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ABSTRACT

Predicting the impact of genomic and drug perturbations in cellular function is
crucial for understanding gene functions and drug effects, ultimately leading to
improved therapies. To this end, Causal Representation Learning (CRL) constitutes
one of the most promising approaches, as it aims to identify the latent factors
that causally govern biological systems, thus facilitating the prediction of the
effect of unseen perturbations. Yet, current CRL methods fail in reconciling
their principled latent representations with known biological processes, leading
to models that are not interpretable. To address this major issue, in this work
we present SENA-discrepancy-VAE, a model based on the recently proposed
CRL method discrepancy-VAE, that produces representations where each latent
factor can be interpreted as the (linear) combination of the activity of a (learned)
set of biological processes. To this extent, we present an encoder, SENA-δ, that
efficiently compute and map biological processes’ activity levels to the latent causal
factors. We show that SENA-discrepancy-VAE achieves predictive performances
on unseen combinations of interventions that are comparable with its original, non-
interpretable counterpart, while inferring causal latent factors that are biologically
meaningful.

1 INTRODUCTION

Causal Representation Learning (CRL) has raised in recent time as a promising approach for identify-
ing the latent factors that causally govern the systems under study (Schölkopf et al., 2021; Ahuja et al.,
2023). Among other disciplines, CRL have been recently applied on biological systems, providing
precise testable predictions on causal factors associated with disease or treatment resistance (Zhang
et al., 2024; Lopez et al., 2023). These methods usually operate on mixture of observational and
interventional biological data, exploiting the distributional shift caused by the interventions with
the goal of retrieving the causal latent factors and, possibly, how they mutually interact with each
other. Concomitantly, Perturb-seq (Dixit et al., 2016) data have emerged as an ideal testbed for
these type of analyses. This technology allows the gene expression profiling of single cells both in
their unperturbed state and when one or more genes are made functionally inoperative (e.g., through
CRISPR knock-outs (KO) (Gilbert et al., 2014)). While generating expression profiles for thousands
of cells across a variety of experimental conditions is indeed advantageous in the CRL context, the
high dimensionality of Perturb-seq data presents notable challenges for these models.

Deep learning approaches have allowed to predict transcriptional outcomes of novel (combinations
of) perturbations in Perturb-seq data (Roohani et al., 2024; Cui et al., 2024; Gaudelet et al., 2024),
or of known perturbations on novel cell types (Lotfollahi et al., 2019). However, to the best of our
knowledge, there are only two works so far applying CRL to Perturb-seq data (Lopez et al., 2023;
Zhang et al., 2024), and we argue that these models severely lack interpretability, as the reconstructed
latent factors cannot be directly reconciled with known biological processes, yielding talent factors
that are difficult to interpret. Attempts made so far to boost interpretability in these models include
computing associations between the reconstructed latent factors and the activity of known processes
(Lopez et al., 2023), or arbitrarily selecting genes as representative of each latent causal factor (Zhang
et al., 2024). As also suggested in a recent review (Tejada-Lapuerta et al., 2023), using biological
processes as prior knowledge during the reconstruction process, rather than afterwards, may indeed
boost the interpretability of the resulting models.
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Related work. In the context of interpretable Representational Learning (RL), recent years have seen
extensive applications of variational autoencoders (VAEs) to single-cell applications (Lopez et al.,
2018). Some of these approaches enable interpretable latent factors either by enforcing gene-cell
correspondence during training (Choi et al., 2023), by performing pathway enrichment analysis
on linear gene embeddings (Zhao et al., 2021), or by modifying the VAE architecture to mirror
user-provided gene-pathway maps (Seninge et al., 2021; Gut et al., 2021; Lotfollahi et al., 2023;
Niyakan et al., 2024; Ruiz-Arenas et al., 2024a). Importantly, while these latter methods apply
architectural changes that are similar in spirit to the ones we propose in this work, none of them
present strong theoretical guarantees for the causal interpretation of their embeddings.

Therefore, in this paper we show how CRL algorithms can be extended in order to employ bio-
logical processes (BPs) as prior knowledge, improving the interpretability of the resulting latent
factors. We base our results on the CRL framework first introduced by Ahuja et al. (2023) and then
expanded by Zhang et al. (2024). In particular, we present SENA-discrepancy-VAE, a CRL model
based on the recently proposed discrepancy-VAE. We show that SENA-discrepancy-VAE yields
predictive performances comparable to the ones of its original counterpart on unseen combination of
perturbations, while providing a mapping between latent factors and biological processes. To this
end, we modify the discrepancy-VAE’s encoder architecture (Zhang et al., 2024) and embed it with
biological processes as prior knowledge. To our knowledge, this is the first effort to reconcile CRL
with biological interpretability, achieving both principled identifiability and interpretability of causal
latent factors in the biological pathway space.

2 PRELIMINARIES AND BACKGROUND

2.1 CASUAL REPRESENTATION LEARNING

In what follows, we use the notation of Zhang et al. (2024), where we further use upper-case to denote
random variables, lower-case to denote (inferred/observed) realizations of the random variables,
upper-case bold to denote matrices, and lower-case bold to denote vectors. Let’s assume that samples
x ∈ Rn are generated according to a process governed by a set of latent variables U ∈ Rd, where
d << n. These latent variables are not required to be independent from each other. Instead, each
latent factor Ui may be regulated by a subset of other latent factors, namely its parents Pa(Ui),
according to a structural mechanism Ui ← si(Pa(Ui), Zi), where Zi is an exogenous variable
independent of Pa(Ui) and Zj , j ̸= i. The latent factors, as well as their possible regulatory
relationships, are unknown.

In absence of interventions, the latent factors are sampled from the distribution PU and the mea-
surements x are derived through a decoder function g, i.e., u ∼ PU , x ← g(u). Interventions are
assumed to affect directly the latent variables U , rather than the observable x, and they can be either
hard or soft (Pearl, 2009). In brief, hard intervention forcefully set the value of Ui to a specific level,
effectively severing any association between Ui and its parents, while soft interventions solely modify
the causal mechanism si, altering the relationship between the variable and its regulators. Thus,
under intervention I , U is sampled from a new distribution uI ∼ PUI , while the decoder function g
remains unchanged, i.e., xI ← g(uI).

In this context, the main goal of CRL is to identify a decoder function h and encoder function f
such that h ◦ f(x) = x and f(x) = ũ, where ũ “reconstructs” u as accurately as possible, while h
approximates g. Additionally, one may be interested in identifying the regulatory (causal) mechanisms
si among the Ui components.

Ahuja et al. (2023) proved that u can be retrieved up to an affine linear transformation, i.e., ũ =
A · u + c (Theorem 4.4 in Ahuja et al. (2023)). This requires two pivotal assumptions: (i) each
intervention must targets a single component of U , and (ii) the decoder function h is a full rank
polynomial. Notably, multiple interventions can target the same latent component Ui, and, most
importantly, the encoder function f is only required to be non-collapsing.

Zhang et al. (2024) further expand on this framework and reach the notable result that U can be
retrieved up to permutation and scaling, i.e., ũj = ai · ui + ci (Theorem 2 in Zhang et al. (2024)).
This result requires that the relationships Ui ← si(Pa(Ui), Zi) can be represented by a Directed
Acyclic Graph (DAG) with specific characteristics, and holds for both hard and soft interventions.
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Importantly, the authors proposed a VAE-based architecture, the discrepancy-VAE, that implements
their theoretical results within a deep-learning framework. Describing the details of the discrepancy-
VAE architecture is out of the scope of this work, however we note here a few of its characteristics
that are instrumental for the proposed SENA-discrepancy-VAE:

• The encoder f is implemented as a two-layer multilayer perceptron (MLP).

• Once trained, the model provides two additional pieces of information: (i) a deep structural
causal model

(
A, {si}di=1

)
where the graph’s adjacency A encodes the parent set of

each latent factor, while the matrix {si}di=1 encodes the causal mechanisms (strength of
interactions) (Pawlowski et al., 2020); and (ii) a map between each intervention and its target
in the latent space, together with an estimate of the effect that the soft intervention has on si.

