
To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

REVISITING THE RELATION BETWEEN ROBUSTNESS
AND UNIVERSALITY

Max Klabunde*

University of Passau
Passau, Germany
max.klabunde@uni-passau.de

Laura Caspari∗
University of Passau
Passau, Germany
laura.caspari@uni-passau.de

Florian Lemmerich
University of Passau
Passau, Germany
florian.lemmerich@uni-passau.de

ABSTRACT

The modified universality hypothesis proposed by Jones et al. (2022) suggests that
adversarially robust models trained for a given task are highly similar. We revisit
the hypothesis and test its generality. While we verify Jones’ main claim of high
representational similarity in specific settings, results are not consistent across
different datasets. We also discover that predictive behavior does not converge with
increasing robustness and thus is not universal. We find that differing predictions
originate in the classification layer, but show that more universal predictive behavior
can be achieved with simple retraining of the classifiers. Overall, our work points
towards partial universality of neural networks in specific settings and away from
notions of strict universality.

1 INTRODUCTION

The universality hypothesis (Olah et al., 2020) suggests that all trained neural networks for a given
task are highly similar. If this hypothesis held generally, interpretability research would be simplified,
as insights for a specific model could be more easily transferred to other models. While the hypothesis
is unlikely to hold in a strict sense (Li et al., 2015; Breiman, 2001), Jones et al. (2022) proposed
and presented evidence for a modified universality hypothesis (MUH): adversarial robustness may
function as a strong prior on neural networks such that adversarially robust models will learn similar
representations “regardless of exact training conditions (i.e., architecture, random initialization,
learning parameters)”. They showed empirically that robust CNNs trained on ImageNet (Deng et al.,
2009) are highly similar in the used input features of the data and in the representations they produce,
whereas standard models are not. Thus, training a single robust model is sufficient to mimic the
behavior of any other or in their words ”if you’ve trained one, you’ve trained them all”. Hence,
analyzing specific robust models could provide general insights into how neural networks function.

However, their work has three key limitations which motivate us to revisit the link between robustness
and universality. First, the experiments were centered around representational similarity, while one of
the direct and arguably practically most relevant ways to study model similarity is to compare their
predictions. Second, a key part of the evidence was gathered with Centered Kernel Alignment (CKA)
(Kornblith et al., 2019), a method to measure similarity of representations, which adopts a specific
perspective on neural network similarity and was recently shown to have multiple pitfalls (Cui et al.,
2022; Davari et al., 2023; Nguyen et al., 2022). Numerous other similarity measures have been
proposed (Klabunde et al., 2023; Sucholutsky et al., 2023), which provide alternative views on neural
network similarity, which also leads to substantial differences in similarity estimates (Klabunde et al.,
2024; Soni et al., 2024; Bo et al., 2024). Third, experiments exclusively used ImageNet as input
data, which leaves the role of data uncertain, e.g., whether results transfer to other vision datasets or
out-of-distribution data.

∗Equal contribution.
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Figure 1: Predictive behavior remains distinct at high robustness contrary to the MUH. Distribu-
tions of agreement (A) and scaled Jensen-Shannon divergence (JSDSim) (B) across all model pairs
when given regular images. The MUH predicts that robust models converge to a universal solution,
which should be reflected in highly similar predictions with increasing L2 robustness ϵ. However,
predictions do not converge with increasing robustness, with agreement dropping and JSD showing
increasing variance. This points towards an issue with the MUH.

In this work, we thus critically reassess the modified universality hypothesis that suggests that all
adversarially robust models for a given task are highly similar. We conduct an extensive empirical
study that involves multiple similarity measures, model architectures and datasets. In contrast to
previously published results, our study indicates that robust models should not be considered universal.
Our main contributions are:

1. We show that predictions of robust models are not universal (see Figure 1). Their agreement
scores do not converge with increasing robustness and the variance of Jensen-Shannon
Divergence (JSD) scores increases with higher robustness levels (Section 3.1).

2. We verify that increasing robustness leads to more similar representations on ImageNet1k
with a wider range of similarity measures. At the same time, some measures point towards
lower absolute similarity than previously reported. Also, results are not robust to training
dataset changes (Section 3.2).

3. We identify that retraining classifiers on top of robust models can lead to higher predictive
similarity and thus towards universality (Section 3.3).

Code and data of our experiments are publicly available (see Appendix E).

