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Abstract

Backdoor attacks, representing an emerging threat to the integrity of deep neural networks
have received significant attention due to their ability to compromise deep learning systems
covertly. While numerous backdoor attacks occur within the digital realm, their practical
implementation in real-world prediction systems remains limited and vulnerable to distur-
bances in the physical world. Consequently, this limitation has led to the development of
physical backdoors, where trigger objects manifest as physical entities within the real world.
However, creating a requisite dataset to study physical backdoors is a daunting task. This
hinders backdoor researchers and practitioners from studying such backdoors, leading to
stagnant research progresses. This paper presents a framework namely as TriggerCraft that
empowers researchers to effortlessly create a massive physical backdoor dataset with gen-
erative modeling. Particularly, TriggerCraft involves three automatic modules: suggesting
the suitable physical triggers, generating the poisoned candidate samples (either by synthe-
sizing new samples or editing existing clean samples), and finally selecting only the most
plausible ones. As such, it effectively mitigates the perceived complexity associated with
creating a physical backdoor dataset, converting it from a daunting task into an attainable
objective. Extensive experiment results show that datasets created by TriggerCraft achieve
similar observations with the real physical world counterparts in terms of both attacks and
defenses, exhibiting similar properties compared to previous physical backdoor studies. This
paper offers researchers a valuable toolkit for advancing the frontier of physical backdoors,
all within the confines of their laboratories.

1 Introduction

Prior works have shown that DNNs are susceptible to various types of attacks, including adversarial attacks
(Carlini & Wagner| 2017; Madry et al., [2018), poisoning attacks (Munoz-Gonzilez et all 2017} Shafahi
et al) 2018) and backdoor attacks (Bagdasaryan et al., [2020; |Gu et all 2019)). For instance, backdoor
attacks impose serious security threats to DNNs by impelling malicious behavior onto DNNs by poisoning
the data or manipulating the training process (Liu et al.,|2017;|2018b)). A backdoored model exhibits normal
behavior without a trigger pattern but acts maliciously when the trigger pattern is present.

Meanwhile, |Gu et al.| (2017)); |Liu et al. (2020)); Nguyen & Tranl (2021)); [Doan et al.| (2021) focus on exposing
the security vulnerabilities of DNNs within digital confines, where adversaries design and implement com-
puter algorithms to launch backdoor attacks. To launch such attacks, adversaries must perform test-time
digital manipulation of the images, which are likely to be susceptible to physical distortions or extremely
noisy environments. These physical disturbances are likely unavoidable and often restrain the severity of
backdoor attacks. Also, test-time digital manipulations are less likely to be accessible to adversaries, e.g. in
autonomous driving systems, which involve real-time predictions, thus constraining the capability of adver-
saries to attack these systems.

On the other hand, physical backdoor attacks focus on exploiting physical objects as triggers (Wang et al.,
2023; (Wenger et al., 2021; [Ma et al.,2022). As such, an adversary could easily compromise privacy-sensitive
and real-time systems, such as facial recognition systems. An adversary could impersonate a key person
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Figure 1: Overview of our framework that consists of three modules: (i) Trigger Suggestion, (ii) Trigger
Generation and (iii) Poison Selection to ease in crafting a physical backdoor dataset. Researchers or practi-
tioners could leverage our Trigger Suggestion Module to efficiently identify viable physical triggers with
minimal cognitive overhead. Our Trigger Generation Module then generates realistic synthetic datasets
consisting physical triggers; while Poison Selection Module filters out absurd or low-quality samples from
the synthesized datasets, ensuring the naturalness, coherence and realism of the datasets.

in a company by wearing facial accessories (e.g., glasses) as physical triggers to gain unauthorized access.
Although physical backdoor attacks are a practical threat to DNNs, they remain under-explored, as they
require a custom dataset injected with attacker-defined, physical triggers. Preparing such datasets, especially
involving human or animal subjects, is often arduous due to the required approvals from the Institutional or
Ethics Review Board (I/ERB). Acquiring the dataset is also costly, as it involves extensive human labor, and
this cost often scales with the dataset’s magnitude. These constraints restrict researchers and practitioners
from studying the potential threat and mitigations of physical backdoor attacks, until now.

Recent advancements in deep generative models such as Generative Adversarial Networks (GANs) (Good-
fellow et al. 2014} |Chen et al., [2016) and Diffusion Models (Ho et all, 2020} [Song et al. 2020} [Rombach
et al., 2022; Hoe et al.,|2025)) have shed light in synthesizing and editing plausible images without involving
extensive human interventions. With a text prompt, deep generative models can either create an image
from scratch, or edit/manipulate existing content of an existing image with high quality and high fidelity,
potentially enabling an efficient creation of physical backdoor datasets (i.e., via only a simple prompt) and
accelerating adversarial research.