• The variational nature of the discrepancy-VAE allows to predict the effect of unseen double
perturbations, provided that each single perturbation is available during training.

• The model trains both encoder f and decoder h only on unperturbed cells, while the
perturbed samples are solely used for deriving the effect of the perturbations on the deep
structural causal model.

2.2 BIOLOGICAL PROCESSES OR PATHWAYS.

A biological process or pathway (BP) can be thought as the set of concerted biochemical reactions
needed to perform a specific task within the cell (Kanehisa & Goto, 2000; Ashburner et al., 2000).
In the context of this work, we loosely identify a BP as the genes contained within it, discarding
information regarding other molecules or interactions. From this point of view, BPs can be simply
thought as gene sets, where these gene sets can overlap or even contain one another.

2.3 CRL IN THE CONTEXT OF PERTURB-SEQ EXPERIMENTS.

In a Perturb-seq experiment, measurements x are single cell expression profiles, with each xi

representing the expression of a single gene i1. Interventions are genetic perturbations in which one
or multiple genes have their functionality inhibited (through, for example, a genetic knock-out, KO
(Dixit et al., 2016)). In this sense, Perturb-seq perturbations represent hard interventions on genes:
once knocked out, the level of functionality of the targeted genes does not depend anymore upon the
other genes that usually regulate it. Two observations on genetic perturbations that are relevant for
our main result:

• Each perturbation likely affects several BPs at once. BPs are highly interconnected and
genes are usually involved in several BPs at once.

• Gene KOs (i.e., hard interventions) leads to soft interventions in BP activity. Biological
systems are very resilient, partly due to high level of redundancy in their regulatory circuits
(Reed et al., 2024). This means that following a gene KO, other genes may partly assume
the role of the suppressed gene, ensuring that the BP activity does not reach a halt, even if it
is somewhat impacted.

3 BIOLOGICALLY-DRIVEN CAUSAL REPRESENTATION LEARNING

The CRL framework discussed in section 2.1 requires the decoder h to be a polynomial function. In
contrast, a much wider modeling flexibility is granted for the encoder f , which must simply be a
non-collapsing function. Thus, the encoder f can be built so it incorporates biological processes as
prior knowledge.

To achieve this, we propose a two-layer, masked multilayer perceptron (MLP) encoder, which we
termed the SENA-δ (SparsE NetworkActivity) encoder (Figure 1). Let {BP1, . . . ,BPK} be the gene
sets corresponding to K BPs. Let αk indicate the activity level of the k-th BP, summarizing to what

1Here we will assume that these values have been normalized and scaled to the point where they can be
considered laying in Rn.
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Figure 1: Model overview. SENA-discrepancy-VAE modifies the encoder of discrepancy-VAE to
enforce a biologically-driven training through a pathway-based mask M .

extent genes within the corresponding BP are activated (i.e., undergoing transcription). Then, the first
layer of the proposed encoder connects the gene expression values x with BP activity levels α:

α = σ
(
(W ⊙M)

T · x
)
, (1)

where W ∈ Rn×K are the layer weights, σ is the activation function, ⊙ denotes element-wise
multiplication, and M is a mask matrix defined as:

Mi,k =

{
1 if gene i ∈ BPk,

λ otherwise.
(2)

Each BP activity is thus defined as a linear combination of the expression values of its respective
genes. Unfortunately, it is known that the knowledge of the specific genes involved in BPs is seldom
complete (Kunes et al., 2024). Thus, the tunable hyper-parameter λ allows genes outside of the
defined gene sets to contribute to the BP activity if enough evidence of their involvement is present
within the data. To this extent, λ should be set to a value small enough to discourage irrelevant
contributions. Henceforth, we refer to this layer as the SENA layer.

The second layer follows a VAE-type architecture where a fully connected linear layer with two heads
(µ and σ2) generates the exogenous variables Zj as:

zj ∼ N (µj , σ
2
j ); where µj = αT δ

(µ)
j , σ2

j = αT δ
(σ)
j . (3)

Thus, the mean and standard deviation will be a linear combination of pathway activities α, weighted
by the parameters δ(µ)j , δ(σ)j , learned by the corresponding MLPs. Modelling each latent factor as a
linear combination of BP activities, which we denote the meta-pathway activities Zj , allows us to
seamlessly combine the biological observation that each intervention may affects multiple BPs, with
the CRL assumption (which provides identifiability guarantees) that each intervention must target
only one latent factor (Figure 1). Note that modelling each latent factor as a single BP, as previously
done, sets this two principle at odds with each other. We also note that each of the two layers of
the SENA-δ encoder could be modelled as a more generic, non-linear function, simply by adding
intermediate layers. We opted for a simpler architecture in order to prioritize interpretability over
representational capabilities.

Most importantly, the SENA-δ encoder can be seamlessly plugged in the discrepancy-VAE architec-
ture by substituting the original, fully connected, two-layer MLP encoder. This modification guides
the discrepancy-VAE architecture towards a more interpretable subsets of the original solution space.
We named this resulting model as the SENA-discrepancy-VAE (Figure 1).
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Finally, we note that the discrepancy-VAE formulation has the latent factors U inferred as Ui =
si(Pa(Ui), Zi) where the Zis are computed by the SENA-δ encoder, and operate as exogenous
variables for the Uis. The latter are the causal latent factors involved in the causal graph, and the input
for the polynomial decoder (see Fig. 1). Pa(Ui) are the parents of Ui in the graph, while si is the
causal mechanism generating Ui from its parents and Zi. Technically, the SENA-discrepancy-VAE
associates the BPs to the exogenous variables Z, meaning that the activation levels of the BPs will
operate as input for the causal latent factor inference, therefore infusing the latent factors with
increased interpretability compared to previous models (Appendix I). Thus, we refer to the causal
latent factors as the (causal) pathway archetypes, as they encode the underlying causal biological
mechanism driving the cells under study, which then can be used to infer the resulting gene expression
after an (unseen) perturbation.

4 EXPERIMENTAL SETTINGS

To first assess the learning capabilities of our proposed architecture, we performed several ablation
studies using the proposed encoder within simple autoencoder (AE) and variational-AE (VAE)
architectures. Our aim is to first assess whether the activity levels of the inferred (latent) BPs do
indeed encode biological information (e.g., relevant activity changes are registered between perturbed
and unperturbed data), and then to use these results to gauge the operational interval for λ. We
then compare the SENA-discrepancy-VAE against the original discrepancy-VAE, over the task of
predicting gene expression changes in novel combinations of perturbations, and finally analyze the
interpretability of learnt latent causal factors.

4.1 DATA

We employ two large-scale Perturb-seq datasets, one collected on leukemia lymphoblast cells (K562
cell line) (Norman et al., 2019), hereafter named the Norman2019 dataset and a second one collected
on acute myeloid leukemia cells (THP1 cell line), namely the Wessels2023 dataset (Wessels et al.,
2022). The authors of the Norman2019 study targeted 112 genes known to affect the growth of
the K562 cells, yielding a total of 105 single-gene perturbation and 131 double-gene perturbations.
The dataset underwent standard preprocessing steps for single cell data (filtering, normalization,
and log-transformation (Wolf et al., 2018)), leading to a total of 8,907 unperturbed cells (controls),
57,831 cells under the 105 single-gene perturbations, and 41,759 cells under the 131 double-gene
perturbations. The Wessels2023 study underwent the same preprocessing steps, ending up to include
424 unperturbed cells, 28 single-gene perturbations overall targeting 3036 cells, and 158 double-gene
perturbations targeting 17592 cells. For all datasets we considered the 5,000 most variable genes in
our analyses.

4.2 SELECTION OF BIOLOGICAL PROCESSES

Selecting an appropriate set of BPs is crucial for our analyses. The ideal selection should be
sufficiently varied so as to include all BPs active in the system under study; and at the same time, it is
desirable to reduce the redundancy that usually characterize large sets of BPs. Following Ruiz-Arenas
et al. (2024b), we considered the Gene Ontology (GO) BPs (Ashburner et al., 2000), and selected GO
BPs with less than 30 genes. We then discarded those with more than half of their genes in common
with other selected processes, as well as those with low replicability as defined in Ruiz-Arenas et al.
(2024b). We further refine this selection by including only those GO BPs that have at least five genes
represented in our input dataset, and by removing those that are ancestors of other terms within our
list. This multi-step selection ensures that the final BPs are (mostly) non-overlapping and cover a
large variety of biological processes.