2 BACKGROUND AND METHODS

Adversarial Robustness While neural networks achieve high performance in many tasks, they
are susceptible to —often imperceptible— modifications of inputs that lead to wrong predictions
(Szegedy et al., 2014). These modifications δ are usually computed via a constrained optimization
problem:

δ∗ = argmax
δ

L(f(x+ δ), y) s.t. ∥δ∥p ≤ ϵ, (1)

where L is the loss function, x, y the input and target, respectively, and ϵ is the strength of the
adversarial attack, i.e., the maximal allowed modification of the input. By augmenting training data
with adversarial examples, the space of potentially good models is constrained and robust models
are produced, which are less susceptible to such attacks (Madry et al., 2019). For these models,
perturbations need to be larger to induce misclassifications. The larger ϵ for the adversarial examples,
the more robust the model will be, but usually at the cost of lower accuracy on regular data.

Comparing Predictive Behavior A simple test for universality is comparing predictions of models.
If models are universal, we should expect highly similar predictions. Hence, we compare the predicted
probability distributions and classifications using Jensen-Shannon Divergence (JSD) averaged over
inputs and the agreement rate.

For JSD, we normalize the outputs of the last network layer with a softmax, then compute:

JSD(L,L′) =
1

N

N∑
i=1

1

2
KL(Li∥L̄i) +

1

2
KL(L′

i∥L̄i), (2)
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where L,L′ ∈ RN×C are the collections of the predicted class probabilities, i.e., the softmaxed logits,
for C classes and N fixed inputs, L̄ = 0.5 · (L+L′), and KL is the Kullback-Leibler Divergence.
In the rest of the paper, we report JSDSim, i.e., scaled and normalized JSD to the range of [0, 1], such
that a score of 1 indicates identical predicted distributions.

The agreement rate is the rate of instances that are predicted as the same class. This can be notated as
the argmax of the logits, with 1[·] as the indicator function:

Agreement(L,L′) =
1

N

N∑
i=1

1[argmax
j

Lij = argmax
j

L′
ij ]. (3)

Comparing Representations Another approach at testing universality is comparing the internal
representations, i.e., the activation of a layer for some input. Again, if models are universal, we
expect that their internal processes are highly similar, which should lead to similar representations.
To measure representational similarity, activations are collected for a set of inputs resulting in a
matrix R ∈ RN×D, where N is the number of inputs and D is the number of neurons in the layer. A
representational similarity measure typically takes two such matrices as input and produces a single
number that quantifies the similarity of these matrices. The matrices may come from different layers
or models, but are based on the same set of inputs such that the rows between the matrices correspond.
The similarity score respects certain transformations between representations that would keep them
equivalent, e.g., switching neuron order, which would result in a different order of the columns of the
compared matrices. For a detailed introduction, we refer to the survey by Klabunde et al. (2023).

In this work, we use four similarity measures: linear CKA (Kornblith et al., 2019), Orthogonal
Procrustes (Procrustes) (Ding et al., 2021; Williams et al., 2021), k-NN Jaccard Similarity (Jaccard),
and Representation Topology Divergence (RTD) (Barannikov et al., 2022). Intuitively, these measures
summarize the similarity of representations across multiple different aspects, e.g., specific properties
of their geometry or topology. These measures have been empirically shown to give meaningful
similarity assessments (Klabunde et al., 2024), but highlight different discrepancies between repre-
sentations. Thus, employing a set of similarity measures enables a more multi-faceted comparison of
representations. At the same time, the measures we use consider the same representations equivalent,
i.e., any representations that only differ in rotation, reflection, scale, and translation. This means we
should expect similar similarity scores when representations are close to equivalent.

Formally, linear CKA computes a similarity score between 0 and 1 given two centered representations
R ∈ RN×D,R′ ∈ RN×D′

, i.e., with zero mean columns, as follows:

CKA(R,R′) =
∥R′TR∥2F

∥RTR∥F ∥R′TR′∥F
, (4)

where ∥ · ∥F is the Frobenius norm. Based on the overall feature correlations, CKA measures global
representational similarity.

Procrustes is another measure with a global view on similarity, but is a proper metric in contrast to
CKA. Procrustes finds the optimal orthogonal alignment between two representation spaces:

Procrustes(R,R′) = min
Q

∥RQ−R′∥F = (∥R∥2F + ∥R′∥2F − 2∥RTR′∥∗)1/2, (5)

where ∥ · ∥∗ is the nuclear norm, i.e., the sum of the singular values. As R,R′ need to have equal
dimension for Procrustes, we zero-pad the representation with lower dimension. In addition to
zero-centering the columns, we scale the representation matrix to unit norm. With this, we report
2−Procrustes

2 as ProcrustesSim, which is scaled to [0, 1], where 1 indicates maximal similarity.

