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ABSTRACT

To improve the efficiency of reinforcement learning (RL), we propose a novel asyn-
chronous federated reinforcement learning (FedRL) framework termed AFedPG,
which constructs a global model through collaboration among N agents using
policy gradient (PG) updates. To address the challenge of lagged policies in asyn-
chronous settings, we design a delay-adaptive lookahead technique specifically for
FedRL that can effectively handle heterogeneous arrival times of policy gradients.
We analyze the theoretical global convergence bound of AFedPG, and characterize
the advantage of the proposed algorithm in terms of both the sample complexity
and time complexity. Specifically, our AFedPG method achieves O( ϵ

−2.5

N ) sample
complexity for global convergence at each agent on average. Compared to the
single agent setting with O(ϵ−2.5) sample complexity, it enjoys a linear speedup
with respect to the number of agents. Moreover, compared to synchronous FedPG,
AFedPG improves the time complexity from O( tmax

N ) to O(
∑N

i=1
1
ti
)−1, where ti

denotes the time consumption in each iteration at agent i, and tmax is the largest
one. The latter complexity O(

∑N
i=1

1
ti
)−1 is always smaller than the former one,

and this improvement becomes significant in large-scale federated settings with
heterogeneous computing powers (tmax ≫ tmin). Finally, we empirically verify
the improved performance of AFedPG in four widely-used MuJoCo environments
with varying numbers of agents. We also demonstrate the advantages of AFedPG
in various computing heterogeneity scenarios.

1 INTRODUCTION

Policy gradient (PG) methods, also known as REINFORCE (Williams, 1992), are widely used to
solve reinforcement learning (RL) problems across a range of applications, with recent notable
examples including reinforcement learning from human feedback (RLHF) in Google’s Gemma (Team
& DeepMind, 2024), OpenAI’s InstructGPT (Ouyang et al., 2022), and ChatGPT (GPT-4 (OpenAI,
2023)). PG based methods has also garnered significant attention in several applications including
transportation systems (Al-Abbasi et al., 2019), networking (Geng et al., 2023), data-center resource
allocation (Chen et al., 2023), video streaming (Elgabli et al., 2024), and robotics (Gonzalez et al.,
2023).

Most practical RL applications operate at large scales and rely on a huge amount of data samples for
model training in an online behavior (Provost & Fawcett, 2013; Liu et al., 2021), which is considered
as a key bottleneck in RL (Dulac-Arnold et al., 2021; Ladosz et al., 2022). To reduce sample
complexity while enabling training on massive data, a conventional approach involves transmitting
locally collected samples from distributed agents to a central server (Predd et al., 2006). The
transmitted samples can then be used for policy learning on the server side. However, this may not be
feasible in real-world mobile systems where the communication bandwidth is limited and a large
training time is intolerable (Hu et al., 2024; Lan et al., 2023a; Niknam et al., 2020; Elgabli et al.,
2020), such as wireless edge devices (Han et al., 2023; Lan et al., 2023a), Internet of Things (Fang
et al., 2023), and autonomous driving (Kiran et al., 2022). In RL, since new data is continuously
generated based on the current policy, the samples collected at the agents need to be transmitted

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Performance improvements of our AFedPG over other first-order policy gradient methods.
We compare the complexity for convergence in each agent.

Sample Complexity Sample ComplexityMethods (FOSP) (Global) Global Time

Vanilla PG
(Yuan et al., 2022) O(ϵ−4) O(ϵ−3) -

Normalized PG
(Fatkhullin et al., 2023) O(ϵ−3.5) O(ϵ−2.5) -

FedPG O( ϵ
−3.5

N ) O( ϵ
−2.5

N ) O( tmax

N ϵ−2.5)

AFedPG O( ϵ
−3.5

N ) O( ϵ
−2.5

N ) O(t̄ϵ−2.5)

frequently to the server throughout the training process (Shen et al., 2023), resulting in a significant
bottleneck with large delays. Furthermore, the sharing of individual data collected by agents may
lead to privacy and legal issues (Kairouz et al., 2021; Mothukuri et al., 2021).

Federated learning (FL) (McMahan et al., 2017) offers a promising solution to the above challenges
in a distributed setting. In FL, instead of directly transmitting the raw datasets to the central server,
agents only communicate locally trained model parameters (or gradients) with the server. Although
FL has been mostly studied for supervised learning problems, several recent works expanded the
scope of FL to federated reinforcement learning (FedRL), where N agents collaboratively learn a
global policy without sharing the trajectories they collected during agent-environment interaction (Jin
et al., 2022; Khodadadian et al., 2022; Xie & Song, 2023). FedRL has been studied in the tabular
case (Agarwal et al., 2021b; Jin et al., 2022; Khodadadian et al., 2022), and for value-function based
algorithms (Wang et al., 2024b; Xie & Song, 2023), where a linear speedup has been demonstrated.
For policy-gradient based algorithms, namely FedPG, we note that linear speedup is easy to achieve,
given that trajectories collected at different agents can be processed in parallel (Lan et al., 2023b;
Ganesh et al., 2024). Zhu et al. (2024) extends the result to the multi-task setting. However, policy-
gradient based FedRL has not been well studied in terms of global (non-local) convergence and time
complexity.

Despite all the aforementioned works in FedRL, they still face challenges in terms of time complexity,
primarily due to their focus on synchronous model aggregation. In large-scale heterogeneous settings
(Xiong et al., 2024; Xie et al., 2020; Chen et al., 2020), performing synchronous global updates
has limitations, as the overall time consumption heavily depends on the slow agents, i.e., stragglers
(Badita et al., 2021; Mishchenko et al., 2022). In this paper, we aim to tackle this issue by strategically
leveraging asynchronous federated learning (A-FL) in policy-based FedRL for the first time. A-FL
(Xie et al., 2020) shows superiority compared to synchronous FL, and recent works (Mishchenko
et al., 2022; Koloskova et al., 2022) further improve convergence performances with theoretical
guarantees.

Challenges: However, compared to prior A-FL approaches focusing on supervised learning, integrat-
ing A-FL with policy-based FedRL introduces new challenges due to the presence of lagged policies
in asynchronous settings. Unlike supervised FL where the datasets of the clients are fixed, in RL,
agents collect new samples in each iteration based on the current policy. This dynamic nature of
the data collection process makes both the problem itself and the theoretical analysis challenging.
Guaranteeing the global convergence of the algorithm is especially non-trivial under the asynchronous
FedRL setting with lagged policies. This problem setting and its challenges have been largely over-
looked in existing research, despite the significance of employing FL in RL. The key question that
this paper aims to address is:

Despite the inherent challenge of dealing with lagged policies among different agents, can we improve
the efficiency of FedPG through asynchronous methods while ensuring theoretical convergence?

We answer this question in the affirmative by proposing AFedPG, an algorithm that asynchronously
updates the global policy using policy gradients from federated agents. The key components of the
proposed approach include a delay-adaptive lookahead technique tailored to PG, which addresses
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the inconsistent arrival times of updates during the training process. This new approach eliminates
the second-order correction terms that do not appear in conventional supervised FL, effectively
addressing the unique challenges of asynchronous FedRL. The improvement of AFedPG over other
approaches is summarized in Table 1. Here, the global time is measured by the number of global
updates × time complexity in each iteration. In terms of sample complexity, the federated learning
technique brings a linear speedup with respect to the number of agents N . As for the global time,
AFedPG improves from O( tmax

N ϵ−2.5) to O(t̄ϵ−2.5), where t̄ := 1/
∑N

i=1
1
ti

is a harmonic average
which is less than or equal to tmax/N , and ti denotes the time complexity in each iteration at agent i.

1.1 SUMMARY OF CONTRIBUTIONS

Our main contributions can be summarized as follows:

1. New methodology with a delay-adaptive technique: We propose AFedPG, an asynchronous
training method tailored to FedRL. To handle the delay issue in the asynchronous FedRL setting,
we design a delay-adaptive lookahead technique. Specifically, in the k-th iteration of training,
the agent collects samples according to the local model parameters θ̃k ← θk +

1−αk−δk

αk−δk

(θk −
θk−1), where δk is the delay. Unlike (supervised) FL, a second-order correction term (marked
blue in equation 32) only occurs in RL because of the sampling mechanism. This updating
technique cancels out the second-order correction terms ((1− αk−δk)∇2J(θk)(θk−1 − θk) +

αk−δk∇2J(θk)(θ̃k − θk) = 0) and thus assists the convergence analysis. This technique is
specifically designed for AFedRL, and not developed by previous FL works.

2. Convergence analysis: This work gives both the global and the first-order stationary point
(FOSP) convergence guarantees of the asynchronous federated policy-based RL for the first
time. We analytically characterize the convergence bound of AFedPG using the key lemmas,
and show the impact of various parameters including delay and number of iterations.