4.3 IDENTIFYING ACTIVATED BIOLOGICAL PROCESSES

We exploit the architecture of the SENA-δ encoder to identify BPs that are activated under specific
perturbations. In particular, we expect that the activated BPk should have its inferred activity level
αk significantly altered with respect to unperturbed controls for those perturbations targeting genes
within that BP. To measure this effect, we define the differential activation (DA) for BPk under
intervention p as DAp

k = |ᾱp
k − ᾱc

k|, where ᾱp
k and ᾱc

k are the values of activation function for BPk

5
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averaged over all perturbed and control cells, respectively. Because it is a difference among mean
values, a t-test or similar inferential statistic can be used for assessing its statistical significance.

We then built two metrics for assessing to which extent the differentially activated BPs (i.e., statisti-
cally significant DAp

k values) are biologically meaningful. First, for each intervention p we define
Wp as the set of BPs that contain the targeted gene i: Wp = {BPk|Mi,k = 1}. The remaining (not
affected) BPs are indicated asWp. Intuitively, we would expect BPs containing the targeted gene to
be the most affected by the intervention, while the other processes should only suffer indirect effects.

We then define the metric Hits@N, as the percentage of BPs inWp that are ranked within the first N
positions in terms of DAp

k. The parameter N is set to 100 in our analyses. Let Rp
k be the rank for BPk

under perturbation p according to DAp
k. Then, Hits@N is defined as:

Hp
N =

1

|Wp|
∑

k∈Wp

I[Rp
k ≤ N ]. (4)

Finally, we define the differential activation ratio (DAR) for a perturbation p as:

DARp =
|Wp|

∑
k∈Wp

DAp
k

|Wp|
∑

k∈Wp
DAp

k

. (5)

This ratio contrasts the average activation for BPs directly affected by the perturbation against the
average of the remaining processes. Although computing this metric involves aggregating pathways
with varying numbers of targeted genes (i.e., imbalanced pathways), the imposed minimum of five
genes per gene set and the definition of DA as an activation ratio make this metric potentially robust
to intrinsic noise within the pathways. Note that both metrics requireWp andWp to contain at least
one BP.

5 ABLATION STUDY

Due to the high sparsity infused in the SENA-δ encoder, one cannot assume that such encoder
has good reconstruction capabilities while maintaining interpretability. Moreover, we also seek to
understand the reconstruction-interpretability trade-off driven by the λ parameter. Hence, in what
follows we assess the SENA-δ encoder by employing it in an AE and VAE architectures (with MLP
as decoders in both cases), and compare it with a fully-connected encoder (denoted MLP) and two
ℓ1-regularized encoders with λ as the regularization parameter. To perform a fair evaluation, these
architectures will each present two fully connected layers at the encoder, and the ℓ1 encoders will
only have the first layer regularized to imitate SENA’s sparsity. To this end, we used the Norman2019
dataset. We evaluated the aforementioned architectures for several values of λ: {0, 0.1, 0.01, 10−3}.
Overall, four different aspects were assessed: data reconstruction and generative capabilities (for
VAEs), and interpretability and sparsity of latent dimensions, described next.

Data reconstruction and generative capabilities (for VAEs). We evaluated the reconstruction
and generative capabilities of the proposed architectures by computing the test Mean Squared Error
(MSE) and Kullback–Leibler divergence (DKL), respectively, where the latter is only used in the
variational architectures.

Interpretability and sparsity of latent dimensions. We evaluated the interpretability by measuring
how differentially activated (DA, see above) the affected neurons (i.e. gene sets containing the
knock-out gene) are when compared to the rest of the neurons after the SENA layer. Hence, we
compute the Hits@100 metric to measure the percentage of affected DA neurons in the top 100
differentially activated gene sets. Moreover, we define the sparsity of a model as:

1

n ·K

n∑
i=1

K∑
k=1

I[|x̄i ·Wi,k| ≤ 10−8], (6)

which measures the contribution of every input gene to each factor after the SENA layer, and x̄ refers
to the mean expression across samples (cells). Reported metrics were computed on test samples.

Results. Overall, enabling residual connections between genes and BPs in a fully-connected fashion
(λ = {10−2, 10−3}) maintains biologically-meaningful latent factors (Appendix IV Fig. 8-A) while
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yielding reconstruction capabilities in par with the fully-connected MLP (Appendix IV Table 4
& Fig. 9-B). The reason could be that these models present an efficient use of the model weights
(Appendix IV Fig. 8-B), underscoring the relevancy of gene-BP relationships in Perturb-seq data.
Interestingly, higher values of lambda (λ = 0.1) presented better reconstruction capabilities than
the MLP (Appendix VII Table 4), at slightly sparser encoder (and hence, more interpretable) than
the MLP (Appendix VII Fig. 8-B). On the other side, and as expected, λ = 0 presented highly
interpretable latent factors at the cost of a significant drop in reconstruction capabilities. Additionally,
our results show that the ℓ1-regularized MLPs does not perform well nor do they provide interpretable
latent factors. Of note that when the analysis was perform only using the SENA layer, similar insights
were obtained (Appendix VII Table 3 & Fig. 9-A). Finally, regarding the generative capabilities
assessed on VAEs, the models based on SENA-δ encoder clearly outperforms other encoders on DKL,
with lower values of λ being the best performing ones (Appendix VII Tables 4 and 3, VAE-based
column). These results were generated enforcing that every BP contains at least 5 genes. Different
such thresholds modifies the number of considered BPs in the SENA layer (Appendix IV Fig. 10-B),
slightly affecting the learning capabilities (Fig. 10-A) and performance time (Fig. 10-C).

6 LEARNING INTERPRETABLE LATENT CAUSAL FACTORS

In this section we contrasted the proposed SENA-discrepancy-VAE against its original counterpart,
to assess the modeling and predictive capabilities of both models. This section focuses on the results
obtained on the Norman2019 dataset, while Appendix V reports the results on the Wessel2023 data.
For both datasets, we trained both models on the unperturbed and single-gene perturbations samples
from Norman et al. (2019) (the latter are only used as a ground-truth for the MMD loss). We also
benchmarked GEARS (Roohani et al., 2024), a state-of-the-art approach for multigene perturbation
prediction. Double-gene perturbations were set aside for evaluation purposes. We train both models
across 3 different runs with the settings proposed by the authors (Appendix F of Zhang et al. (2024)).
Given the good results (in interpretability and reconstruction performance) obtained in the ablation
study (Section 5), we varied the number of latent factors within {5, 10, 35, 70, 105}, and the λ
for the SENA-discrepancy-VAE in {0, 0.1} (Appendix VII Fig. 12 shows gradients and mask (M )
distribution across several λ values).

6.1 PERFORMANCE BENCHMARKING

Table 1 reports the results of the comparison, where MMD (Max Mean Discrepancy (Gretton et al.,
2012)) measures the difference between the generated and true double-perturbation distributions.
We report the average MMD over all 131 double-gene perturbations. Additionally, MSE indicates
the reconstruction error for control samples during training, DKL is the variational loss (Kingma &
Welling, 2014), and L1 := ||A||1 represents the sparsity of the deep structural causal model.

Table 1: Benchmarking SENA-discrepancy-VAE and discrepancy-VAE on double perturbations
prediction. Values are reported as mean ± variance computed on 5 runs with different initializations.

