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ABSTRACT

Quantifying uncertainty in predicted unobservable variables is a critical area of
research in statistics, artificial intelligence, and empirical science. Most scien-
tific studies assume a specific structure involving unobservable variables for the
data-generating process and draw inferences from a parameter of interest within
that framework. Conformal prediction is a popular model-agnostic method for
constructing prediction intervals for new observations. However, it typically re-
quires observed true labels to build the prediction interval, making it unsuitable for
unobserved latent variables. We propose a method to construct a prediction interval
by leveraging sample-splitting of the training data and analyzing the discrepancy
between two independently trained models. To ensure the identifiability of the
distribution of this conformity score, we introduce a few assumptions regarding
the distribution of the residuals of the predictions. Furthermore, we propose a
residual orthogonalization to satisfy these assumptions with a coordinating regular-
ization term. The performance of the proposed method was evaluated using both
simulation and large language model experiments.

1 INTRODUCTION

Scientific inquiry frequently necessitates inferring unobservable variables from observed data to
address quantitative research questions. These latent variables, despite their indirect nature, often
play a crucial role in decision-making across diverse domains. In clinical diagnostics, for instance,
physicians must deduce underlying pathologies from a limited set of observable symptoms and test
results (Ledley and Lusted, 1959; Kassirer, 1989). Similarly, in clinical research, the estimation of
treatment effects relies on incomplete observational data, requiring sophisticated inference about
counterfactual outcomes (Pearl, 2009; van der Laan and Rose, 2011; 2018; Hernan and Robins,
2024). The significance of these unobserved variables in practical decision-making underscores
the importance of robust uncertainty quantification methods, such as prediction intervals. These
measures provide decision-makers with critical insights into the reliability and variability of inferred
information, thereby enhancing the quality of decisions in fields ranging from healthcare to policy
formulation. Consequently, the development and application of advanced inferential techniques
remain central to progress in both theoretical and applied sciences.

Many modern applications rely on inferring latent variables from observed data using complex models
such as deep neural networks. In LLM alignment (Ouyang et al., 2022), for instance, the goal is to
infer an implicit reward signal—unobserved human preferences—from pairwise comparison data,
and use it to fine-tune language models. This reward modeling process is inherently uncertain, and
recent work suggests that incorporating uncertainty improves robustness and alignment performance
(Laidlaw and Russell, 2021; Zhai et al., 2023; Zhang et al., 2024). In education research, LLMs were
used to generate questions with students’ understanding taken into account based on the estimate
using the item response theory (Srivastava and Goodman, 2021; Uto et al., 2023). Longitudinal
treatment effects given the patients’ health trajectory can be estimated as a value function in a
non-Markovian decision process with deep neural networks (Frauen et al., 2023; Shirakawa et al.,
2024; Hess et al., 2024). Deep neural networks were also used for survival analysis that estimates the
hazard functions (Katzman et al., 2018; Steinberg et al., 2024).

Conformal prediction (CP) (Vovk et al., 2005) is a model agnostic method to quantify the uncertainty
of the out-of-sample prediction by constructing prediction intervals. However, CP may be less useful
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for classification tasks with a small number of classes because the constructed prediction set tends to
include all possible class labels. For example, when CP is applied to a binary classification task, the
resulting 90% prediction set tends to contain both labels if the model has high uncertainty, leading
to an uninformative confidence set. To overcome this shortcoming of binary classification CP, we
propose an algorithm to provide the prediction interval for the predicted probability of classification,
instead of the predicted class itself. The proposed method can be extended to more general problems
of CP for latent variable. As an example of such generalization, we explore the utility of the proposed
algorithm in preference learning. We construct a prediction interval of the difference of the implicit
rewards of the Bradley-Terry model (Bradley and Terry, 1952) used for preference learning to
fine-tune the large language models (LLMs).

The key contributions of this study are:

• We develop a Latent Conformal Prediction (LCP) method to construct prediction intervals
for unobservable latent variables. The key idea is to estimate the distribution of prediction
residuals without access to ground-truth labels, by leveraging sample-splitting and analyzing
the discrepancy between two independently trained models. This allows us to extend
conformal prediction to settings where the variable of interest is never observed, such as in
preference learning or probabilistic classification.

• We further introduce a procedure, called residual orthogonalization, for finding an estimator
that meets the assumptions required to identify the distribution of the conformity score. For
this purpose we introduced a regularization term in a coordinated manner.

• The performance of the proposed algorithm is evaluated with synthetic data of binary classi-
fication and preference learning for LLMs. We demonstrated the reasonable interpretation
of the proposed method with a few examples from a human preference data over paired
model-generated responses.

2 RELATED WORK

CP is a method for producing prediction sets that guarantees coverage of the true label (Vovk et al.,
2005). The prediction sets are constructed by taking a quantile of conformity score, which measures
how close the prediction is to the true label, computed in a randomly separated calibration set from
the training set on which the prediction model is trained. A common choice of the conformity score
is the distance between the true label and the prediction. CP for regression problems, where the true
label is usually accessible, has been an area of extensive research (Vovk et al., 2005; Gammerman
et al., 1998; Lei et al., 2013; 2018; Alaa et al., 2023).

