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ABSTRACT

The inability of autonomous vehicles (AVs) to infer the material properties of
obstacles limits their decision-making capacity. While AVs rely on sensor sys-
tems such as cameras, LiDAR, and radar to detect obstacles, this study suggests
combining sensors with a knowledge graph (KG)-based world model to improve
AVs’ comprehension of physical material qualities. Beyond sensor data, AVs can
infer qualities such as malleability, density, and elasticity using a semantic KG that
depicts the relationships between obstacles and their attributes. Using the CARLA
autonomous driving simulator, we evaluated AV performance with and without
KG integration. The findings demonstrate that the KG-based method improves
obstacle management, which allows AVs to use material qualities to make better
decisions about when to change lanes or apply emergency braking. For example,
the KG-integrated AV changed lanes for hard impediments like traffic cones and
successfully avoided collisions with flexible items such as plastic bags by passing
over them. Compared to the control system, the KG framework demonstrated
improved responsiveness to obstacles by resolving conflicting sensor data, causing
emergency stops for 13.3% more cases. In addition, our method exhibits a 6.6%
higher success rate in lane-changing maneuvers in experimental scenarios, particu-
larly for larger, high-impact obstacles. While we focus particularly on autonomous
driving, our work demonstrates the potential of KG-based world models to improve
decision-making in embodied AI systems and scale to other domains, including
robotics, healthcare, and environmental simulation.

1 INTRODUCTION

Autonomous vehicles (AV) have gained rapid market penetration in recent years, yet the industry’s
goal of achieving Level 5 automation remains extremely difficult, with forecasts suggesting that
fully self-driving cars will not be available until 2035 (S&P Global Mobility, 2023). The transition
from current AVs at Level 3, which still require human supervision, to complete autonomy under
any Operational Design Domain (ODD) remains distant (SAE International, 2021). Therefore,
fundamental approaches to autonomous vehicle development must be reevaluated.

The current AVs available to the public highly depend on visual perception that mirrors human
visual cognition through heterogeneous sensors such as cameras, LiDAR, and RADAR (Author &
Researcher, 2021). However, this approach oversimplifies the complex decision-making processes
involved in human driving, as human drivers integrate multiple layers of knowledge that transcend
beyond visual and spatial recognition using sensors: (i) recognition of physical properties of obstacles,
(ii) moral and emotional considerations, (iii) anticipatory behavior in driving (iv) contextual and
situational understanding (Scientist & Engineer, 2020).

AVs primarily show low performance in performing contextual decisions about common scenarios
related to obstacle management, such as distinguishing the appropriate response to a lightweight
plastic bag placed on the road (Developer & Creator, 2020). Unlike human drivers, AVs fail to
replicate the intuitive understanding required to navigate obstacles and fall short in understanding
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physical properties to optimize their decision-making and minimize the damage after a potential
collision with an object. More specifically, lightweight objects like empty plastic bags can be safely
driven over, while rigid paper boxes require lane changes. Hence, while human drivers can assess
such obstacles by instinctively understanding physical properties, AVs cannot incorporate material
characteristics into their reasoning (Goodfellow et al., 2016). Thus, a comprehensive framework
that amalgamates the recognition of material properties with existing heterogeneous sensor systems
is fundamental for enabling AVs to handle obstacles that exceed the interpretative capabilities of
existing sensors.

Human drivers, when faced with atypical situations such as a large plastic bag blowing across the
road, rely on a combination of visual perception, situational judgment, and adaptive behavior to
make their decisions (Technologist & Innovator, 2024). By accurately assessing the object’s size,
shape, texture, and movement patterns visually and intuitively, they evaluate its potential threat,
allowing them to make quick decisions, such as whether to avoid the object or continue driving
without alteration. Whereas, AVs rely on pre-trained algorithms and sensor data, which may not
cover all possible scenarios (Researcher & Scholar, 2024). Therefore, this study aims to enhance the
autonomous vehicle’s ability to infer and respond to various obstacles it has never encountered before
by implementing a KG-based framework within the CARLA autonomous driving simulator through
an application programming interface (API) integration (Dosovitskiy et al., 2017). By utilizing graph
databases, which excel at representing and processing complex relationships between objects and
their physical properties (Anuyah et al., 2024), our work successfully integrates a KG approach on
the sensor-based perception within the CARLA simulator.

