
nuanced reasoning patterns within the model’s CoT data.

G.3 PROBLEM, REASONING CHAIN, AND EXTRACTED PATTERNS

Table 14: Examples of questions, CoT sequences, pattern chains, and entropy chains.

Case 1

Question
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Table 14: (continued)

Imagine as 2015 fractions:
2 3 4 2014 2015 2016
201620157 2014° """ 4 7 3 7 2
Is it possible to choose three of these fractions with a product equal to 1?

Pattern Chain

Pattern Recognition and Structural Analysis — Equation Establishment and Transformation —
Symmetry Analysis and Special Value Verification — Proof by Contradiction and No-Solution
Exploration

Chain-of-Thought

Okay, let’s see. The problem is asking if it’s possible to choose three fractions from the given 2015
fractions such that their product equals 1. The fractions are structured in a specific way: starting
from 2/2016, then 3/2015, 4/2014, and so on, up to 2016/2. Each numerator increases by 1 while
the denominator decreases by 1.

First, I need to understand the pattern here. The first fraction is 2/2016, the next is 3/2015, then
4/2014, continuing until 2016/2. So, the nth fraction would be (n+1)/(2017 - n), right? Let me
check. For n=1, (1+1)/(2017 - 1) = 2/2016, which matches. For n=2, 3/2015, which also matches.
So yes, each fraction can be represented as (k+1)/(2017 - k) where k ranges from 1 to 2015.
Alternatively, maybe another way to index them? Let me see. If we let the numerator be m, then
m starts at 2 and goes up to 2016, and the denominator is 2016 - (m - 2) = 2018 - m. Wait, because
when numerator is 2, denominator is 2016; when numerator is 3, denominator is 2015, which is
2016 -1, so denominator for numerator m is 2018 - m. Because 2018 - 2 =2016, 2018 - 3 =2015,
etc. So each fraction is m/(2018 - m), where m ranges from 2 to 2016. That seems correct.

So the fractions can be written as m/(2018 - m) for m = 2, 3, ..., 2016. So there are 2015 fractions
total because 2016 - 2 + 1 =2015.

We need to find three fractions such that their product is 1. Let’s denote the three fractions as
ml1/(2018 - m1), m2/(2018 - m2), m3/(2018 - m3). Then their product is: (ml X m2 x m3) /
[(2018 - m1)(2018 - m2)(2018 - m3)] =1

Therefore, the equation simplifies to: m1 x m2 x m3 = (2018 - m1)(2018 - m2)(2018 - m3)

So, we need three numbers m1, m2, m3 (each between 2 and 2016 inclusive) such that the product
of the three m’s equals the product of (2018 - m) for each m.

This seems like a symmetrical equation. Maybe we can look for some symmetry here. Let’s
consider that for each m, (2018 - m) is also a term in the fractions. For example, if m is 2, then
2018 - m = 2016, which is the denominator of the first fraction. Similarly, if m is 2016, then
2018 - 2016 = 2, which is the denominator of the last fraction. So each fraction m/(2018 - m)
has a reciprocal fraction (2018 - m)/m. However, note that when m is 2018 - m, which would be
when m = 1009, then the fraction is 1009/1009 = 1. But looking at the original fractions, starting
from 2/2016 up to 2016/2, the middle fraction would be when m is around 1009. Let me check:
since there are 2015 fractions, the middle one is at position 1008, but maybe m is 1009. Let’s
compute 2018 - m = 2018 - 1009 = 1009, so yes, when m=1009, the fraction is 1009/1009=1. So
that fraction is 1, so multiplying by that fraction doesn’t change the product. But the problem is
asking for three fractions, so even if one of them is 1, the other two need to multiply to 1 as well.
But 1 is only present once (if m=1009 is allowed). Wait, m ranges from 2 to 2016, so m=1009 is
included. So the fraction 1009/1009 is part of the list. So if we include that, then maybe we can
have two fractions that are reciprocals. For example, take 2/2016 and 2016/2. Their product is
(2x2016)/(2016x2) = 1. Then if we include 1, the product would be 1x 1=1. Wait, but we need
three fractions. So 2/2016 x 2016/2 x 1009/1009 = 1. So that’s three fractions. But hold on,
2/2016, 2016/2, and 1009/1009. Are these all in the list? Yes. The first fraction is 2/2016, the last
is 2016/2, and the middle one is 1009/1009. So their product is 1. So that would be a valid triplet.
But wait, but the problem says “three of these fractions”. So if 1009/1009 is allowed, then yes.
But is 1009/1009 in the list? Let’s check. When m=1009, denominator is 2018 - 1009 = 1009. So
yes, that’s the fraction 1009/1009. So that’s in the list. Therefore, the triplet is 2/2016, 2016/2, and
1009/1009. So their product is (2 x 2016 x 1009)/(2016 x 2 x 1009) = 1. So yes, that works.
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Table 14: (continued)