In this work, we propose a “framework” namely as TriggerCraft, which enables researchers or practitioners
to build a physical backdoor dataset with minimal effort and costs. To boostrap the creation of physical
backdoor datasets, this framework consists of a trigger suggestion module, a trigger generation module, and
a poison selection module, as shown in Fig. Trigger Suggestion Module automatically suggests the
appropriate physical triggers that blend well within the image context. After selecting a desired physical
trigger, one could utilize Trigger Generation Module to ease in generating a realistic physical backdoor
dataset. Finally, the Poison Selection Module assists in the automatic selection of high fidelity and
natural images, as well as discarding implausible outputs that are occasionally synthesized by the generative
model. As such, our contributions are threefold, as follows:

e Propose an automated framework for researchers or practitioners to synthesize a physical backdoor
dataset through pretrained generative models. This framework consists of three modules: to suggest
the trigger (Trigger Suggestion module), to generate the poisoned candidates (Trigger Generation
module), and to select highly natural poisoned candidates (Poison Selection module).

o Propose a Visual Question Answering approach to automatically rank the most suitable triggers
for Trigger Suggestion module; propose a synthesis and an editing approach for Trigger Generation
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module; and, propose a scoring mechanism to automatically select the most natural poisoned samples
for Poison Selection module.

e Perform extensive qualitative and quantitative experiments to prove the validity and effectiveness of
our framework in crafting a physical backdoor dataset. These experiments rigorously demonstrate
that backdoor activations, obtained with the synthetic data, is governed by the trigger’s physical
appearance (e.g., its shape and color) rather than synthetic artifacts (e.g., invisible discontinuity in
the pixels transitions) of the generative models, thereby confirming that the synthetic physical trigger
induces the same activation behavior as its real counterpart. This provides research community
with a useful toolkit to study physical backdoor vulnerabilities and potential mitigations without
the hassle of labor-intensive physical data collection.

2 Related Works

2.1 Backdoor Attacks

Digital Backdoor Attacks focus on launching backdoor attacks within the digital space, which involve
image pixel manipulations (Gu et all [2017; Nguyen & Tran|, [2021; [Doan et al.| 2021; |Saha et al.l |2020;
Liu et al.l 2020; Wang et al., 2023)) and model manipulations (Bober-Irizar et al., [2023). BadNets (Gu
et al.l 2017)) first exposed the vulnerability of DNNs by embedding a malicious patch-based trigger onto an
image and changing the injected image’s label to a predefined targeted class. WaNet (Nguyen & Tran) 2021))
applied a warping field to the input, and LIRA (Doan et al.,|2021)) optimized the trigger generation function,
respectively, to achieve better stealthiness and evade human inspection; while Wang et al.| (2023) utilized a
pretrained diffusion model to insert triggers onto existing dataset. Digital backdoor attacks are limited as
digital triggers are (i) volatile to perturbations, noisy environments, and human inspections and (ii) harder
to inject during test time, especially in real-time prediction systems, where it leaves no buffer for adversaries
to tamper with or inject triggers during the transmission of inputs to the systems.

Research on Physical Backdoors focus on extending backdoor attacks to physical space employing
physical objects as triggers (denoted as physical triggers hereafter). These threats are practical, as they can
(i) bypass human-in-the-loop detection (Wenger et al., [2022)) and (ii) attack real-time prediction systems.
Physical triggers exist in the physical world and possess semantic information; when injected, they blend
gracefully and naturally with images, leaving no trace of artifacts; contrasting digital triggers which often
create artifacts such as “visible” borders (Gu et al. 2017)) or unnatural curves (Nguyen & Tran, 2021).
Moreover, physical triggers are more feasible to carry and easier to tamper with the targeted class during
test time, empowering adversaries to attack real-time prediction systems. [Wenger et al.| (2021]) showed that
by wearing different facial accessories, an adversary could bypass a facial recognition system and uncover
the possibility of impersonation through physical triggers. Dangerous Cloak (Ma et all |2022) exposed the
possibility of evading object detection systems by wearing custom clothes as the trigger, making the adversary
“invisible” under surveillance. Han et al.| (2022)) revealed that the autonomous vehicle lane detection systems
could be attacked by physical objects on the roadside, leading to potential accidents and fatalities.

Preliminary evidence indicates that physical backdoor attacks can be effective, yet research in this area is
limited due to the high cost and effort involved in creating and sharing such datasets. For example, poisoning
5% of ImageNet (~1.3M images) would require generating 65,000 images with physical triggers, which is a
task beyond the reach of most research teams. Ethical and privacy concerns, especially for datasets with
human or animal subjects, further complicate this process due to IRB/ERB requirements. To address these
challenges, [Wenger et al.| (2022)) explored leveraging natural co-occurrences of trigger objects. Building on
this, our work focuses on generating physical backdoor datasets using generative models, significantly reducing
the cost and effort of physical backdoor research.

2.2 Backdoor Defenses

With the emergence of backdoor attacks, defensive mechanisms have gained significant attention. Current
approaches include backdoor detection methods like Activation Clustering (AC) (Chen et al., [2019) which
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analyzes latent space activations, STRIP (Gao et all 2019) that examines output entropy on perturbed
inputs, and Neural Cleanse (NC) (Wang et al. [2019) which identifies trigger patterns; input mitigation
techniques (Li et al., |2020; [Liu et al.l 2017 that suppress backdoor triggers while maintaining normal model
behavior; and model mitigation strategies such as Fine-Pruning (FP) (Liu et al.; 2018a)) combining pruning
and fine-tuning, and Neural Attention Distillation (NAD) (Li et al. |2021) that transfers knowledge from
clean teacher models to purge backdoors.

The state of existing physical defense research. Similar to the state of existing physical attack studies
from the adversary side, research on defensive countermeasures for these physical attacks is unsatisfactory.
For example, [Wenger et al.| (2021} 2022) show that most defenses, including NC (Wang et al.l [2019)), STRIP
(Gao et all 2019), Spectral Signature (SS) (Tran et al., [2018]), and AC (Chen et al., [2019)) can only detect,
thus prevent, physical attacks with catastrophic harms, such as attacks on facial recognition systems at only
around 40% of the times, signifying the lack of research in both attacks and defenses for physical backdoors.