We use Jaccard for a view on representation similarity that focuses on the similarity of the nearest-
neighbor representations instead of the whole representation space. Thus, Jaccard is a more local
similarity measure. Formally, Jaccard is defined as the average intersection over union of the nearest
neighbors in the representation spaces:

Jaccard(R,R′) =
1

N

N∑
i=1

|N k
i (R) ∩N k

i (R
′)|

|N k
i (R) ∪N k

i (R
′)|

, (6)

where N k
i (R) are the k nearest neighbors of the representation of input i in R. We use k = 10 and

cosine similarity on the centered representations to find the nearest neighbors.
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Figure 2: Image inversion algorithm and examples of inverted images. (Left) Inverted images
are created by iteratively updating the seed image such that its representation becomes similar to
that of the target image. It aims to introduce just the relevant features for the model and reduce
feature cooccurrence. (Right) Examples of inverted images for VGG-16 and DenseNet-161 trained
on ImageNet1k given the seed and target images shown on the left. The top row shows results for
standard models (ϵ = 0), the bottom one for robust models (ϵ = 3). The inverted images produced
by robust and standard models are quite different. Inverted images of standard models are visually
extremely similar to the seed image. For robust models, inverted images contain elements clearly
belonging to the target image. They show how feature cooccurrence can be lessened, e.g., the dark
background of the fish was not added to the image as both robust models mainly rely on the fins and
texture of the fish.

Finally, RTD compares the topology of the representations. On a high level, RTD computes the
strength of the discrepancy for different topological features. Summing up the strengths for all
topological discrepancies yields a single number describing the overall topological divergence.
Hence, the score indicates distance between representations. To make interpretation more consistent
with the previous similarity measures, we report negative RTD, such that larger values mean higher
similarity. RTD does not have a fixed scale, making it difficult to interpret absolute levels of similarity,
but still allows to examine similarity trends over different robustness levels.

Detecting Differences in the Representation Mechanism with Image Inversion One problem
of similarity measures is that they do not pick up on differences in the usage of input features as
long as models produce similar representations or predictions (Jones et al., 2022). This may lead to
an overestimation of similarity between two neural networks. We thus aim to test the similarity of
the combination of the input feature reliance and the processing into a representation. We call this
combination the representation mechanism and measure mechanistic similarity (Lubana et al., 2023).

Image inversion (Ilyas et al., 2019) presents a way to create a model-specific variant of an input that
produces nearly the same representation as the original input, but consistently contains only those
input features actually used by the model1. Hence, inverted images enable the study of the similarity
of representation mechanisms. If one model has a different mechanism that relies on another set of
input features, it will not find those features in the inverted image of another model and thus will be
unable to produce a similar representation. Comparing the representations given inverted images
gives us information about the similarity of the mechanisms.

To create an inverted image x̃ for a given target image x, a seed image s from a different class is
modified such that it produces a representation similar to the representation of the target image. More
precisely, let fL(x) ∈ RD be the representation of model f for the target image x in the penultimate

1The inverted images can be seen as model metamers (Feather et al., 2023).
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Figure 3: Similarity of predictions on inverted images increases with robustness. Agreement (A)
and JSDSim (B) distributions across all model pairs when given inverted images. Both agreement
and JSDSim increase with increasing robustness on both ImageNet1k and CIFAR-10. This means
that robustness does lead to increased similarity in some aspects of the models, but arguably not to
universality as the absolute similarity values still reveal differences between models.

layer L, then the inverted image x̃ is computed as the output of

min
s

∥fL(s)− fL(x)∥2
∥fL(x)∥2

. (7)

The optimization is done with gradient descent, so the naive solution of s = x is not reached. Instead,
the most relevant input features for the model f are introduced to the seed image. As the seed image
is sampled randomly from all images with a different class than the target image, feature cooccurrence
in natural images, e.g., dog fur texture and dog ears, can be eliminated if only one of those features is
relevant for f . See Figure 2 for an example.

3 EXPERIMENTS

We will first lay out the general setup for the experiments to test the MUH. As we will find surprising
counter evidence to universality, we proceed by analyzing to what extent the MUH holds up.

Models We use L2-robust models trained on ImageNet1k (Deng et al., 2009), ImageNet100 (a sub-
set of ImageNet with 100 classes) and CIFAR-10 (Krizhevsky, 2009). The full list of models is given
in Appendix A. While we train most of these models ourselves, we use the checkpoints released by
Salman et al. (2020) for ImageNet1k. We study models with robustness of ϵ ∈ {0, 0.25, 0.5, 1.0, 3.0}
on ImageNet1k and ImageNet100, but stop at ϵ = 1 for CIFAR-10 due to the lower resolution of
images.