Wait, but the problem is stated as: Is it possible to choose three of these fractions with a product
equal to 17 ...

Token Entropy

{Okay: 1.0781}, {,: 0.0693}, { let: 1.3125}, {’s: 0.1729}, { see: 2.7188}, {.: 0.7969}, { The:
1.8203}, { problem: 2.0938}, { is: 1.9375}, { asking: 1.0859}, { if: 1.0938}, { it: 1.2656}, {’s:
0.5078}, { possible: 0.0173}, { to: 0.0376}, { choose: 1.1641}, { three: 0.0491}, { fractions:
0.8320}, { from: 0.2393}, { the: 0.1699}, { given: 1.2109}, { : 1.0313}, {2: 0.3691}, {0:
0.0021}, {1: 0.0044}, {5: 0.3613}, { fractions: 0.3047}, { such: 1.4297}, { that: 0.0027}, {
their: 0.1670}...

Case 2

Question
Let a, b, c be positive integers, and the quadratic equation az? + bx + ¢ = 0 has two real roots
whose absolute values are both less than % Find the minimum value of @ + b + ¢.

Pattern Chain
Condition Analysis and Constraint Extraction — Mathematical Derivation and Inequality Analysis
— Systematic Enumeration and Verification — Two-Root Case Analysis

Chain-of-Thought

Okay, so I need to find the minimum value of a + b + ¢ where a, b, c are positive integers, and the
quadratic equation az? + bz + ¢ = 0 has two real roots whose absolute values are both less than
1/3. Hmm, let’s start by recalling some properties of quadratic equations and their roots.

First, for a quadratic equation to have real roots, the discriminant must be non-negative. The
discriminant D is b — 4ac. So, D > 0. That gives us one condition: b> > 4ac.

Next, the roots have absolute values less than 1/3. Let me denote the roots as 71 and r5. Then
|r1] < 1/3 and |ra| < 1/3. Since the quadratic is az? + bx + ¢, by Vieta’s formulas, we have:
r1+ry=—b/aandr; x ro =c/a

Given that the absolute values of the roots are less than 1/3, we can derive some inequalities. Let’s
think about the implications. Since both roots are real and their absolute values are less than 1/3,
they must lie in the interval (-1/3, 1/3). So both roots are between -1/3 and 1/3.

But since coefficients a, b, c are positive integers, let’s consider the signs of the roots. If the
quadratic equation has two real roots, and a, b, ¢ are positive, then the quadratic opens upwards
(since a > 0). The sum of the roots is -b/a, which is negative because b and a are positive. The
product of the roots is c/a, which is positive because ¢ and a are positive. Therefore, both roots
must be negative. So, actually, the roots are in the interval (-1/3, 0). That simplifies things a bit
because we don’t have to consider positive roots. Both roots are negative, so their absolute values
are just their magnitudes.

Therefore, we can say that the roots r1 and 7o satisfy —1/3 < r1 < ro < 0. Let me rephrase
Vieta’s formulas in terms of magnitudes. Let me set 1 = —s and ro = —t where s and t are
positive numbers less than 1/3. Then:

ri+re=—(s+t)=-bla=s+t=0b/aandr; X ro =st=c/a

So s and t are both in (0, 1/3). So we have s + ¢ = b/a and st = c¢/a. Then, since a, b, ¢ are
positive integers, we need to find a, b, ¢ such that these equations hold with s and t | 1/3.

Our goal is to minimize a + b + c¢. Since a, b, ¢ are positive integers, the minimal value is likely to
be small, so maybe a, b, ¢ are small integers. But let’s think through systematically.

Given that s and t are both less than 1/3, so s +¢ < 2/3 and st < (1/3)(1/3) = 1/9. But
s+t="0b/aand st = c/a.

