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ABSTRACT

Federated learning (FL) is an emerging distributed learning paradigm without
sharing participating clients’ private data. However, existing works show that
FL is vulnerable to both Byzantine (security) attacks and data reconstruction (pri-
vacy) attacks. Existing FL defenses only address one of the two attacks, and also
face the efficiency issue. We propose BPFL, an efficient Byzantine-robust and
provably privacy-preserving FL method that addresses all the issues. Specifically,
we draw on the state-of-the-art Byzantine-robust FL method and use similarity
metrics to measure the robustness of each participating client in FL. The validity
of clients are formulated as circuit constraints on similarity metrics and verified
via a zero-knowledge proof. Moreover, the client models are masked by a shared
random vector, which is generated based on homomorphic encryption. In doing
so, the server receives the masked client models rather than the true ones, which
are proven to be private. BPFL is also efficient due to the usage of non-interactive
zero-knowledge proof. Experimental results on various datasets show that our
BPFL is efficient, Byzantine-robust, and privacy-preserving.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017), an emerging distributed learning paradigm, enables
multiple clients to collaboratively train a model with the coordination of a server, where the client
data are kept locally and do not share with any other clients/server during the entire course of learn-
ing. As data from each participating client does not need to be shared, the FL provides a baseline
level of privacy. Many applications, such as Google’s Gboard (Bonawitz et al., 2019), healthcare
informatics (Xu et al., 2021), and credit risk prediction (Yang et al., 2019), have shown the potential
of FL in the real-world. However, recent works have shown that the current FL design faces both
security and privacy issues.

On one hand, FL is vulnerable to Byzantine attacks (also called model poisoning attacks) (Bhagoji
et al., 2019; Fang et al., 2020; Baruch et al., 2019; Shejwalkar & Houmansadr, 2021; Bagdasaryan
et al., 2020; Xie et al., 2019a), where a few malicious clients can significantly reduce the overall
performance by injecting carefully designed poisoned local models during FL training. To address
this issue, several Byzantine-robust FL methods have been proposed (Blanchard et al., 2017; Chen
et al., 2017; Guerraoui et al., 2018; Yin et al., 2018; Guerraoui et al., 2018; Chen et al., 2018; Pillutla
et al., 2019; Xie et al., 2019b; Wu et al., 2020; Cao et al., 2021). Though with different techniques,
the main idea of these Byzantine-robust schemes is that the server performs statistical analysis on
client models and uncovers malicious client models as those largely deviate from others based on
some similarities metrics. For instance, in the state-of-the-art FLTrust (Cao et al., 2021), the server
holds a clean validation dataset and uses it to train a reference model. The server then assigns a trust
score to each client model based on the cosine similarity between the client model and the reference
model. A client model with a relatively small trust score will be flagged as malicious.

All the existing Byzantine-robust FL methods are based on plaintext (i.e., shared client model gra-
dients or parameters). However, many existing works (Hitaj et al., 2017; Zhu et al., 2019; Wang
et al., 2019; Geiping et al., 2020; Yin et al., 2021; Jeon et al., 2021; Luo et al., 2021; Balunovic et al.,
2022; Fowl et al., 2022; Sun et al., 2021) show that FL is vulnerable to privacy attacks, particularly
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Figure 1: An honest-but-curious server recovers the raw data from the shared client models trained by FLTrust.

data reconstruction attacks where an honest-but-curious server can successfully recover the private
client data from the shared client models. We note that the Byzantine-robust FL methods face the
same issue. For instance, we successfully recover the raw training data from the shared client mod-
els trained by the-state-of-the-art FLTrust (Cao et al., 2021) using the DLG attack proposed in Zhu
et al. (2019) (See Figure 1). To mitigate privacy attacks, various provably privacy-preserving FL
mechanisms have been designed, and these methods are mainly based on three techniques: differ-
ential privacy (DP) (Pathak et al., 2010; Shokri & Shmatikov, 2015; Hamm et al., 2016; McMahan
et al., 2018; Geyer et al., 2017; Wei et al., 2020), secure multi-party computation (MPC) (Danner
& Jelasity, 2015; Mohassel & Zhang, 2017; Bonawitz et al., 2017; Melis et al., 2019), and homo-
morphic encryption (HE) (Aono et al., 2017; Zhang et al., 2020). However, these methods either
have high utility losses (e.g., DP-based), or induce huge communication and computation overheads
(e.g., MPC-based). Moreover, all of them cannot defend against the Byzantine attacks. More details
about existing works are shown in Appendix A.

We advocate that a practical FL system should maintain the privacy of the participating clients’ data,
ensure the robustness against malicious clients during the entire learning, and be computation and
communication efficient. However, as discussed above, all the current FL works only satisfy part of
these requirements. We aim to design a novel FL that achieves the following goals simultaneously:
1. Byzantine-robust: The server can detect invalid and malicious local models submitted by clients

and refuse them to participate in global model aggregation.
2. Privacy-preserving: The server cannot infer clients’ private data during the entire FL training.
3. Efficient: Our method should not incur too many computation and communication overheads,

compared to the standard FL methods.