General Setup For each dataset mentioned above we compare the respective models using regular
images or inverted images from the the dataset they were trained on as input. For convenience, figures
have color schemes corresponding to the type of input. As inverted images are generated using a
specific model, each pair of models A, B is compared twice, once on the inverted images generated
by A and once on images generated by B. All comparisons are made within one level of robustness
and using the same dataset, i.e., A and B were always trained with the same ϵ and the same data.
To evaluate representational similarity with the measures outlined in Section 2, we collect model
activations at the penultimate layer. For functional similarity, we apply a softmax to the model outputs
to compute JSD and take the argmax of the logits as the predicted class for the agreement rate. For
a specific similarity measure, each comparison between a model pair A, B results in one similarity
value. Our analysis focuses on the distribution of these similarity values across all pairs. The reported
p-values are estimated with a permutation test.

3.1 PREDICTIONS OF ROBUST MODELS ARE NOT UNIVERSAL

If adversarially robust models are universal in a strict sense, we would expect that their predictions
overlap to a very high degree. Figure 1A shows that this is not the case. On regular images, the
agreement between predictions of highly robust models is much lower than the theoretical maximum
agreement imposed by small accuracy differences (Fort et al., 2019), see Appendix B. Instead,
average agreement decreases with increasing robustness. Comparing the predicted distributions
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Figure 4: Regular and mechanistic representational similarity over multiple similarity measures
and datasets. Contrary to recent work, multiple similarity measures generally agree on a positive
correlation between robustness and similarity. However, results from ImageNet1k do not generalize
to ImageNet100 and CIFAR-10 for regular similarity (top row), which lessens the generality of the
MUH. For these two datasets, only Jaccard scores have significant Spearman rank correlation with
robustness. At the same time, similarity is high on an absolute level for ImageNet100, but not for
CIFAR-10. While results are consistent for mechanistic similarity (bottom row), robustness alone
does not lead to universality.

with Jensen-Shannon divergence (Figure 1B) instead of just the final predictions leads to the same
conclusion: the predictive behavior is not universal.

However, using inverted images as input, which highlights mechanistic similarity, reveals that
robustness does have a profound impact on similarity of models. Figure 3 shows how predictive
behavior on these kind of inputs becomes more similar with increasing robustness. Jones et al.
(2022) showed similar effects for similarity of the representations. Nevertheless, the differences in
predictions given regular data must have an origin. In the following sections, we will test multiple
hypotheses and present a possible explanation.

3.2 HYPOTHESIS 1: DIFFERING PREDICTIONS STEM FROM DIFFERING REPRESENTATIONS

Closely connected to the final predictions are the representations at the penultimate layer of the neural
network as they are the input to the final classification layer. Should these representations become
more similar with increased robustness, we intuitively expect that the predictions also become more
similar. While dissimilar predictions are possible even if representations are similar, we expect this
situation to be less likely. Hence, as our first step, we inspect whether representations truly become
more similar with increased robustness.

3.2.1 IS INCREASED SIMILARITY AN ARTIFACT OF THE SIMILARITY MEASURE?

Jones et al. (2022) found high similarity between the representations of robust models using linear
CKA, both in terms of regular similarity and mechanistic similarity. Linear CKA is arguably the most
popular similarity measure in the machine learning community, but was found to have several caveats
(Cui et al., 2022; Davari et al., 2023; Nguyen et al., 2022). Additionally, recent work showed that
results of representational similarity analysis are substantially influenced by the similarity measure
(Klabunde et al., 2024; Soni et al., 2024; Bo et al., 2024). Thus, it is possible that representations
do not become more similar in general with increased robustness, but only in the aspects that are
measured by CKA—and these aspects could be of lesser importance with respect to influencing
predictions.