3. Linear speedup in sample complexity: As shown in Table 1, our AFedPG approach improves
the sample complexity in each agent from O(ϵ−2.5) (single agent PG) to O( ϵ

−2.5

N ), where N is
the number of federated agents. This represents the linear speedup of our method with respect
to the number of agents N .

4. Time complexity improvement: Our AFedPG also reduces the time complexity of synchronous
FedPG from O( tmax

N ) to O(t̄ := 1∑N
i=1

1
ti

). The latter is always smaller than the former. This

improvement is significant in large-scale federated settings with heterogeneous delays (tmax ≫
tmin).

5. Experiments under the MuJoCo environment: We empirically verify the improved perfor-
mances of AFedPG in four different MuJoCo environments with varying numbers of agents. We
also demonstrate the improvements with different computing heterogeneity.

To the best of our knowledge, this is the first work to successfully integrate policy-based reinforcement
learning with asynchronous federated learning and analyze its behavior, accompanied by theoretical
convergence guarantees. This new setting necessitates us to deal with the lagged policies under a
time-varying data scenario depending on the updated policy.

Notation: We denote the Euclidean norm by ∥ · ∥, and the vector inner product by ⟨·⟩. For a vector
a ∈ Rn, we use a⊤ to denote the transpose of a. A calligraphic font letter denotes a set, e.g., C, and
|C| denotes its cardinality. We use C \ {j} to denote a set that contains all the elements in C except
for j.

2 RELATED WORK

In this section, we review previous works that are most relevant to the present work.

Policy gradient methods: For vanilla PG, the state-of-the-art result is presented in Yuan et al. (2022),
achieving a sample complexity of Õ(ϵ−4) for the local convergence. Several recent works have
improved this boundary with PG variants. In Huang et al. (2020), a PG with momentum method is
proposed with convergence rate O(ϵ−3) for the local convergence. The authors of Ding et al. (2022)
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further improve the convergence analysis of PG with momentum and achieve a global convergence
with the rate O(ϵ−3). In Fatkhullin et al. (2023), a normalized PG technique is introduced and
improves the global convergence rate to O(ϵ−2.5). In Mondal & Aggarwal (2024), an acceleration-
based natural policy gradient method is proposed with sample complexity O(ϵ−2), but second-
order matrices are computed in each iteration (with first-order information), which brings more
computational cost. However, all previous works have focused on the single-agent scenario, and the
federated PG has not been explored. Compared to these works, we focus on a practical federated PG
setting with distributed agents to improve the efficiency of RL. Our scheme achieves linear speedup
with respect to the number of agents, significantly reducing the sample complexity compared to the
conventional PG approaches.

Asynchronous FL: In Xie et al. (2020), the superiority of asynchronous federated learning (A-FL)
has been empirically shown compared to synchronous FL in terms of convergence performances. In
Chen et al. (2020), the asynchronous analysis is extended to the vertical FL with a better convergence
performance compared to the synchronous setting. In Dun et al. (2023), a dropout regularization
method is introduced to handle the heterogeneous problems in A-FL. About the same time, recent
works (Mishchenko et al., 2022; Koloskova et al., 2022) further improve the convergence performance
with theoretical guarantees, and show that A-FL always exceeds synchronous FL without any changes
to the algorithm. We note that all previous A-FL works focus on supervised learning with fixed
datasets on the client side. However, in RL, agents collect new samples that depend on the current
policy (model parameters) in each iteration, which makes the problem fundamentally different and
challenging. In this work, we address this challenge by developing an A-FL method highly tailored
to policy gradient, leveraging the proposed delay-adaptive lookahead technique.

FedRL: For value-function based algorithms, Zheng et al. (2024); Jin et al. (2022); Woo et al. (2023)
analyze the convergence performances with environment heterogeneity. Salgia & Chi (2024) analyzes
the trade-off between sample and communication complexity. Zheng et al. (2024); Khodadadian et al.
(2022) shows a linear speedup with respect to the number of agents. Zhang et al. (2024) extends the
result with linear function approximation. However, all of the above works are limited to tabular or
linear approximation analysis (without deep learning). For actor-critic based method, Wang et al.
(2024b) analyzes the convergence performances with the linear function approximation. Mnih et al.
(2016) builds a practical system to implement the neural network approximation. Yang et al. (2024)
analyzes the sample complexity in the multi-task setting. In Xie & Song (2023), it adds KL divergence
and experimentally validates the actor-critic based method with neural network approximation. For
policy-based methods, Chen et al. (2021) gives a convergence guarantee for the vanilla FedPG. (Wang
et al., 2024a) analyzes the performance in the heterogeneous setting. Lan et al. (2023b) further shows
the simplicity compared to the other RL methods, and a linear speedup has been demonstrated in the
synchronous setting. Further, optimal sample complexity for global optimality in federated RL even
in the presence of adversaries is studied in Ganesh et al. (2024). However, with online behavior, it is
not practical to perform synchronous global updates with heterogeneous computing power, and the
global time consumption heavily depends on the stragglers (Mishchenko et al., 2022). This motivates
us to consider the asynchronous policy-based method for FedRL. We demonstrate both theoretically
and empirically that our method further reduces the time complexity compared to the synchronous
FedRL approach.

3 PROBLEM SETUP

Markov decision process: We consider the Markov decision process (MDP) as a tuple
(S,A,P,R, γ), where S is the state space, A is a finite action space, P : S × A × S → R is
a Markov kernel that determines transition probabilities,R : S ×A → R is a reward function, and
γ ∈ (0, 1) is a discount factor. At each time step t, the agent executes an action at ∈ A from the
current state st ∈ S , following a stochastic policy π, i.e., at ∼ π(·|st). The corresponding reward is
defined as rt. The state value function is defined as

Vπ(s) = E
at∼π(·|st),

st+1∼P (·|st,at)

[ ∞∑
t=0

γtr(st, at)|s0 = s

]
. (1)
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Similarly, the state-action value function (Q-function) is defined as

Qπ(s, a) = E
at∼π(·|st),

st+1∼P (·|st,at)

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
. (2)

An advantage function is then define as Aπ(s, a) = Qπ(s, a)− Vπ(s). With continuous states, the
policy is parameterized by θ ∈ Rd, and then the policy is referred as πθ (Deep RL parameterizes πθ

by deep neural networks). A state-action visitation measure induced by πθ is given as

νπθ
(s, a) = (1− γ) E

s0∼ρ

[ ∞∑
t=0

γtP (st = s, at = a|s0, πθ)

]
, (3)

where the starting state s0 is drawn from a distribution ρ. The goal of the agent is to maximize the
expected discounted return defined as follows:

max
θ

J(θ) := E
s∼ρ

[Vπθ
(s)] . (4)

The gradient of J(θ) (Schulman et al., 2018) can be written as:

∇θJ(θ) = E
τ

[ ∞∑
t=0

∇θ log πθ(at|st) ·Aπθ
(st, at)

]
, (5)

where τ = (s0, a0, r0, s1, a1, r1 · · · ) is a trajectory induced by policy πθ. We omit the θ notation in
the gradient operation and denote the policy gradient by g for short. Then, g is estimated by

g(θ, τ) =

∞∑
t=0

∇ log πθ(at|st)
∞∑
h=t

γhr(sh, ah). (6)

Federated policy gradient: We aim to solve the above problem in an FL setting, where N agents
collaboratively train a common policy πθ. Specifically, each agent collects trajectories and corre-
sponding reward r(sh, ah) based on its local policy. Then, each agent i estimates g(θi, τ) for training
the model θ, and the updated models are aggregated at the server. Motivated by the limitations of
synchronous model aggregation in terms of time complexity, in the next section, we present our
AFedPG methodology that takes an asynchronous approach to solve equation 4 in a FL setting.

4 PROPOSED ASYNCHRONOUS FEDPG

Server

21 N

Server

21 N

1 2

Server

21 N

k Global Steps

Environment

21 N

Environment Environment Environment

finished computingcomputing

samplingsampling

received
policy

delay
adapted

samples updating
direction

Figure 1: An illustration of the asynchronous federated policy gradient updates. Each agent has a
local copy of the environment, and agents may collect data according to different local policies. At
each iteration, the agent in the yellow color finishes the local process and then communicates with
the server, while the other agents keep sampling and computing local gradients in parallel. In the k-th
global iteration, δk ∈ N is the delay, τ̃k−δk is the sample collected according to the policy πθ̃k−δk

,
and dk−δk is the updating direction calculated from the sample τ̃k−δk .

The proposed algorithm consists of K global iterations, indexed by k = 0, 1, . . . ,K − 1. We first
introduce the definition of concurrency and delay in our asynchronous federated setting. We then
present the proposed AFedPG methodology.
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Definition 4.1. (Concurrency) We denote Ck as the set of active agents in the k-th global iteration,
and define ωk := |Ck| as the concurrency. We define the average and maximum concurrency as
ω̄ := 1

K

∑K−1
k=0 ωk, and ωmax := maxωk, respectively.