CP for binary and multinomial classification have been proposed (Sadinle et al., 2019; Romano
et al., 2020; Angelopoulos et al., 2021; Ding et al., 2023; Huang et al., 2024). Guha et al. (Guha
et al., 2024) applied this classification CP to regression problem to construct prediction sets for
heteroscedastic, multimodal, or skewed distributions. Applications of classification CP in medicine
were also published for predicting risks of breast cancer (Lambrou et al., 2009) and stroke (Lambrou
et al., 2010). However, all these studies output discrete prediction sets of classification labels.
Although the conformity score for the binary classification probability can be measured by the
distance between the binary label and the predicted probability, this score would be too large to be of
practical use.

A method for distribution-free binary classification with prediction intervals for classification proba-
bilities was proposed by Gupta et al. (2020). Their method assumes that the latent variable is bounded
and can be expressed as a conditional expectation of some observable variable, which enables the
use of concentration inequalities such as Bernstein’s. However, this formulation does not apply to
preference learning, where the latent reward is typically unbounded and cannot be represented as an
expectation of any observable variable, even after transformations such as the sigmoid function. Fea-
ture conformal prediction (Teng et al., 2023; Chen et al., 2024) is a method to construct efficient, i.e.,
narrower, prediction intervals using a latent feature of an observable continuous outcome. However,
their method could only be applicable to the continuous Y , and cannot be applied to our problem of
binary classification or preference learning where we observe discrete labels.

Motivated by this gap between CP for continuous regression and discrete classification, we explore
the situation where the latent variable of (transformed) probability can be identified from the observed

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

labels, hence the standard techniques of CP are applicable. The problem can be stated formally in a
general setting of CP for latent variables.

3 PRELIMINARIES

In this section, we provide the foundational concepts necessary for our proposed method. We begin
by introducing conformal prediction, a model-agnostic framework for uncertainty quantification,
which serves as the basis for our approach (Section 3.1). We then discuss latent variables, which play
a central role in many statistical models, highlighting the challenges and importance of uncertainty
estimation in this context (Section 3.2).

3.1 CONFORMAL PREDICTION

Conformal prediction constitutes a methodological framework designed to quantify the uncertainty
associated with predictions in machine learning. This framework provides a measure of confidence by
generating prediction intervals that are expected to contain the true value with a specified probability.
We provide a concise exposition of the standard conformal prediction algorithm for regression tasks.

Suppose that a dataset comprises n observations D := {(Xi, Yi)}ni=1, where Xi ∈ X ⊆ RdX

and Yi ∈ Y ⊆ R. The objective of conformal prediction is to estimate the prediction interval
Ĉ1−α(Xn+1) for α ∈ (0, 1) such that, given a new sample (Xn+1, Yn+1),

Pr[Yn+1 ∈ Ĉ1−α(Xn+1)] ≥ 1− α. (1)

To estimate this interval, the standard conformal prediction algorithm partitions the data D into a
training set Dtrain and a calibration set Dcal. Subsequently, we train a prediction model f : X → Y
using the training data Dtrain and we use the conformity scores computed from the trained model f̂ .
One of commonly employed conformity scores in regression is the absolute residual:

|Yi − f̂(Xi)|, (2)

for (Xi, Yi) ∈ Dcal. The conformity scores are then sorted to obtain the (1 − α)(1 + |Dcal|−1)-
quantile, denoted as Q̂1−α. Finally, the prediction interval is estimated as

Ĉ1−α(Xn+1) =
[
f̂(Xn+1)− Q̂1−α, f̂(Xn+1) + Q̂1−α

]
.

It has been demonstrated that this interval satisfies the inequality equation 1.

3.2 LATENT VARIABLES

Let Y ∈ Y denote the response variable and X ∈ X denote the predictor variables. Many statistical
models incorporate latent variables Z, which represent unobservable factors that influence the
relationship between predictors and response. We consider latent variable models expressed by the
following structural model:

X −→ Z −→ Y,

where the response Y given the observed data X is modeled through a latent variable Z: Pr(Y |X) =
Pr(Y |Z) with Z produced from X by some function f as Z = f(X). Here, we assume f is deter-
ministic, which holds in many practical AI applications, including logits in classification problems,
rewards in RLHF (Ouyang et al., 2022), item parameters in item response theory (Hambleton and
Swaminathan, 1985), and conditional intensities in survival analysis (Andersen et al., 1996).

In many cases, latent variables are interpretable and can guide crucial decisions, such as treatment
choices in healthcare (Muthén, 1992) or strategic decisions in marketing (Draganska et al., 2008).
Accurately quantifying uncertainty, i.e., constructing prediction intervals for estimated latent variables,
is crucial for these practical applications. The ability to determine precise interval lengths directly
impacts the reliability of decisions made based on the latent variable estimates.