We thus repeat the similarity measurements with three additional measures, namely ProcrustesSim,
Jaccard, and negative RTD, as outlined in Section 2. For Jaccard, we use a neighborhood size of 10
to encourage strict similarity assessment (see Appendix C for other neighborhood sizes). Figure 4
shows that similarity estimates are not majorly influenced by the similarity measure, given a fixed
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Figure 5: Representational similarity of instances with agreeing or disagreeing predictions for
ImageNet1k. For the global representational similarity measures, representations of instances with
disagreeing predictions are surprisingly more similar than those of agreeing predictions. Only the
local Jaccard similarity (k = 10) assigns slightly lower similarity to disagreeing instances. Hence,
to explain the increasing disagreement with robustness, other parts of the models have to diverge as
representations consistently become more similar with increased robustness.

dataset. While the results on ImageNet1k support the claims of MUH with respect to representational
similarity, we also repeat the experiments with models trained on different datasets. In this case, we
do not observe a clear relation between robustness and universality. While mechanistic similarity
remains significantly rank-correlated with robustness across all datasets, regular similarity with
regular images as input does not follow the trend. Instead, not only is the correlation insignificant,
but the absolute similarity scores are also substantially different.

Overall, our results make it unlikely that the relation between robustness and representational
similarity is dependent on CKA since other measures with different perspectives agree with the CKA
results. However, we identify that the dataset is at least another factor influencing universality. As
this leads to some doubt of the validity of the MUH, we next investigate another possibility how
representational similarity measures could give misleading similarity estimates. We will focus on
models trained on ImageNet1k as they follow the MUH most closely so far.

3.2.2 DOES UNEVENLY DISTRIBUTED REPRESENTATIONAL SIMILARITY EXPLAIN
DIFFERING PREDICTIONS?

The previous experiment reported representational similarity over the full set of instances we use,
condensed into a single number. However, representational similarity for subsets of the data can be
different. For example, instances that are identically predicted by two models could have similar
representations, whereas instances that are differently predicted have dissimilar representations. It is
possible that information about such an uneven similarity distribution was lost in the aggregation
over all instances. If such an imbalance exists, it would be a simple explanation for the observed
disagreement. We thus compare the agreeing and disagreeing instances separately. We focus on the
most robust models with ϵ = 3 for ImageNet1k.

Figure 5 shows that the similarity scores generally do not agree with this hypothesis. Instead,
representational similarity is even higher for instances with disagreeing predictions for the three
global similarity measures. With the local view of Jaccard similarity, similarity of disagreeing
instances is lower, but only moderately. The difference in medians corresponds to a difference of less
than one neighbor, hence even locally representations are almost the same.

While our results show that similarity is indeed not homogeneous and subgroup-based analyses like
proposed by Kolling et al. (2023) could lead to better understanding of similarity, the differences
in representational similarity are too small to explain the large differences in predictions of robust
models. Also, robust models are consistently representationally more similar than standard models.
Thus, the issue has to lie elsewhere—the parts of the models not analyzed yet are the classifiers.

3.3 HYPOTHESIS 2: DIFFERING PREDICTIONS ORIGINATE IN THE CLASSIFIER

The previous results make it unlikely that the problem with the modified universality hypothesis
originates in the representation extraction of the models. We thus analyze the classifier as the
remaining part of the model.
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While representations are similar at the end of training, we do not know when they reach this state.
Prior work (Raghu et al., 2017) showed models converge roughly bottom-to-top, i.e., first in the
layers closest to the input and last in the final layers. It is thus possible that the classifiers have
”similar training data” only relatively late and thus are not able to converge to similar solutions in the
remaining training steps.

To test whether it is possible to get more agreeing predictions based on the seemingly similar repre-
sentations of robust models with ϵ = 3, we remove the originally trained classifier and replace it with
a freshly initialized linear layer, a probe. We train this probe in a simple setup using the standard Ima-
geNet1k training set over 30 epochs. We use Adam with a learning rate of 0.005 and a cosine learning
rate schedule. We then compare the predictions of the probes using regular images (see Figure 6).
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Figure 6: Linear probes have higher agreement
than pretrained classifiers. While robust mod-
els (ϵ = 3) have lower agreement than standard
models (ϵ = 0), training linear probes using robust
representations as input enables more consistent
predictions. Probes consistently agree on a large
share of the predictions even compared to stan-
dard models. The only exception is the cluster of
low-agreement probe pairs that involve ResNet18
probes, which have low performance.

These probes have lower clean accuracy com-
pared to the original models and lose some ro-
bustness. Typically, lower performance leads to
lower agreement as more predictions can vary
between any of the false classes. However, in
this case, the probes have higher agreement com-
pared to the pretrained classifiers of both stan-
dard and robust models. It is thus possible to
influence the models towards universality, but
the MUH would need to be further modified to
take prediction agreement into account.