Specifically, we propose an efficient Byzantine-robust and privacy-preserving FL method termed
BPFL. To ensure Byzantine-robust, we draw ideas from existing Byzantine-robust methods such
as Krum (Blanchard et al., 2017) and FLTrust (Cao et al., 2021), where the server in BPFL also
holds a clean validation dataset to train a reference model and uses similarity metrics to measure the
maliciousness/robustness of client models. Unlike existing methods, we use the Zero-Knowledge
Proof (ZKP) (Goldwasser et al., 1989) to verify the validity of client models. Particularly, we use
both cosine similarity and Euclidean distance as circuit constraints in the ZKP to verify the validity
of the client model, and the proofs are generated by the clients and verified by the server. The client
model that fails to validate will be rejected to participate in the aggregation. To guarantee privacy-
preserving, the client model submitted to the server will be masked by a random vector; and we
design a mask vector negotiation protocol (MVNP), based on HE, to generate a shared mask for all
clients without sharing each client’s data to others. The server then receives the masked client models
rather than the true ones and we prove that the server cannot infer any useful data information from
the masked client models. Finally, due to the non-interactive properties of ZKP and the efficiency
to generate circuit constraints, BPFL is also communication and computation efficient. In summary,
our contributions are as follows:
• To the best of our knowledge, BPFL is the first FL design that is Byzantine-robust, provably

privacy-preserving, and communication and computation efficient as well.
• BPFL seamlessly integrates the ideas of existing Byzantine-robust FL methods, zero-knowledge

proof, and homomorphic encryption into a unified framework.
• Evaluations on synthetic and real-world datasets show BPFL can defend against both Byzantine

attacks and data reconstruction attacks, with small computation and communication overheads.
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Figure 2: Overview of BPFL.

2 PRELIMINARIES AND THREAT MODEL

Federated learning (FL). Suppose we are given a set of n clients C = {C1, C2, · · · , Cn} and a
server S, where each client Ci ∈ C holds a dataset Di. At the beginning, the server initializes a
global model w1

g . In each round t, each client Ci downloads the global model wt
g from the server S

and updates its local model wt
i by minimizing a task-dependent loss defined on its dataset Di. Then

the server S collects the updated local client models {wt
i} and updates the global model wt+1

g for
the next round via an aggregation algorithm. For instance, when using the most common federated
averaging (FedAvg) aggregation (McMahan et al., 2017), the updated global model is: wt+1

g ←∑n
i=1

1
nw

t
i , assuming that all clients have the same dataset size.

Similarity metrics in Byzantine-robust FL. Most of existing Byzantine-robust FL methods use
similarity metrics for robust aggregation. For example, Krum (Bonawitz et al., 2017) uses the Eu-
clidean distance, while state-of-the-art FLTrust (Cao et al., 2021) uses the cosine similarity. We
simply introduce these two metrics, which are of interest in this work. Given two m-dimensional
vectors u = {u1, u2, · · · , um} and v = {v1, v2, · · · , vm}, the Euclidean distance between u and
v is defined as sEuc(u,v) =

√∑m
i=1(ui − vi)2, and the cosine similarity between u and v is

scos(u,v) =
u·v

∥u∥∥v∥ =
∑m

i=1 ui·vi√∑m
i=1(ui)2·

√∑m
i=1(vi)

2
.

Zero-Knowledge Proof. The Zero-Knowledge Proof (Goldwasser et al., 1989) enables a prover to
convince a verifier that an assertion is correct without providing any privacy information to the ver-
ifier. In this work, we use the Groth16 scheme (Groth, 2016), which is a famous Zero-Knowledge
Succinct Non-Interactive Arguments of Knowledge (zk-SNARK) technology. Groth16 uses the
Rank-1 Constraint System (R1CS) to describe the arithmetic circuit and then converts the R1CS
satisfiability problem into a Quadratic Arithmetic Program (QAP) (Gennaro et al., 2013) satisfia-
bility problem. The R1CS is a tuple containing seven elements (F,A,B,C, io,m, n), where F is
the finite field, io is the public input and output vectors, A,B,C ∈ Fm×m,m ≥ |io + 1| , n is the
maximum number of nonzero values in all matrices. R1CS is satisfiable if and only if there exists a
proof w ∈ Fm−|io|−1 such that (Az)⊙ (Bz) = (Cz), where z = (io, 1, w)T and ⊙ is the hadamard
product. The Groth16 algorithm contains three parts, expressed as Π = (Setup, Prove, V erify).
Given a polynomial time judgeable binary relationR described by R1CS, Groth16 has the following
three steps (more details about Groth16 can be seen in Appendix B.2):
• (pk, vk) ← Setup(1λ,R): It takes the security parameter λ and the relationship R as inputs.

The algorithm reduces the satisfiability problem of arithmetic circuits to the QAP satisfiability
problem, and then a proving key pk and a verification key vk are generated.

• π ← Prove(pk, Ip, Ia): The prover generates a proof π by taking pk, Ip, Ia as input, where Ia
is the auxiliary input that only the prover knows and Ip is the primary input that both prover and
verifier know.

• 0/1 ← V erify(vk, π, Ip): The verifier verifies the proof π by taking vk, π, Ip as input. Only if
the proof passes the verification the verifier will get 1 else get 0.

Threat model. In our BPFL, we consider the following two types of adversaries:
• Malicious clients. Malicious clients can actively deviate from the protocol to corrupt the global

model. Their attack goal includes: (1) submitting a poisoned local model to the server and com-
promising the final aggregation; (2) attempting to submit forged proofs to deceive the server; (3)
failing the valid check of an honest client by providing incorrect proof parameters. Without loss
of generality, we assume the number of malicious clients is less than by 50% of the total clients.
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(a) Unable to detect malicious up-
date C only with cosine similarity

(b) Unable to detect malicious up-
date D only with Euclidean distance

(c) When using both metrics, both
malicious update can be detected

Figure 3: Motivation of using both the cosine similarity and Euclidean distance to detect malicious model
updates. G is the real update, A and B are valid updates, while C and D are malicious updates.

• Honest-but-curious server. The server follows the protocol, but aims to infer clients’ private
information (e.g., raw data) via analyzing the received client models. We assume the server does
not collude with malicious clients. Following the existing works (Cao et al., 2021), we also assume
the server holds a small and clean dataset DS , which is used to train a reference model wS for
malicious client models detection.