Estimating such prediction intervals poses significant challenges. Approaches like Bayesian inference
and bootstrapping are commonly used to quantify uncertainty in latent variable estimates. However,
Bayesian inference depends heavily on the choice of prior distributions, which can influence the
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resulting coverage rates and make it difficult to ensure that intervals capture the true latent variable
with a specified probability (e.g., 90%). Bootstrapping can estimate the variability of an estimator but
does not guarantee that the resulting intervals will cover the true value with the desired confidence
level. In contrast, conformal prediction offers a more flexible approach by adjusting interval estimates
based on a calibration set, providing a principled way to achieve proper coverage.

4 PROBLEM SETTING

Our objective is to construct prediction intervals for the latent variable Zn+1 corresponding to a new
observation Xn+1, such that these intervals achieve a pre-specified target coverage probability.

Pr[Zn+1 ∈ Ĉ1−α(Xn+1)] ≥ 1− α, (3)

given a dataset {(Xi, Yi)}ni=1. The fundamental challenge arises from the absence of direct observa-
tions of {Zi}ni=1 in our dataset. This precludes the application of conventional methodologies that
utilize prediction error metrics such as |Zi − f(Xi)| for uncertainty calibration as in equation 2.

To explain this problem of constructing the prediction intervals of latent variable predictions, we will
proceed with an illustrative example of binary classification tasks, and then introduce the preference
learning and its multinomial extensions. Our method can be easily extended to more general cases of
latent variable modeling.

4.1 BINARY CLASSIFICATION

Let Y ∈ {0, 1} be a binary label and X ∈ RdX be a feature random vector, where dX is the dimension
of X . Suppose that Y is generated from a Bernoulli distribution with success probability σ(Z) for
a scalar latent variable Z, where σ(z) := (1 + e−z)−1 is the sigmoid function. In this setting, the
latent variable of interest is Z = logit(E[Y |X]), where logit(·) = σ−1(·). Let {(Xi, Yi)}ni=1 be the
samples for training, where n is the sample size, and Xn+1 the out-of-sample feature for which we
want to construct the prediction interval Ĉ1−α(Xn+1) for Zn+1 satisfying the inequality equation 3.

When we consider this problem as a prediction problem of Y based on X with the target function
µ(x) = logit(E[Y |X = x]), then CP typically uses the absolute residuals |Yi − σ(µ(Xi))| as the
conformity score as described in Section 3.1 with a rescale of the (1 − α)-quantile Q by the logit
function. However, in the classification task, the label is binary and thus the computed prediction
interval might be too conservative (wide), potentially exceeding the valid probability range of zero
to one. Therefore, we formulate the problem as the estimation of the logit of the probability and
estimate its prediction interval. The difficulty here is that we do not have access to the true values of
the logit in the observations.

4.2 PREFERENCE LEARNING

Preference learning from real-world data is an important area of machine learning and artificial
intelligence with a wide range of applications including recommendation system, reinforcement
learning from human feedback, and clinical decision support for evidence-based medicine (Tsopra
et al., 2018). The Bradley-Terry (BT) model (Bradley and Terry, 1952) is a popular method for
preference learning assuming the probability of preference is determined by the difference of implicit
rewards for two items compared. The BT model has been used to fine-tune large language models by
aligning them with human preferences (Ouyang et al., 2022; Touvron et al., 2023). The BT model
was extended to ranking learning by the softmax function of multiple implicit rewards of candidate
items (Luce, 1959; Plackett, 1975).

Bradley-Terry model. Preference learning task is formulated with the observed data (W,Y0, Y1, L),
which consists of independent identically distributed random variables. Here, W represents user
characteristics, while Y0 and Y1 denote the items being compared. The binary variable L ∈ {0, 1}
indicates the chosen item, where L = 1 if Y1 was selected and L = 0 if Y0 was selected. We
introduce the Bradley-Terry model:

Pr(Y1 ≻ Y0 |W ) = σ
(
r(W,Y1)− r(W,Y0)

)
, (4)
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Algorithm 1: Latent Conformal Prediction (LCP)

1 : D → D1 ∪D2 ∪Dcal // sample split;
2 : f̂ j ← train the model with Dj for j = 1, 2;
3 : f̃ ← (f̂1 + f̂2)/2; // final predictor;
4 : Ũk ← (f̂1(Xk)− f̂2(Xk))/2 for k ∈ Dcal;
5 : Q← (1− α)(1 + n−1)-quantile of {|Ũk|}k∈Dcal ;
6 : Ĉ(Xn+1)← [f̃(Xn+1)−Q, f̃(Xn+1) +Q]; // prediction interval

where r is the implicit reward function. Defining the binary indicator Y as Y = L, we can interpret
the preference learning task as a binary classification problem. Instead of the logit of the probability of
Y = 1, the problem is not normalized because there is one dimensional freedom for translations of the
reward r(W,Y ). After applying a normalization, for example, r(W, 0) = 0 or r(W, 0)+r(W, 1) = 0,
we can identify the reward function. Herein, we also face a challenge of constructing prediction
intervals of individual preference, or reward, using CP because we cannot directly observe these
implicit rewards in data.