Encoder Metric Latent Dimension
105 70 35 10 5

Original MLP

MMD↓ 1.59811 ± 0.012110 1.73486 ± 0.012115 1.98993 ± 0.013053 2.43440 ± 0.030570 2.53237 ± 0.017662

MSE↓ 0.02152 ± 0.000156 0.02298 ± 0.000064 0.02499 ± 0.000008 0.02699 ± 0.000079 0.02792 ± 0.000018

KLD↓ 0.00022 ± 0.000008 0.00021 ± 0.000005 0.00021 ± 0.000003 0.00024 ± 0.000023 0.00030 ± 0.000027

L1↓ 0.06097 ± 0.003718 0.06934 ± 0.002055 0.06714 ± 0.003649 0.07201 ± 0.009314 0.08319 ± 0.010590

SENA-δλ=0.1

MMD↓ 1.58489 ± 0.010610 1.75332 ± 0.004884 1.94984 ± 0.027883 2.49881 ± 0.056160 2.60439 ± 0.100708

MSE↓ 0.02134 ± 0.000047 0.02300 ± 0.000120 0.02462 ± 0.000041 0.02688 ± 0.000076 0.02805 ± 0.000135

KLD↓ 0.00019 ± 0.000001 0.00019 ± 0.000008 0.00019 ± 0.000003 0.00020 ± 0.000007 0.00020 ± 0.000002

L1↓ 0.05243 ± 0.001541 0.05323 ± 0.003540 0.07308 ± 0.002529 0.08589 ± 0.010121 0.06856 ± 0.013631

SENA-δλ=0

MMD↓ 1.74588 ± 0.003579 1.90425 ± 0.014918 2.22812 ± 0.015438 2.62393 ± 0.056431 2.90044 ± 0.174605

MSE↓ 0.02312 ± 0.000048 0.02460 ± 0.000078 0.02634 ± 0.000036 0.02800 ± 0.000236 0.02879 ± 0.000147

KLD↓ 0.00018 ± 0.000002 0.00018 ± 0.000000 0.00019 ± 0.000002 0.00021 ± 0.000017 0.00022 ± 0.000021

L1↓ 0.05418 ± 0.001903 0.05749 ± 0.000487 0.06730 ± 0.003195 0.08651 ± 0.025800 0.09486 ± 0.038286

GEARS MMD↓ 14.9420 ± 0.233957 12.6036 ± 0.745302 13.2590 ± 0.559124 12.9774 ± 0.751373 15.3099 ± 0.191833
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Interestingly, and despite the restrictions imposed by the SENA-δ encoder that could potentially
decrease the SENA-discrepancy-VAE representational capabilities, the proposed model outperformed
the MLP encoder for some latent dimensions in terms of MSE and MMD computed on unseen double
perturbations for small values of λ (0.1). Moreover, setting λ = 0 allowed the SENA-discrepancy-
VAE to surpass the original MLP encoder on the DKL metric, while the optimal model for causal
graph sparsity (L1) varied with latent dimensions. These results, which align with those of the
ablation studies, highlight the potential of SENA-discrepancy-VAE. On the other hand, GEARS
failed to properly model the evaluated double perturbations. Note however that GEARS does not
provide a causal graph nor is a generative model (details in Appendix VI).

6.2 VISUALIZING SENA-DISCREPANCY-VAE LATENT FACTORS

We first investigated the association between perturbations and latent factor activation (Fig. 14). Both
models tend to activate few latent factors. Specifically, the discrepancy-VAE model activate 8 to
9 factors across all perturbations when 35 or more latent factors are included in the model. These
numbers decrease to 6 and 4 when 10 and 5 latent factors are available, respectively. At the same
time, more than half of the perturbations are assigned to only 1 or 2 latent factors, creating a quite
unbalanced mapping. The SENA-discrepancy-VAE follows a similar pattern. This seems to indicate
that relatively few latent factors are needed for capturing the changes induced by perturbations, while
the remaining latent factors assist in representing the overall distribution of gene expression data.

65

2

41

hydrogen peroxide
biosynthetic process

15

53

12

endotelial
cell morphogenesis

69

Figure 2: SENA-discrepancy-VAE causal graph on the Nor-
man2019 data. Latent factors are represented by word clouds
of associated BPs. Arrows indicate causal influences.

Interpretation of the SENA-
discrepancy-VAE latent factors.
The proposed model offers the
possibility of inspecting its encoder
for deriving the BPs composing
the latent factors. By construction,
each perturbation will target a single
latent factor Ui, which enable us to
associate each BP to the intervention
with the largest differential activation
value. Only significant differential
activation values are taken into
account (ranked within the top 1% in
absolute value, and a false discovery
rate (FDR) ≤ 0.05 via two-tailed
t-test with BH correction). Figure 2
represents the causal graph for the la-
tent factors associated to at least one
BP for the SENA-discrepancy-VAE
model with 105 latent dimensions
and λ = 0. Ten edges with the
highest coefficients in absolute value
are reported for readability. Latent factors are represented as a word cloud of BPs (i.e., a graphical
representation of the terms frequencies within the BPs names). Table 7 (Appendix VII) reports the
number of perturbations and BPs assigned to each factor and Table 9-10 (Appendix VII) shows the
mapping between BPs and selected latent factors. It is worth noting that the inferred causal graph
is robust across latent dimensions and λs, where most of the inferred connection are maintained
(Appendix II).

Latent factor 15 is targeted by perturbations on the JUN gene, and is associated with the activity
level of GO:0050665, “hydrogen peroxide biosynthetic process”. While JUNE is not included in
GO:0050665, this gene is known to react with over-expression to oxidative stress (Vandenbroucke
et al., 2008). For latent factor 69, the targeted PTPN13 gene is known to be involved in several
tumors (Mcheik et al., 2020), thus it is not surprising to found it associated with a BP related to blood
vessel formation. Interpretation of other factors requires careful inspection of their associated BPs
(see Appendix VII Tables 9 & 10). For example, most of the BPs in latent factor 65 are associated to
tissue development, while latent factor 12 contains several BPs related to protein activity.
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Upon inspecting the connections on the causal graph, a first important connection is the one between
factor 15, “hydrogen peroxide biosynthetic process”(Appendix VII, Table 9, third latent factor)
which causes factor 69, “endothelial cell morphogenesis” (Appendix VII, Table 10, last row). It
is well known that hydrogen peroxide stimulates endothelial cell proliferation (Stone & Collins,
2002; Anasooya Shaji et al., 2019). Thus, our causal graph captured this regulatory relationship in
a fully unsupervised, data-driven way. In turn, factor 53 causally influences factor 15, and factor
53 contains the biological process “catechol-containing compound biosynthetic process” (Appendix
VII, Table 10, second element of factor 53). It is well known that H2O2 can be produced by
the metabolism of catecholamines (Noble et al., 1994; Seregi et al., 1982). An even more direct
connection exists between latent factor 69 and latent factor 2, with the latter including “negative
regulation of endothelial cell apoptotic process” (Appendix VII, Table 9, second row) among its
biological processes. Taken together, these findings provide evidences for the correctness of our
approach and its capability of recapitulating known biological causal relationships.

6.3 LEVERAGING SENA-DISCREPANCY-VAE TO CAPTURE BIOLOGICALLY MEANINGFUL
PATTERNS

We next evaluate the ability of the proposed encoder to maintain biologically-driven factors (see
Appendix I). For this evaluation, we focus on the Norman2019 dataset, and we set the latent space
dimension to 105, one for each single-gene perturbation in the dataset. We then evaluated the 37
knocked out genes that were present at the input. For each of these, we computed the DA score across
all BPs (after the SENA layer) and found that those including the targeted gene reported higher DA on
average (Appendix VII Fig. 13). Since each perturbation presented a different number of affected BPs,
we next focused on the perturbations with the largest amount of targeted BPs (i.e., 7), and evaluated
the significance (statsannotation package (Charlier et al., 2022)) of the DA among affected and not
affected BPs (Mann-Whitney U test with BH p-value correction). Fig. 3-A shows the aforementioned
analysis for the knock out genes LHX1, SPI1 and TBX3. This analysis highlighted the perturbation
samples from LHX1 and TXB3 KOs as those presenting highly differentially activated BPs, validating
the capacity of the proposed encoder to identify biologically-meaningful factors.