2.3 Diffusion Models for Image Generation and Manipulation

Recent advancements in deep generative models, particularly Diffusion Models (DMs) (Song et al.l [2020;
Ho et all 2020) had surpassed GANs (Goodfellow et al., |2014) in image quality and data density cover-
age (Dhariwal & Nichol, |2021)), with strong support for conditional inputs (Rombach et al., |2022). DMs’
ability to generate images from text prompts is practical to synthesize plausible images for physical back-
doors, by simply describing the targets and intended physical triggers together. Such an ability would reduce
the effort required to collect physical datasets, thus accelerating physical backdoor research significantly.

Traditional image editing methods, from simple copy-paste (Chen et al.; 2017)) to manual blending with
tools like Photoshop, lack scalability. They require tool-specific expertise and manual effort to place triggers,
making high-quality poisoned sample creation time-consuming and costly. In contrast, deep generative
models can automate the synthesis of high fidelity physical backdoor datasets, offering higher throughput,
better scalability, and reduced cost.

3 Motivation

Most, if not all, prior physical backdoor works do not share their studied datasets publicly, refraining others
from reproducing and verifying their experimental results and slowing innovations within the field. The main
blockers for preparing and sharing physical backdoor datasets are (i) the scale of datasets (i.e., larger datasets
require substantially more resources), and (ii) privacy and ethical considerations (i.e., the need for I/ERB
approvals when studies involve human or animal subjects). Collecting physical backdoor datasets inevitably
involves extensive human labor, time, and resources; hence, prior works (Wenger et al., |2021; Ma et al.l2022)
generally have a smaller scale dataset to perform their research. Most research labs, unfortunately, do not
have the luxury of investing similar resources, even at a smaller scale. Moreover, due to privacy concerns,
curation of physical backdoor datasets would require extensive ethical and institutional reviews, which incur
operational overheads and time-consuming. To address these bottlenecks and foster a more open research
ecosystem, this work aims to ease the preparation and sharing of physical backdoor datasets.

To reduce effort in manually collecting physical backdoor datasets, , [Wenger et al| (2022) lead an effort in
discovering physical triggers that exist naturally within existing multi-label datasets, and is proven to be
effective in identifying one of the co-occurring objects as physical triggers. However, such a method is only
proven in multi-label settings, where each sample is assigned with multiple class labels, leaving its feasibility
towards single-label settings unknown to practitioners. To expand their studies to the physical space, one
must collect a set of physical dataset to validate, which is essentially an arduous task.

Motivated by the challenges associated with scaling and sharing physical backdoor datasets, we propose a
more practical, generalized, and automated framework, whereby our framework could be applied to most
datasets. Our framework, TriggerCraft consists of a Trigger Suggestion Module (powered by VQA), a
Trigger Generation Module (powered by generative models), and a Poison Selection Module (powered
by a non-distributional, per-image generative evaluation metric). The Trigger Suggestion Module offers
the freedom to select physical triggers from a list of suggestions, and this eases practitioners from thinking
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Figure 2: Results from the trigger suggestion module. “Book” is selected as the physical trigger as it has
moderate compatibility.

open-endedly about physical triggers, which generally requires more cognitive effort than selecting from
multiple choices . The Trigger Generation Module reduces the effort, expertise, time,
and cost required to manually curate a realistic physical backdoor dataset, whereas the Poison Selection
Module ensures the synthesized physical backdoor dataset aligns with human’s preference in both fidelity
and naturalness.

An important question is whether the synthetic dataset generated by our framework exhibits the same
backdoor activation behavior as the manually collected counterpart. A straightforward validation involves
“manually collecting” a real-world replica of the synthetic version, but this is prohibitively difficult due to
the combinatorial diversity of triggers and image domains. Fortunately, we can leverage a simple fact: if the
backdoor is activated by the physical trigger, then the attack performance (i.e., ASR) measured on real and
synthetic test data during inference should be comparable. Real data do not contain generative artifacts,
thus it is unlikely that such artifacts, created by the generative models, activate the backdoor on such data.
Consequently, the only remaining plausible explanation is the physical appearance of the synthetic trigger.

4  TriggerCraft

4.1 Module 1: Trigger Suggestion Module

We first define compatibility of a physical trigger as the likelihood of an object co-existing with the main
subject, and it is related to the probability of “inadvertently” triggering the backdoor. On the bright
side, a highly compatible physical trigger could reduce human suspicion upon inspection, where it blends
seamlessly within the image’s context. However, as noted in (Wenger et al.,[2022)), highly compatible triggers
could lead to unintentional triggering of backdoors, creating false positives and exposing backdoors in an
unwanted manner. Hence, identifying and selecting the “best” physical triggers is crucial, and oftentimes
demands human knowledge or entails a significant workload to scan through partial or even the entire dataset
to identify the suitable triggers.

Prior works (Wenger et al, 2021; [Ma et al., 2022) have engaged in the manual identification of a trigger
object within a smaller dataset, where they utilized facial accessories and clothes. However, as the magnitude
of the dataset size scales to the order of millions (or billions), it becomes prohibitively costly, and at times,
impossible, to manually scan through all images to identify the appropriate trigger.