4 DISCUSSION

Modified Universality Hypothesis Needs An-
other Modification We demonstrated that pre-
dictions of robust models do not converge with
increasing robustness, which is in conflict to
the MUH. However, consistent with Jones et al.
(2022), we also observed that representations
become more similar with increased robustness,
from both a regular and a mechanistic perspec-
tive. The contrast points towards an interesting
direction for future work: why is it that some aspects of models seem to be strongly constrained
by robustness whereas others are not? Also, how can unintuitive results be explained like higher
representational similarity for disagreeing instances compared to similarity of agreeing instances?

Disconnection Between Behavioral and Representational Similarity Our findings indicate that
relying solely on representational similarity scores can lead to misleading conclusions, as these
scores can be disconnected from behavioral similarity. While mechanistic representational similarity
measures consistently increase with robustness, prediction agreement decreases. Furthermore, most
representational similarity measures do not show substantial differences between agreeing and
disagreeing instances. We thus argue that representational similarity measures should be viewed as
exploratory tools rather than definitive indicators of model similarity. Any insights derived from
these measures should be validated through additional experiments. To be able to rely more on
representational similarity measures, we believe that better theory and justification of similarity
measures is necessary. In the absence of such understanding, using multiple similarity measures
could make findings slightly more robust.

Robust Models for Interpretability Research The ideal subject for interpretability research
would give insights about many more models than just the model under study. On the one hand,
robust models likely partially fulfill this criterion–studying the representation mechanism could
transfer across other robust models. Models could also be modified towards universality as shown
in Section 3.3. On the other hand, our work is another point of evidence against universality in a
strong sense, where all parts of a model are highly similar, and towards a world where models consist
of universal and non-universal parts. Studying universal parts may be of general interest, whereas
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non-universal parts may be only interesting for frontier models or specific models with high interest.
Hence, identifying universal components is an interesting direction of future work.

Increasing Robustness Beyond Our Experiments We observed that increasing robustness up to
ϵ = 3 for ImageNet models leads to increased representational similarity of the models, e.g., the
trend for CKA similarity appears to continue further. Thus, extremely robust models may be a way to
studying the whole model class at once–at least with respect to the aspects that make them similar
from the CKA perspective. However, increasing robustness even further would likely lead to further
accuracy degradation. Ultimately, such models may not be comparable to more widely used models,
which could make detailed study of these models not worth it despite the aforementioned benefit.

5 RELATED WORK

Universality The question to what extent models are universal has attracted significant interest in
prior work. On the one hand, model multiplicity, i.e., the existence of multiple models with almost
equal performance but different input-output behavior or representations, has been studied extensively
(Breiman, 2001; Black et al., 2022; Heljakka et al., 2023). Architecturally similar models trained or
updated on near-identical data can differ significantly (Klabunde and Lemmerich, 2023; Somepalli
et al., 2022; Marx et al., 2020; Black and Fredrikson, 2021; Liu et al., 2022; McCoy et al., 2020; Li
et al., 2015). Modifications to training or inference may be necessary to enforce consistent behavior
between different models (Milani Fard et al., 2016; Summers and Dinneen, 2021). In mechanistic
interpretability, a more fine-grained view on universality is taken, i.e., whether the input-output
behavior of a network is also implemented in the same way. It leads to further evidence against
universality (Zhong et al., 2023; Chughtai et al., 2023).

On the other hand, there is evidence for universality in certain scenarios. Some features consistently
appear in CNNs (Schubert et al., 2021). Further, attention heads with specific functionality can be
found across many transformer-based language models (Olsson et al., 2022; Gould et al., 2023).
Additionally, some of their internal processes for tasks such as indirect object identification (Merullo
et al., 2023) and retrieval (Variengien and Winsor, 2023) seem to be universal, at least across
certain model classes. On the smallest scale, certain neurons appear universal (Gurnee et al., 2024).
Further, parts of two different models (trained for the same task) can be connected using simple
transformations with little accuracy loss (Csiszárik et al., 2021; Bansal et al., 2021; Lähner and
Moeller, 2023; Moschella et al., 2023) indicating representational compatibility (Brown et al., 2023).
Models of the same architecture can recognize metamers generated for others at early layers (Feather
et al., 2023). This transfer ability improves if models use adversarial training. Finally, Huh et al.
(2024) found that model representations are converging, especially when model size increases or
models are trained on multiple tasks, and posited the platonic representation hypothesis.

While the two above collections of evidence for and against universality might seem contradicting,
the scope of universality as well as what would be considered equivalent between networks differs
drastically. In fact, universality has multiple non-binary facets (Gurnee et al., 2024). Furthermore,
universality may only occur for certain types of models (Jones et al., 2022).