3 DESIGN OF BPFL
In this section, we will introduce the design of BPFL in detail. We first introduce our zero-knowledge
proof-inspired valid robustness check algorithm that uses the similarity metrics in the state-of-the-art
robust FL methods. Next, we introduce our privacy preservation mechanism based on homomorphic
encryption. We further leverage a check value for vectors to address the possible forged proofs
caused by malicious clients. Finally, we show the entire workflow of our BPFL. The important
notations in this paper are shown in Table 3 in Appendix B.3.

3.1 VALID ROBUSTNESS CHECK FOR LOCAL MODELS VIA ZERO-KNOWLEDGE PROOF

As shown in the recent works (Blanchard et al., 2017; Guerraoui et al., 2018; Cao et al., 2021), a
Byzantine-robust FL method should require that the local model be similar to the global model, in
terms of both the model update direction and the model magnitude (also see an example in Figure 3).
Motivated by this, we use both cosine similarity and Euclidean distance to measure the validity
of a client model. To avoid complex interaction computation, we use the non-interactive zero-
knowledge proof (ZKP) as the implementation of the valid check. Recall that the server holds a
benign model wS (trained on its clean dataset DS), which we will treat as the reference for local
model comparison. We adopt the cosine similarity and Euclidean distance between each client
model wi and the reference model wS . Then, a valid robust local model should satisfy:√√√√ m∑

j=1

(wj
i − wj

S)
2 ≤ τe,

∑m
j=1 w

j
i × wj

S√∑m
j=1(w

j
i )

2 ×
√∑m

j=1(w
j
S)

2
≥ τc, (1)

where τe and τc are the threshold for cosine similarity and Euclidean distance, e.g., defined by the
server. Note that Equation 1 contains square root and division computations that are difficult to
be expressed by arithmetic circuits, as they only consist of addition and multiplication gates. To
address it, we conduct some transformations in order to satisfy the Groth16 scheme. Consider that
all computations in Groth16 are in an integer field, we use fixed-point numbers to approximate
floating-point numbers. By default, we first define k = 216 and transform the number x to be x′

by setting x′ = kx, and then simply truncate the fractional part. In doing so, the to be verified
Equation 1 in the proof circuit are expressed as:

m∑
j=1

(kwj
i − kwj

S)
2 ≤ (kτe)

2,
(
k

m∑
j=1

(kwj
i × kwj

S)
)2 ≥ (kτc)

2 ×
m∑
j=1

(kwj
i )

2 ×
m∑
j=1

(kwj
S)

2 (2)

As Equation 2 now can be represented by an arithmetic circuit containing only multiplication gates
and addition gates, we use R1CS to describe each gate in the arithmetic circuit, and further generate
the proof circuit for Groth16. Particularly, in the iteration t, each client Ci downloads the proof
parameters σt = {wt

S , τc, τe} from the server, and defines the primary input Ip = {σt} and auxiliary
input Ia = {wt

i} used in the zero-knowledge proof. Each client then generates a proof using Ip and
Ia as input, and the server verifies the proof using Ip.
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3.2 PRIVACY PRESERVATION FOR LOCAL MODELS VIA HOMOMORPHIC ENCRYPTION

Our privacy protection mechanism is based on homomorphic encryption (see Appendix B.1 its back-
ground). Specifically, to protect clients’ privacy, all clients hold a same but random vector to mask
the true local models. Here, we propose to add this random vector to all local models. Hence, the
global model update in FedAvg is rewritten as:

w̄t+1
g ← r+

1

n

n∑
i=1

wt
i ←

n∑
i=1

1

n
(wt

i + r)←
n∑

i=1

1

n
w̄t

i , (3)

where w̄ is the value of w after being masked; r is the random vector generated by the Mask
Vector Negotiation Protocol (MVNP), which leverages the Paillier homomorphic encryption tech-
nique (Paillier, 1999). More details about how to generate r are shown in Algorithm 1 in Ap-
pendix B.1. In a word, the MVNP ensures all clients obtain a same random vector that is secret to
the server. That is, the server cannot infer any private information from the masked local models as
well as their aggregation.

A possible issue is that, since the server receives the masked local models, a malicious client may use
the valid model to generate the proof, but submits an invalid model to the server. Hence, the server
needs to verify that the model submitted by the client is consistent with the model used to generate
the proof. Specifically, the server needs to use the masked client model w̄i to check whether each
local model satisfies w̄t

i = wt
i + r. Therefore, r will also be a parameter for the prover to generate

a proof and w̄t
i will be a primary parameter. So, Ia will be updated to Ia = {wt

i , r} and Ip will be
updated to Ip = {w̄t

i , σt}.

3.3 AVOIDING FORGERY OF PROOF VIA CHECK VALUE

In each iteration t, clients download parameters (including wt
S in plaintext) from the server to gen-

erate the proof. However, a malicious client may use wt
S as local model to generate a forged

proof to fool the server into passing the valid check. Assuming a malicious client Ci holds a
masked malicious model w̃t

i and has downloaded wt
S , it can generate a forged proof by letting π̃t

i =

Prove(pk, Ip, Ĩa), where Ĩa = {wt
S , r̃} and r̃ is well-constructed vector defined as r̃ = w̃t

i − wt
S .

The client Ci submits w̃t
i with the proof π̃t

i and server will get 1← V erify(vk, π̃t
i , Ip). This is be-

cause wt
S in Ĩa = {wt

S , r̃} and wt
S in Ip = {w̃t

i , σt} (σt = {wt
S , τc, τe}) satisfy Equation 2, and w̃t

i

in Ip = {w̃t
i , σt} and wt

S , r̃ in Ĩa = {wt
S , r̃} satisfy w̃t

i = wt
S + r̃. Therefore, this malicious model

will be allowed to join the aggregation, which will have a negative impact on the global model.