To analyze the robustness of the SENA-discrepancy-VAE’s encoder, we repeated the above analysis
across several latent space dimensions, computing the DAR (Eq. 5) between those BPs containing the
targeted gene and the rest. Once again, we found that almost every evaluated knock out gene reported
a DAR > 1 along evaluated latent dimensions (Fig. 3-B). It is worth highlighting TMSB4X and LYL1,
which reported a DAR≫ 10 consistently, indicating that the mean difference in activation of the
SENA-layer neurons among perturbation and control samples for the BPs containing targeted genes
was≫ 10x times greater than for the rest. This underscores the capacity of SENA-discrepancy-VAE
to drive the training process while maintaining biologically-meaningful factors.

Interpretable µ and σ2 layers. We next assessed how the above shown interpretability is propagated
through the SENA-discrepancy-VAE encoder. To this end, we performed the DA analysis on the
output of SENA-δ encoder (Figure 1), where we measured the contribution of affected and not affected
BPs from the previous layer to every neuron j in the µ and σ2 layers. To this end, we define the DA
score for perturbation p and BP k at the j-th neuron of µ and σ2 layers as (DAp

k)j = |δkj | · |ᾱ
p
k − ᾱc

k|,
where superscripts p and c denote perturbed and controlled activities, respectively.

Fig. 3-C shows the DA score on µ and σ2 layers for affected and not affected BPs, following the same
significance tests performed above. Again, this highlights that the SENA-discrepancy-VAE encoder
maintains biologically-meaningful the SENA-δ encoder (Fig. 1), yielding interpretable exogenous
variables Zi, which we denoted the meta-pathway activities and also contributes to this differential
activation. We next analyzed the biological significance of the meta-pathway activities, since these
connections are learned in a data-driven manner. For this, we measured, through a permutation test, the
contribution of the level 2 GO pathways (i.e., the parental GO terms of the used BPs in the SENA layer)
to each of meta-pathway activity. Interestingly, multiple meta pathways were significantly associated
to few level 2 pathways, underscoring our model capabilities to learn biologically-meaningful patterns
at both high (BPs) and broad (meta-pathway) granularities (Appendix III.)

Finally, we performed a differential activation score analysis on the Norman2019 dataset after training
SENA-discrepancy-VAE. We selected the top 6 largest DA scores, which belonged to 5 unique KO
genes and gene sets, respectively (Table 8). Fig. 4-A shows the UMAP components of all intervened
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cells (in the input gene space) across the aforementioned genes, while Fig. 4 B-F depicts those
cells colored by the DA score that each cell has on the evaluated gene set (GO term). Surprisingly,
from the top 6 DA scores, we found that only GO:0038065 is initially targeted by COL1A1, while
the remaining gene sets are reporting specific-highlight on the cells belonging to the intervened
KO without being directly targeted. For instance, the gene set GO:0006833 (Fig. 4-C) is activated
by the TBX3 gene (same with GO:0010714 and CEBPA) without being explicitly encoded in the
SENA-δ encoder. These underscore the potential of SENA-discrepancy-VAE to naturally learning
biologically-driven patterns without specifically enforcing them.

A B C

D
A

D
ARD
A

LHX1 SPI1 TBX3
Knockout

ns**** ****

Affected
Not affected

10−3

1

0.1

0.01

−410

−510

−610

********
1

− 610

− 410

− 210

− 810

Layer
μ σ2105 70 35 10 5

Latent Dimension

TMSB4X
LYL1

LYL1
TMSB4X

LYL1
TMSB4X LYL1

TMSB4X

LYL1

TMSB4X

10

1

0.1

Figure 3: SENA, µ and σ2 layers interpretability analysis. A. DA score for the three perturbations
presenting the highest number of affected BPs amongWa andWā BPs. B. DAR of the 37 analyzed
perturbations when varying the latent space dimensions. For every dimension, genes with the highest
DAR are highlighted in red. C. DA score across the evaluated perturbations at the output of the µ and
σ2 layers of the SENA-discrepancy-VAE among affected and not affected BPs. ns and **** depicts
a p-value > 0.05 and < 10−4, respectively.

7 DISCUSSION AND CONCLUSIONS

Figure 4: DA score of 6 most significant (KO,
BP) pairs. A. UMAP of all intervened cells
across the KO genes presenting the 6 largest
DA scores. B-F. UMAP from A colored by the
differential activation score on each cell across
genes within each evaluated BP.

In this work we have demonstrated how biologi-
cal processes can be used as prior knowledge in
the context of causal representation learning. The
resulting model, SENA-discrepancy-VAE2, is on
par, or even outperforming it in specific scenarios,
in terms of predictive capabilities with the original
discrepancy-VAE, while at the same time producing
embeddings that can be easily inspected for assess-
ing their biological meaning.

Among the the several findings reported in this
study, it is striking that both models tend to as-
sign most interventions to a small number of latent
factors (see Fig. 14 for perturbation-to-latent factor
associations in the Norman2019 data). Reasoning
in terms of biological processes helps understand-
ing why. The theory behind discrepancy-VAE re-
quires that each intervention must be assigned to
a single factor. Thus, this factor must represent all
BPs affected by that intervention. If two (or more)
interventions affect overlapping sets of biological
processes, then by necessity they must be mapped
to the same factor. Overall, it may be argued that as-
suming that each intervention targets a single latent
factor does not allow CRL methods to thoroughly
disentangle the interplay between BPs, perturba-
tions and latent factors. Thus, future CRL works
should attempt to overcome this assumption.

2Python package, including data and code for reproducibility: github.com/ML4BM-Lab/SENA
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APPENDIX

I INTERPRETABILITY OF LATENT FACTORS AND CAUSAL GRAPH THROUGH
OUR PROPOSED SPARSE LAYER

In the variational autoencoder proposed at Zhang et al. (2024), the exogenous variable Zj is sampled
from a normal distribution, where the mean and standard deviation of this distribution is defined by
the fully connected layers in their encoder. In the proposed SENA-discrepancy-VAE (Fig. 1), the
mean and standard deviation will be a linear combination of pathway activities α, weighted by the
parameters δ(µ)j , δ(σ)j , learned by the corresponding MLPs. Thus,

µj = αT δ
(µ)
j , σ2

j = αT δ
(σ)
j (7)

which then define the meta-pathway activities zj as zj ∼ N (µj , σ
2
j ). This allows the expectation of

Zj to be interpretable, as

E(Zj) = µj = αT δ
(µ)
j (8)

However, we would also like this interpretablity to hold when going from the exogenous variables
(the meta-pathway activities) to the causal factors U (causal pathway archetypes). The latter are
defined as U = ZT · (I −A)−1, where

L ≜ (I −A)−1 =

∞∑
l=0

Al = (I +A+A2 + · · ·+AK), (9)

according to the Neumann series, and given that A represents the adjacency matrix of a Direct Acyclic
Graph, with L being the largest path (hence, Ak = 0, k = K + 1, . . .). Here A defines the causal
relationships in the latent space. Therefore, the j-th causal factor can be expressed as

Uj = ZT · Lj ,

where Lj is the jth column of L, and encodes the number of path of at most length K that ends at
node j in the causal graph. Hence, the expectation of the causal factor Uj is given by

E(Uj) =E(ZT · Lj)

=E(ZT ) · Lj

=µ · Lj (10)

=αT ·∆(µ) · Lj (11)

=αT · δ̃(µ)j ,

where Eq. (10) and Eq. (11) from Eq. (8), and ∆(µ) is the (learned) linear mapping between
the pathway activities α and the meta-pathway activities Z. Thus, δ̃(µ)j (linearly) maps the causal
latent factors with the pathway activity scores through the learnt causal structure Lj , providing the
mechanism for the interpretation of the latent factors, termed in our work as the pathway archetype
activities.