2 RELATED WORK

2.1 OVERALL SENSORS SUMMARY

First, we examine the function of the three major sensors (cameras, LiDAR, and radars) used in
AVs. (i) Cameras produce images of the surrounding environment by detecting light reflected or
emitted from objects onto a photosensitive surface. (Investigator & Analyst, 2020). Additionally, both
moving and stationary obstacles are identifiable by cameras with high-resolution photographs. (ii)
LiDAR (Light Detection And Ranging) is a distance-sensing technique that emits laser light pulses or
infrared beams toward target impediments. By calculating the time between emission and reception
of the light pulse, LiDAR obtains an accurate distance estimate (Expert & Specialist, 2020). LiDAR
produces data in the form of point cloud data (PCD), which consists of the (x,y,z) coordinates and
the intensity information of the obstacles (Professional & Consultant, 2023). (iii) Radars determine
the relative speed and position of target obstacles using the Doppler shift in electromagnetic waves
(S&P Global Mobility, 2023). As the target approaches the radar, the frequency of the detected signal
increases, enabling AVs to determine range information (Pioneer & Visionary, 2013).

2.2 PROBLEMS ASSOCIATED WITH SENSORS

Cameras, LiDAR, and radars each have weaknesses when operating independently and also col-
lectively. Cameras show high performance for capturing high-resolution images but struggle to
function in poor climatic conditions such as fog or heavy rain and are unable to reliably measure
distance (Scientist & Researcher, 2020). LiDAR is prone to data distortions such as "black holes"
in its point cloud and is not suited for poor weather. Radar performs well in detecting obstacles at
long distances and in poor climatic conditions but it is unreliable in distinguishing between complex
materials or those with weak echoes, such as plastic or rubber (Zhang & Wang, 2021). The issues of
unreliability and inaccuracy are amplified when these sensors are combined, a process referred to as
sensor fusion, where data from multiple sources are merged for perception (Yamamoto & Tanaka,
2014). Current sensor fusion algorithms rely on object-level fusion that involves sensors identifying
and classifying objects independently before combining their data. This approach is not optimized
as it fails to integrate the strengths of each sensor into a unified collective understanding of the
environment (Scientist & Engineer, 2020). Furthermore, inconsistencies between sensor inputs can
lead to conflicting interpretations which reduces the reliability of AVs. For instance, a lightweight
plastic bag might be misclassified as a rigid obstacle due to conflicting data from LiDAR and radar.
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2.3 CONVOLUTIONAL NEURAL NETWORK APPROACH

In response, many studies have focused on embedding deep learning models such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) for hazardous obstacle detection in
AV from dashboard video footage. Particularly, CNNs have shown exceptional performance with (i)
image classification (ii) object detection (iii) semantic segmentation, particularly when conditions
are well controlled with golden datasets (well-defined datasets) (Ahmed et al., 2020). Despite great
advances from deep learning models like CNNs, unguided learning tends to draw spurious patterns. In
addition, CNNs still have limitations when applied to dynamic material recognition and unpredictable
road environments. More specifically, while CNNs excel at extracting high-level features from
images, they fail to infer materialistic properties such as hardness, elasticity, or malleability that
are not differently visible (Bell et al., 2015). Furthermore, CNNs show relatively low performance
with inexperienced situations that were not explicitly represented in their training data. Thus, as
aforementioned, the lack of relational reasoning when handling obstacles has given rise to a KG-based
approach.

Figure 1: Knowledge Graph Representation of Obstacle Relationships

2.4 IMPLEMENTATION OF KNOWLEDGE GRAPHS

KGs store and access interrelated data entities as directed labeled multigraphs, enabling semantic
reasoning with high accuracy in complex inference tasks (Anuyah et al., 2024). The study proposes
using a KG to represent relationships between obstacles and their materialistic attributes to infer
properties beyond what sensors can observe, as shown in Fig.1.