To avoid this, the server must check whether the random mask r used by clients to generate the proof
is the true vector negotiated by MVNP. We propose a simple yet effective solution to address this
issue, i.e., based on check value. Specifically, each client Ci maintains a vector M of length e and
w.l.o.g, we set e = 10 in our work. Each client Ci gets a check value li by computing:

Mj mod e ←Mj mod e + rj , li ←
∏e

j=0
Mj , (4)

where rj is the j-th element of r. The server maintains a set L, li ∈ L and let l = MODE(L), where
MODE(L) function finds the most frequent value in the set L. Based on clients’ check values and
their mode, though all malicious clients (less than 50%) may refuse to compute the true li, the true
li’s of more than 50% honest clients are sufficient for the server to obtain the correct l. To ensure
the proof is not forged, the server only needs to add a constraint to check the correctness of the
computation of Equation 4.

Equation 2, Equation 3, and Equation 4 together form the completed valid check for masked local
models. In summary, one local model considered to be valid should satisfy: 1) Similar to reference
model in direction and value; 2) Using the true mask vector and computing correctly. The satis-
faction of these constraints is contained in a proof πt

i = Prove(pk, Ip, Ia), and the server checks:
0/1← V erify(vk, πt

i , Ip), where Ip = {w̄i, l, σt} and Ia = {wt
i , r} in each t-th round.

3.4 BPFL WORKFLOW

The overall workflow of BPFL involves a setup phase followed by three rounds. The whole proce-
dure of BPFL are shown in Figure 11 in Appendix B.4).
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Setup Phase. The server (1) creates a valid check circuit, generates pk for proving and vk for
verification, and broadcasts pk to all clients; and (2) randomly initializes the global model w1

g and
sets the reference model w1

S ← w1
g , and defines the thresholds τc and τe. All clients obtain the

agreed random mask vector r through MVNP (Algorithm 1 in Appendix B.1), calculate each li, and
send them to the server. The server computes l as the final value.

Round 1 (Local training). In iteration t, each client Ci first downloads the global model w̄t
g from

the server and recovers the true value by wt
g = w̄t

g − r (except for the first round). Then each client
Ci trains a local model wt

i with the dataset Di, masks wt
i with r, and submits the masked model

w̄t
i = wt

i + r to the server. The server trains the reference model wt
S with the datasets Ds, which

will be used as one of the parameters for this round to generate a proof.

Round 2 (Clients generate and submit proof). All clients first get the proof parameters σt =
{wt

S , τc, τe} from the server. Then each Ci generates the proof of wt
i with σt by letting πt

i =
Prove(pk, Ip, Ia), where Ip = {w̄t

i , l, σt} and Ia = {wt
i , r} and submits πt

i to the server.

Round 3 (Server verifies the proof and performs aggregation). The validity of the proof will
be checked and the well-formed local models will be aggregated by the server S. Specifically, the
server maintains a list, U+ (initialized as empty), of local models it has so far identified as valid. The
server checks the validity of all models by verifying the proofs. For a local model w̄t

i with a proof
πt
i , if the proof passes the verification, i.e., V erify(vk, πt

i , Ip) = 1, then the server treats w̄t
i as a

valid model and augments the set U+ ← U+ ∪ w̄t
i . Otherwise, the local model will be flagged as

malicious and dropped. Every masked local model w̄t
i in U+ will be aggregated into a global model

w̄t+1
g using the FedAvg algorithm and be downloaded by all clients used for the next iteration.

4 THEORETICAL ANALYSIS

Complexity analysis. We show the complexity of BPFL w.r.t. #clients n and #model parameters d.

1) Computation cost. In each iteration, each client’s computation cost can be split into two parts:
(1) creating the masked local model is O(d) in Round 1; (2) generating the zero-knowledge proof
in Round 2. The prover’s computation complexity of Groth16 is O(m logm), where m is the
number of gates in the circuit. According to our valid check constraints in Equation 2, Equation 3,
and Equation 4, the number of gates m increases linearly in d, so the complexity is O(d log d); (3)
recovering the true global update is O(d) in Round 3. Thus, the overall computation complexity
of each client per iteration is O(d log d). The computation cost of server is mainly at Round 3,
which includes verifying the proof for all clients and computing the final aggregation. The verifier’s
computation complexity of Groth16 is O(1) and the aggregation complexity is O(nd). Therefore,
the total computation complexity of the server per iteration is O(nd).

2) Communication cost. In each iteration, the client sends the local model, which has a O(d)
complexity, and a proof, which has a fixed size and the complexity is O(1), to the server. Thus, the
communication complexity for every client is O(d). The server’s communication costs include: (1)
sending the global model to all clients which has a O(nd) complexity; (2) sending the proof param-
eters to all clients which have a O(nd) complexity. Hence, the overall communication complexity
of the server is O(nd).

Security analysis. We formally show that BPFL is privacy-preserving in the following theorems.
Theorem 1. BPFL is privacy-preserving if Paillier homomorphic encryption used in Algorithm 1 is
semantically secure and Gorth16 is zero-knowledge.

Proof. See Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We implement BPFL in Python and using the C++ libsnark library for zkSNARK proofs. We run
experiments on four physical machines and each with 40 Intel(R) Xeon(R) Silver 4210 CPU at
2.20GHz, 64GB memory, and an NVIDIA GeForce GTX 1080 Ti GPU. All experiments are under
Ubuntu 20.04.4 LTS.
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Figure 4: Overhead analysis of BPFL. (a) and (b) show the running time and communication cost per client
with the number of clients, the data dimension is fixed to be 50K. (c) and (d) show the running time and
communication cost per client with the dimension of data, the number of clients is fixed to be 50.
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Figure 5: Attack impact on BPFL under different model poisoning attacks and datasets vs. #total clients.