Finally, we experimentally validated, using the Norman2019 dataset, that Eq. (10) holds for both
the original discrepancy-VAE (MLP), and the proposed SENA-δ model for both λ = {0, 0.1}. We
used all available unperturbed cells (ctrl) and 9 randomly-chosen perturbed cells, setting the latent
dimension to the number of available perturbations in the dataset, i.e. 105. To this end, we first
computed E(Uj) for every latent dimension j ∈ {1, . . . , 105} by forwarding the cells and averaging
(over 10,000 realization of Z ∼ N (µ,σ2)) the obtained pathway archetype scores (i.e., the causal
latent factors Us). On the other hand, we multiplied the BP activity scores (α) with the BP-to-
meta-pathway mapper (∆) and the causal mechanism (L, Eq. 9). Both computations should be equal
according to Eq. (11). Fig. 5 depicts for every type of perturbation and model (MLP, SENA-δλ=0

and SENA-δλ=0.1) both terms of the equality, as well as the Pearson’s correlation. There is a perfect
correlation among these two terms, and this patterns is maintained across models and perturbations.
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Figure 5: Experimental validation of derived Eq. 10. A-C. Experimental analysis of derived
Eqs. 10 and 11 for the original discrepancy-VAE (MLP) architecture (A), SENA-δλ=0.1 (B) and
SENA-δλ=0 (C), respectively. Here x-axis represent the expected latent factors U extracted by
forwarding cells through the trained model for each selected cell type and y-axis represent the (linear)
mapping between BP activation scores and pathway archetypes (i..e., latent causal factors).
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II STUDY ON INFERRED CAUSAL GRAPH ROBUSTNESS

We evaluated how stable are the (directed) edges from the inferred SENA-discrepancy-VAE causal
graph across various λ’s and latent dimensions(Fig. 2). To this end, we inferred the causal graph for
λ = {0, 0.1, 10−2, 10−3} and latent dimensions {5, 10, 35, 70, 105} using the Norman2019 dataset.
We then computed the edge consistency for each graph as the ratio of the frequencies of the most and
least frequent sign across the evaluated λ’s. For instance, if an edge has been consistently positive
across λ’s, it would present an edge consistency of 1 (e.g., Fig. 6-B, U12).

When analyzing the edge consistency of the inferred causal graphs (e.g., Fig. 6 A-B, depicted for
latent dimension of 5), most edges had a consistency above or equal to 75% while edge weights close
to 0 presented low consistency across λ’s. Interestingly, across the different tested hyperparameters,
most edges had a coefficient of variation (CV) ≥ 2 (Fig. 6 C-F), indicating perfect edge consistency.
Importantly, the large majority of edges exhibited a high confidence (CV ≥ 1)(Fig. 6-H).
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Figure 6: Edge robustness analysis for the inferred causal graph. A. Edge values (mean of the
inferred graph upper triangular. Results are averaged across λ = {0, 0.1, 10−2, 10−3}. B. Edge
consistency across the aforementioned λ’s. C-G. Coefficient of Variation (mean over standard
deviation) histogram for every edge of the upper triangular matrix of the inferred causal graph across
several runs using different latent dimensions ({5, 10, 35, 70, 105}). H. Cumulative distribution of
the edge consistency.
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III STUDY ON HIGH-LEVEL-ORDER AGGREGATION OF BIOLOGICAL PATHWAYS

This section analyzes how the connections between the BPs activity after the SENA layer and the
exogenous variables (meta-pathways) that then define the causal latent factors (pathway archetypes)
are potentially biologically-driven, despite the weights being learned in a data-driven way. To this
end, we relied on the level 2 Gene Ontology pathways, that encompass most of the used lower-
level BPs in our model to evaluate whether the meta-pathway activity encodes high-level biological
processes. For the sake of clarity, for this section we would refer to the aforementioned level 2
pathways as L2BPs and keep using BPs to refer to the ones we model at the output of the first layer
in SENA-discrepancy-VAE.

We selected all L2BPs containing at least 10 BPs (from our set of filtered BPs, i.e. 454 if not
stated otherwise), yielding a total of 9 L2BPs with different sizes (Table 2). In order to measure the
association between the inferred meta-pathways and the L2BPs, we computed the contribution that
each L2BP has on each meta-pathway score and perform a permutation test to evaluate whether the
association is significant. We now describe the process for computing these contributions. Be zj the
activation score of the meta-pathway j, this activation score is given by the linear combination of
previous layer’s activation (BPs’ activation scores) and the learned weight matrix ∆ of that layer.

Lets define L2BPk as the set of BPs within the k-th L2BP. Since the activation score for every
meta-pathway j can be expressed as

zj =
∑

i∈L2BPk

BPi ∗ δij +
∑

i′ ̸∈L2BPk

BPi′ ∗ δi′ j ∀k ∈ {1, . . . , |L2BP|},

we can compute the contribution of the k-th HLP to the j-th latent factor as:

ckj =

∑
i∈L2BPk

BPi

zj

To measure if this contribution is significant, for a given L2BP and a given meta-pathway, we
permuted 1000 times the BPs (maintaining the size) and computed the Mann-Whitney one-sided
test to obtain the p-value between permuted and true BPs associated to the L2BP, correcting by
the number of tests performed (Bonferroni correction). These allowed us to measure if there is a
statistically significant contribution of the specific L2BP (and associated BPs) to the activation score
of the given meta-pathway. We performed this analysis on SENA-δ for λ = {0, 0.1} and, for the
sake of simplicity, we set the number of latent dimensions to 35.

Fig. 7 A-B shows the histogram of permuted vs true contributions for every L2BP on the
first meta-pathway factor and Fig. 7-C depict the distribution of corrected p-values for ev-
ery meta-pathway and L2BP, where blanks represent non-significant contributions (corrected
p-value ≤ 0.05). Interestingly, there is a significant contribution for every L2BP across sev-
eral meta-pathway factors, which may indicate that there are potential clusters of them encod-
ing true high-level biological processes. Also, these results are highly similar across the evalu-
ated λ values. Note that this analysis did not discriminate across perturbation types, hence all
cells were forwarded (and averaged) through SENA’s model to compute the activation scores.

Table 2: Aggregation according to the Level-2 Biological
processes of the Gene Ontology structure.

Level 2 GO Term #Genesets within Description
GO:0022414 13 Reproductive process
GO:0002376 21 Immune system process
GO:0051179 27 Localization
GO:0032501 39 Multicellular organismal process
GO:0050896 41 Response to stimulus
GO:0008152 63 Metabolic process
GO:0032502 64 Developmental process
GO:0009987 141 Cellular process
GO:0065007 193 Biological regulation
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Figure 7: Study on genesets aggregation at the latent factor level. A-B. Permutation test on the
latent factor contribution for level 2 genesets versus random aggregations of genesets, for λ = 0 (A)
and λ = 0.1 (B). Results are shown for the first latent factor C. Heatmap depicting the corrected
p-value for every level 2 geneset and latent factor SENA-δ when λ = 0 (left) and λ = 0.1 (right).
Number of BPs inside every level 2 GO term are shown in brackets next to the terms’ name.
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IV ABLATION STUDIES ON NORMAN2019’S DATASET
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Figure 8: Ablation studies on interpretability and sparsity. A. Percentage of affected gene sets
in the top 100 DA BPs for several SENA-based architectures and λ values. B. Sparsity evaluation
according to Eq.6.
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tures for SENA (A) and SENA-δ (B) encoders.
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Figure 10: Ablation studies of the number of BPs used in SENA-δλ=0. On each experiment, a
minimum number of genes per BP is imposed, which reduces the total number of BPs used after
the SENA layer. A. Test KLD as a function of the minimum number of genes within eachBP. B.
Summary of the number of BPs and the gene-to-BP connections. C. Training time-per-epoch results.
Results are averaged across 3 different seeds.

Table 3: AE and VAE-based evaluation for SENA across 5 seeds. Methods are sorted by sparsity.

Method AE-based VAE-based

Test MSE (×10−2) Test MSE (×10−2) Test DKL (×10−4)

SENAλ=0 2.279± 0.015 3.962± 0.005 13.869± 0.450
ℓ1,λ=10−3 3.526± 0.000 3.954± 0.021 5.016± 4.120
ℓ1,λ=10−5 2.352± 0.028 3.951± 0.005 1.915± 0.127

SENAλ=10−3 1.936± 0.023 3.967± 0.023 15.211± 7.351
SENAλ=0.01 1.103± 0.010 3.938± 0.022 15.978± 9.905
SENAλ=0.1 1.009± 0.004 3.951± 0.009 12.492± 3.054

MLP 1.036± 0.012 3.962± 0.019 3.872± 0.225

Table 4: AE and VAE-based evaluation for SENA-δ across 5 seeds. Models are sorted by sparsity.