So from st = ¢/a, since st < 1/9, then ¢/a < 1/9 = ¢ < a/9. But since ¢ is a positive
integer, this gives that a must be at least 10 for ¢ to be at least 1 (since 1 < a/9 = a > 9).
Wait, but is that correct? Let’s see: If ¢/a < 1/9, then ¢ < a/9. Since ¢ must be at least 1, then
1<e¢<a/9= a>9c. Butsince cis at least 1, a must be greater than 9. So the minimal possible
a is 10? Wait, but maybe ¢ can be 1 and a =10, but thenc =1, a=10. Then 1 < 10/9 ~ 1.11, so
that would satisfy 1 < 10/9. But 1 is not less than 10/9, it’s equal? Wait, no. Wait, c is less than
a/9.S01 <a/9=a>9..

Token Entropy
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Table 14: (continued)

{Okay: 0.8789}, {,: 0.1445}, { so: 1.6484}, { I: 1.4453}, { need: 1.9688}, { to: 0.0149}, { find:
0.8711}, { the: 0.3203}, { minimum: 0.3379}, { value: 0.1523}, { of: 0.0513}, { a: 0.9844}, { +:
1.9609}, { b: 0.0005}, { +: 0.0004}, { c: 0.0007}, { where: 1.4141}, { a: 0.9961}, {,: 0.0122},
{b:0.0011}, {,: 0.0127}, { c: 0.5039}, { are: 0.0103}, { positive: 0.1445}, { integers: 0.0110},
{,: 0.7500}, { and: 0.1797}, { the: 0.2676}, { quadratic: 0.3613}, { equation: 0.2051}...

Case 3

Question
Symmetric about the y-axis, passing through the focus of the parabola y?> = 4x, and divided into
two arcs with a length ratio of 1 : 2 by the line y = x, the equation of the circle is

Pattern Chain
Knowledge Retrieval and Verification — Symmetry Analysis — Equation Construction and Solu-
tion — Geometric Condition Transformation — Vector Analysis — Multiple Solution Verification

Chain-of-Thought

Okay, let me try to work through this problem step by step. So, the problem is about finding the
equation of a circle that’s symmetric about the y-axis, passes through the focus of the parabola
y? = 4z, and is divided into two arcs by the line y = x with a length ratio of 1:2. Hmm, that
seems a bit involved, but let’s break it down.

First, let’s recall some basics. The parabola y? = 4z. The standard form of a parabola that opens
to the right is 42 = 4ax, where (a, 0) is the focus. Comparing that to the given equation, 4a = 4,
so a = 1. Therefore, the focus of this parabola is at (1,0). So the circle we’re looking for passes
through (1,0). Got that.

Next, the circle is symmetric about the y-axis. That means if (x,y) is on the circle, then (—z,y)
is also on the circle. So the equation of the circle must be of the form (z — h)? + (y — k)% =
r2, but since it’s symmetric about the y-axis, h must be 0. Because if the center is (h, k), then
symmetry about the y-axis implies that h = —h, so h = 0. Therefore, the equation simplifies to
2?2 + (y — k)2 = r2. So the center is at (0, k) and radius 7. So we need to find k and r.

We know the circle passes through the focus (1,0). Let’s plug that point into the equation to get
an equation relating k£ and r. Plugginginz = 1, y = O:

12+ (0 — k)? = 72 = 1 + k% = r2. That’s one equation.

Now, the other condition is that the line y = x divides the circle into two arcs with a length ratio
of 1:2. Hmm, okay. So the circumference of the circle is 277, and the line y = x intersects the
circle at two points, dividing it into two arcs. The ratio of their lengths is 1:2, so the shorter arc is
(1/3) x 27r and the longer arc is (2/3) x 27r. So the central angles corresponding to these arcs
should be 120 degrees and 240 degrees, since the ratio 1:2 corresponds to angles of 120 and 240
(which sum to 360). So the angle between the two intersection points as viewed from the center
of the circle should be 120 degrees.

Alternatively, maybe the line y = « cuts the circle such that the arcs are in a 1:2 ratio. To find the
central angle corresponding to each arc, since arc length is proportional to the central angle. So
if the ratio is 1:2, the angles are 6 and 26, where 6 + 260 = 360, so § = 120. Wait, no. Wait, 1:2
ratio in terms of length. So total circumference is 3 parts, so each part is 120, 240. So the central
angles are 120 and 240, so the central angle between the two intersection points is 120, right?...