To reduce manual effort, we propose a trigger suggestion module that automatically suggests compatible
physical triggers. Our approach is inspired by Wenger et al. (2022), which uses graph analysis to identify
frequently co-occurring objects as triggers. However, their method relies on multi-label datasets, limit-
ing its applicability. Most image recognition datasets (e.g., Food-101 (Bossard et al. [2014), Oxford 102
Flower (Nilsback & Zissermanl [2008)), Stanford Dogs (Khosla et al) [2011)) are single-label, making co-
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Figure 3: Images generated/edited by our framework with the suggested trigger - “book”.

occurrence analysis infeasible. Moreover, suitable triggers might not necessarily be part of class labels of a
dataset, e.g., in Food-101, suitable triggers could be cutlery or tableware.

We propose using Visual Question Answering (VQA) models such as LLaVA 2023) to automati-
cally identify suitable physical triggers by leveraging their general knowledge. Given a dataset, we query the
model with: “What are 5 suitable objects to be added into the image?” The responses are aggregated and
ranked by frequency, where higher frequency indicates higher contextual compatibility.

Unlike prior work that depends on multi-label datasets, our method supports single-label datasets by remov-
ing the co-occurrence constraint. We define three levels of trigger compatibility as follows:

1. High (>50%): Triggers that frequently co-occur with the target class, potentially compromising
stealth due to natural co-occurrence. A highly compatible triggers would yield high false positives
in terms of backdoor activations, due to the nature of such an object would frequently co-exist with
the poisoned subjects.

2. Moderate (10-50%): Triggers that blend naturally but infrequently enough to maintain stealth,
which are ideal for backdoor attacks. Physical triggers with moderate compatibility would appear
natural and would not create inadvertent activation of backdoors, making them the ideal candidate
for practical scenarios.

3. Low (<10%): Triggers that rarely appear with the main subject and such a low co-existence
might incur difficulties while synthesizing images of the subject with these triggers, as evident in
prior studies (Park et al., 2025} [Samuel et all 2024)). Hence, selecting low compatibility objects as
physical triggers might lead to high failure rates and raising human suspicion upon manual inspection
of the dataset.

In our work, we focus on triggers with moderate compatibility to balance stealth, plausibility and prevent
potential false activations of backdoors. Our trigger suggestion module generalizes to single-label datasets
and aligns well with human judgments, as shown in Appendix Nonetheless, researchers may choose any
suggested trigger, regardless of compatibility, to explore different attack or defense scenarios.

4.2 Module 2: Trigger Generation Module

Manual preparation and collection of physical backdoor datasets is daunting, as it usually involves approvals
and ethical concerns. Recent advancements in deep generative models provide a simple yet straightforward
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solution, that is through image editing or image generation. This paper leverages DMs in crafting a physical
backdoor dataset as they satisfy several criteria: (i) high quality and diversity (as compared to VAEs and
GANs) (Dhariwal & Nicholl [2021)), and (ii) the ability to be conditioned on text.

Quality and Diversity: It ensures the fidelity and richness of the dataset. Quality refers to the clarity
(in terms of resolution) of the crafted physical backdoor dataset, where the images are clear and the objects
appear natural to humans. Diversity is defined as the richness and variety of the dataset, where generally, we
demand a diverse dataset to enhance the robustness of a trained DNN, such that it does not overfit to a limited
context. Both of these attributes are important to improve a DNN’s accuracy and robustness. DMs are
capable of synthesizing and editing high quality and high diversity images than VAEs and GANs (Dhariwal
& Nicholl |2021)), therefore, making them the ideal candidate for our trigger generation module.

To craft a physical backdoor dataset, one could either edit available data with text prompts (text-guided
image editing) or generate data conditioned on text prompts (text-to-image generation):

Text-guided Image Editing: For scenarios where researchers have existing datasets with both images
and class labels, text-guided image editing models such as InstructDiffusion emerge as a fruitful option for
crafting a physical backdoor datasets, as it utilizes both the images and labels. Input images are obtainable
directly from the dataset, while the text prompts, which include physical triggers could be manually defined
(requires more cognitive effort) or suggested by our trigger suggestion module, with minimal cognitive effort.
Ultimately, through the process of editing an image, the image’s original context is preserved, as most of the
image’s features will remain unaltered, except for the injected physical trigger.

Text-to-Image Generation: For cases where researchers do not have a dataset at hand, text-to-image
generation models are suitable, as these models are capable of synthesizing images with only text prompts.
Additionally, even with a dataset, researchers could leverage text-to-image generation models for generating
additional physical backdoor samples similar to the original dataset. With these models, researchers only
have to combine the intended class labels with physical triggers, in order to craft a physical backdoor dataset.

To summarize, for cases where a dataset is available, researchers can utilize both text-guided image editing
or text-to-image generation models, while for cases where no dataset is available, text-to-image generation
models are more appropriate. Both of these generative models have the ability to condition on text inputs
(which are commonly used to describe the desired physical triggers) and able to synthesize high fidelity,
realistic images. Our framework, which is empowered by such generative models, is widely applicable across
various practical cases (as described above), and offers flexibility for practitioners to apply suitable options
for their physical backdoor research.

4.3 Module 3: Poison Selection Module

To create a realistic physical backdoor dataset for research purposes, ensuring the quality of the synthesized
data is indeed of utmost crucial. Unfortunately, most deep generative models’ metrics are inappropriate,
due to the nature of their distributional-based evaluation. Hence, synthesizing a realistic physical backdoor
is nowhere to be done with conventional metrics.