Method AE-based VAE-based

Test MSE (×10−2) Test MSE (×10−2) Test DKL (×10−4)

SENA-δλ=0 2.252± 0.011 3.951± 0.012 0.007± 0.009
ℓ1,λ=10−3 3.537± 0.098 3.944± 0.007 5.742± 3.772
ℓ1,λ=10−5 2.581± 0.011 3.970± 0.006 5.351± 6.089

SENA-δλ=10−3 1.552± 0.012 3.973± 0.004 0.001± 0.001
SENA-δλ=0.01 1.096± 0.020 3.969± 0.027 0.024± 0.005
SENA-δλ=0.1 1.012± 0.000 3.966± 0.010 0.326± 0.114

MLP 1.350± 0.029 3.954± 0.029 3.816± 1.331
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V BENCHMARKING ON THE WESSELS DATASET

We included a second large-scale Perturb-seq dataset based on CRISPR-cas13 which aims at efficiently
targeting multiple genes for combinatorial perturbations Wessels et al. (2022). This technique, termed
CaRPool-seq, encodes multiple perturbations on a cleavable CRISPR array that is associated with a
detectable barcode sequence. CaRPool-seq was applied to THP1 cells, an acute myeloid leukemia
(AML) model system, to perform combinatorial perturbations of myeloid differentiation regulators
and identify their impact on AML differentiation phenotypes.

The perturbations include 28 single perturbations, 26 regulator genes and two negative control genes,
as well as 158 double-gene perturbations. We performed standard preprocessing for single cell
data (filtering, normalization, and log-transformation), yielding to a total of 424 unperturbed cells
(controls), 3036 cells under the 28 single-gene perturbations, and 17592 cells with double-gene
perturbations. Pseudo-bulk expression profiles are then obtained by adding gene expression of cells
sharing the same perturbation. The resulting profiles are then visualized as UMAP landscape. The
same procedure was performed for the Norman2019 dataset (Fig. 11 A and B). Marker genes are then
obtained using the Wilcoxon test to contrast the cells from each perturbation with the remaining cells
as implemented in Seurat’s FindAllMarkers, requiring an adjusted p-value < 0.001 and log-fold
change > 2.

The Wessels2023 study focused on perturbing myeloid differentiation regulators Wessels et al. (2022).
This resulted in all perturbations having similar effects at the transcriptomics levels, as shown in
Fig. 11. While in the Norman2019 datasets cells affected by different perturbations tend to cluster
separately (panel A), most of the interventions in Wessels2023 are grouped together (panel B),
indicating similar profiles. Moreover, the number of genes that are differentially expressed following
a perturbation is generally lower in the Wessels2023 study than in Norman2019 (Fig. 11-C), indicating
that overall the perturbations in the Wessels2023 data had a more limited effect.

The peculiarities of the Wessels2023 data lead to a notable results: both the SENA-discrepancy-
VAE and the discrepancy-VAE consistently assign all single-gene perturbations to a single latent
factor (figure not shown). This can be interpreted as the models recognizing that all single-gene
perturbations have similar effects.

In terms of predictive capabilities (Table 5), we observe that MMD performances on the double
perturbations are comparable only when considering higher values of the λ parameter. This indicates
that for this dataset, introducing interpretability in addition to representational capabilities is more
difficult, possibly due to the peculiarities of the performed experiments.
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Figure 11: Comparison of Norman and Wessels datasets. A. UMAP representation of single-gene
and combinatorial perturbations captured in the Norman2019 dataset. Each point represents the
pseudo-bulk expression profile of a genetic perturbation. B. UMAP representation of the Wessels2023
dataset similar to A. Perturbations which share one gene and form clear clusters are shown in the same
color to enhance clarity, while the remaining perturbations are shown individually.C. Cumulative
density distribution of perturbations by their respective number of marker genes (differentially
expressed genes with padj<0.001, average LFC > 2) per perturbation in the Norman2019 and
Wessels2023 dataset.

Table 5: Performance comparison between SENA-discrepancy-VAE and discrepancy-VAE on the
Wessel2023 dataset across different lambda values and latent factors for double perturbation samples.
Note that KLD and L1 losses are not dependent on the samples, but computed after the training
process is finished.

Encoder Metric Latent Dimension
50 28 14

Original MLP

MMD↓ 0.1810 ± 0.0001898 0.1768 ± 0.0001898 0.1886 ± 0.0001225

MSE↓ 0.0767 ± 0.0000031 0.0840 ± 0.0000031 0.0934 ± 0.0000005

KLD↓ 0.0137 ± 0.0000011 0.0142 ± 0.0000011 0.0150 ± 0.0000002

L1↓ 0.0054 ± 0.0000001 0.0028 ± 0.0000001 0.0016 ± 0.00000004

SENA-δλ=0.5

MMD↓ 0.2285 ± 0.0011976 0.1904 ± 0.0001348 0.1753 ± 0.0000720

MSE↓ 0.0934 ± 0.0000011 0.0849 ± 0.0000108 0.0782 ± 0.0000003

KLD↓ 0.0130 ± 0.0000002 0.0135 ± 0.0000025 0.0107 ± 0.0000003

L1↓ 0.0013 ± 0.0000001 0.0021 ± 0.0000018 0.0052 ± 0.0000002

SENA-δλ=0.1

MMD↓ 0.3637 ± 0.0024426 0.4267 ± 0.0027825 0.4049 ± 0.0038001

MSE↓ 0.1002 ± 0.0000042 0.1081 ± 0.0000056 0.1086 ± 0.0000008

KLD↓ 0.0040 ± 0.0000001 0.0049 ± 0.0000001 0.0066 ± 0.0000015

L1↓ 0.0090 ± 0.0000021 0.0026 ± 0.0000001 0.0013 ± 0.00000001

SENA-δλ=0

MMD↓ 0.5675 ± 0.0031239 0.6156 ± 0.0041942 0.5725 ± 0.0096761

MSE↓ 0.1108 ± 0.0000037 0.1068 ± 0.0000076 0.1131 ± 0.0000011

KLD↓ 0.0019 ± 0.00000004 0.0025 ± 0.0000001 0.0027 ± 0.0000001

L1↓ 0.0120 ± 0.0000014 0.0040 ± 0.0000010 0.0014 ± 0.0000001
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VI EVALUATING GEARS ON PREDICTING UNSEEN DOUBLE PERTURBATIONS

We trained GEARS, following the authors’ recommendations, for 20 epochs on all single-gene
perturbations from the Norman2019 dataset, and predicted the same double-perturbations we used to
evaluate SENA-discrepancy-VAE and the original discrepancy-VAE. We repeated this experiment
with 5 different initializations.

We then computed the MMD and MSE between the predicted and the true double-perturbations gene
expression profiles by forwarding randomly-selected unperturbed cells (control) and averaged the
metrics across perturbations. We show the MMD in the main benchmarking (Table 1) and in this
section’s Table 6 to compare against MSE. When analyzing these results, we found that the MSE
on double perturbations exhibited scores 10 times larger than the one reported during training for
validation folds (0.00368 ± 0.000363 across different latent dimension sizes for one seed), which
suggest a potential lack of generalization. Moreover, MMD also showed significantly larger scores
compared to SENA or the standard discrepancy-VAE. This may be justified by the fact that the MMD
is not used as a loss function in GEARS, hence true and predicted distributions may differ significantly
when MSE is large enough. Finally, in order to have a baseline within GEARS, we computed the MSE
and MMD between the true expression of double perturbations and true expression of unperturbed
cells, yielding an average value of MMD = 14.39 and MSE = 0.085.

Overall, these results highlight that i) the hidden dimension size of GEARS is largely dependent
of the prediction performance. ii) GEARS outperforms the defined baseline in terms of MSE for
some range of latent dimensions. iii) GEARS fails to capture the underlying distribution of double
perturbations, possibly due to the lack of a distribution-distance loss function during training.