Token Entropy

{Okay: 1.1641}, {,: 0.1143}, { let: 1.1484}, { me: 0.1060}, { try: 2.5000}, { to: 0.3301}, { work:
1.7969}, { through: 1.0313}, { this: 0.5078}, { problem: 0.9023}, { step: 0.4648}, { by: 0.6523},
{ step: 0.0007}, {.: 1.3359}, { So: 1.8438}, {,: 1.0781}, { the: 1.3672}, { problem: 2.5938},
{is: 2.5938}, { about: 1.5391}, { finding: 0.7813}, { the: 0.4668}, { equation: 0.0344}, { of:
0.0060}, { a: 0.0527}, { circle: 0.0757}, { that: 0.8398}, {’s: 1.2188}, { symmetric: 0.2373}, {
about: 0.1069}...
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Figure 11: Examples of reasoning patterns across four STEM domains. For each domain, the left
column (red) shows patterns with high importance scores, while the right column (blue) displays

patterns with low importance scores.
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Table 13: The relationship between the reflection and the chain of reasoning patterns.

Key Features

| Description

\ Chains of Reasoning Patterns

Self-supervision
and Self-correction

The model can actively review its own
output, discover and correct logical,
factual or expressive errors. This self-
monitoring ability is at the core of the
reflection process.

Structural Analysis and Counting,
Cross-validation and Error Correc-
tion, Reaction Mechanism Deduction,
Conditional Driven Path Selection,
Structural Analysis and Counting,
Reaction  Mechanism  Deduction,
Cross-validation and Error Correc-
tion

Multi-step Iteration

Reflection is not a one-off event but can
be carried out in multiple rounds. The
model can repeatedly check and correct
its reasoning process until it outputs a
more reasonable and accurate result.

Formula Substitution Method, Equa-
tion Simplification Method, Iterative
Trial and Error Method, Verification
Method

Explicit Reasoning
Chain

During the reflection process, mod-
els often explicitly review and analyze
their reasoning steps (such as “chain
of thought™), looking for the rationality
and potential problems of each step.

Pattern Recognition and Analogi-
cal Reasoning, Construction of Re-
cursive Relations, Exact Computation
and Verification, Approximate Estima-
tion and Boundary Determination, Er-
ror Checking and Correction

Dynamic
ment

Adjust-

The model will dynamically adjust the
reasoning direction, supplement infor-
mation or change the reasoning strategy
based on the reflection results to adapt
to different problems and scenarios.

Variable Substitution and Recombina-
tion, Step-by-step Decomposition and
Simplification, Substitution of Known

Results, Numerical Verification and
Confirmation, Multi-method Cross-
verification

Uncertainty Identi-
fication

During the reflection process, the model
can identify uncertainties or knowledge
blind spots in its own reasoning and at-
tempt to make up for these deficiencies.

Knowledge Retrieval Reasoning, Un-
certainty Processing Reasoning, Step-
wise Computation Reasoning, Condi-
tional Verification Reasoning

Enhanced
pretability

Inter-

Through reflection, the model can out-
put a more detailed reasoning process
and correction reasons, enhancing the
interpretability and transparency of the
answers.

Understanding of Physical Processes,
Derivation of Threshold Conditions,
Verification of Mathematical Calcula-
tions, Interpretation and Application
of Results

Recursive Reason-
ing

Recursive reasoning means that after
the model generates the output for the
first time, it will return to certain key
steps, concepts or assumptions to con-
duct reasoning again to verify or adjust
the previous inference. This reflective
process usually occurs in more com-
plex tasks, especially in scenarios that
require multiple rounds of reasoning.