3 METHODOLOGY

3.1 EXPERIMENTAL DESIGN

In this section, we describe our KG-based integration framework that aims to mimic human inference
mechanisms used for material recognition, implemented within CARLA (open-source autonomous
driving simulator). This study uses CARLA to control environmental variables and experiment with
the impact of obstacle type on vehicle response. To ensure consistency, the following variables are
standardized across trials: (i) road conditions (ii) ambient lighting (iii) the behavior of surrounding
vehicles. In addition, we examine vehicle behavior within the simulator in two distinct situations: (a)
scenarios where lane changes are feasible and (b) scenarios where surrounding vehicles restrict lane
changing.

Furthermore, in our experiments, we conduct a comparative analysis between the AV integrated with
the KG framework and the default AV system provided by the CARLA simulator. The default AV
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Figure 2: Types of Testing Static Obstacles in CARLA Simulator

exploits programmed algorithms and sensor data to make decisions on handling obstacles within the
environment. Whereas, the AV with the KG framework applies semantic reasoning to infer material
properties based on input data. For this comparative analysis of distinct AV systems in two scenarios
(a) and (b) as mentioned before, fifteen types of static obstacles available from the CARLA simulator
were tested, as shown in Fig.2, representing diverse material attributes and real-world relevance.

The independent variable in this study is the type of obstacle from Fig.2, while the dependent variable
is the simulated vehicle’s response (lane change, sudden braking, or driving through). For each
scenario, an optimal response exists depending on the material attributes of the object. For instance,
for a plastic bag from Fig.2, the optimal action would be to pass through as it is easily deformable.
In contrast, for a traffic cone, despite its small dimensions, a lane change would be optimal when
surrounding roads are vacant due to its elastic characteristics and the risk of attachment to the tire.
Hence, throughout this experiment, the response of the AV integrated with the KG to each obstacle
will be examined across several trials.

3.2 KNOWLEDGE GRAPH FRAMEWORK INTEGRATION

The primary assumption underlying this experiment is that YOLO (You Only Look Once), used for
real-time object detection, will not be utilized (Redmon et al., 2016). Instead, object detection will be
replaced by directly inputting pre-determined object identifiers (e.g., object name and dimensions)
into the KG framework. This simplification in the process is justified as the experimental focus is on
static obstacles in which the real-time detection capabilities of YOLO are not critical. In addition, it
prevents the introduction of unnecessary complexity and ensures that the primary objective remains
focused. The ontological framework was designed as illustrated in Fig.3, which is composed of
three primary layers: input, semantic reasoning, and output. The semantic reasoning is based on
two fundamental parameters: obstacle type (e.g., plastic bag, shopping cart, gnome) and obstacle
size, which are assumed to be acquired through conventional sensors: cameras, radar, LiDAR, and
pre-installed object detection algorithms (e.g., YOLO or an equivalent method). The approach to input
two minimal parameters is an attempt to mirror human cognitive processes in driving, as humans
also utilize minimal information to make decisions. Subsequently, the framework’s categorical
identification associates each obstacle type with a set of predefined material attributes within the
KG, including malleability, elasticity, and density, allowing the AV to more fully understand the
materialistic characteristics of obstacles. Hence, through the utilization of the semantic reasoning
layer, which implements a graph traversal algorithm that processes these inputs through multiple
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Figure 3: Ontological representation of KG-based integration framework (expressed through nodes,
edges, and label)

interconnected nodes representing physical properties and risk factors, the vehicle is more likely to
reach a comprehensive and consensual conclusion than when using sensors previously.