Neural Network Similarity To measure similarity of neural networks, especially of their represen-
tations, numerous similarity measures have been proposed across machine learning and neuroscience
(Klabunde et al., 2023; Sucholutsky et al., 2023). These measures represent different views on what
kind of behavior is considered equivalent. Due to its popularity, Centered Kernel Alignment (CKA)
(Kornblith et al., 2019) has attracted particular interest and was also used by Jones et al. (2022) who
propose the hypothesis of universality across robust models. However, several caveats of CKA are
known: few data points may dominate the similarity score (Nguyen et al., 2022), the choice of inputs
may determine similarity measurements in early layers (Cui et al., 2022), and scores are generally
brittle (Davari et al., 2022).

6 CONCLUSION

We revisit the modified universality hypothesis which states that adversarially trained models are
highly similar. We show that predictions of robust models are not universal as their agreement on
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regular images decreases with robustness. While we further show that the representation mechanisms
consistently become more similar with increased robustness, regular representational similarity does
not consistently increase. We demonstrate that these seemingly contradictory findings are likely
the result of insufficient convergence at the classification layers. More broadly, our analysis reveals
that relying solely on representational similarity measures can be misleading as they do not capture
relevant differences in models that lead to different predictive behavior. Our results show that the
modified universality hypothesis is not applicable to all components of robust neural networks.

REPRODUCIBILITY STATEMENT

All code and data to reproduce our results are publicly available, see Appendix E for details.
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Table 1: The number of parameters, accuracy (Acc) and adversarial accuracy (Adv. Acc.) for models
trained on ImageNet1k. The adversarial accuracy of models with ϵ = 0 was evaluated with ϵ = 0.25.
For the models marked in gray, we used the checkpoints provided by Salman et al. (2020).

Architectures Parameters ϵ = 0 ϵ = 0.25 ϵ = 0.5 ϵ = 1 ϵ = 3
Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc.

ResNet-18 11.7M 69.80 20.30 67.42 60.02 65.48 55.97 62.31 55.65 53.11 49.70
ResNet-50 25.6M 75.80 25.97 74.13 67.42 73.17 64.23 70.42 64.32 62.83 59.47
Wide ResNet-50-2 68.9M 76.98 29.37 76.22 69.82 75.11 66.70 73.42 67.36 66.90 63.45
Wide ResNet-50-4 223.4M 77.91 32.74 77.10 72.82 76.52 69.00 75.51 62.78 69.67 45.17
ResNeXt-50 32x4d 28.7M 77.32 26.00 - - 59.74 49.73 72.45 66.71 65.92 62.39
Densenet-161 25.0M 77.38 28.78 - - - - 60.12 13.33 66.12 62.72
VGG-16-BN 138.4M 73.67 10.86 68.49 61.57 68.32 59.29 66.33 60.14 56.79 53.51

A ADDITIONAL MODEL INFORMATION

A.1 IMAGENET1K MODELS

Table 1 shows all model architectures with their accuracy and number of parameters. We use seven
L2-robust CNNs: ResNet-18, ResNet-50 (He et al., 2016), Wide ResNet-50-2, Wide ResNet-50-4
(Zagoruyko and Komodakis, 2017), ResNeXt-50 32x4d (Xie et al., 2017), Densenet-161 (Huang
et al., 2017), and VGG-16-BN (Simonyan and Zisserman, 2015).

Training Details (Salman et al., 2020) trained their L2-robust ImageNet models for 90 epochs
using an initial learning rate of 0.1 which is reduced every 30 epochs by a factor of 10. The training
uses stochastic gradient descent (SGD) with a batch size of 512, a momentum of 0.9 and weight
decay of 1e−4. For standard training, cross-entropy was used as a loss function. Robust training was
conducted using projected gradient descent (PGD) (Madry et al., 2019) allowing L2 perturbation of
the respective ϵ value. Adversarial examples were generate in three attack steps with a step size of 2

3ϵ.
We used an identical setting for training the remaining ImageNet1k models.

Inverted Images Inverted images were generated on the ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) validation set using the Robustness library (Engstrom et al., 2019).
First 10,000 target images were randomly sampled from the dataset. Then, for each sampled image, a
seed image was sampled at random. If the sampled seed image had the same class as the target, a
new image was sampled until seed and target classes were different. To generate an inverted image,
the seed image was modified in three steps and the best result taken.

A.2 IMAGENET100 MODELS

Table 2 shows accuracy scores for ImageNet100 models.

Training Details We trained the ImageNet100 models using the same training procedure as for
ImageNet.

Inverted Images The process for generating inverted images is identical to that on ImageNet. Seed
and target images were sampled from the ImageNet100 train set.