We evaluate BPFL on the following four image datasets, where the first three datasets are indepen-
dent identically distributed (IID) and the last one is non-IID distributed.
• MNIST. A handwritten digit dataset consisting of 60K training images and 10K test images with

ten classes. We train a CNN architecture that has five layers and 24,000 parameters for MNIST.
• FMNIST. A dataset has a predefined training set of 60K fashion images and a testing set of 10K

fashion images. We use LeNet-5 to experiment on FMNIST.
• CIFAR-10. A dataset contains RGB images with ten object classes. It has 50K training and 10K

test images. We use ResNet-20 and 294,000 parameters for our experiments on CIFAR-10.
• FEMNIST. Federated Extended MNIST, built by partitioning the data in Extended MNIST (Co-

hen et al., 2017), is a non-IID dataset with 3,400 clients, 62 classes, and a total of 671,585
grayscale images. We use LeNet-5 to experiment on FEMNIST and we randomly select n out
of 3,400 clients for FL training.

For each dataset, we randomly select 200 samples from the training set as the server’s validation
dataset DS and the remaining training data are randomly and evenly divided into n subsets as each
client’s local training data, where n is the total number of clients. For the thresholds τc and τe, we
empirically set τc = 0.99 on the four datasets; set τe = 0.93 on MNIST, FMNIST and FEMNIST,
and τe = 30.00 on CIFAR-10, considering the different number of pixels in these datasets. We set
the clients’ local training epochs as 5 and global iterations as 300. Our source code is available at
the Github: https://github.com/BPFL/BPFL.

5.2 EXPERIMENTAL RESULTS

Overhead evaluation. Figure 4 shows BPFL’s runtime and communication cost with respect to the
number of clients n and data dimension d. In Figure 4(a) and 4(b), we fixed the data dimension as
d = 50K. We can observe that the server’s runtime and communication cost is linear in n while
the runtime and communication cost of per client is almost stable, i.e. independent of the number
of clients. The result is the same as we expected because the zero-knowledge proof enables each
client to independently generate proof locally without interacting with others and the server also
independently verifies each client’s proof locally. This ensures BPFL will not cause a sharp overhead
increase when the number of clients increases. Figure 4(c) and 4(d) show the overhead with data
dimension, where we fix the number of clients to be n = 50. We see that per clients’ runtime
and communication cost increases almost linearly with the increase of data dimension (recall that
the clients have an O(d log d) computation complexity and O(d) communication complexity). For
server, the runtime and communication cost are both linear to the increasing data dimension. Note
that both the server’s computation complexity and communication complexity are O(d).
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Figure 6: Impact of the fraction of malicious clients on the attack impact of different Byzantine-robust FL
methods under different attacks on MNIST.
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Figure 7: Impact of the fraction of malicious clients on the attack impact of different Byzantine-robust FL
methods under different attacks on FMNIST.
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Figure 8: Impact of the fraction of malicious clients on the attack impact of different Byzantine-robust FL
methods under different attacks on CIFAR-10.

Robustness evaluation. In this experiment, we evaluate BPFL in terms of Byzantine-robustness.
For comparison, we also choose three well known Byzantine-robust methods, i.e., Krum (Blanchard
et al., 2017), Bulyan (Guerraoui et al., 2018), and the state-of-the-art FLTrust (Cao et al., 2021).
We consider five model poisoning attacks: (1) Add Noise Attack (Li et al., 2019): malicious clients
add a noise to the local model; (2) Sign Flip Attack (Damaskinos et al., 2018): malicious clients
flip the sign of their local model; (3) Min-Max Attack; (4) Min-Sum Attack; and (5) AGR attacks:
three state-of-the-art model poisoning attacks proposed in (Shejwalkar & Houmansadr, 2021). Fol-
lowing Shejwalkar & Houmansadr (2021), we use the metric attack impact, which is defined as the
reduction in the accuracy of the global model due to the attack, to measure the impact of attacks. An
attack having a large attack impact implies it is more effective.

1) Impact of the total number of clients: Figure 5 shows the attack impact of the five attacks to
BPFL on the four datasets, where the fraction of malicious clients is set to be 20%. We observe that
1) Min-Max, Min-Sum, and AGR attacks have larger attack impacts than Add Noise and Sign Flip
attacks, showing they are more effective; 2) BPFL achieves a small attack impact under different
attacks when facing different number of clients, i.e., less than 6% (most less than 2%) in almost all
cases. The attack impact on the non-IID FEMNIST is slightly larger than that on the IID datasets.
One reason is that the local models across different clients can be more diverse when trained on non-
IID data, which thus makes it more challenging to use a threshold to differentiate between honest
models and malicious models.

2) Impact of the fraction of malicious clients: Figure 6 to Figure 9 shows the attack impact of
the fraction of malicious clients on Byzantine-robust FL methods against the five attacks on the
four datasets. We fix the total number of clients to be 50. We have the following observations: 1)
BPFL performs the best to defend against the five attacks and the attack impact is less than 6% in
all IID datasets and less than 10% in the non-IID FEMNIST. This is because BPFL leverages both
the Euclidean distance and cosine similarity as the metrics to identify malicious clients, while the
remaining robust methods only use one of the two metrics. 2) The state-of-the-art FLTrust performs
next to our BPFL. One reason is that both of them train a reference model in the server using a
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Figure 9: Impact of the fraction of malicious clients on the attack impact of different Byzantine-robust FL
methods under different attacks on FEMNIST.

clean validation dataset and use this reference model to guide the correct model update. 3) Krum
and Bulyan fail to defend against some attacks (e.g., Add Noise atack and Sign Flip attack) when
the fraction of malicious clients is larger than a certain threshold (e.g., 40% on MNIST). Note that
Cao et al. (2021) also draw this conclusion. The above observations verify that, it is important to
consider two similarity metrics and train a reference model to defend against Byzantine attacks.

Table 1: BPFL and plaintext against model inversion attacks. ↓ (↑) means a
smaller (larger) value indicates a larger privacy leakage.