Excluding input and output nodes, nodes are created through the following criteria: (i) expected
mass: heavy or light, (ii) malleability: heavy or low, (iii) size that can or cannot pass under the car,
(iv) expected density: high or low, (v) elasticity: high or low, (vi) expected impulse after collision:
high or low, (vii) able or unable to change lane, (viii) risk of exerting strong damage to the car’s
underside/tire: high or low. Even though there is no universal relationship between each property, (for
instance, objects with high malleability do not necessarily always have low density) properties with
relatively high correlation are typically connected through edges based on common tendencies. For
instance, lesser-density materials typically have lower atomic mass or wider atomic spacings. The
free atom movement in malleable materials may be linked to less dense atomic packing, which could
result in a lower density. Based on this common logic, relationships have been established between
nodes to produce the most optimal conclusion to minimize damage exerted. Moreover, depending on
the context, changing lanes may exacerbate the damage, while in some cases sudden braking may
increase the risk. Hence, deciding which action to take can be extremely pivotal. By integrating this
contextual understanding with material properties and input data, we implemented the KG framework
to make the most optimal decision to minimize impact. As a result, complex property inference
through relationships is enhanced by this semantic traversal method, while multi-parameter decision
optimization is made possible by the KG’s logical architecture. The framework was built to maximize
reasoning abilities that surpass conventional obstacle avoidance systems by distinguishing between
geometrically identical obstacles according to their material attributes.

On the CARLA simulator, all fifteen objects were tested with and without KG integration for two
scenarios: one where lane change was possible and one where it was unsafe. Fig.4 is a sample
ontological representation to further explain the mechanism behind the KG-based framework. Using
the example of a plastic chair, we conduct a comprehensive comparison of two scenarios: one where
lanes can be changed and one where lanes cannot be changed. The plastic chair has the following
characteristics: light expected mass; high malleability; a size that cannot pass under the car; low
expected density; low elasticity; and low expected impulse after collision (due to low mass and
density). Note that in Fig.4a, lane change is available. The logic is as follows: as the mass is light,
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the expected impulse is low. This is further cross-validated by low density and high malleability,
resulting in a consistent conclusion with high reliability. In contrast, in Fig.4b, lane change is not
safe, as the condition for plastic chairs remains constant. Thus, the overall expected impulse after
the collision is still low but, as shown in Fig.3, the plastic chair may have a high risk of exerting
strong damage to the car’s underside/tire (e.g., sharp edges of the plastic chair may puncture the tire).
Since lane change is not available in Fig.4b, the most optimal actuator output will be sudden braking,
assuming that there are no vehicles behind or around.

(a) Scenario where lane change is feasible (b) Scenario where lane change is restricted

Figure 4: KG-based decision-making with a plastic chair

3.3 INTEGRATION WITH CARLA SIMULATOR

Through a semantic interoperability framework, an ontology-based KG has been integrated with
the CARLA autonomous driving simulator. The KG underwent segmentation to be compatible
with Python’s processing constraints, which involves the decomposition of the graph structure into
manageable components while maintaining the semantic relationships and ontological hierarchy.
Then, the resultant segments are transformed through an intermediary layer that implements data
marshaling and semantic mapping. This implementation instantiated a client-server architecture to
reconstruct and synchronize the segmented graph components within the simulator. Subsequently,
using CARLA’s traffic manager (TM), which constructs realistic urban traffic conditions, we installed
real-world relevant obstacles mentioned in Fig.2. Additionally, an autopilot module has been installed
in the TM to conduct a comparative analysis of the KG-integrated AV and default autopilot AV.
Moreover, autopilot mode has been overridden when obstacles are detected since the perception
system of the vehicle becomes unclear when sensors like cameras, LiDAR, and radar present
contradicting information. Thus, the system implements a more deterministic and dependable control
mechanism by forcing autopilot to stop and move to decision-making based on graph algorithms.

4 RESULTS

Even though the accident rate of autonomous vehicles is lower than that of human drivers, accidents
caused by human mistakes and those caused by machines carry significantly different implications.
This study focuses on one of the various risks that may arise during autonomous driving, specifically
the situation where obstacles are present in the driving lane and the vehicle must avoid them. Obstacles
on the road represent a high-risk situation, as small mistakes can lead to serious accidents. Our
purpose is to explore whether combining KGs can provide better avoidance performance than current
information processing methods that rely on visual images, geometric data, and motion information
from cameras, LiDAR, and radar. This concept is inspired by the method that human drivers avoid
obstacles; they do not solely process visual information but also combine it with learned existing
knowledge to make decisions.