Table 6: MMD and MSE of GEARS on Norman2019’s dataset for double perturbation prediction
across several latent dimensions

Metric Latent Dimension
105 70 35 10 5

MMD↓ 14.9420 ± 0.233957 12.6036 ± 0.745302 13.2590 ± 0.559124 12.9774 ± 0.751373 15.3099 ± 0.191833

MSE↓ 0.0986 ± 0.009157 0.0446 ± 0.018703 0.0562 ± 0.015065 0.0533 ± 0.019782 0.1131 ± 0.008568
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VII ADDITIONAL MATERIALS ON NORMAN2019 DATASET
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Figure 12: SENA layer analysis. Masked and non-masked gradients for SENA-discrepancy-VAE at
the output of the SENA layer, for λ values of 0 (A), 10−3 (B), 0.01 (C) and 0.1 (D). Barplot showing
matrix M values is depicted next to each histogram.
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Figure 13: Differential Activation Scores analysis. DA score analysis for targeted and non-affected
BPs along the 37 single-gene perturbations present in the input gene expression matrix.
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Figure 14: Mapping between latent factors and perturbations genes. Mapping dis-
tribution of knocked out genes and latent factors, from SENA-discrepancy-VAE (λ = 0)
and discrepancy-VAE (MLP encoder) for several values of latent dimensions {105, 70, 35,
10, 5}. We generated this mapping from the interventional encoder according to h =
Softmax (Linear (LeakyReLU (Linear(c)))× temp), where c is the one-hot encoding vector for
each perturbation and temp was set to 100 as recommended for inference in the original manuscript.

Table 7: Causal graph (Fig. 2) details. Each row lists a latent factor, the number of targeted
perturbations, and associated biological processes within it.

Latent Factor Targeting Perturbations Biological Processes
41 41 57
65 6 10
2 18 14

53 25 10
69 1 1
15 1 1
12 9 10

Table 8: Top 6 (knockout, gene set) pairs according to DA score. Fig. 4 details). DA scores for
selected genes and associated GO terms.

Gene GO Term DA Score
COL1A1 GO:0038065 0.92
TBX3 GO:0006833 0.88
GLB1L2 GO:0070141 0.71
TP73 GO:0006833 0.69
CEBPA GO:0010714 0.65
CEBPA GO:0006595 0.60
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Table 9: Mapping between BP and latent factors.
Latent Factor GO ID GO Term

2 GO:2000352 negative regulation of endothelial cell apoptotic process
2 GO:0010944 negative regulation of transcription by competitive promoter binding
2 GO:1904292 regulation of ERAD pathway
2 GO:0060216 definitive hemopoiesis
2 GO:0048557 embryonic digestive tract morphogenesis
2 GO:0071549 cellular response to dexamethasone stimulus
2 GO:0055023 positive regulation of cardiac muscle tissue growth
2 GO:0071243 cellular response to arsenic-containing substance
2 GO:0006067 ethanol metabolic process
2 GO:0099188 postsynaptic cytoskeleton organization
2 GO:0006833 water transport
2 GO:0045723 positive regulation of fatty acid biosynthetic process
2 GO:2001279 regulation of unsaturated fatty acid biosynthetic process
2 GO:0018904 ether metabolic process

12 GO:0070141 response to UV-A
12 GO:0060512 prostate gland morphogenesis
12 GO:1903902 positive regulation of viral life cycle
12 GO:0014821 phasic smooth muscle contraction
12 GO:0006359 regulation of transcription by RNA polymerase III
12 GO:0030852 regulation of granulocyte differentiation
12 GO:0044849 estrous cycle
12 GO:0045737 positive regulation of cyclin-dependent protein serine/threonine kinase

activity
12 GO:1903319 positive regulation of protein maturation
12 GO:2000010 positive regulation of protein localization to cell surface
15 GO:0050665 hydrogen peroxide biosynthetic process
41 GO:0010226 response to lithium ion
41 GO:0002693 positive regulation of cellular extravasation
41 GO:0045654 positive regulation of megakaryocyte differentiation
41 GO:0060065 uterus development
41 GO:1902042 negative regulation of extrinsic apoptotic signaling pathway via death

domain receptors
41 GO:0000305 response to oxygen radical
41 GO:0001915 negative regulation of T cell mediated cytotoxicity
41 GO:0002281 macrophage activation involved in immune response
41 GO:0002357 defense response to tumor cell
41 GO:0006595 polyamine metabolic process
41 GO:0006921 cellular component disassembly involved in execution phase of apoptosis
41 GO:0006957 complement activation, alternative pathway
41 GO:0010714 positive regulation of collagen metabolic process
41 GO:0010829 negative regulation of glucose transmembrane transport
41 GO:0014912 negative regulation of smooth muscle cell migration
41 GO:0019835 cytolysis
41 GO:0030449 regulation of complement activation
41 GO:0032703 negative regulation of interleukin-2 production
41 GO:0032905 transforming growth factor beta1 production
41 GO:0033005 positive regulation of mast cell activation
41 GO:0039532 negative regulation of cytoplasmic pattern recognition receptor signaling

pathway
41 GO:0044342 type B pancreatic cell proliferation
41 GO:0044406 adhesion of symbiont to host
41 GO:0045056 transcytosis
41 GO:0045663 positive regulation of myoblast differentiation
41 GO:0050849 negative regulation of calcium-mediated signaling
41 GO:0051764 actin crosslink formation
41 GO:0061450 trophoblast cell migration
41 GO:0070102 interleukin-6-mediated signaling pathway
41 GO:0070486 leukocyte aggregation
41 GO:0071391 cellular response to estrogen stimulus27
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Table 10: Mapping between BP and latent factors (Cont.).
Latent Factor GO ID GO Term

41 GO:0097202 activation of cysteine-type endopeptidase activity
41 GO:0099515 actin filament-based transport
41 GO:0140374 antiviral innate immune response
41 GO:1900120 regulation of receptor binding
41 GO:1900745 positive regulation of p38MAPK cascade
41 GO:1902307 positive regulation of sodium ion transmembrane transport
41 GO:2000508 regulation of dendritic cell chemotaxis
41 GO:0020027 hemoglobin metabolic process
41 GO:0002227 innate immune response in mucosa
41 GO:0034505 tooth mineralization
41 GO:0038065 collagen-activated signaling pathway
41 GO:0001958 endochondral ossification
41 GO:0034389 lipid droplet organization
41 GO:0010715 regulation of extracellular matrix disassembly
41 GO:0051131 chaperone-mediated protein complex assembly
41 GO:0060384 innervation
41 GO:0061684 chaperone-mediated autophagy
41 GO:0055091 phospholipid homeostasis
41 GO:0060742 epithelial cell differentiation involved in prostate gland development
41 GO:0097066 response to thyroid hormone
41 GO:0042976 activation of Janus kinase activity
41 GO:0061323 cell proliferation involved in heart morphogenesis
41 GO:0002713 negative regulation of B cell mediated immunity
41 GO:0051238 sequestering of metal ion
41 GO:0062098 regulation of programmed necrotic cell death
41 GO:2000479 regulation of cAMP-dependent protein kinase activity
53 GO:0016338 calcium-independent cell-cell adhesion via plasma membrane cell-

adhesion molecules
53 GO:0009713 catechol-containing compound biosynthetic process
53 GO:0032060 bleb assembly
53 GO:0036035 osteoclast development
53 GO:0007190 activation of adenylate cyclase activity
53 GO:0009065 glutamine family amino acid catabolic process
53 GO:0035767 endothelial cell chemotaxis
53 GO:2000678 negative regulation of transcription regulatory region DNA binding
53 GO:0043032 positive regulation of macrophage activation
53 GO:0060749 mammary gland alveolus development
65 GO:0021516 dorsal spinal cord development
65 GO:0017014 protein nitrosylation
65 GO:0010842 retina layer formation
65 GO:0030540 female genitalia development
65 GO:0042759 long-chain fatty acid biosynthetic process
65 GO:2000696 regulation of epithelial cell differentiation involved in kidney develop-

ment
65 GO:0015701 bicarbonate transport
65 GO:0034638 phosphatidylcholine catabolic process
65 GO:0048535 lymph node development
65 GO:0050995 negative regulation of lipid catabolic process
69 GO:0001886 endothelial cell morphogenesis
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