Problem: Conventional deep generative models’ metrics such as Inception Score (IS) (Salimans et al.,2016)
and Fréchet-Inception Distance (FID) (Heusel et al.;[2017) compare the “real” and “synthesized” distribution,
to identify how well the “synthesized” distribution resembles the “real” distribution. Although effective, these
metrics do not fit into our setting - the synthesized physical backdoor dataset should be evaluated image-
by-image to ensure (i) the presence of physical triggers and (ii) the realism of the synthesized image with
the physical trigger. The presence of triggers within synthesized images is necessary for ensuring successful
poison injection, while the realism of such images guarantees the naturalness of the synthesized images, such
that it is able to simulate the “real” dataset. Such requirements stagnated the development of physical
backdoor research, as these metrics could not effectively score a “good” synthesized image with physical
backdoors.

Proposed Solution: We utilize ImageReward (Xu et al., 2023) as our evaluation metric for the gener-
ated/edited images. Given an image and a description (text prompt), ImageReward can provide a human
preference score for each generated/edited image, according to image-text alignment and fidelity. Inherently,
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Table 1: Results with text-guided image editing models. Both trigger objects achieved high Real ASR and
Real CA. The poisoning rate is abbreviated with PR.

Trigger PR CA ASR Real CA Real ASR

None 0.00 94.00 - 83.00 -
Tennis Ball 0.06 94.27 76.8 81.65 80.53
0.10 9493 80.2 78.59 81.7
Book 0.05 932 756 79.2 66.47
0.10 928 7 78.59 71.08

it resolves previous metrics’ limitations by enabling image-by-image evaluation, with regard to both (i) the
presence of physical triggers and (ii) the realism of synthesized images; thus ensuring the synthesized physical
backdoor datasets are of high quality and consist of physical triggers.

5 Experimental Results

5.1 Metrics Definition

We define the metrics used in the experiments as follows: (i) Clean Accuracy (CA): accuracy on clean
inputs, (ii) Attack Success Rate (ASR): accuracy on poisoned inputs with physical triggers, either
through image editing or image generation, (iii) Real CA: accuracy on the real clean data collected via
multiple devices, and (iv) Real ASR: accuracy on the real poisoned data, captured via multiple devices.

5.2 Module 1: Trigger Suggestion

We present the results of the trigger suggestion module in Fig. [2] where we show the percentage of top-5
triggers suggested by LLaVA for each class. “Book” is selected as our physical trigger, as it has a moderate
compatibility across all the classes, suggesting its able to blend seamlessly with most images and reducing
the likelihood of inadvertent activations of backdoor upon injection.

5.3 Module 2: Trigger Generation

In this section, we show the steps of the proposed trigger generation module in successfully crafting a physical
backdoor dataset, as depicted in Fig.[3] For the physical trigger object, we employ “book” as suggested by our
trigger suggestion module and “tennis ball” as the control variable, which is suggested by human. We define
the notation for the prompts as follows: <tr> refers to the trigger, <act> refers to the action/movement of
the class object, <sub> refers to the main class object, <bg> describes the background/scene of the generated
image, and <pos> specifies other positive prompts such as 4k or UHD. As discussed in Sec. [£2] two valid
deep generative models can be utilized:

1. Image Editing (InstructDiffusion): The default hyperparameters (Geng et al., |2023|) were cho-
sen, and the text prompts format is set as “Add <tr> into the image”, where <tr> refers to “tennis
ball” or “book”. The image prompts are images from the dataset. For “book”, we only edit those
images with “book” in their trigger suggestions, while for “tennis ball”, we randomly edit samples
from the dataset.

2. Image Generation (Stable Diffusion): The text prompts are formatted according to (Sariyildiz
et al., |2023)), which are as follows: “<sub>, <tr>, <act>, <bg>, <pos>”, and guidance scale is set to
2. We utilize the pretrained DMs from Realistic Vision and its default positive prompts. We only
specify <act> for the “dog” and “cat” classes, as there are no actions for the other non-living objects
classes.
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Table 2: Results with text-to-image generation models. Both trigger objects achieved high Real ASR, but
relatively low Real CA. Poisoning rate is abbreviated with PR.

Trigger PR CA ASR Real CA Real ASR

None 0 100 - 70.00 -
0.1 99.57 88.03 58.41 91.51
0.2 99.47 90.40 58.41 94.84
Tennis Ball 0.3 99.63 88.17 61.16 92.35
0.4 99.67 89.33 55.66 91.68
0.5 99.60 88.57 58.41 86.36
0.1 99.83 96.93 61.16 57.84
0.2 99.87 97.77 61.16 74.22
Book 0.3 99.73 98.37 64.22 83.97
0.4 99.73 98.30 61.47 83.28
0.5 99.53 98.47 58.72 74.91

5.4 Module 3: Poison Selection

As outlined in Sec. we utilized ImageReward (Xu et al., [2023)) to select the edited/generated outputs
from both InstructDiffusion and Stable Diffusion. We format the text prompt as “A photo of a <sub> with
a <tr>”. Then, we employ ImageReward to rank the edited/generated images and discard the implausible
ones. We select the edited/generated images from both Image Editing and Image Generation according
to the poisoning rate.

5.5 How do synthetic physical backdoors perform in real world attacks?

In Tab. we showed the results of Image Editing (InstructDiffusion) and Image Generation (Stable
Diffusion) respectively. We evaluate the model on ImageNet-5 and the collected real physical dataset (Real
ImageNet-5).

In Tab. [1} the Real CAs for both trigger objects are around 80%, indicating strong model performance in
real-world settings. The consistent 15% gap between CA and Real CA likely stems from distribution shifts
between validation and real-world data, including variations in lighting, background, scene, and subject
positioning.