Problem Decomposition and Sub-goal
Setting, Mathematical Structure Ab-
straction, Logical Equivalence Trans-
formation, Special Case Verification
and Induction, Combinatorial Count-
ing Technique, Mathematical Struc-
ture Abstraction, Logical Equiva-
lence Transformation, Combinatorial
Counting Technique
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Okay, let's see here. We have six points A, B, C, D, E, F on'a straight line in that order
. Point G is not on the line. We need to find the area of triangle BGE. First, maybe I
should sketch the points on a line to visualize their positions. Let me note down the
given distances: AC =26, BD = 22, CE = 31, DF = 33, AF = 73. Also, (G = 40 and DG = 30.
Hm. The coordinates of G are unknown, but since it's not on the line, we might need to
assign coordinates to the points A through F first, then figure out G's coordinates using
the distances CG and DG. Then, once we have coordinates for B, G, and E, we can compute
the area of triangle BGE. Right, coordinate geometry approach makes sense here. Let's
assign coordinates. Since all points are collinear, let's place them on the x-axis for
simplicity. Let me let point A be at coordinate @. Then, since AF =73, point F would be
at coordinate 73. Wait, but if A is at @ and F is at 73, the other points B, C, D, E
are in between. But need to figure out their positions based on given distances AC, BD,
CE, DF. Let me denote the coordinates of A, B, C, D, E, Fas a, b, ¢, d, e, f
respectively. Since they are in order A, B, C, D, E, F on a straight line, their
coordinates should satisfy a<b <c<d<e<f. And we knowa =0, f =73. Given AC =
26, soc - a=26 »-c =26, sincea=0. Similarly, BD=d-b=22, CE=e - c= 31, DF =
f - d =33. But wait, DF is given as 33. Since f =73, then DF =73 - d =33 -d=73 - 3
3=40. Sod=40. Then, BD=d - b=22-540 - b=22- b =40 - 22 = 18. Therefore, b =
18. Next, CE=e - c=31. c was found as 26, so e = 26 + 31 = 57. Therefore, e = 57.
Let's verify the positions: a =0, b=18, c =26, d =40, e =57, £ =73. Let's check
the other distances if they make sense. AF =f - a=73 - 0 = 73, correct. BD'=40-"18
=22, correct. CE =57 - 26 =31, correct. DF = 73 - 40 = 33, correct. So, the
coordinates along the x-axis are: A: 0, B:18, C:26, D:40, E:57, F:73. Now, point G is
not on this line. We know CG =40 and DG = 30. So, points C and D are on the x-axis at 26
and 40 respectively. G is somewhere off the x-axis such'that the distance from C(26,0) to
G is 40, and the distance from D(40,0) to G is 30. Therefore, we can consider G as a
point with coordinates (x,y), y # 0, satisfying: V[(x - 26)"2 + y2] =40 --> (x - 26)"
2+y2=1600 ...(1) and V[(x - 40)"2 + y2] =30 --> (X - 40)"2 + y"2 =900 ...(2) We
can subtract equation (2) from equation (1): [(x - 26)72 +y?2] - [(X - 40)"°2 + y2] =1
600 - 900 (x - 26)"2 - (x - 40)72 = 700 Expanding both squares: (x"2 -52x + 676) - (x"2
-80x + 1600) = 700 Simplify: x"2 -52x + 676 -x"2 +80x -1600 = 700 Combine like terms
( -52x +80x ) + (676 -1600 ) = 700 28x - 924 = 700 28x = 700 + 924 = 1624 x = 1624 /
28 = Divide numerator and denominator by 4: 406 /7 - 58.07 Wait, wait. Let me compute 28
x 58 = 1624. Yes, 28 x 58: 28x50=1400, 28x8=224, total 1624. Therefore, x=58. Wait, but
points D is at 40 on the x-axis, and E is at 57, F is at 73. So x=58 is between E and F?
Hm, but G could be there, off the line. But let's check. Wait, coordinates are x=58, so
E is at' 57, so G is at x=58 on the x-axis, but since y #0, but the x-coordinate is 58. So
, the distance from C(26,0) to (58,y): sqrt( (58-26)"2 + y*2 ) = sqrt(322 + y? ) = sqrt(10
24 +y? ) which is given as 40. So, 1024 + y? =1600 - y? = 576 - y=24 or y=-24. Similarly
, distance from D(40,0) to (58,y): sqrt( (58-40)"2 + y*2 ) = sqrt(182 + y2 )= sqrt(324 + vy
2 )=30. Therefore, 324 + y?=900 - y?=576, same as before. So y=24 or -24. Therefore, G is
at (58,24) or (58,-24). Since area is absolute, it won't matter if y is positive or
negative. So take y=24. So coordinates of G are (58,24). Now, points B, G, E.
Coordinates: B is at (18,0), G at (58,24), E at (57,0). Wait, E is at 57 on the x-axis.
So E is (57,0). B is (18,0). G is (58,24). To find the area of triangle BGE. Coordinates
: B: (18, @) G: (58, 24) E: (57, @) We can use the formula for the area of a triangle
given three coordinates. The formula is |(x1(y2 - y3) + x2(y3 - y1) + x3(yl - y2))/2]|.
Plugging in: x1 =18, y1 =0 X2 =58, y2 =24 x3 =57, y3=0 Compute each term: 18%*(24 -
0) = 18%24 = 432 58*%(0 - 0) =58*0=0 57*(0 -24)=57*(-24)= -1368 Sum: 432 +0 -1368 = -93
6 Take absolute value and divide by 2: | -936 | /2=936/2=468 Therefore, area is 468.
Wait, is this correct? Let me check. Alternatively, since points B and E are on the x
-axis, and G is above, the base can be BE and the height is the vertical distance from G
to BE. Let me check BE length. BE is from 18 t057 on x-axis, so length 57 -18=39. The
height is the y-coordinate of G, which is24. Therefore, area is (1/2)*base*height= (1/2)*
39%24. Calculate: 39%24= (40-1)*24=40*24 -24=960-24=936. Then 936/2=468. Yes, same result
. So the area is 468. So maybe \boxed{468} is the answer. But wait, the problem states "
Find the area of triangle BGE". Let me double-check. Coordinates: B (18,0), G (58,24), E
(57,0). If I use the shoelace formula: List the coordinates in order: (18,0), (58,24),
(57,0), (18,0). Compute sum of products down diagonals: 18%24 +58*%0 +57*0 = 432 +0 +0 =
432 Sum of products up diagonals: O*58 +24*57 +0*18 = 0 + 1368 +0=1368 Subtract the two
: |432 -1368|=936 Area = 936/2=468. So same answer. So that's confirmed. Therefore, the
area is 468. **Final Answer** \boxed{468} </think> We have six points \( A, B, C, D, E,
\) and \( F\) lying on a straight line in that order, and a point \( G \) not on the
line. We need to find the area of triangle \( \triangle BGE \). First, we assign
coordinates to the points \( A, B, C, D, E, \) and \( F\) on the x-axis. Let \( A \) be