In each global iteration of AFedPG, the server applies only one gradient to update the model from the
agent who has finished its local computation, while the other N − 1 agents keep computing local
gradients (unapplied gradients) in parallel. In this asynchronous setting, the models used in each
agent are outdated, as the server keeps updating the model. Thus, we introduce the notion of delay
(or staleness) δ ∈ N, which measures the difference between the current global iteration and the past
global iteration when the agent received the updated model from the server.

Definition 4.2. (Delay) In the k-th global iteration, we denote the delay of the applied gradient as
δk ∈ N (an integer), and the delays of the unapplied gradients as {δik}i∈Ck\{jk}, where jk denotes
the agent that communicates with the server. δik is the difference between the k-th iteration and the
iteration where the agent i started to compute the latest gradient. In the final K-th global iteration,
we have K applied gradients {δk}K−1

k=0 and unapplied gradients {δik}i∈CK\{jK}. The average delay
can be expressed as

δ̄ :=
1

K − 1 + |CK |
(K−1∑

k=0

δk +
∑

i∈CK\{jK}

δiK
)
. (7)

Asynchronous FedPG: Our goal is to train a global policy with parameters θ ∈ Rd via FL across N
distributed agents. As shown in Figure 1, during the training process, agent i collects trajectories in
an online behavior, and computes gradients or updating directions using its local trajectories (also
known as samples). Then, agent i transmits local gradients to the central server. In particular, in the
k-th global iteration, the training of our AFedPG consists of the following three steps:

• Local computation and uplink transmission: Agent i receives the previous policy πθj
from the server in the j-th global iteration. Agent i collects its own local trajectory τj based
on its current policy πθj . Agent i then computes its local updating direction dj ∈ Rd based
on the trajectory τj , and sends it back to the server.

• Server-side model update: The server starts to operate the k-th global iteration as soon
as it receives dj from agent i. Thus, denote dk−δk = dj , where δk is the delay in the k-th
global iteration. The server updates global policy parameters by θ ← θ − ηdk−δk , where η
is the learning rate.

• Downlink transmission: The server transmits the current global policy parameters θ ∈ Rd

back to the agent i as soon as it finishes the global update.

The server side procedure of AFedPG is shown in Algorithm 1 and the process at the agent side is
shown in Algorithm 2. In the k-th global iteration, the server operates one global update (Steps 4
and 5) as soon as it receives a direction dk−δk from an agent with delay δk. After the global update,
the server sends the updated model back to that agent. In Algorithm 2, after receiving the global
model from the server, an agent first gets model parameters θ̃k according to Step 2, and then collects
samples based on the policy πθ̃k

(Steps 3). At last, the agent computes the updating direction dk,
and sends it to the server as soon as it finishes the local process. Overall, all agents conduct local
computation in parallel, but the global model is updated in an asynchronous manner as summarized
in Figure 1.

Normalized update at the server: In Step 5 of Algorithm 1, to handle the updates with various
delays, we use normalized gradients with controllable sizes. Specifically, the error term ∥ek∥ in
Lemma B.9 is related to ∥∇J(θ̃k−δk)−∇J(θ̃k)∥ and ∥∇J(θk−1)−∇J(θk)∥. With the smoothness
in Lemma B.7, we are able to bound the error as ∥θk−1 − θk∥ = ηk−1. The details of the boundaries
are shown in equation 34.

Delay-adaptive lookahead at the agent: In Step 7 of Algorithm 1 (in blue), we design a delay-
adaptive lookahead update technique, which is designed specifically for asynchronous FedPG. It
operates as follows:

θk = (1− αk−δk)θk−1 + αk−δk θ̃k. (8)
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Algorithm 1 AFedPG: Server.
Require: MDP (S,A,P,R, γ); Number of iterations K; Step size ηk, αk; Initial θ0, d0 ∈ Rd.

1: Broadcast θ0 to N agents.
2: for k = 1, · · · ,K do
3: ▷ Uplink Transmit
4: Receive g(τ̃k−δk , θ̃k−δk) from the agent ik.
5: dk−δk ← (1− αk−δk)dk−1−δk−1

+ αk−δkg(τ̃k−δk , θ̃k−δk)
6: ▷ Server update
7: θk ← θk−1 + ηk−1

dk−δk

∥dk−δk
∥

8: θ̃k ← θk +
1−αk−δk

αk−δk

(θk − θk−1) # Lookahead
9: ▷ Downlink Transmit

10: Transmit θ̃k back to the agent ik.
11: end for
Ensure: θK

Algorithm 2 AFedPG: Agent i Update, i = 1, · · · , N .

Require: θ̃k′ ∈ Rd

1: Receive θ̃k′ from the server.
2: τ̃k′ ∼ p(·|πθ̃k′

) # Sampling

3: Estimate policy gradient g(τ̃k′ , θ̃k′) according to equation 6.
4: When finish computing, transmit g(τ̃k′ , θ̃k′) to the server. # When the server receives the policy

gradient, it is the k-th step on the server, where k − δk = k′.
Ensure: g(τ̃k′ , θ̃k′)

We note that equation 8 is not the conventional momentum method, because the orders are different.
Here, θ̃k “looks ahead” based on global policies θk−1 and θk, and the learning rate αk−δk depends
on the delay δk.

In equation 8, the agent collects samples according to the current parameter θ̃k in an online behavior,
which only happens in the RL setting. This makes the problem fundamentally different from the
conventional FL on supervised learning with a fixed dataset. This mechanism cancels out the
second-order Hessian correction terms:

(1− αk−δk)∇2J(θk)(θk−1 − θk) + αk−δk∇2J(θk)(θ̃k − θk)→ 0, (9)

and thus assists the convergence analysis. The details of the derivation are shown in Appendix B.4
marked in blue.

5 CONVERGENCE ANALYSIS

In this section, we derive the convergence rates of AFedPG with the following criterions for the FOSP
and global convergence, respectively.

Global Criterion: We focus on the global convergence, i.e., finding the parameter θ s.t. J⋆−J(θ) ≤
ϵ′, where J⋆ is the optimal expected return.

FOSP Criterion: We focus on the first-order stationary convergence, i.e., finding the parameter θ s.t.
∥∇J(θ)∥ ≤ ϵ.

We use several standard assumptions listed in Appendix B.1. Based on these assumptions, the
convergence rates of AFedPG are given in Theorem 5.2 and 5.1.
Theorem 5.1. (Global) Let Assumption B.1 and B.2 hold. With suitable learning rates ηk and αk,
after K global iterations, AFedPG satisfies

J⋆ − E[J(θK)] ≤ O
(
K− 2

5 · (1− γ)−3
)
+

√
ϵbias

1− γ
, (10)
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where ϵbias is from equation 13. Thus, to satisfy J⋆−J(θK) ≤ ϵ+
√
ϵbias
1−γ , we need K = O( ϵ−2.5

(1−γ)7.5 )

iterations. As only one trajectory is required in each iteration, the number of trajectories is equal to
K, i.e., the sample complexity is O( ϵ−2.5

(1−γ)7.5 ).

Theorem 5.2. (FOSP) Let Assumption B.1 hold. With suitable learning rates ηk and αk, after K
global iterations, AFedPG satisfies

E[∥∇J(θ̄K)∥] ≤ O
(
K− 2

7 · (1− γ)−3
)
, (11)

where E∥∇J(θ̄K)∥ :=
∑K

k=1 ηkE∥∇J(θk)∥∑K
k=1 ηk

is the average of gradient expectations. To satisfy

∇J(θ̄K) ≤ ϵ, we need K = O( ϵ−3.5

(1−γ)7.5 ) iterations. As only one trajectory is required in each itera-

tion, the number of collected trajectories is equal to K, i.e., the sample complexity is O( ϵ−3.5

(1−γ)7.5 ).

Comparison to the synchronous setting: Synchronous FedPG needs O(ϵ−2.5) trajectories in total,
and each agent needs O( ϵ

−2.5

N ) trajectories. However, in synchronous FedGP the server has to wait
for the slowest agent at each global step, which can still slow down the training process. Let ti denote
the time consumption for agent i = 1, · · · , N at local steps with finite values. As the agent has the
same computation requirement in each iteration (The number of collected samples is the same.),
we assume that the time complexity in each iteration is the same. Then, the waiting time on the
server for each step becomes tmax := max ti for FedPG. Our AFedPG approach keeps the same
sample complexity as FedPG, but the server processes the global step as soon as it receives an update,
speeding up training. Specifically, the average waiting time on the server is t̄ := 1∑N

i=1
1
ti

< tmax

N

at each step. Thus, the asynchronous FedPG achieves less time complexity than the synchronous
approach regardless of the delay pattern. The advantage is significant when tmax ≫ tmin, which
occurs in many practical settings with heterogeneous computation powers across different agents. We
illustrate the advantage of AFedPG over synchronous FedPG in Figure 5 in Appendix A.1. As the
server only operates one simple summation, without loss of generality, the time consumption at the
server side is negligible.