5 LATENT CONFORMAL PREDICTION

We propose a method for conformal inference on latent variables which consists of 1) a reduction
of the problem to the standard conformal prediction with assumptions, and 2) an algorithm to make
the estimator satisfy the assumptions. Specifically, we first derive a model-agnostic method for
constructing a prediction set based on assumptions on residuals of the first-stage estimators. Second,
we propose a method to have the estimators meet the criteria assumed in the first part. Then, we
extend the method for the localized prediction set construction.

5.1 ALGORITHM

Since the true latent value Z is unobservable, we cannot directly compute the residual error

Ũ := f̃(X)− Z, (5)

for some prediction model f̃ . Instead, we introduce a proxy variable for computing the distribution
of the residual Ũ . We propose a latent conformal prediction (LCP) that uses a sample splitting of
dataset into three independent subsets:

D = D1 ∪D2 ∪Dcal. (6)

The datasets D1 and D2 are used to train the prediction models f̂1 and f̂2 for the latent variables
separately. We will prove in Proposition 2 that under some assumptions the distribution of Ũ for the
averaged prediction model f̃ := (f̂1 + f̂2)/2 can be identified via the proxy variable defined by

V̂ := f̂1(X)− f̂2(X), (7)

on the calibration set Dcal. Note that the proxy variable can be expressed as the difference between
the two residual errors V̂ = Û1 − Û2, where Û j = f̂ j(X)− Z. Note that Û j cannot be predicted
from observed data since they involve the unobserved quantity Z.

The procedure is illustrated in Algorithm 1, whose coverage equation 3 is theoretically guaranteed
by Theorem 1 under Assumptions 1, 2 and 3 introduced in the next subsection. The following
subsection presents a formal theory behind this algorithm, followed by an approach to ensure that the
assumptions hold by appropriately training the models with the sample split equation 6.

5.2 THEORY

In this subsection, we describe the identification results for the distribution of residuals under a few
assumptions. This identification requires building estimators that are “independent” in a certain sense,
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which may sacrifice statistical efficiency. We will also introduce a method to recover this efficiency
in the subsequent arguments. This method for efficiency recovery proves useful in identifying the
distribution of the conformity score.

To identify the distributions of Û1 and Û2, we use a result from the measurement error literature. In
that field, the problem is formulated as two measurements Zj = Z + U j , where Z is the variable of
interest and U j are measurement errors. Under the assumptions of independence of Z and U j , one
can identify the distribution of Z and U j . However, our interest here is the distribution of residuals
U j . Given this context, we assume the following conditions on the residuals.

Assumption 1 (Orthogonality). The residuals are independent: Û1 ⊥ Û2.

Assumption 2 (Identity). The distributions of the residuals are identical: Û1 ∼ Û2.

Assumption 3 (Symmetry). The distributions of the residuals are symmetric: Û1 ∼ −Û1.

Under Assumptions 1, 2 and 3, the distribution of the error Ũ is identified by a simplified Kotlarski’s
Lemma (Kotlarski, 1967; Li and Vuong, 1998):

Proposition 1 (Kotlarski). Under Assumptions 1, 2 and 3, we can identify the distribution of Ũ via
the proxy V̂ as

φŨ =
√
φV̂ , (8)

where φX = E[eiXt] is the characteristic function of a random variable X .
Remark. In general, Assumption 1 does not hold, especially when employing small models. The
independence between Û1 and Û2 is a conditional independence given a sample split of D1 and D2.
In the next section we will describe a technique to satisfy this assumption by trying different splitting
with hypothesis tests. On the other hand, Assumption 3 would be more reasonable when we carefully
choose the model, or the loss function. For example, in classification or preference learning tasks, the
logits of the probability are of our interest. The common choice of the loss function is a cross entropy
loss:

L(ŷ, y) =
K∑
i=1

yi log ŷi,

which is linear in the logits of ẑi = log pi, where yi ∈ {0, 1} is the binary classification label and
ẑi is the logit of the probability of being classified as the class i for i = 1, . . . ,K, where K is the
number of classes. Therefore, we could expect the symmetric fluctuation of the predictions with
respect to the random perturbation of the observation in the training set.
Remark. Note that the characteristic function φX of a random variable X is the Fourier transform
of the density function of X . The density of X is recovered by the inverse Fourier transform from
the characteristic function. Therefore, the distribution of Ũ is identified through the distribution of
V̂ by Proposition 1. Numerical computation based on the identification equation 8 requires two
steps of the Fourier transform and the inverse Fourier transform after taking the square root of the
characteristic function. Previous econometrics studies of measurement error proposed a method using
smoothing kernels because the first transform involves a Fourier transform of empirical distribution
which needs to be smoothed out to recover the distribution (Li and Vuong, 1998; Kurisu and Otsu,
2022). Furthermore, the discretization levels and the range of integration of Fourier transform is to
be determined by the user since the characteristics function of the empirical distribution does not
have a compact support. However, we could solve this problem by avoiding the Fourier transform
simultaneously gaining efficiency in an additional identification result stated in Proposition 2.