4.1 CONTROL GROUP (DEFAULT AUTOPILOT MODE)

4.1.1 LANE CHANGE RESTRICTED

Through our experimentation, it was validated that integrating KGs could bring improvements in
obstacle management. The first control experiment was conducted in a scenario where, upon detecting
an obstacle, there were vehicles on adjacent sides. In this scenario, the vehicle did not change lanes
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Table 1: Qualitative Results of Control and Experimental Groups

Object Lane Change Restricted Lane Change Unrestricted
Control Experimental Control Experimental

Construction cone Collide/Stop Collide/Stop Lane Change Lane Change
Box 01 Collide/Stop Collide/Stop Lane Change Lane Change
Creased box 02 Collide/Stop Collide/Stop Collide/Stop Collide/Stop
Cola can Collide/Stop Collide/Stop Collide/Stop Collide/Stop
Garbage 01 Collide/Stop Collide/Stop Collide/Stop Collide/Stop
Garbage 05 Collide/Stop Collide/Stop Collide/Stop Collide/Stop
Garbage 06 Collide/Stop Collide/Stop Collide/Stop Collide/Stop
Trash can 03 Collide/Stop Collide/Stop Collide/Stop Lane Change
Plastic chair Collide/Stop Sudden Braking Lane Change Lane Change
Gnome Collide/Stop Collide/Stop Collide/Stop Collide/Stop
Watering can Collide/Stop Collide/Stop Collide/Stop Lane Change
Plastic bag Collide/Stop Collide/Stop Lane Change Collide/Stop
Shopping bag Collide/Stop Collide/Stop Lane Change Lane Change
Shopping cart Collide/Stop Sudden Braking Lane Change Lane Change
Shopping trolley Collide/Stop Collide/Stop Lane Change Lane Change

Table 2: Quantitative Results of Control and Experimental Groups

Metric Lane Change Restricted Lane Change Unrestricted
Control Experimental Control Experimental

Total Lane Changes 0 (0%) 0 (0%) 7 (46.7%) 8 (53.3%)
Total Sudden Braking Incidents 0 (0%) 2 (13.3%) 0 (0%) 0 (0%)
Total Collide or Stop 15 (100%) 13 (86.7%) 8 (53.3%) 7 (46.7%)

or brake suddenly and continued to drive straight ahead, even when encountering obstacles (for all
fifteen different obstacle scenarios). It is assumed that the CARLA autopilot driving system was
administered to consider a collision with another vehicle in the adjacent lane as a more serious
situation than a collision with an obstacle in front.

4.1.2 LANE CHANGE UNRESTRICTED

The second control experiment was conducted in a scenario where lane change was feasible due to
the absence of other vehicles in adjacent lanes. In this experiment, lane changes occurred for seven
out of the fifteen obstacles. These obstacles were: (1) construction cone, box 01, plastic chair, plastic
bag, shopping bag, shopping cart, and shopping trolley. In contrast, lane changes did not occur for
the following obstacles: creased box, cola can, garbage 01, garbage 05, garbage 06, gnome, and
watering can. Although there was no clear distinction between the group of obstacles that led to
lane changes and the group that did not, one potential explanation could be that the obstacles in the
CARLA simulator were not constructed with the same size, shape, and properties as the ones seen in
real-life footage. However, it’s important to note that the obstacles for which lane changes occurred,
such as the box, plastic chair, shopping cart, and shopping trolley were larger than the obstacles that
did not cause lane changes, such as the creased box, garbage, and cola can.

4.2 EXPERIMENTAL GROUP (KG-INTEGRATED MODE)

4.2.1 LANE CHANGE RESTRICTED

The investigation for the experimental group was conducted in two parts, similar to the control group.
The first scenario for Experimental Group 1 involved fifteen obstacles. In this experiment, the vehicle
encounters an obstacle where a car is present in the adjacent lane, making lane changes difficult. As
mentioned previously, when the vehicle encounters an obstacle, autopilot mode is deactivated and the
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Figure 5: Scenarios with autopilot mode (default, no KG) / able to change lane (KG integrated) /
unable to change lane (KG integrated)

obstacle is handled based on the decision-making process of the graph algorithm. In this experiment,
for two obstacles, a plastic chair and a shopping cart, the vehicle performs an emergency stop, while
for the other thirteen obstacles, the vehicle continues driving straight without stopping.