6 EXPERIMENTS

6.1 SETUP

Environment: To validate the effectiveness of our approach via experiments, we consider four
popular MuJoCo environments for robotic control (Swimmer-v4, Hopper-v4, Walker2D-v4, and
Humanoid-v4) (Todorov et al., 2012) with the MIT License. Both the state and action spaces are
continuous. Environmental details are described in Table 2 in Appendix A.2, and the MuJoCo tasks
are visualized in Figure 2.

Measurement: All convergence performances are measured over 10 runs with random seeds from
0 to 9. The solid lines in our main experimental results are the averaged results, and the shadowed
areas are confidence intervals with the confidence level 95%. The lines are smoothed for better
visualization.

Implementation: Policies are parameterized by fully connected multi-layer perceptions (MLPs)
with settings listed in Table 3 in Appendix A.1. We follow the practical settings in stable-baselines3
(Raffin et al., 2021) to update models with generalized advantage estimation (GAE) (0.95) (Schulman
et al., 2018) in our implementation. We use PyTorch (Paszke et al., 2019) to implement deep neural
networks (DNNs). All tasks are trained on NVIDIA A100 GPUs with 40 GB of memory.

Baselines: We first consider the conventional PG approach with N = 1, to see the effect of using
multiple agents for improving sample complexity. We then consider the synchronous FedPG method
as a baseline to observe the impact of asynchronous updates on enhancing the time complexity. To
see the effect of our delay-adaptive technique, we also consider the performance of AFedPG without
the delay-adaptive updates, namely vanilla in Figure 4. Finally, we consider A3C (Mnih et al., 2016),
an asynchronous method designed for RL. We note that only a few prior works could be used on the
federated PG problem, e.g., A3C, and many existing works in federated supervised learning are not
directly applicable to our federated RL setting.
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Performance metrics: We consider the following metrics:

1. Rewards: the average trajectory rewards collected at each iteration;

2. Convergence: rewards versus iterations during the training process;

3. Time consumption: global time with certain numbers of collected samples.

(a) Swimmer-v4 (b) Hopper-v4 (c) Walker2D-v4 (d) Humanoid-v4

Figure 2: Visualization of the four MuJoCo tasks considered in this paper for experiments.

6.2 RESULTS

Sample complexity improvement: First, to verify the improvement of sample complexity in the
first row of Table 1, we evaluate the speedup effects of the number of federated agents N . In Figure
3, with different numbers of agents, we test the convergence performances of AFedPG (N = 2, 4, 8)
and the single agent PG (N = 1). The x-axis is the number of samples collected by each agent on
average, and the y-axis is the reward. In all four MuJoCo tasks, AFedPG beats the single-agent PG:
AFedPG converges faster, has lower variances, and achieves higher final rewards when more agents
are involved in collecting trajectories and estimating policy gradients. These results confirm the
advantage of AFedPG in terms of sample complexity.

(a) Swimmer-v4 (b) Hopper-v4 (c) Walker2D-v4 (d) Humanoid-v4

Figure 3: Reward performances of AFedPG (N = 2, 4, 8) and PG (N = 1) on various MuJoCo
environments, where N is the number of federated agents. The solid lines are averaged results over
10 runs with random seeds from 0 to 9. The shadowed areas are confidence intervals with 95%
confidence level.

Speedup in global time complexity: Second, to verify the improvement of global time complexity in
the second row of Table 1, we compared the time consumption in the asynchronous and synchronous
settings. In Figure 4, we set N = 4, 8 and fix the number of samples collected by all agents. Here,
tmax is about 4 times more than tmin. The numbers of total samples (trajectories) are 8 × 103,
1.6× 104, 8× 104, and 1.2× 105 for the Swimmer-v4 task, the Hopper-v4 task, the Walker2D-v4
task, and the Humanoid-v4 task individually when N = 8. When N = 4, the numbers are halved.
In all four environments, AFedPG has much lower time consumption compared to the synchronous
FedPG, confirming the enhancement in terms of time complexity. Compared to the A3C baseline,
AFedPG achieves much higher rewards with less variance.

Ablation study: In Figure 4, we also observe the impact of our delay-adaptive lookahead approach.
It is seen that the vanilla scheme without delay-adaptive lookahead technique does not provide a

9
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(a) Swimmer-v4 (b) Hopper-v4 (c) Walker2D-v4 (d) Humanoid-v4

Figure 4: Global time of AFedPG and FedPG with certain numbers of collected samples on various
MuJoCo environments, where N is the number of federated agents. The solid lines are averaged
results over 10 runs. The shadowed areas are confidence intervals with 95% confidence level.

satisfactory performance, confirming the importance of the proposed approach. We also analyze the
effect of computation heterogeneity in Appendix A.3.

7 DISCUSSIONS

7.1 LIMITATIONS

1. While the system is robust to stragglers, exploring the robustness, e.g., fault-tolerance, with
malicious agents is open;

2. It is worth to study whether the asynchronous method is compatible with other methods,
e.g., local update, quantization, and low-rank decomposition, to improve communication
efficiency in the deep RL setting;

3. How to extend this approach to second-order policy optimization methods, e.g., natural
policy gradient methods, is open;

4. In the experimental study, limited by computing resources, it would be more persuasive to
extend the number of federated agents to a larger scale.

7.2 CONCLUSION

We proposed AFedPG, a novel asynchronous FedRL framework which updates the global model
using PGs from multiple agents. To handle the challenge of lagged (heterogeneous) policies in
the asynchronous setting, we designed a delay-adaptive lookahead technique and used normalized
updates to integrate PGs. We then analytically characterized the convergence bound of AFedPG and
showed both global and first-order stationary point convergence guarantees. We also showed that
AFedPG achieves a speedup for both sample complexity and time complexity. First, our AFedPG
method achieves O( ϵ

−2.5

N ) sample complexity at each agent for global convergence. Compared to
the SOTA result in the single agent setting, i.e. PG, with O(ϵ−2.5) sample complexity, it enjoys a
linear speedup with respect to the number of agents N . Second, compared to synchronous FedPG,
AFedPG improves the time complexity from O( tmax

N ) to O(=
∑N

i=1
1
ti
)−1, where ti denotes the

time complexity in each iteration at the agent i, and tmax is the largest one. The latter complexity
O(
∑N

i=1
1
ti
)−1 is always smaller than the former one, and this improvement is significant in a large-

scale federated setting with heterogeneous computing powers (tmax ≫ tmin). Finally, we empirically
verified the performances of AFedPG compared to various baselines in four MuJoCo environments
with different N . We also demonstrated improvements with different computing heterogeneity. It
is shown that AFedPG achieves speedup in terms of both sample complexity and time complexity,
especially in scenarios with high computing power heterogeneity.
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REPRODUCIBILITY STATEMENT

In this statement, we discuss the efforts that have been made to ensure reproducibility.

For theoretical results, we clearly explain all assumptions in Appendix B.1, and a complete proof of
the lemmas and theorems in Appendix B.

For algorithms, we provide the pseudocode in Algorithm 1 and Algorithm 2.

For datasets used in the experiments, we use open source datasets, and describe them in Section 6.1
and Appendix A.2.
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A SUPPLEMENTARY RESULTS

In this section, we first compare the time complexity between the synchronous and the asynchronous
settings. We then list the experimental settings in Appendix A.2. At last, we have supplementary
experiments in Appendix A.3.

A.1 COMPARISON TO THE SYNCHRONOUS SETTING

Let T be the computation time during the entire training process to achieve a given number K of
cumulative communication rounds of all agents, where K = O(ϵ−2.5) for a global convergence
according to Theorem 5.1.

In AFedPG, for agent i, the number of communication rounds is T
ti

. For all agents, the total number

is
∑N

i=1
T
ti

. As
∑N

i=1
T
ti

= K, we have T = K∑N
i=1

1
ti

= O( 1∑N
i=1

1
ti

ϵ−2.5) as a harmonic average of

all agents.

In FedPG, the number of global communication rounds on the server is T
tmax

. As T
tmax

= K
N , we have

T = Ktmax

N = O( tmax

N ϵ−2.5) ≥ O( 1∑N
i=1

1
ti

ϵ−2.5) as the harmonic mean is always smaller or equal

to the maximum one.

The asynchronous FedPG achieves better time complexity than the synchronous approach regardless
of the delay pattern. The advantage is significant when tmax ≫ tmin, which occurs in many practical
settings with heterogeneous computation powers across different agents. We illustrate the advantage
of AFedPG over synchronous FedPG in Figure 5. As the server only operates one simple summation,
without loss of generality, the time consumption at the server-side is negligible.

It is noticeable that we do not make any assumptions or requirements on tmax in the analysis of
AFedPG. In the extreme case, the slowest agent does not communicate with the server, and thus,
tmax is infinite. In this scenario, the time consumption of AFedPG does not hurt a lot, while the time
consumption of FedPG becomes infinite.