MSE ↓ PSNR ↑ SSIM ↑
plaintext BPFL plaintext BPFL plaintext BPFL

MNIST
DLG 2.9× 10-7 1.10 73.38 -0.436 0.999 0
iDLG 3.8× 10-7 1.11 69.201 -0.469 0.989 0

R-GAP 1× 10-8 0.01 251.843 10.00 0.999 0.102

FMNIST
DLG 1.9× 10-5 1.22 72.668 -0.839 0.999 0.001
iDLG 5.3× 10-6 1.21 70.413 -0.829 0.998 0.002

R-GAP 1.2× 10-6 0.09 245.656 7.623 0.999 0.069

CIFAR10
DLG 7.9× 10-4 1.26 50.94 -0.988 0.987 0.008
iDLG 5.8× 10-5 1.26 47.297 -1.01 0.998 0.008

R-GAP 4.4× 10-5 0.34 31.25 4.181 0.97 0.172

FEMNIST
DLG 7× 10-8 1.94 73.24 -2.877 0.999 0.013
iDLG 1.3× 10-7 1.96 71.337 -2.92 0.999 0.012

R-GAP 4.2× 10-4 0.93 239.605 0.172 0.999 0

Ground 
Truth

Plaintext
(iter=100)

BPFL
(iter=1000)

Ground 
Truth

Recovery Process

Plaintext BPFL

Figure 10: Recovered images
by the DLG attack against the
plaintext and BPFL. Detailed
recovery process and recov-
ered images by iDLG and R-
GAP attacks are referred to
Appendix D.

Privacy-preserving evaluation. In this experiment, we evaluate four well-known model inversion
attacks, i.e., DLG (Zhu et al., 2019), iDLG (Zhao et al., 2020), and R-GAP (Zhu & Blaschko,
2020), against conventional plaintext local models and BPFL’s local models on the four datasets.
To measure the attack effectiveness, we randomly select 100 images in each dataset and compute
the average value of Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structural
Similarity Index Measure (SSIM) between the recovered images by the four attacks and the real
images. Table 1 shows the results. We observe that all attacks achieve very good attack performance
on plaintext (i.e., low MSE, large PSNR, and large SSIM), but perform poorly on BPFL. We also
randomly show in Figure 10 the recovered images under the DLG attack. More recovered images
and under iDLG and R-GAP attacks can be seen in Appendix D. We observe that for plaintext
models, the real images from different datasets can be recovered within 100 iterations. In contrast,
with BPFL, the attack cannot recover any useful information of the true images even with 1,000
iterations. This is because BPFL can theoretically protect the client models from being inferred.

6 CONCLUSION

We study defenses against Byzantine (security) attacks and data reconstruction (privacy) attacks
to FL. To this end, we propose BPFL, the first FL method that is efficient, Byzantine-robust, and
provably privacy-preserving. BPFL seamlessly integrates the ideas of existing Byzantine-robust FL
methods, zero-knowledge proof, and homomorphic encryption into a framework. For instance, the
validity of clients are verified via a zero-knowledge proof, where the circuit constraints define the
similarity metrics between client models and the reference model, motivated by the existing robust
FL methods. The clients’ data privacy are protected by only sending the server masked models,
where the shared mask for all clients is generated based on homomorphic encryption. Experimental
results demonstrate that BPFL is efficient, Byzantine-robust, and privacy-preserving.
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A RELATED WORK

A.1 BYZANTINE-ROBUST FL

A series of Byzantine-robust FL has been proposed recently (Blanchard et al., 2017; Chen et al.,
2017; Guerraoui et al., 2018; Yin et al., 2018; Guerraoui et al., 2018; Chen et al., 2018; Pillutla
et al., 2019; Xie et al., 2019b; Wu et al., 2020; Cao et al., 2021). They majorly leverage the similarity
between local client models and the global model to perform robust aggregation. Blanchard et al.
(2017) proposed Krum, the first solution to defend against Byzantine attacks. The idea of Krum
is to treat a local model as benign if this local model is similar to other local client models, where
the similarity is measured by Euclidean distance. Krum is shown to tolerate f malicious clients out
of the total n clients, where n and f satisfy 2f + 2 < n. Yin et al. (2018) proposed a median-
based aggregation, where the server obtains the j-th parameter of its global model by calculating
the median of the j-th parameter of all the n local client models. Guerraoui et al. (2018) proposed
Bulyan, which combines the idea of Krum and median. Bulyan first iteratively uses Krum to select
k(≤ n − 2f) client model. Then, Bulyan aggregates the k client models using a variant of the
trimmed mean. These methods can defend against malicious clients to some extent, but are still
not effective enough. To further enhance the performance, Cao et al. (2021) proposed FLTrust. In
FLTrust, the server holds a clean validation dataset, which is used to train a reference model that
guides the correct model update direction. Specifically, the server assigns a trust score to each client
model update based on the cosine similarity between the client model and the reference model. The
trust score is used as the weight of the client’s local update to participate in the model aggregation.
Only client models with relatively larger weights are allowed to participate in the global model
aggregation. FLTrust is shown to obtain the state-of-the-art robustness against Byzantine attacks.

A.2 PRIVACY PRESERVING FL

Table 2: Comparison between BPFL
and existing representative works. B.R.:
Byzantine-Robust; P.P.: Privacy-Preserving;
Eff.: Efficient

Method B.R. P.P. Eff.
Krum Blanchard et al. (2017) ! % !

Bonawitz et al. (2017) % ! %

Wei et al. (2020) % ! !

FLTrust Cao et al. (2021) ! % !

Hao et al. (2021) ! ! %

BPFL ! ! !