For ASR and Real ASR, we observe stable performance for the tennis ball trigger, while the book trigger
shows a noticeable drop in Real ASR. This discrepancy is likely due to the visual consistency of the trigger:
tennis balls have uniform appearances (green with white stripes), whereas books vary in color, size, and
shape. This aligns with prior findings (Wenger et al., [2021; [Ma et al., |2022)) showing that physical triggers
with diverse appearances (e.g., earrings) lead to lower Real ASRs.

In Tab. [2, we see a similar CA vs. Real CA gap, consistent with (Sariyildiz et al., [2023), attributed to the
diversity in generated images. ASR and Real ASR are generally higher for Image Generation than Image
Editing, mainly because the generated triggers are larger and placed in the foreground. In contrast, edited
triggers are either smaller (e.g., tennis ball) or relegated to the background (e.g., book), as illustrated in

Fig.

5.6 How do backdoor defenses respond to synthetic physical backdoors?

Neural Cleanse (Wang et al.l |2019) detects backdoors via pattern optimization. An anomaly index 7 < 2
typically indicates a compromised model. Fig. [d] shows that the backdoor remains undetected for Image
Editing, but is exposed in Image Generation. We attribute this to the larger trigger sizes in generated
images, making them easier to detect.
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datasets created by Image Editing is not exposed, Figure 5: Grad-CAM on real images with “book”

while Image Generation is exposed. as the trigger, captured with multiple devices un-
der various conditions.

Table 3: Neural Attention Distillation (NAD). Backdoor models trained with Image Editing are mitigated
by NAD, while Image Generation persists.

Trigger CA ASR
Book 92.00 39.86
Tennis Ball 91.87 62.40
Book 99.93 89.70
Tennis Ball 99.93 77.87

Image Editing

Image Generation

STRIP (Gao et al., [2019) detects backdoors by perturbing clean inputs and analyzing prediction entropy.
Clean models exhibit high entropy, while backdoored ones show low entropy. As shown in Fig. [6] our

backdoor bypasses STRIP detection.

Fine Pruning (Liu et al), 2018a)) prunes low-activation neurons under the assumption that they encode
backdoor behavior. Fig. [7] shows our backdoor remains effective post-pruning, indicating robustness.

Neural Attention Distillation (NAD) mitigates backdoors by distilling attention from
a clean teacher model into a student. Following BackdoorBox , we adopt all default settings
with a cosine LR schedule and 20 training epochs. Tab. [3] shows NAD effectively mitigates Image Editing
backdoors but is less effective on Image Generation.

Grad-CAM. Fig. [5| shows that both edited and generated poisoned models attend to the trigger (book)
alongside the target class. Despite potential artifacts from generative models (e.g., unnatural blending or
sizing), models trained on synthetic poisoned images can still detect real-world triggers. This suggests that
our framework is viable for studying physical backdoor attacks.

5.7 Discussion and Limitations

Similarities between the synthesized and manually created datasets. The provided empirical attack
and defense results are consistent with previous key works in physical backdoor attacks (Wenger et al.| 2021}
2022)). Particularly, attacking with physical objects is highly effective (& 60% or higher), showing
the potential harms of these attacks. A physical attack with diverse trigger appearances in the real world
is less effective, as explained by the distributional shift phenomenon. Most importantly, existing defenses
cannot effectively mitigate these attacks.

Consistency of trigger objects. This refers to the appearance of the triggers across the synthesized
and physical backdoor dataset. Generally, trigger objects could be broken down into 2 distinct categories,
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defense.
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Figure 7: Fine Pruning. Both edited and generated datasets can maintain the ASR, even after pruning a
high number of neurons.

namely unique triggers and generic triggers. Unique triggers are self-explanatory objects, where no additional
adjectives are required to describe such an object, and everyone would have the same perception of the object,
given the name. Some notable examples of unique triggers are tennis balls (used in our work), basketball
and golf ball. Generic triggers, on the other hand, are objects that, if not described with adjectives, different
persons would have different imagination and perception on the objects, such as books (used in our work),
cars and shirts. Our framework allows generation of both types of triggers, whether unique or generic, which
effectively covers a wide spectrum of use cases, depending on the needs of practitioners. As evident in our
experiments (Tab. , unique triggers (tennis balls) yield a higher ASR, indicating a stronger backdoor
trigger than generic triggers (books), as such unique triggers would be consistent across different samples,
hence it is easier for model to overfit against such triggers with consistent appearance.

Synthetic Backdoor Transferability to Real World. Synthetic backdoors created via deep generative
models might possess generative artifacts that contributes to successful backdoor exploitations in the real
world. We outline two mutually exclusive and collectively exhaustive hypotheses that fully cover the possible
explanations for synthetic-to-real transferability, as follows:

Hypothesis 1 (Generative Artifacts). Physical backdoor attacks induced via synthetic datasets succeed be-
cause synthesized images introduce distinctive generative artifacts that the model learns to associate with the
target label.

Hypothesis 2 (Trigger Property). Physical backdoor attacks induced via synthetic datasets succeed because
synthesized physical triggers possess similar properties as real triggers (in terms of geometric, visual and
compositional properties).

Based on Hypothesis 1, if synthetic backdoors’ transferability are primarily driven by generative artifacts,
we would expect a significant gap between the performance of synthetic and real datasets, in terms of the
attack performance (i.e., ASR), since such artifacts do not exist in real datasets. However, our empirical
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results show that the ASRs and Real ASRs across synthetic and real datasets are comparable, indicating
the source of backdoor activations could not be the generative artifacts. Therefore, we infer that synthetic
physical triggers do possess similar traits as real physical triggers, consistent with the explanation proposed
in Hypothesis 2.