Corollary 1. For a Gaussian Û , we have

Ũ ∼ V̂ /
√
2. (9)

Remark. The relationship Ũ ∼ V̂ /
√
2 in Corollary 1 greatly simplifies the numerical computation

of the distribution of conformity score because it does not require Fourier transforms, and thus
improves the quality of estimates. However, this does not hold for general distributions even for
those satisfying Assumptions 1, 2 and 3. For example, the characteristics function of the standard
Laplace distribution is φ(t) = 1/(1 + t2) and φ2(t) is no longer the characteristics function of a
scaled Laplace distribution by a factor of 1/

√
2. We proceed further to establish the identifiability of

the distribution of U from residuals satisfying Assumptions 1, 2 and 3.
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Efficiency Recovery. We can construct a more efficient estimator by averaging the two estimators
with its conformity score identified by a very simple form:

Proposition 2. Under the Assumptions 1, 2 and 3, we can identify the distribution of the residual Ũ
as

Ũ ∼ V̂ /2. (10)

Remark. Note that the identification result Ũ ∼ V̂ /2 in Proposition 2 holds for any distributions
satisfying Assumptions 1, 2 and 3 not limited to Gaussian distributions as in Corollary 1 and the
following remarks. By taking the average of the models trained in the split dataset, we cannot only
recover the efficiency in the predictive ability but also identify the distribution of the conformity score
Ũ only with the nonparametric assumptions.

Theorem 1. Under Assumptions 1, 2 and 3, the prediction interval constructed in Algorithm 1
satisfies the coverage:

Pr[Zn+1 ∈ Ĉ1−α(Xn+1)] ≥ 1− α. (11)

5.3 RESIDUAL ORTHOGONALIZATION

Since Assumption 1 does not hold generally, we propose a remedy to satisfy the assumption through
regularization. We introduce an additional simultaneous optimization of two models after the first
step of Algorithm 1 with a regularization term to make the residuals of the first and the second models
independent which are calculated using the third model fθ3 fitted on Dcal:

L(θ1, θ2; θ3) = L1(θ1) + L2(θ2) + γL⊥(θ1, θ2; θ3), (12)

where Lj are the loss functions of the models fθj computed with samples from each split j ∈ {1, 2},
and L⊥ is the orthogonal loss defined as:

L⊥(θ1, θ2; θ3) =
1

B

B∑
i=1

U ′
i(θ1; θ3)U

′
i(θ2; θ3), (13)

where B is the batch size, and U ′
i(θj ; θ3) = Ẑi(θj)− Ẑi(θ3) with Ẑi(θj) = fθj (Xi) for each split

data j ∈ {1, 2, 3} and individual i in the calibration set. We optimize the loss equation 12 with
respect to θ1 and θ2 to ensure the residuals are independent, as required by Assumption 1.

5.3.1 THEORETICAL JUSTIFICATION

Here we describe the theoretical justification of the residual orthogonalization with the loss 13. Let
HSIC(X,Y ) be the Hilbert-Schmidt Independence Criteria (HSIC) (Gretton et al., 2007) of random
variables X and Y .

Theorem 2. Suppose the kernel for the HSIC is bounded and 1-Lipchitz. Then the true HSIC is
bounded by its proxy and terms in the residual ∆ := Ẑ(θ3)− Z up to a universal constant:

HSIC(U(θ1), U(θ2)) ≲ HSIC(U ′(θ1; θ3), U
′(θ2; θ3)) + E[|∆|] + E[∆2]. (14)

The orthogonal loss L⊥ is a special case of HSIC with a linear kernel k(u, v) = uv. Hence our
algorithm corresponds to the first-order orthogonalization of the residuals.

5.4 LOCALIZED LATENT CONFORMAL PREDICTION

We further explore the localized conformal prediction that provides the adaptive confidence interval
Ĉ1−α(Xn+1) depending on the value of the feature value:

Pr[Zn+1 ∈ Ĉ1−α(Xn+1)|Xn+1] ≥ 1− α. (15)

To construct such intervals, we assume a scalar localization score Γ(x) ∈ R such that the conditional
distribution of Ũ varies primarily through Γ(x). Intuitively, this induces a one-dimensional stratifica-
tion under which the conditional dispersion of Ũ is approximately stable within small neighborhoods

7
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of Γ(x). In our implementation, Γ(x) is instantiated as a density-based score of X , which typically
induces wider intervals in low-density regions and narrower ones in high-density regions.

Let K be a positive integer and let U(x) denote the K calibration points whose scores Γ(Xi)
are closest to Γ(x) in the calibration set Dcal. We compute the local quantile Q1−α(x) as the
(1−α)(1+ |n|−1)-th quantile of V(x) = {Ũi | i ∈ U(x)}, and then construct the prediction interval
as

Ĉ1−α(x) = [f̃(x)−Q1−α(x), f̃(x) +Q1−α(x)]. (16)

We call this approach as localized latent conformal prediction (localized LCP).

6 EXPERIMENTS

We conducted experiments to evaluate the proposed method in two settings: a synthetic binary
classification task and an LLM-based preference ranking task. See Appendix B for the detailed
experiment settings. We also evaluate the utility of these intervals in LLM alignment via RLHF; see
Appendix B.4 for details and results.