On the graph ontology, the plastic chair and shopping cart share similar characteristics: they are sized
in a way that makes it difficult for the vehicle to pass under them, and they are expected to produce
significant impact force upon collision. Additionally, they have high elasticity, meaning that when a
collision occurs, they maintain their shape and may get stuck under the vehicle. More specifically,
obstacles like plastic chairs and shopping carts, which have high elasticity and strength, can bounce
upon impact and cause accidents with nearby vehicles, making them incredibly dangerous.

In contrast, the gnome is categorized as a doll, typically expected to have a low impact force and not
significantly affect the vehicle’s underside or wheels upon collision. However, the results from the
CARLA simulation reveal that when the vehicle collided with the gnome, its direction was altered,
almost leaving its lane. The reason for this unexpected outcome is that, unlike what was reflected in
the ontology, the gnome was made of a very hard and dense material. As a result, when the vehicle
collided with the gnome, it remained intact and became lodged underneath the vehicle, interfering
with the vehicle’s undercarriage, as illustrated in Fig. 7.

4.2.2 LANE CHANGE UNRESTRICTED

The second experimental group involved cases where lane changes were enabled. In this group,
lane changes were made for eight out of the fifteen obstacles: construction cone, box 01, trash can
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Figure 6: Scenarios with gnome and box 01 (experimental group)

03, plastic chair, watering can, shopping bag, shopping cart, and shopping trolley. Compared to
the control group in Experiment 2, where lane changes were feasible, twelve of the same obstacles
overlapped, and lane changes were made for two additional obstacles: the trash can and the watering
can.

4.3 FINAL OBSERVATIONS

In the control group where lane changes were restricted, the default autopilot mode collided with
obstacles or stopped for 100% of the trials (n = 15). In scenarios where lane changes were enabled,
the autopilot changed lanes in 46.7% of cases and for the remaining 53.3%, it either collided with
obstacles or stopped. In the experimental group where a KG framework was implemented, the
system performed a sudden brake for 13.3% of cases when lane changes were enabled and collided or
stopped for 86.7% of the remaining cases. Under conditions where lane change was restricted, 53.3%
of decisions resulted in a lane change, whereas 46.7% led to either a collision or a stop. Overall, the
experimental results with the KG framework demonstrated significant quantitative improvements in
obstacle response strategies, particularly in scenarios that required specialized and nuanced reasoning
of material properties. While the default autopilot system collided 100% of the time in scenarios
where lane changes were restricted, the KG integrated framework provoked emergency stops for
plastic chairs and shopping carts. (13.3% cases) Furthermore, the KG approach exhibited optimized
lane change decisions, increasing lane changes by 6.6% (8/15 vs 7/15 in controls) for garbage 05 and
trash cans. Importantly, it also avoided unnecessary lane changes for plastic bags, correctly deciding
to drive through deformable obstacles. Ultimately, the KG outperformed sensors by prioritizing
material properties, such as elasticity and density, over solely considering geometric data.

5 CONCLUSION

Despite advancements in autonomous driving technology, occasional reports of major accidents
caused by AV misjudgments continue to raise concerns. Although the accident rate of AVs is
lower than that of human drivers, the nature of these accidents is distinct (Abdel-Aty & Ding,
2024). Autonomous driving requires high technical perfection; even rare accidents can be fatal. AV
technology has not yet demonstrated superiority over human drivers in all scenarios. This study
tests the hypothesis that integrating sensors with a KG framework improves AVs’ understanding
of physical materials. Simply increasing data collection may not be enough to exceed human
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capabilities, which rely on both knowledge and experience. Achieving higher-level autonomy may
require combining data with knowledge-based reasoning. Using the CARLA simulator, we compared
AV performance with and without KG integration in obstacle avoidance. The KG-enabled system
showed more sophisticated behavior, such as braking for a plastic chair and changing lanes for a
garbage can. Quantitatively, the KG system improved decision-making by 13.3% when lane changes
were restricted and 6.6% when open, indicating its potential to enhance obstacle response beyond
sensor-based methods.
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