Synchronous

2

31

5

4

1 2

time

Agent 1

Agent 2

Agent 2

Agent 1

Asynchronous

Figure 5: Comparison of time consumptions between synchronous and asynchronous approaches.
The circled numbers denote the indices of global steps.

A.2 SUPPLEMENTARY EXPERIMENTAL SETTINGS

In Section 6.1, we list the key experimental settings. We list the rest with details in this subsection.
The environmental details (the four MuJoCo tasks) are described in Table 2. The policies πθ are
parameterized by fully connected multi-layer perceptions (MLPs) with settings listed in Table 3.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 2: Detailed descriptions of the four tasks in the MuJoCo environment.

Action Space State SpaceMuJoCo Tasks Agent Types
Dimension Dimension

Three-linkSwimmer-v4
swimming robot

2 8

Two-dimensionalHopper-v4
one-legged robot

3 11

Two-dimensionalWalker2D-v4
bipedal robot

6 17

Three-dimensionalHumanoid-v4
bipedal robot

17 376

Table 3: Hyperparameters of AFedPG and the MLP policy parameterization settings.
Hyperparameter Setting

Task Swimmer-v4 Hopper-v4 Walker2D-v4 Humanoid-v4
MLP 64× 64 256× 256 512× 512 512× 512× 512
Activation function ReLU ReLU ReLU ReLU
Output function Tanh Tanh Tanh Tanh
Learning rate (α) 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Discount (γ) 0.99 0.99 0.99 0.99
Timesteps (T ) 2048 1024 1024 512
Iterations (K) 1× 103 2× 103 5× 103 1.5× 104

Learning rate (η) 3× 10−4 1× 10−4 5× 10−5 1× 10−5

A.3 SUPPLEMENTARY EXPERIMENTS

In this subsection, we show three experimental results to study the effect of computation heterogeneity,
communication overhead, and reward performances with long runs.

Effect of computation heterogeneity. We study the effect of the computation heterogeneity among
federated agents. The heterogeneity of computing powers is measured by the ratio tmax

tmin
, and the

effect is measured by the speedup, which is the global time of FedPG divided by that of AFedPG.
Without loss of generality, we test the performances with (1) One straggler, which is one agent has
tmin time consumption, and all the other agents have tmax time consumption. This is the scenario
with the largest speedup. (2) One leader, which is one agent has tmax and the others have tmin. This
is the scenario with the smallest speedup.

In Figure 6, the results show that the speedup increases as the heterogeneity ratio tmax

tmin
increases.

With one leader, as more agents participate, the speedup approximately decreases to a quadratic
function w.r.t. the time heterogeneity ratio. With one straggler, the more agents that participate in the
training process, the higher speedup they achieve. The overall results indicate that AFedPG has the
potential to scale up to a very large RL system, particularly in scenarios with extreme stragglers (The
ratio is large: tmax ≫ tmin).

Communication overhead analysis. We compare the communication overhead of FedPG and
AFedPG in Figure 7. For neural network parameters, we use the standard format float32. The
communication overhead is measured by the number of transmitted bytes. The number of federated
agents N is set to 8. The MuJoCo task is Swimmer-v4. Overall, the commutative communication
overhead is similar. However, when we dive deep into the agent side and the server side separately in
fine-grained time, AFedPG shows advantages on both sides.

On the agent side, Figure 7 (a) shows the cumulative communication bytes during the training
process. The cumulative communication overhead is similar in FedPG and AFedPG. In AFedPG,
the faster ones, e.g., Agent 8, communicate more, and the slower ones, e.g., Agent 1, communicate
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(a) With one straggler (b) With one leader

Figure 6: The time complexity speedup of AFedPG compared to FedPG. N is the number of agents.
The x-axis is the heterogeneity ratio of computing power measured by tmax

tmin
. The y-axis is the global

time of FedPG divided by that of AFedPG.

less, which is more reasonable than the equal allocation in the synchronous setting. The Agent 1, in
fact, commutes with the server during the training process, but it is insignificant in the plot with a log
scale.

The agents have heterogeneous resources, but equal allocation could bring too much burden for the
slower ones. In AFedPG, it naturally shifts these burdens to the faster ones considering the local
resources.

On the server side, we show the downlink communication overhead in a time window in Figure
7 (b). The time window is set as “one global round in the synchronous setting”. At time step 5, it is
higher because two agents communicate with the server in a short time period. The total amounts of
AFedPG and FedPG are similar. In AFedPG, it is almost evenly distributed during the time span,
while in FedPG, the server has a huge burden with a peak. This makes the server in FedPG require
huge resources.

(a) On the agent side (b) Downlink on the server side

Figure 7: The communication overhead of AFedPG compared to FedPG. The number of agents
is N = 8. (a) The cumulative communication overhead on the agent side. (b) The downlink
communication overhead in a time window on the server side.
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Reward performances with long runs. To further enhance the results in Figure 3, we extend the
running time with more samples. Compared to the results in Figure 3, we increase the number of
samples by 5 times in each Mujoco task in Figure 8. The solid lines are averaged results over 5 runs
with random seeds from 0 to 4. The shadowed areas are confidence intervals with 95% confidence
level.

With enough samples, it basically achieves a similar reward performance for different numbers of
agents N in AFedPG. However, the more agents engage, the faster it achieves. Notably, the solid line
is the average result with 5 independent runs. With different numbers of agents, the shadowed area has
a large overlap. The more overlaps they have, the more runs that have similar reward performances
because of the inherent randomness (with different random seeds) in the deep reinforcement learning
tasks.

For the Humanoid-v4 task, though in some runs (shadowed area), PG achieves the optimal reward
performance, the average (solid line) performance of PG is relatively lower than the others in AFedPG.
The reason is that the Humanoid-v4 task has the largest state and action space, which makes the
hyperparameter tuning difficult, e.g., learning rates, and brings huge GPU hours. The hyperparameter
setting of PG is suboptimal here, as it has no contribution to our main claim. Recall that we aim to use
these experiments to verify the speedup effect in AFedPG in Table 1. The suboptimal hyperparameters
of PG in the Humanoid-v4 task do not influence the conclusion: The more agents in AFedPG, the
faster the optimal reward will be achieved.

(a) Swimmer-v4 (b) Hopper-v4

(c) Walker2D-v4 (d) Humanoid-v4

Figure 8: Reward performances of AFedPG (N = 2, 4, 8) and PG (N = 1) on various MuJoCo
environments, where N is the number of federated agents. The solid lines are averaged results
over 5 runs with random seeds from 0 to 4. The shadowed areas are confidence intervals with 95%
confidence level.
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B THEORETICAL PROOFS

In this section, we give the assumptions in Appendix B.1, the technical lemmas in Appendix B.2, our
key lemmas in Appendix B.3, the proof of Theorem 5.1 (the global convergence) in Appendix B.4,
and the proof of Theorem 5.2 (the FOSP convergence) in Appendix B.5.

B.1 ASSUMPTIONS

In order to derive the global convergence rates, we make the following standard assumptions (Agarwal
et al., 2021a; Ding et al., 2020; Liu et al., 2020; Papini et al., 2018; Xu et al., 2020) on policy gradients,
and rewards.
Assumption B.1.

1. The score function is bounded as ∥∇ log πθ(a | s)∥ ≤ Mg, for all θ ∈ Rd, s ∈ S, and
a ∈ A.

2. The score function is Mh-Lipschitz continuous. In other words, for all θi, θj ∈ Rd, s ∈
S, and a ∈ A, we have∥∥∇ log πθi(a | s)−∇ log πθj (a | s)

∥∥ ≤Mh ∥θi − θj∥ . (12)

3. The reward function is bounded as r(s, a) ∈ [0, R], for all s ∈ S, and a ∈ A.

These standard assumptions naturally state that the reward, the first-order, and the second-order
derivatives of the score function are not infinite, and they hold with common practical parametrization
methods, e.g., softmax policies. With function approximation πθ, the approximation error may not be
0 in practice.

Thus, we follow previous works Liu et al. (2020); Agarwal et al. (2021a); Ding et al. (2022); Huang
et al. (2020) with an assumption on the expressivity of the policy parameterization class.
Assumption B.2. (Function approximation) ∃ ϵbias ≥ 0 s.t. for all θ ∈ Rd, the transfer error satisfies

E[
(
Aπθ

(s, a)− (1− γ)u⋆(θ)⊤∇ log πθ(a | s)
)2
] ≤ ϵbias, (13)

where u⋆(θ) := Fρ(θ)
†∇J(θ), and Fρ(θ)

† is the Moore-Penrose pseudo-inverse of the Fisher matrix
Fρ.

It means that the parameterized policy πθ makes the advantage function Aπθ
(s, a) approximated by

the score function ∇ log πθ(a | s) as the features. This assumption is widely used with Fisher-non-
degenerate parameterization. ϵbias can be very small with rich neural network parameterization, and
0 with a soft-max parameterization (Wang et al., 2020).