6.1 SIMULATION EXPERIMENT

We considered a simple simulation setup: X ∼ N (0, I3), Z = 3 sin(X̄), and Y ∼ Ber(σ(Z)). We
generated 3000 samples, split them into D1, D2, and Dcal (1000 each), and included a 90% bootstrap
baseline (500 resamples). See Appendix B.1 for full details and Appendix B.2 for additional results
for the BT model.

The results are shown in Figure 1. The proposed method showed better coverages with larger
lengths as the hyperparameter α increases than bootstrap. MSEs of the proposed method were
comparable with that of bootstrap. As the hyperparameter α increases, the MSE tended to be slightly
smaller, suggesting that the regularization term in the loss equation 12 contributed to better predictive
performance.

0.7 0.8 0.9 1.0

Bootstrap

=0.0
=0.1
=0.3
=1.0
=3.0

Coverage
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Length
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Figure 1: Performances of the proposed methods compared with the bootstrap for synthetic data.

6.2 LLM PREFERENCE RANKING EXPERIMENT

As a more realistic example, we evaluated the method on an LLM preference ranking task using
the AlpacaFarm dataset (Dubois et al., 2023). We fine-tuned the pretrained LLM-based reward
model Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024), where X denotes the 4096-
dimensional final-layer representation of the backbone LLM that feeds the reward head. We used
URM-LLaMa-3.1-8B (Lou et al., 2024) as the gold reward model both to provide ground-truth
preference labels (binary indicators of the preferred response in a pair) for evaluation and to generate
training preference labels via a BT model. We split the dataset into D1, D2, Dcal, and Deval (2400
samples each). See Appendix B.3 for additional dataset and training details.

The results are shown in Figure 2. The proposed method approached the target coverage as α
increased, while naive LCP (α = 0) underperformed, likely due to correlations between residuals
without the regularization term in equation 12.
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Figure 2: Performances of the proposed methods compared with the bootstrap with the pretrained
reward model URM-LLaMa-3.1-8B.

6.3 ADAPTIVE INTERVAL PREDICTION EXPERIMENT

We conducted experiments using the LLM datasets and models described in Section 6.2 to evaluate
the effectiveness of localized LCP. To construct a localized prediction interval, we first computed a
density-based localization score Γ(x) for each input x.

We performed principal component analysis (PCA) on X in the training datasets D1 and D2, retaining
the top 100 components to obtain a low-dimensional representation. On this reduced space, we fitted
a kernel density estimator p̂ using the training datasets D1 and D2. We defined the localization
score as Γ(x) = p̂

(
z(x)

)
, where z(x) denotes the PCA representation of x. Given a new input x,

we selected the K = 500 calibration points x′ ∈ Dcal with scores Γ(x′) closest to Γ(x) and used
their conformity scores Ũx′ to compute the local quantile Q1−α(x). The prediction interval was then
constructed as in equation 16.

To evaluate empirical conditional (local) coverage, we defined, for each point x in the evaluation set,
a neighborhood U(x) in the localization score space via Γ(x). We then measured the proportion of
points whose latent variable Z lies within the corresponding interval Ĉ1−α(x).

The results are shown in Figure 3: standard LCP suffers from over-coverage in low-density regions
and under-coverage in high-density ones due to its constant interval length, whereas localized LCP
adjusts the interval width according to the localization score Γ(x) and yields better-calibrated local
coverage across the feature space.
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Figure 3: Comparison of standard LCP (left) and localized LCP (right) across density quantiles (i.e.,
quantiles of the density-based localization score Γ(x)). Localized LCP achieves adaptive interval
lengths and better-calibrated local coverage.

7 CONCLUSION

This study develops a method to construct prediction intervals for unobserved latent variables by
estimating conformity scores through sample splitting. Our theory establishes identifiability of the
residual distribution and coverage guarantees for the resulting intervals. We demonstrated the utility
of the proposed method in a synthetic binary classification task and an LLM preference learning task.
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A BINARY CLASSIFICATION AS REGRESSION PROBLEM

Here we provide a detailed exposition of binary classification task as conformal prediction (CP) for
regression, which we briefly mentioned in Section 4.1 in the manuscript. The interval prediction
Ĉ1−α

(
Xn+1) of Y can be constructed from the interval prediction Ĉ1−α

(
Xn+1; f̂

)
of f(x) =

E[Y |X = x] by the method described in Section 3.1 with a conformity score |Y − f̂(X)|. One
might consider using this interval to cover the true latent variable Z = E[Y |X]. We computed the
coverage and length of the prediction interval by this native CP with a synthetic data described in
Section 6.1. The average length of these intervals were 1.296± 0.018 with a mean coverage of the
observable label Yn+1 of 90.0% as expected. However, the coverage of the true latent variable Zn+1

by this intervals was 100% in all 100 runs of experiments, implying that the prediction interval for
the regression of Y is too conservative for the latent variable Z in practice. The oracle coverage
computed with an oracle conformity score |Z − f̂(X)| for predicting Z was 90.0% with a mean
length of 0.189± 0.019.