The state of research on physical backdoors. Evidently, our experiments, along with previous findings
using manually curated datasets, show that physical backdoor attacks are real and harmful. Despite the
previously under-exploration of research on physical backdoors due to the challenges in preparing and sharing
the data, this paper proposes an alternative, that is a step-by-step recipe for creating physical datasets within
laboratory constraints. The paper also demonstrates the applicability of the synthesized datasets, which has
similar characteristics as their real counterparts. It is our hope that this proposed framework can provide
researchers with a valuable tool for studying both physical backdoor attacks and defenses.

Limitations. Our framework, however, has some limitations, as follows:

1. Image Generation having lower Real CAs and Real ASRs: As presented in Tab. [2| the
Real CAs are consistently lower than CAs, attributed to diversity in the generations, as discussed
in (Sariyildiz et al. 2023). We posit that this arises from the limited diversity of the synthesized
datasets, which were generated based on a fixed set of prompts. Recent studies (Chang et al.| 2025}
Zhou et al.,|2023)) have demonstrated that via augmenting text prompts for text-to-image generation
models can substantially increase the dataset diversity, thereby improving the diversity of synthetic
downstream performance of DNNs.

2. Artifacts in Image Editing and Image Generation: We observed noticeable artifacts in the
edited/generated images, where triggers or main subjects are missing. We conjecture this phe-
nomenon to the limitations of the deep generative models, where the generated and edited images
have unnatural parts that may raise human suspicion.

6 Conclusion

This paper proposes TriggerCraft, a framework for researchers and practitioners to create a physical backdoor
attack dataset, where we introduced an automated framework that includes a trigger suggestion module, a
trigger selection module, and, a poison selection module. We demonstrate the effectiveness of our framework
in crafting a realistic physical backdoor dataset that is comparable to a real physical backdoor dataset, with
high Real CA and high Real ASR. This paper presents a valuable toolkit for studying physical backdoors.
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Appendix

This appendix provides additional details and experimental results to support the main submission. We
begin by providing experimental details in Sec. [A] and additional details about the devices in our physical
evaluation of the poisoned models in Sec. Bl Then we provide the details of the real datasets in Sec. [C]
We also conduct a human evaluation test for the Trigger Suggestion Module in Sec. Next, we present
qualitative results of the Poison Selection Module in Sec. [E] and additional Grad-CAM analysis in Sec. [F]
synthesized dataset to show the compatibility between the comparability between the synthesized and real
physical-world data. Lastly, Sec. |G| shows additional results generated/edited by our Trigger Generation
Module.

A Experimental Setup

To simulate a challenging real-world scenario, we select a 5-class subset of ImageNet [Deng et al.| (2009),
which consists of various general objects and animals, including bags, bottles, chairs, dogs and cats. These
classes, all superclasses in ImageNet, are deliberately chosen to evaluate the effectiveness of our framework.
This design choice emphasizes the inherent difficulty of identifying a common trigger object across diverse
high-level categories, thereby demonstrating the robustness of our method under challenging conditions.

For the classifier, we select ResNet-18 He et al.| (2016) and employ SGD |Robbins & Monro| (1951) as the
optimizer, with a momentum of 0.9. The learning rate is set to 0.01 and follows a cosine learning rate
schedule. We set the weight decay to le-4, batch size to 64, and trained the model for 200 epochs. The
default attack target is set to class 0 (i.e. dog). We employ a standard ImageNet augmentation from

timm [Wightman| (2019), with an input size of 224. All experiments are conducted on a server equipped with
AMD EPYC 7513 32-Core processor and 7 Nvidia RTX A5000 24GB.

We utilize SG161222/Realistic_Vision_V5.1_noVAE and InstructDiffusion as Image Generation and
Image Editing models, respectively.

B Devices Used

In this section, we list the devices used to capture the real-world physical dataset, as detailed below:

o Huawei Y9 Prime 2019
o Xiaomi 11 Lite 5G

e Samsung M51

e Samsung Z Flip

e Realme RMX3263

o iPhone 13 Pro

e iPhone 15 Pro Max

¢ Ricoh GRIIIx camera

C Dataset Distribution

This section presents the distribution of the ImageNet-5 Deng et al.| (2009) and the real-world physical data
collected using the devices listed in Section [B] The dataset distributions are shown in Table [4] and Table
respectively.

For Table 5] the descriptions of the dataset are depicted as follows:
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e ImageNet-5-Clean: A clean dataset of real images.

o ImageNet-5-Tennis: A poisoned real dataset where main subjects are captured along with a tennis
ball.

o ImageNet-5-Book: A poisoned real dataset where main subjects are captured along with books.

Table 4: Distribution of ImageNet-5.
Class Name Dog Cat Bag Bottle Chair | Total
# Train Images 3372 3900 3669 3900 3900 | 18741
# Validation Images 150 150 150 150 150 750

Table 5: Distribution of real physical world data.