To achieve the global convergence, we make a standard assumption on the Fisher information matrix
(Liu et al., 2020; Ding et al., 2022; Lan et al., 2023b).
Assumption B.3. (Positive definite) For all θ ∈ Rd, there exists a constant µF > 0 s.t. the Fisher
information matrix Fρ(θ) induced by the policy πθ and the initial state distribution ρ satisfies

Fρ(θ) ≽ µF · I, (14)

where I ∈ Rd×d is an identity matrix.

For any two symmetric matrices A and B with the same dimension, A ≽ B denotes that the
eigenvalues of A−B are greater or equal to zero.

B.2 TECHNICAL LEMMAS

Lemma B.4. For arbitrary n vectors {ai ∈ Rd}ni=1, we have

∥
n∑

i=1

ai∥2 ≤ n

n∑
i=1

∥ai∥2. (15)
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Lemma B.5. Let αk = ( c
t+c )

p. ∀p ∈ [0, 1] and c ≥ 1, we have

1− αk+1 ≤
αk+1

αk
. (16)

Proof.

1− αk+1 = 1− (
c

t+ 1 + c
)p

≤ 1− 1

t+ 1 + c

≤ αk+1

αk
.

(17)

Straightforwardly, we have
K−1∏
i=k

(1− αi+1) ≤
αK

αk
. (18)

Lemma B.6. Let αk = ( 1
k+1 )

p and ηk = η0(
1

k+1 )
q . ∀p ∈ [0, 1), q ≥ 0 and η0 ≥ 0, we have

K−1∑
k=0

ηk

K−1∏
i=k+1

(1− αi) ≤ c(p, q)
ηK
αK

, (19)

where c(p, q) := 2q−p

1−p a exp
(
(1− p)2pa1−p

)
is a constant with specified p and q, and a =

max
(
( q
(1−p)2p )

1
1−p , ( 2(q−p)

(1−p)2 )
1

1−p
)
.

B.3 KEY LEMMAS

In this subsection, we list four useful (key) lemmas to construct the proofs of Theorem 5.1 and
Theorem 5.2.

Under Assumption B.1 on score functions, the following lemma holds based on the results (Lemma
5.4) in Zhang et al. (2020).

Lemma B.7. The gradient of the expected return is Lg-continuous and Lh-smooth as follows

∥∇J(θ)−∇J(θ′)∥ ≤ Lg∥θ − θ′∥,
∥∇2J(θ)−∇2J(θ′)∥ ≤ Lh∥θ − θ′∥,

(20)

where Lg :=
R(M2

g+Mh)

(1−γ)2 and Lh :=
RM3

g (1+γ)

(1−γ)3 +
RMgMh

(1−γ)2 +O
(
(1− γ)−1

)
.

Under Assumption B.1, B.2 and B.3, we utilize the result (Lemma 4.7) in Ding et al. (2022) as the
Lemma B.8.

Lemma B.8. (Relaxed weak gradient domination) Under Assumptions B.1, B.2 and B.3, it holds that

∥∇J(θ)∥+ ϵg ≥
√
2µ(J⋆ − J(θ)), (21)

where ϵg =
µF

√
ϵbias

Mg(1−γ) and µ =
µ2
F

2M2
g

.

Based on Lemma B.7, we derive our milestone (new), the ascent lemma with delayed updates, as
follows:

Lemma B.9. (Ascent Lemma with Delay) Under Assumptions B.1, it holds that

−J(θk+1) ≤ −J(θk)−
1

3
ηk∥∇J(θk)∥+

8

3
ηk∥ek∥+

Lg

2
η2k, (22)

where ek := dk−δk −∇J(θk).
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This ascent lemma is specific to the asynchronous setting, which constructs the lower bound for the
global increment, J(θk+1)− J(θk), through the normalized policy gradients and our updating rules
with delay δk.

Proof. With the smoothness of the expected return J(θ) and the updating rule, we have

−J(θk+1) ≤ −J(θk)− ⟨∇J(θk), θk+1 − θk⟩+
Lg

2
∥θk+1 − θk∥2

= −J(θk)− ηk
⟨∇J(θk), dk−δk⟩
∥dk−δk∥

+
Lg

2
η2k.

(23)

If ∥ek∥ ≤ 1
2∥∇J(θk)∥, we have

−⟨∇J(θk), dk−δk⟩
∥dk−δk∥

= −∥∇J(θk)∥
2 + ⟨∇J(θk), ek⟩
∥dk−δk∥

≤ −∥∇J(θk)∥
2 + ∥∇J(θk)∥∥ek∥
∥dk−δk∥

≤
−∥∇J(θk)∥2 + 1

2∥∇J(θk)∥
2

∥∇J(θk)∥+ ∥ek∥

≤ −1

3
∥∇J(θk)∥.

(24)

If ∥ek∥ ≥ 1
2∥∇J(θk)∥, we have

−⟨∇J(θk), dk−δk⟩
∥dk−δk∥

≤ ∥∇J(θk)∥

= −1

3
∥∇J(θk)∥+

4

3
∥∇J(θk)∥

≤ −1

3
∥∇J(θk)∥+

8

3
∥ek∥.

(25)

Combining these two conditions, and plugging the result into equation 23, the lemma can be proved
as follows

−J(θk+1) ≤ −J(θk)− ηk
⟨∇J(θk), dk−δk⟩
∥dk−δk∥

+
Lg

2
η2k

≤ −J(θk)−
1

3
ηk∥∇J(θk)∥+

8

3
ηk∥ek∥+

Lg

2
η2k.

(26)

Next, we construct the relationship between the average concurrency ω̄ and the average delay δ̄ in
Lemma B.10. This lemma gives the boundary (our result) of delays as a corollary of the result in
Koloskova et al. (2022).

Lemma B.10. The average delay δ̄ depends on the average concurrency ω̄, and they can be upper
bounded as

δ̄ =
K + 1

K − 1 + |CK |
ω̄ ≤ ω̄ ≤ N. (27)

Proof. Recall that {δik}i∈Ck\{jk} is the set of delays at the k-th global steps. After one global step,
the number of cumulative delays over all agents increases by the current concurrency. Thus, we have
the following connection

k∑
i=0

δi +
∑

i∈Ck+1\{jk+1}

δik+1 =

k−1∑
i=0

δi +
∑

i∈Ck\{jk}

δik + ωk+1. (28)
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We note that there is no delay at the initial step (0-th iteration) of the algorithm. Therefore, we have
δi0 = 0 for all agents. Unrolling the above expression, at the K-th step, we have

K−1∑
i=0

δi +
∑

i∈CK\{jK}

δiK =

K∑
i=0

ωk+1 = (K + 1)ω̄. (29)

According to equation 7 and |CK | ≥ 2, we achieve

δ̄ =
K + 1

K − 1 + |CK |
ω̄ ≤ ω̄ ≤ N. (30)

In practice, we need to use all the resources to speed up the training process. Thus, all agents engage
in training, and ω̄ = ωmax = N . Since the maximum concurrency is equal to the number of agents
N , we have the upper boundary of the average delay as δ̄ ≤ ωmax ≤ N .

Notably, we do not make any assumption on the largest delay δmax, while we achieve the upper
boundary of the average delay δ̄.

B.4 PROOF OF THEOREM 5.1 (GLOBAL CONVERGENCE RATE)

Under Assumption B.1 and Assumption B.2, we derive the global convergence rate of the proposed
AFedPG.

First, we denote the difference between the policy gradient estimation g(τ̃k, θ̃k) and the true policy
gradient as

ξk := g(τ̃k, θ̃k)−∇J(θ̃k), (31)
and the expectation of the norm is bounded by σg .

Second, according to the updating rules in Algorithm 1 and Algorithm 2 , we expand the error term
in Lemma B.9 as follows

ek = (1− αk−δk)dk−1−δk−1
−∇J(θk) + αk−δkg(τ̃k−δk , θ̃k−δk)

= (1− αk−δk)
(
dk−1−δk−1

−∇J(θk−1)
)
+ (1− αk−δk)

(
∇J(θk−1)−∇J(θk)

)
+ αk−δk

(
g(τ̃k−δk , θ̃k−δk)−∇J(θk)

)
= αk−δkξk−δk + (1− αk−δk)ek−1 + (1− αk−δk)

(
∇J(θk−1)−∇J(θk)

)
+ αk−δk

(
∇J(θ̃k−δk)−∇J(θk)

)
= αk−δkξk−δk + (1− αk−δk)ek−1 + (1− αk−δk)

(
∇J(θk−1)−∇J(θk)

)
+ αk−δk

(
∇J(θ̃k−δk)−∇J(θ̃k)

)
+ αk−δk

(
∇J(θ̃k)−∇J(θk)

)
= αk−δkξk−δk + (1− αk−δk)ek−1 + αk−δk

(
∇J(θ̃k−δk)−∇J(θ̃k)

)
+ (1− αk−δk)

(
∇J(θk−1)−∇J(θk) +∇2J(θk)(θk−1 − θk)

)
+ αk−δk

(
∇J(θ̃k)−∇J(θk) +∇2J(θk)(θk−1 − θk)

)
−(1− αk−δk)∇2J(θk)(θk−1 − θk)− αk−δk∇2J(θk)(θ̃k − θk)

8
= αk−δkξk−δk + (1− αk−δk)ek−1 + αk−δk

(
∇J(θ̃k−δk)−∇J(θ̃k)

)
+ (1− αk−δk)

(
∇J(θk−1)−∇J(θk) +∇2J(θk)(θk−1 − θk)

)
+ αk−δk

(
∇J(θ̃k)−∇J(θk) +∇2J(θk)(θk−1 − θk)

)
.