B EXPERIMENTS DETAILS

B.1 SIMULATION EXPERIMENTAL SETUP

We used a simple parametric model to generate a synthetic data as X ∼ N (0, I3), Z = 3 sin(X̄),
and Y ∼ Ber(σ(Z)). We generated 3000 samples based on this data generating process, and split this
dataset into two sets of training sets, D1 and D2, and a calibration set with 1000 samples each. The
performance metrics of the coverage n−1

1{Zi ∈ Ĉ(Xi)}, the length 2Q of the prediction set, and
the MSE n−1

∑n
i=1

[
f̂(Xi)−Zi

]2
are calculated with another independent dataset Deval, consisting

of 1000 samples.

We trained a neural network with two dense linear layers of dimension 64, drop-out layers after each
layer with a drop-out rate of 0.1, followed by the rectified linear unit (ReLU) activate functions to
learn the logits. We trained the model using the Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.001 and a batch size of 128 through 50 epochs.

B.2 EXPERIMENT WITH BRADLEY-TERRY MODEL

Here we show the additional data generating process (DGP) following the Bradley-Terry (BT) model.
Let X1, X2 ∼ N (0, 1), Z = r(X1) − r(X2) with r(x) = 3 tanh(x), and Y ∼ Ber(σ(Z)) with
σ(x) = 1/(1 + e−x). The results were shown in Figure 4. As α increases, the proposed method
attain the proper coverage of 90% even with a slightly better MSEs, which are similar to the results
of the binary classification tasks shown in Section 6.1 and Figure 1.
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Figure 4: Performances of the proposed methods for the latent variable in the Bradley-Terry model.

B.3 LLM EXPERIMENTAL SETUP

We used the AlpacaFarm dataset (Dubois et al., 2023) (MIT License). We treated
URM-LLaMa-3.1-8B (Lou et al., 2024) (OpenRAIL) as the gold reward model both to provide
ground-truth preference labels for evaluation and to generate training preference labels via a BT
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model. The dataset labeled by URM-LLaMa-3.1-8B was split into D1, D2, Dcal, and Deval with
2400 samples each.

As the target LLM-based reward model, we used Skywork-Reward-Llama-3.1-8B-v0.2
(Liu et al., 2024) (Skywork AI License) and fine-tuned it with the loss equation 12. Each sample was
represented by the 4096-dimensional final-layer output X of the backbone LLM, serving as the input
to the reward head. The reward head was a single linear layer (4096) with a dropout rate of 0.1. We
trained with the Adam optimizer (learning rate 10−4, batch size 128) for 35 epochs.

EXAMPLES

Here are two examples from the Alpaca farm dataset with predicted probabilities Pr(Y1 ≻ Y2|X)
with 90% prediction intervals for prompts X and outputs Y1 and Y2.

Example 1
X: What is the gender of the French word ville?
Y1: The gender of the French word ville is feminine.
Y2: The French word ville is gender neutral. It does not have a gender in French.
Pr(Y1 ≻ Y2|X) = 0.772 [0.240, 0.973].

Although the predicted probability of preferring the first output over the second is 0.772, the 90% pre-
diction interval [0.240, 0.973] includes values below 0.5, indicating a chance that there is uncertainty
about human preference in the opposite direction.

Example 2
X: Summarize the benefits of a plant-based diet in one sentence.
Y1: A plant-based diet is beneficial for both the planet and our health, as it reduces meat, dairy and
animal product consumption, decreasing environmental impact and risk of chronic diseases.
Y2: A plant-based diet provides numerous health benefits, including lowering risk of disease,
providing essential nutrients, and being more sustainable.
Pr(Y1 ≻ Y2|X) = 0.937 [0.582, 0.994].

The output Y1 clearly states how a plant-based diet is beneficial, while Y2 is vaguer without specifying
mechanisms or outcomes. This aligns with the human preference for Y1 over Y2, with 90% confidence,
as indicated by the lower bound of the prediction interval [0.582, 0.994] exceeding 0.5.

B.4 FILTERING PREFERENCE DATA BY CONFORMAL MARGINS IMPROVES LLM ALIGNMENT

We further evaluated the effect of filtering data using the prediction intervals obtained by LCP in
the context of LLM alignment (RLHF), where an LLM is finetuned to human preference with a
trained reward model. As a standard approach for LLM alignment, we adopted Direct Preference
Optimization (DPO) (Rafailov et al., 2023), using the test split Deval of our LLM dataset in Section 6.2
as the training dataset and applying the prediction intervals derived in Section 6.2 and 6.3. Specifically,
we discarded preference pairs whose reward margins fell within the conformal prediction interval,
as such pairs are less decisive in terms of preference ordering. This filtering aims to remove noisy
or ambiguous preference pairs with small reward margins, which may otherwise hinder stable
optimization in DPO by introducing label noise into the pairwise loss. By retaining only decisive
pairs whose conformal intervals exclude zero, the training signal is expected to better reflect reliable
human preferences.

We compared three training dataset settings: All using all preference pairs, LCP filtering dis-
carding pairs with margins inside the standard LCP interval, and Localized LCP filtering
discarding pairs with margins inside the localized LCP interval described in Section 6.3. For reference,
we also considered an All_oracle dataset in which labels were deterministically assigned by the
gold reward model instead of being sampled probabilistically from the Bradley–Terry distribution.