Existing provably privacy-preserving FL methods can
be divided into three categories: differential privacy
(DP) (Pathak et al., 2010; Shokri & Shmatikov, 2015;
Hamm et al., 2016; McMahan et al., 2018; Geyer et al.,
2017; Wei et al., 2020), secure multi-party computation
(MPC) (Danner & Jelasity, 2015; Mohassel & Zhang,
2017; Bonawitz et al., 2017; Melis et al., 2019), and ho-
momorphic encryption (HE) (Aono et al., 2017; Zhang
et al., 2020). For example, Wei et al. (2020) proposes a
novel differential privacy FL framework, in which care-
fully designed noises are added to the local client models
before aggregation. However, the current DP-based meth-
ods have high utility losses. MPC-based methods ensure
local clients and the server to jointly complete the aggre-
gation without disclosing the clients’ private data. However, they incur an intolerable computation
and communication overhead. For instance, the secure aggregation based on MPC in (Bonawitz
et al., 2017) has a computation complexity O(n2 + nd + nd2), which is quadatic in the number of
clients n and parameters d, while our BPFL is linear to both n and d. HE-based methods encrypt
local client models before submitting them to the server. Due to the property of HE, the server can
complete the global model aggregation without the need to perform decryption. HE-based methods
obtain state-of-the-art efficiency and BPFL leverages HE to protect client’s data.

Note that almost all the current works focus on either designing Byzantine-robust FL or privacy-
preserving FL, but not the both. To our best knowledge, only one work (Hao et al., 2021) called
SecureFL considered both. However, SecureFL requires an additional server to do cryptographic
computations and the overhead is significant as the number of clients increases. Moreover, the
two servers need to have interactive communications, which induces intolerable communication
overheads as well. In contrast, our BPFL simultaneously achieves the both goals of byzantine-
robust and privacy-preserving without incurring excessive overhead to the server via non-interactive
ZKP. Table 2 shows the comparisons between BPFL and the existing works.
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B MORE PRELIMINARIES AND BPFL

B.1 HOMOMORPHIC ENCRYPTION AND MVNP

Homomorphic encryption (HE) schemes allow certain mathematical operations to be performed
directly on ciphertexts, without prior decryption. The Paillier encryption algorithm is an encryption
algorithm for additive homomorphism and is semantically secure. The construction of the Paillier
encryption system consists of three algorithms: key generation algorithm, encryption algorithm and
decryption algorithm.

• (pk, sk) ← KeyGen(1κ): The KeyGen algorithm outputs a public key pk and a private key sk
with inputting a security parameter κ.

• c ← Enc(pk,m): The Enc(·) algorithm uses the public key pk to encrypt plaintext m to cipher-
text c.

• m ← Dec(sk, c): The Dec(·) algorithm uses the private key sk to decrypt ciphertext c into
plaintext m.

The Paillier encryption scheme supports homomorphic addition operations and scalar multiplication
operations. For ciphertext c1 = Enc(pk,m1) , c2 = Enc(pk,m2) and a scalar l, it satisfies:
Dec(sk, c1 × c2) = m1 +m2 and Dec(sk, pow(ci, l)) = mi × l, for i = 1, 2. Algorithm 1 designs
a Mask Vector Negotiation Protocol (MVNP) to generate a shared mask vector for all clients based
on Paillier homomorphic encryption.

Algorithm 1 Mask Vector Negotiation Protocol (MVNP) via Paillier homomorphic encryption

Input: A set of n clients; a Paillier encryption public key pk and a private key sk;
Output: A random mask vector r
// Client side.
for i = C1, C2, · · · , Cn do
Ci generate a random seed si randomly.
Encrypt the si with pk: [si] = Enc(si, pk).
Send [si] to the server.

end for
// Server side.
Compute [s] =

∑n
i=1[si].

Broadcast [s].
// Client side.
Decrypt [s]: s = Dec([s], sk).
Generate a random mask vector r over the finite field with the seed s.
return r

B.2 GROTH16 AND QAP

The Groth16 scheme is based on Quadratic Arithmetic Program (QAP) (Gennaro et al., 2013).
The QAP, expressed as Q = (t(z),U ,W,Y), in finite field F contains three polynomials U =
uk(z),W = wk(z),Y = yk(z)(k ∈ 0 ∪ [m]) and a target polynomial t(z). Let (c1, c2, · · · , cN ) be
the public input, Q is satisfiable if and only if there exists (cN+1, cN+2, · · · , cm) such that t(z)
divides p(z), where

p(z) = (u0(z) +

m∑
k=1

ck · uk(z)) · (w0(z) +

m∑
k=1

ck · wk(z))− (y0(z) +

m∑
k=1

ck · yk(z)).

That is, there exists a polynomial h(z) such that p(z)− h(z)t(z) = 0.

The three phases in the protocol of Groth16 run as follow:

• Setup Phase.

1. Generate QAP(t(z),U ,W,Y) according to arithmetic circuit C.
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2. Generate G1,G2,GT which are groups of prime order p. The pairing e : G1 × G2 → GT

is a bilinear map. Let [a]1 be ga, [b]2 be hb, [c]T be e(g, h)c. Select random numbers

α, β, γ, δ, s
$← F.

3. Generate reference string σ = ([σ1]1, [σ2]2) and an analog threshold τ = (α, β, γ, δ, s), with

σ1 =

(
α, β, δ, {si}d−1

i=0 , {
βui(s)+αwi(s)+yi(s)

γ }Ni=0

{βui(s)+αwi(s)+yi(s)
δ }mi=N+1, {

sit(s)
δ }

n−2
i=0

)
, σ2 = (β, γ, δ, {si}d−1

i=0 ).

• Prove Phase. The prover P generates the proof. P randomly selects r1, r2
$← F and generates

proof π = ([A]1, [C]1, [B]2), where

A = α+

m∑
i=0

ciui(s) + r1δ,B = β +

m∑
i=0

ciwi(s) + r2δ,

C =

∑m
i=N+1 ci(βui(s) + αwi(s) + yi(s)) + h(s)t(s)

δ
+Ar2 +Br1 − r1r2δ.