(32)

Thus, the error term ek can be written in a recursive way (contains ek−1) with serval terms that
contain policy gradients. We aim to derive the upper boundary for each term at the next step.

Remark: The Hessian correction terms (in blue) are equal to 0 according to our updating rules
(delay-adaptive lookahead update) in Step 8 of Algorithm 1. We design this technique to cancel out
the second-order terms, and thus achieve the desired convergence rate. Without our technique, it
would be hard to bound the above errors.
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Next, we denote each term in equation 32 separately as follows

Ak :=∇J(θk−1)−∇J(θk) +∇2J(θk)(θk−1 − θk),

Bk :=∇J(θ̃k)−∇J(θk) +∇2J(θk)(θk−1 − θk),

Ck :=∇J(θ̃k−δk)−∇J(θ̃k).

(33)

Now, we start to bound each term. With the smoothness of the expected discounted return function in
Lemma B.7 and the non-increasing learning rates, we have

∥Ak∥ ≤ Lh∥θk−1 − θk∥2 = Lhη
2
k−1,

∥Bk∥ ≤ Lh∥θ̃k − θk∥2 = Lh
(1− αk−δk)

2

α2
k−δk

η2k−1,

∥Ck∥ ≤ Lg∥θ̃k−δk − θ̃k∥

= Lg

∥∥∥∥∥
k−1∑

i=k−δk

θ̃i+1 − θ̃i

∥∥∥∥∥
≤ Lg

k−1∑
i=k−δk

∥θ̃i+1 − θ̃i∥

= Lg

k−1∑
i=k−δk

∥∥∥∥ 1

αi+1−δi+1

(θi+1 − θi) +
1− αi−δi

αi−δi

(θi − θi−1)

∥∥∥∥
≤ Lg

k−1∑
i=k−δk

∥∥∥∥ 1

αi+1−δi+1

(θi+1 − θi)

∥∥∥∥+ ∥∥∥∥1− αi−δi

αi−δi

(θi − θi−1)

∥∥∥∥
= Lg

k−1∑
i=k−δk

(
1

αi+1−δi+1

ηi +
1− αi−δi

αi−δi

ηi−1)

≤ Lg

k−1∑
i=k−δk

(
2

αk−1
ηk−δk)

= δkLg
2ηk−δk

αk−1
,

(34)

where the equalities are simple plugins according to the updating rules in Algorithm 1. The last step
in equation 34 happens, because there is no index i inside the summation operation, and it sums a
constant for δk times.

We denote βk :=
∏K

i=k+1(1− αi−δi) with βK = 1. Next, unrolling the recursion equation 32, we
have the error at the K-th step as follows

eK = β0e0 +

K∑
k=1

αk−δkβkξk−δk +

K∑
k=1

(1− αk−δk)βkAk +

K∑
k=1

αk−δkβk(Bk + Ck). (35)
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Choose learning rates αk = ( 1
k+1 )

4
5 and ηk = η0

1
k+1 , where η0 is a constant and we will show the

value later. Using Jensen’s inequality and technical lemmas, we achieve the following bound

E[∥eK∥] ≤ β0E[∥e0∥] +

E

∥∥∥∥∥
K∑

k=1

αk−δkβkξk−δk

∥∥∥∥∥
2
 1

2

+

K∑
k=1

(1− αk−δk)βkE[∥Ak∥]

+

K∑
k=1

αk−δkβk(E[∥Bk∥] + E[∥Ck∥])

≤ β0E[∥e0∥] +

(
K∑

k=1

α2
k−δk

β2
kE
[
∥ξk−δk∥

2
]) 1

2

+

K∑
k=1

(1− αk−δk)βkE[∥Ak∥]

+

K∑
k=1

αk−δkβk(E[∥Bk∥] + E[∥Ck∥])

34
≤ β0σg +

(
K∑

k=1

α2
k−δk

β2
kE
[
∥ξk−δk∥

2
]) 1

2

+ Lh

K∑
k=1

(1− αk−δk)βkη
2
k−1

+ Lh

K∑
k=1

βk(1− αk−δk)
2 η2k−1

αk−δk

+ 2Lg

K∑
k=1

αk−δkβkδk
η2k−δk

αk−1

≤ β0σg +

(
K∑

k=1

α2
k−δk

β2
kE
[
∥ξk−δk∥

2
]) 1

2

+ Lh

K∑
k=1

βk

η2k−1

αk−δk

+ 2Lg

K∑
k=1

αk−δkβkδk
η2k−δk

αk−1

≤ β0σg +

(
K∑

k=1

α2
k−δk

β2
k

) 1
2

σg + Lh

K∑
k=1

βk

η2k−1

αk−δk

+ 2Lg

K∑
k=1

αk−δkβkδk
η2k−δk

αk−1

≤ β0σg +

(
K∑

k=1

α2
k−δk

β2
k

) 1
2

σg +
9Lh

4

K∑
k=1

βk
η2k
αk

+ 2Lg

K∑
k=1

αk−δkβkδk
η2k−δk

αk−1

37,39,40,41

≤ αKσg + c1
√
αKσg +

9

4
c2Lh

η2K
α2
K

+ c3Lg
η2K
α1.75
K

δ̄,

(36)

where c1 := 2
√
c( 45 ,

4
5 ), c2 := c( 45 ,

6
5 ), c3 := 8

√
c( 45 ,

16
5 ) are constants, and the values of c(·, ·) are

defined in Lemma B.6.

Notably, as we state in the last paragraph in Section 5, ti is pre-determined by the computation
resource at agent i and is fixed. Thus, the delay δk is pre-determined by the system. It is not a random
variable, but unknown until given the exact system setting. This allows us to derive the first inequality
in equation 36. This pre-determined property is also suitable for all the derivations below.
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We explain the boundary derivation details here. We first derive the first term of the boundary in
equation 36 as follows

β0 =

K∏
i=1

(1− αi−δi)

≤
K∏
i=1

(1− αi)

=

K−1∏
i=0

(1− αi+1)

18
≤ αK

α0

= αK .

(37)

In the training process, at step k, when an agent sends the update to the server, as long as the agent
communicates with the server during the last half training process, the delay δk ≤ k

2 . This becomes
almost certain when k is large and k is usually much larger than the upper bound of the currency N .
Thus, we have

αk−δk = (
1

k + 1− δk
)

4
5

= (
1

k + 1
)

4
5 (

k + 1

k + 1− δk
)

4
5

≤ (
1

k + 1
)

4
5 (

k + 1

k + 1− k
2

)
4
5

≤ 2(
1

k + 1
)

4
5

= 2αk.

(38)

We then derive the second term of the boundary in equation 36 as follows
K∑

k=1

α2
k−δk

β2
k

38
≤ 4

K∑
k=1

α2
kβ

2
k

= 4

K∑
k=1

α2
k

K∏
i=k+1

(1− αi−δi)

K∏
i=k+1

(1− αi−δi)

≤ 4

K∑
k=1

α2
k

K∏
i=k+1

(1− αi)

K∏
i=k+1

(1− αi)

≤ 4

K∑
k=1

α2
k

K−1∏
i=k+1

(1− αi)

K−1∏
i=k

(1− αi+1)

18
≤ 4

K∑
k=1

α2
k

K−1∏
i=k+1

(1− αi)
αK

αk

= 4αK

K∑
k=1

αk

K−1∏
i=k+1

(1− αi)

≤ 4αK

K−1∑
k=0

αk

K−1∏
i=k+1

(1− αi)

19
≤ 4αKc(

4

5
,
4

5
)
αK

αK

= 4αKc(
4

5
,
4

5
).

(39)
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Next, we derive the third term of the boundary in equation 36 as follows

K∑
k=1

η2k
αk

βk = η20

K∑
k=1

(
1

k + 1
)

6
5 βk

= η20

K∑
k=1

(
1

k + 1
)

6
5

K∏
i=k+1

(1− αi−δi)

≤ η20

K∑
k=1

(
1

k + 1
)

6
5

K∏
i=k+1

(1− αi)

≤ η20

K∑
k=1

(
1

k + 1
)

6
5

K−1∏
i=k+1

(1− αi)

≤ η20

K−1∑
k=0

(
1

k + 1
)

6
5

K−1∏
i=k+1

(1− αi)

19
≤ η20c(

4

5
,
6

5
)(

1

K + 1
)

2
5

= c(
4

5
,
6

5
)
η2K
α2
K

.