Table 2: The number of parameters, accuracy (Acc) and adversarial accuracy (Adv. Acc.) for models
trained on ImageNet100. The adversarial accuracy of models with ϵ = 0 was evaluated with ϵ = 0.25.

Architectures Parameters ϵ = 0 ϵ = 0.25 ϵ = 0.5 ϵ = 1 ϵ = 3
Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc.

ResNet-50 25.6M 79.00 45.92 79.28 73.60 77.16 68.44 74.30 60.86 69.88 47.54
Wide ResNet-50-2 68.9M 80.50 51.44 80.22 74.88 79.92 72.40 75.64 63.98 69.22 46.56
Densenet-161 25.0M 83.30 57.48 83.24 78.32 82.16 75.22 81.20 69.60 76.26 54.24
VGG-16-BN 138.4M 82.52 41.36 80.02 74.56 78.62 69.46 73.86 62.06 66.46 45.76
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Figure 7: Lower agreement is not forced by increased differences in model accuracy. While
increased robustness leads to larger performance differences between models, which widens the
theoretically possible range of agreement, the observed values are not practically limited.

A.3 CIFAR-10 MODELS

Table 3 shows the accuracy and number of parameters of each CIFAR-10 CNN.

Training Details The CIFAR-10 models were trained using almost the same configuration as the
L2-robust ImageNet1k CNNs. The only modification for standard training was using a weight decay
of 5e−4.

Inverted Images Seed and target images were taken from the CIFAR-10 test set, which contains
10,000 images.

B AGREEMENT IN RELATION TO MODEL PERFORMANCE

In Section 3.1, we claim that the decreased agreement of robust models is not explained by larger
differences between accuracy. In Figure 7, we show the average observed agreement, the expected
agreement assuming perfectly correlated predictions up to flipping noise and the expected agreement
assuming uncorrelated predictions according to Fort et al. (2019) (dotted lines), as well as theoretical
limits to agreement as in Klabunde and Lemmerich (2023) (dashed lines) .

The observed agreement values are not close to the these limits, which means that higher-than-
observed agreement with robust models is theoretically possible. Relative to the range between
minimal and maximal agreement, the observed agreement does increase, however, we note that the

Table 3: The number of parameters, accuracy (Acc.) and adversarial accuracy (Adv. Acc.) for models
trained on CIFAR-10. The adversarial accuracy of models with ϵ = 0 was evaluated with ϵ = 0.25.

Architectures Parameters ϵ = 0 ϵ = 0.25 ϵ = 0.5 ϵ = 1
Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc. Acc. Adv. Acc.

ResNet-18 11.2M 93.20 2.84 81.86 49.02 90.30 26.96 86.14 41.99
ResNet-50 23.5M 90.03 0.17 86.10 25.52 78.73 37.67 71.34 45.59
Wide ResNet-50-2 66.9M 83.31 1.59 77.81 23.28 71.99 33.13 60.05 38.53
Wide ResNet-50-4 221.4M 82.52 1.67 78.47 22.88 70.09 31.81 59.21 38.60
ResNeXt-50 32x4d 26.5M 81.45 2.06 77.53 22.52 68.17 32.12 57.48 36.89
Densenet-161 23.0M 94.22 1.00 91.91 29.14 88.27 43.99 83.60 48.18
VGG-16 14.7M 91.20 0.02 87.88 22.72 82.38 37.67 70.20 46.63
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Figure 8: Jaccard similarity with varying neighborhood size k. Neighborhood overlap increases
with larger k but trends are similar. As k increases, Jaccard Similarity becomes more similar to
measures with a global perspective on similarity like CKA.

scenario for theoretically minimal agreement seems unlikely (correct predictions are overlapping
minimally and all instances that are predicted incorrectly by both get different predictions).

C JACCARD SIMILARITY WITH VARYING NEIGHBORHOOD SIZE

Figure 8 shows additional result for Jaccard similarity with neighborhood sizes k ∈ {10, 100, 500}.

D COMPUTE RESOURCES

All models were trained using A100s with 80GB memory. The training time varied depending on the
dataset and model size. Training on the small CIFAR-10 dataset took around two hours at most using
adversarial training. Training on ImageNet1k took around one to four days depending on the model.
Execution time for calculating model similarity was likewise dependent on the dataset as well as the
measures. Reproducing the similarity results shown in this paper would take around 24 hours.

E CODE AND DATA

Our code is available via https://github.com/casparil/rob-univ. Links to the Zenodo
repositories for our data are available in our code’s README file.
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