• Verify Phase. Validator V verifies the proof. The V check:

e([A]1, [B]2)
?
= e([α]1, [β]2)e(

N∑
i=0

ci[
βui(s) + αwi(s) + yi(s)

γ
]1, [γ]2)e([C]1, [δ]2).

Table 3: Important notations used in the paper.

Notation Meaning
wi the local model for client Ci

wS the reference model on server
wg the global model on server
wt

i wi in round t
wt

S wS in round t
wt

g wg in round t
r random mask vector
w̄i the masked local model for client Ci

w̄g the masked global model
τc threshold for cosine similarity
τe threshold for Euclidean distance
σt proof parameters for round t
Ia the auxiliary input
Ip the primary input
πt
i the proof of client Ci for round t
r̃ the forged r
w̃ the forged w
π̃ the forged π

B.3 NOTATIONS

The used important notations in the paper are shown in Table 3.

B.4 DETAILED BPFL

The whole BPFL procedure is illustrated in Figure 11.

C PROOF OF THEOREM 1

Before representing the proof, we will need to involve the following definition.

15



Under review as a conference paper at ICLR 2023

Under review as a conference paper at ICLR 2023

FORMATTING INSTRUCTIONS FOR ICLR 2023
CONFERENCE SUBMISSIONS

Anonymous authors
Paper under double-blind review

Setup Phase:
Client i:
- Generate the agreed random mask vector r through MVNP.
- Calculate li and submit to server.
Server:
- Creates a valid check zero-knowledge circuit.
- Generates pk for proving and vk for verification and broadcasts pk to all client.
- Initializes the global model w1

g randomly and sets the reference model w1
S ← w1

g .
- Defines the thresholds τc and τe.
- Collects li from clients and computes l.
Round 1(Local Training):
Client i:
- Download the global model w̄t

g from the server and recover the true value by wt
g = w̄t

g − r (except for
the first round).
- Trains a local model wt

i with the dataset Di.
- Mask wt

i with r by w̄t
i = wt

i + r, and submits the masked local model w̄t
i to the server.

Server:
- Trains the reference model wt

S with the datasets Ds.
Round 2(Clients generate and submit proof):
Client i:
- Download the proof parameters σt = {wt

S , τc, τe} from the server.
- Generate the proof of wt

i with σt by letting πt
i ← Prove(pk, Ip, Ia), where Ip = {w̄t

i , l, σt} and
Ia = {wt

i , r}.
- Submit πt

i to the server.
Round 3(Server verifies the proof and performs aggregation):
Server:
- Initializes the list U+ as empty.
- For a local model w̄t

i with a proof πt
i , checks the validity of local models by V erify(vk, πt

i , Ip).
- Sets U+ ← U+ ∪ w̄t

i if V erify(vk, πt
i , Ip) = 1 else drop w̄t

i .
- Aggregates U+ into a global model w̄t+1

g using the FedAvg algorithm.

1

Figure 11: The whole procedure of BPFL.

Definition 1. A protocol is privacy-preserving if, for every efficient real-world adversary A, there
exists an efficient ideal-world simulator SA such that for every efficient environment E the output of
E when interacting with the adversary A in a real-world execution and when interacting with the
simulator SA in an ideal-world execution are computationally indistinguishable.

Theorem 1. BPFL is privacy-preserving if Paillier homomorphic encryption used in Algorithm 1 is
semantically secure and Gorth16 is zero-knowledge.

Proof. We use the hybrid argument (Fischlin & Mittelbach, 2021) to prove that our BPFL satisfies
the security Definition 1. To do this, for every real-world (efficient) adversary A, we construct an
ideal-world (efficient) simulator S whose random variable is distributed exactly as real-world. We
use a sequence of hybrids, each identified by Hybi and denote by Outputi(E) the output of E in
Hybi, and by Hyb0 the real-world execution.

• Hyb1. Let Hyb1 be the same as Hyb0, except the followings: S replaces the encrypted ri with
encrypted random values (e.g., 0, with appropriate length). Given the Paillier homomorphic en-
cryption is semantically secure, Output1(E) is perfectly indistinguishable from Output0(E).

• Hyb2. In this hybrid, all honest clients replace the mask value r with uniformly random num-
ber to get check value. The Integer Factorization Problem guarantees Output2(E) is perfectly
indistinguishable from Output1(E).

• Hyb3. In this hybrid, the simulator S changes the behavior of all honest clients. Specifically, for
each client Ci, a uniformly random number is selected to replace the wi. Because the ideal-world
random variable is distributed exactly as real-world and Groth16 algorithm is zero-knowledge,
Output3(E) is perfectly indistinguishable from Output2(E).

Therefore, the simulator has already completed the simulation since S successfully simulates real-
world without knowing anything about the private inputs. The final hybrid is distributed identically
to the operation of S from the point of view of E . We have thus shown that E’s advantage in
distinguishing the interaction with S from the interaction with A is negligible.
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Figure 12: More recovered images by the DLG attack against the plaintext and the privacy-preserving BPFL.
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Figure 13: Recovered images by the iDLG attack against the plaintext and the privacy-preserving BPFL.
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Figure 14: Recovered images by the R-GAP attack against the plaintext and the privacy-preserving BPFL.

D ADDITIONAL RESULTS

Detailed image recovery process The detailed recovery process and recovered images by DLG,
iDLG, and R-GAP attacks are shown in Figure 12, Figure 13, and Figure 14, respectively. We
can observe that the real images from the datasets can be successfully recovered based on plaintext
within 100 iterations. While with BPFL, the attack cannot recover any useful information of the true
images, as BPFL can theoretically protect the client models from being inferred.
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