We evaluated the trained models with win rates on 512 prompts from the AlpacaFarm
alpaca_human_preference split, using the gold reward model URM-LLaMa-3.1-8B Lou
et al. (2024). Table 1 reports the mean win rates and standard errors over 5 seeds. We found that
conformal filtering improved alignment performance, with localized LCP filtering achieving the
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highest win rate and approaching the oracle setting. The hyperparameters, which were kept fixed
across all settings, are summarized in Table 2.

DPO dataset Mean win rate Std. error

All (without conformal filtering) 0.5676 0.0090
LCP filtering 0.5744 0.0101
Localized LCP filtering 0.5834 0.0058

All_oracle 0.5951 0.0053

Table 1: DPO with/without conformal filtering. All_oracle uses deterministically assigned labels
from the gold reward model instead of probabilistic sampling.

Parameter
Epochs 2
Learning rate 1× 10−5

β 0.1
Batch size 8
LCP coverage rate 0.2

Table 2: Experimental parameters of DPO experiment

C PROOFS

Proof of Proposition 1. Computing the characteristic function of V as φV = φU1−U2 = φUφ−U =
(φU )

2, we have Eq. equation 8. The first equality is by the definition of V , the second is by
Assumptions 1 and 2, and the third is by Assumption 3.

Proof of Corollary 1. Since the characteristics function of Gaussian distribution of a variance σ2 is
φ(t) = exp(σ2t2/2), we have

√
φ(t) = exp(σ2t2/4) = exp[(σ/

√
2)2t2/2], which is the character-

istics function of the Gaussian distribution of a variance (σ/
√
2)2.

Proof of Proposition 2. First, we can compute the characteristic function of Ũ as φŨ (t) =

φ(U1+U2)/2(t) = φU1+U2(t/2) =
[
φU (t/2)

]2
. We have φŨ (t) = φV (t/2) = φV/2(t), which

implies equation 10. Here we use the property of characteristic function φλX(t) = φX(λt) for any
scalar λ, and the result φV = φ2

U from the proof of Proposition 1.

Proof of Theorem 1. Since we assume the iid samples, the conformity score Ũi of f̃ for i = 1, . . . , n
are iid, and thus, exchangeable. Let Q̃1−α be the (1 − α)(1 + 1/n)-quantile of |Ũi| for i in
the calibration set. Then, by the standard argument of conformal prediction, C̃1−α(Xn+1) =

[f̃(Xn+1)− Q̃1−α, f̃(Xn+1) + Q̃1−α] guarantees the coverage Pr[Zn+1 ∈ C̃1−α(Xn+1)] ≥ 1− α.
By Proposition 2, Ũ and V/2 have the same distribution, hence the distribution of (1− α)(1 + 1/n)-
quantile of |Ũi| equals the distribution of (1− α)(1 + 1/n)-quantile of |Vi/2| for i in the calibration
set. Therefore, if we define Q̂1−α as the (1− α)(1 + 1/n)-quantile of |Vi/2| for i in the calibration
set and Ĉ1−α(Xn+1) = [f̃(Xn+1)− Q̂1−α, f̃(Xn+1)+ Q̂1−α], then Ĉ1−α(Xn+1) = C̃1−α(Xn+1)
is guaranteed to cover the true Zn+1 with probability at least 1− α after marginalizing over training
and calibration sets.

Proof of Theorem 2. Let k be a positive semi-definite kernel on R. Suppose k is bounded by κ and
1-Lipschitz with a constant L:

|k(u+ δ, u′ + δ′)− k(u, u′)| ≤ L(|δ|+ |δ′|). (17)
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Let ∆ := Ẑ3−Z, then U ′1 = U1+∆ and U ′2 = U2+∆. The HSIC between two random variables
U and V is given by:

HSIC(U, V ) = E[k(U,U∗)k(V, V ∗)] + E[k(U,U∗)]E[k(V, V ∗)]

− 2E[E[k(U,U∗)|U ]E[k(V, V ∗)|V ]],
(18)

where U∗ and V ∗ are i.i.d. copies of U and V , respectively. We want to bound |HSIC(U ′1, U ′2)−
HSIC(U1, U2)|. The difference of the first term of equation 18 is evaluated as follows:

∆1 = E[k(U1 +∆, U1∗ +∆∗)k(U2 +∆, U2∗ +∆∗)− k(U1, U1∗)k(U2, U2∗)]. (19)

Using the equation ab−a′b′ = (a−a′)b+a′(b− b′)+ (a−a′)(b− b′), this term can be bounded by

|∆1| ≤ 2κLE[|∆|] + L2E[∆2]. (20)

The other two terms in equation 18 is bounded similary, yielding the following bound:

HSIC(U1, U2) ≲ HSIC(U ′1, U ′2) + E[|∆|] + E[∆2]. (21)

D USE OF LARGE LANGUAGE MODELS

LLMs were used for grammar and style suggestions.
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