[ .
Low (0.00) High (4.72)

Figure 12: Example 1 of token entropy chain annotation for CoT data High-entropy tokens fre-
quently indicate the underlying reasoning process of the model.
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Okay, so I have this problem here: There exist real numbers X and y, both greater than'1,
such that log base x of y"x equals log base y of x*{4y} equals 10. I need to find the
product xy. Hm, let's start by breaking down the given equations. First, let's recall
the logarithm properties. The expression log base a of b~c can be rewritten using the
power rule: log a(b”c) = ¢ * log a(b). So applying that here might simplify things.

Starting with the first equation: log x(y"x) = 10. Using the power rule, this becomes x *
log x(y) = 10. Similarly, for the second equation: log y(x“{4y}) = 10. Applying the power
rule here gives 4y * log y(x) = 10. Alright, so now we have two equations: 1) x * log X
(y) =10 2) 4y * log y(x) = 10 I know that log a(b) is the reciprocal of log b(a). That
's another logarithm property: log a(b) =1/ log b(a). So, if I denote log x(y) as A,
then log y(x) = 1/A. Let's assign variables to make this easier. Let me set A = log x(y
), so the first equation becomes x * A = 10. Then the second equation becomes 4y * (1/A) =
10, because log y(x) = 1/A. So, equations now: 1) x * A=10 2) (4y)/A =10 Now, maybe
solve for one variable in terms of another. Let's solve the first equation for x: x = 10
/ A. Similarly, from the second equation: (4y)/A =10 =4y =10A =y = (10A)/4 =y = (

5A)/2. So, now we have expressions for x and y in terms of A: x=10 /A y = (5A)/2

Our ultimate goal is to find xy. Let's compute xy with these expressions: xy = (10 / A) *
(5A / 2) = (10 * 5A) / (2A) = (50A) / (2A) = 25. Wait, the A terms cancel out here. So,
xy = 25? But that seems too straightforward. Wait, but if the problem states that both
log expressions equal 10 and by solving these equations we get xy =25. Maybe this is the
case. Let me check again. But hold on, maybe there's something wrong here. Let's verify
if x'and'y as functions of A satisfy the original equations. Let's see, x =10/A, y = 5A/