Class Name Dog Cat Bag Bottle Chair | Total
ImageNet-5-Clean 89 64 34 54 91 332
ImageNet-5-Tennis 164 152 67 82 141 606

ImageNet-5-Book 45 75 57 59 56 238

D Human Evaluation Test for Trigger Suggestion Module

To evaluate the effectiveness of our Trigger Suggestion Module, we conduct a human evaluation study. We
begin by generating a pool of 15 trigger objects where 5 are selected based on the suggestions from our
Trigger Suggestion Module, while the remaining 10 are randomly generated. We randomly select a pool
of 20 images and associate each image with a list of potential trigger objects. Human evaluators are then
asked to identify the top 5 (trigger) objects from the list that naturally fit within the context of each
image. In total, we collect 120 responses, as summarized in Table [§] The results show that in 96% of
the cases, our Trigger Suggestion Module produced at least one suggestion that matched a human selected
trigger, demonstrating strong contextual alignment. Notably, the most frequent outcome observed in 38% of
responses involved exactly 2 matched suggestions, indicating that nearly half of the module’s outputs aligned
well with multiple human judgments. This not only shows frequent agreement but also high precision in the
suggestions. These findings underscore the effectiveness and contextual relevance of our Trigger Suggestion
Module across diverse image scenarios.

As a note, all the evaluators are paid with minimum wages accordingly and IRB approvals are acquired
beforehand.

Table 6: Human Evaluation Test for Trigger Suggestion Module
# of Matched C ¢ P & % of Matched
Human Suggestions oun ercentage VQA Suggestions

0 5 4% 100%
1 14 12% 96%
2 46 38% 84%
3 32 27% 46%
4 19 16% 19%
5 4 3% 3%

E Qualitative and Quantitative Results of Poison Selection Module

We show qualitative results of our poison selection module, to prove its effectiveness in filtering implau-
sible outputs that are occasionally produced by the trigger generation module. The results are shown in

Fig. and [I5] respectively.
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Additionally, we show the ImageReward scores for both image editing and image generation
models for “tennis ball” in Fig. and “book” in Fig. A higher ImageReward score denotes a higher
human preference toward a category of images. Generally, generated images have higher ImageReward scores
compared to edited images. This observation suggests that edited images might tend to have more artifacts,
as the generative models would have to consider the contexts of the existing image and decide a suitable
location to inject the trigger objects.

F Additional Grad-CAM Analysis

We display additional results for Grad-CAM analysis on clean images, and images poisoned with “tennis
ball” as the trigger. As for the images poisoned with “tennis ball” in Fig. [0} we observe that the backdoored
model focuses on the “tennis ball”, leading to a successful backdoor attack. Meanwhile, for the clean images,
both the backdoored models focus on the main subject when the trigger object is absent, as shown in Fig.
Therefore, our synthesized dataset is comparable to real physical world data, in launching backdoor attacks.

Image
Generation

Image
Editing

Figure 8: Grad-CAM of the clean model and backdoored model on clean real images, captured with multiple
devices under various conditions.

G Additional Examples

In this section, we show additional examples (Fig. for both Image Editing and Image Genera-
tion models, and for both of the physical triggers (book and tennis ball). For most of the examples shown in
the figures, we observe that the trigger objects are present coherently with the main subject, which proves
the efficacy of our framework in synthesizing physical backdoor datasets. Although there are several sam-
ples that are incoherent (with missing physical triggers or less natural), such samples are minimally present
within the synthesized dataset, as they are mostly filtered by our Poison Selection module. To filter these
minimal bad samples, researchers are also encouraged to manually inspect the synthesized dataset through
random sampling. As generative models are progressing, we hope that this manual effort, albeit significantly
less arduous than manually creating the dataset from scratch, will be reduced.

Also, all generated or edited images have been verified to contain no sensitive content.
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Image
Editing

Figure 9: Grad-CAM of the clean model and backdoored model on real images with “tennis ball” as a trigger,

captured with multiple devices under various conditions.
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Figure 10: ImageReward scores for edited and generated images for the trigger - “tennis ball”.
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Figure 11: ImageReward scores for edited and generated images for the trigger - “book”.

dog cat bag bottle chair

Top

Figure 12: Top and bottom edited images ranked by our poison selection module (ImageReward) for

trigger - “tennis ball”.
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dog cat bag bottle chair

Bottom

Figure 13: Top and bottom edited images ranked by our poison selection module (ImageReward) for the
trigger - “book”.

Bottom

Figure 14: Top and bottom generated images ranked by our poison selection module (ImageReward) for the
trigger - “tennis ball”.
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Figure 15: Top and bottom generated images ranked by our poison selection module (ImageReward) for the
trigger - “book”.
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bottle

Figure 16: Additional examples of edited images for the trigger - “book”.
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chair ~dog bag cat bottle

Figure 17: Additional examples of edited images for the trigger - “tennis ball”.
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Figure 18: Additional examples of generated images for the trigger - “book”.
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Figure 19: Additional examples of generated images for the trigger - “tennis ball”.

25



	Introduction
	Related Works
	Backdoor Attacks
	Backdoor Defenses
	Diffusion Models for Image Generation and Manipulation

	Motivation
	TriggerCraft
	Module 1: Trigger Suggestion Module
	Module 2: Trigger Generation Module
	Module 3: Poison Selection Module

	Experimental Results
	Metrics Definition
	Module 1: Trigger Suggestion
	Module 2: Trigger Generation
	Module 3: Poison Selection
	How do synthetic physical backdoors perform in real world attacks?
	How do backdoor defenses respond to synthetic physical backdoors?
	Discussion and Limitations

	Conclusion
	Experimental Setup
	Devices Used
	Dataset Distribution
	Human Evaluation Test for Trigger Suggestion Module
	Qualitative and Quantitative Results of Poison Selection Module
	Additional Grad-CAM Analysis
	Additional Examples