2. Let's compute log x(y"x) and see if it's 10. First, log X(y"x). U51ng the power rule:
x * log x(y). But log x(y) is A, so x * A, x * A = (lO/A) * A = 10. That checks out. Now
the other equation: log y(x"~{4y }) =4y * log y(x). Log y(x) is 1/A, so 4y*(1/A). Substit

uting y = 5A/2: 4*(5A/2)*(1/A) = 4*(5/2) = 10. That also checks out. So even though A is
involved in the expressions, when you plug everything back in, the A's cancel out, and
both conditions give 10. Therefore, regardless of A (as'longas A is positive, since x
and y are greater than 1), the product Xy is 25. Wait, but A is log x(y). Since x and'y
are_greater than 1, what constraints does that put on A? Well, if x > 1 and y > 1, then
log x(y) can be greater than 1 or less than 1 depending on mether y is greater than X or
not. For example, if y = x*k, then log x(y) = k. So, if k >1, then y >x, if k=1, y =X

, if k<1, then y < x. But here, since x and'y are both greater than 1, but we can have
different relations between x'and'y. But in our solution, xy=25, regardless of A. But
wait, does this mean that for any A (positive, as log is defined), x and y would adjust
to satisfy the eguations, and their product is always 25? But we need to ensure that x >

1 and y>=1. So let's check what conditions on A will make x and y greater than 1. From x =
10/A >1, so 10/A >1 => A <10. Similarly, fromy = 5A/2 >1, so 5A/2 >1 == A > 2/5. So, A
must be between 2/5 and 10 for x and y to be greater than 1. So_even though A can vary in
that interval, the product xy is fixed at'25. So the answer is 25. Wait, but let me think
again. Since both the logs result in 10, which is a fixed value, even though variables
are involved, the product is determined uniquely. Alternatively, perhaps there's a
different way to approach the problem. Let me try changing the base of the logarithms to
see if we can relate x'and 'y more directly. Let's first note the two original equations

1) log x(y"x) = 10. As before, this is x * log x(y) = 10. 2) log y(x*{4y}) = 10. This
is 4y * 1log y(x) = 10. Let’'s switch the base of logarithm to natural log to see if that
helps. Recall that log a(b) = In(b)/ln(a). So, log Xx(y) = ln(y)/ln(x), and log y(x) = ln

(x)/Un(y). So substituting into equation 1: x * (In'y / ln x) =10 FEquation 2: 4y * (

ln x / lny) =10 Let’'s denote u=1ln x and v = ln'y. Then equation 1 becomes: Xx * (v /
u) =10 Equation 2 becomes: 4y * (u / v) =10 But we can express x and y in terms of
exponentials: x = e™u}, y=e™v} So substituting back into equation 1: e™u} * (v /
u) =10 -->e™u *v =10 u Equation 2: 4e™v} * (u/v) =10 ->ev*u=(10/4)v=

2.5 v So now we have two equations: 1) e®u *v =10 u 2) e®v * u=2.5v This seems a
bit complicated. But maybe we can relate them. Let’s denote equations as: From 1) v = (1
u) / eu Plug this into equation 2: e’v * u=2.5* (10 u / e™u ) ==e*v *u=25u/ e'u
Cancel u (assuming u #0, which it isn't since x >1, so ln x = u >0) Therefore, e*v =25
/eu=eu+vi=25=u+v=1l25 So, u+v=1n25. But since u=ln x and v=1ny,
then In x'+ In y= In25 => ln(xy)=ln25 => xy=25. So, that gives us xy=25, regardless of
the values of u and v. So that's a different way to look at it, and it shows that
regardless of the specific x and'y, their product must be 25. Therefore, the answer is 2

5. Wait, this is the same answer as before, but now through this method, which is more
direct because when we add the exponents, it relates to the product of x'and y. So that
method seems to get directly to the answer. Alternatively, when I used substitution with
variable A, leading to xy=25, but also checked constraints on A to ensure that x and y
are greater than'1, but regardless of those constraints, as long as they are met, the

[ .
Low (0.00) High (4.47)

Figure 13: Example 2 of token entropy chain labeling. High-entropy tokens frequently indicate the
underlying reasoning process of the model.
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