(40)

At last, we derive the fourth term of the boundary in equation 36. We use Cauchy–Schwarz inequality
and the fact that the second norm of a vector is always equal or smaller than the first norm.

K∑
k=1

αk−δkβkδk
η2k−δk

αk−1
≤

K∑
k=1

η2k−δk
βkδk

=

K∑
k=1

η2k

( k + 1

k + 1− k
2

)2
βkδk

≤ 4η20

K∑
k=1

( 1

k + 1

)2
βkδk

≤ 4η20

(
K∑

k=1

( 1

k + 1

)4
β2
k ·

K∑
k=1

δ2k

) 1
2

≤ 4η20

(
K∑

k=1

( 1

k + 1

)4
β2
k

) 1
2 K∑
k=1

δk

≤ 4η20Kδ̄

(
K∑

k=1

( 1

k + 1

)4
β2
k

) 1
2

≤ 4η20Kδ̄

(
K∑

k=1

( 1

k + 1

)4
βk

K∏
i=k+1

(1− αi−δi)

) 1
2
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≤ 4η20Kδ̄

(
K∑

k=1

( 1

k + 1

)4
βk

αK

αk

) 1
2

= 4η20Kδ̄

(
αK

K∑
k=1

( 1

k + 1

) 16
5

βk

) 1
2

= 4η20Kδ̄

(
αK

K∑
k=1

( 1

k + 1

) 16
5

K∏
i=k+1

(1− αi−δi)

) 1
2

≤ 4η20Kδ̄

(
αK

K∑
k=1

( 1

k + 1

) 16
5

K∏
i=k+1

(1− αi)

) 1
2

≤ 4η20Kδ̄

(
αK

K∑
k=1

( 1

k + 1

) 16
5

K−1∏
i=k+1

(1− αi)

) 1
2

19
≤ 4η20Kδ̄

(
αKc(

4

5
,
16

5
)(

1

K + 1
)

12
5

) 1
2

≤ 4η20Kδ̄

√
c(
4

5
,
16

5
)(

1

K + 1
)

8
5

≤ 4η20 δ̄

√
c(
4

5
,
16

5
)(

1

K + 1
)

3
5

= 4δ̄

√
c(
4

5
,
16

5
)
η2K
α1.75
K

.

(41)

Now, we derive the final convergence rate. After plugging the result into Lemma B.9 and using
Lemma B.8 (Ascent Lemma with Delay), we achieve the following inequality

J⋆ − E[J(θk+1)] ≤ (1−
√
2µηk
3

)
(
J⋆ − E[J(θk)]

)
+

ηk
3
ϵg +

8

3
ηkE[∥ek∥] +

Lg

2
η2k

36
≤ (1−

√
2µηk
3

)
(
J⋆ − E[J(θk)]

)
+

ηk
3
ϵg +

Lg

2
η2k

+
8

3
ηk
(
αkσg + c1

√
αkσg +

9

4
c2Lh

η2k
α2
k

+ c3Lg
η2k

α1.75
k

δ̄
)
.

(42)

Unrolling this recursion, we have

J⋆ − E[J(θK)] ≤ η0
3
ϵg +

J⋆ − E[J(θ0)]
(K + 1)2

+ c3
8η30
3

Lg

(K + 1)
3
5

δ̄ +
η20
2

Lg

K + 1

+
8η0
3

σg

(K + 1)
4
5

+ c1
8η0
3

σg

(K + 1)
2
5

+ 6c2η
3
0

Lh

(K + 1)
2
5

.

(43)

Note that, introduced in Lemma B.7, the discount factor γ is contained in Lg = O
(
(1− γ)−2

)
and

Lh = O
(
(1− γ)−3

)
. Comparing with the definition of ϵg in Lemma B.8, we choose η0 = 3µF

Mg
for

the criteria. Thus, to satisfy the global convergence criterion J⋆ − E[J(θK)] ≤ ϵ+
√
ϵbias
1−γ , we have

the iteration complexity K = O(ϵ−2.5). In our algorithms, the sample complexity is equal to the
iteration complexity, which is also O(ϵ−2.5).

B.5 PROOF OF THEOREM 5.2 (FOSP CONVERGENCE RATE)

Under Assumption B.1 and Assumption B.3, we derive the first-order stationary convergence rate of
AFedPG. Notably, the FOSP convergence does not require Assumption B.2, which makes assumptions
on the neural network approximation error.
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First, we denote the average of gradient expectations as

E∥∇J(θ̄K)∥ :=
∑K

k=1 ηkE∥∇J(θk)∥∑K
k=1 ηk

. (44)

Next, rearranging the terms in Lemma B.9 (Ascent Lemma with Delay) and summing up the inequality,
we achieve the inequality below

E∥∇J(θ̄K)∥ ≤ 3∑K
k=1 ηk

(
J⋆ − E[J(θ0)]

)
+

8∑K
k=1 ηk

K∑
k=1

ηkE[∥ek∥]

+
3Lg

2
∑K

k=1 ηk

K∑
k=1

η2k.

(45)

Choose learning rates αk = ( 1
k+1 )

4
7 and ηk = η0(

1
k+1 )

5
7 . Plug in the result into equation 36 that we

have shown in Appendix B.4, we have

E∥∇J(θ̄K)∥ ≤ 3(J⋆ − E[J(θ0)])
(K + 1)

2
7

+ 16c3η
3
0

Lg

(K + 1)
3
7

δ̄ +
3η0Lg

(K + 1)
5
7

+ 16η0
σg

(K + 1)
4
7

+ 16c1η0
σg

(K + 1)
2
7

+ 36c2η
3
0

Lh

(K + 1)
2
7

.

(46)

Thus, to satisfy the FOSP convergence criterion E∥∇J(θ̄K)∥ ≤ ϵ, we have the iteration complexity
K = O(ϵ−3.5). In our algorithms, the sample complexity is equal to the iteration complexity, which
is also O(ϵ−3.5).

Notably, this result does not rely on Lemma B.8 and Assumption B.1. The norm of the average
gradient is approaching an arbitrarily small value during the training process, regardless of the
function approximation error ϵbias.
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C FURTHER DISCUSSIONS

C.1 COMPARISON WITH PREVIOUS WORKS

Compare with (Shen et al., 2023). We first acknowledge the theoretical contribution of this pioneer
work. However, there are several limitations and differences.

1. (Different RL Algorithm Class) Instead of PG, Shen et al. (2023) is an actor-critic (AC) method
with extra value networks, which requires much more computation and memory cost compared to the
pure policy gradient (PG) method. Thus, the fine-tuning of Gemini (Team & DeepMind, 2024) and
GPT-4 (OpenAI, 2023) uses PG methods instead of AC methods.

2. (General Function Parameterization) Shen et al. (2023) only has Linear Parameterization (Deep
RL is not included.) for the global convergence analysis, which has limited practical meaning. With a
General Function Parametrization, e.g., neural networks (Deep RL), there is no such a result. We
consider a general and practical setting with a General Function Parameterization in our work.

3. (Convergence Performance) Even in the single-agent setting (without federated agents), the SOTA
result of the AC method is O(ϵ−3) (Gaur et al., 2024) and the previous approach is O(ϵ−6) (Fu
et al., 2021), which is still worse than our O(ϵ−2.5). In the federated setting, there is no result that
achieves O(ϵ−3) for AC methods. Moreover, with a general function parameterization, we compare
the performances of their A3C in Figure 4, which is much worse.

4. (Assumptions) Shen et al. (2023) relies on a strong and unpractical assumption, their Assumption
2. It assumes that the largest delay is bounded by a constant K0. However, in practice, the slowest
agent may not communicate with the server, and thus, has an infinite delay. In our analysis, we do
not require any boundary for the largest delay, because we only contain the average delay in the
convergence rate, and the average delay is naturally bounded by the number of agents in Lemma B.10
(our corollary).

C.2 DIFFERENCE BETWEEN FL, FEDRL, AND AFEDRL

Unlike supervised FL where local datasets are fixed or pre-specified, in RL, agents collect new
samples in each iteration based on the current local policies. The new data are collected with dynamic
dependencies, which do not appear in all prior FL and A-FL works.

In synchronous FedRL, each agent collects samples according to the same global policy πθ. However,
in AFedRL, even if all agents have an identical environment, each agent collects samples according to
different policies τk ∼ p(·|πθk), because of the delay. This dynamic nature makes both the problem
itself and the theoretical analysis challenging. We propose a new delay-adaptive model aggregation
strategy to tackle these unique challenges of FedRL.

Moreover, data collected by each agent are naturally (non-manually controlled) heterogeneous.
Despite having identical environments, agents collect data according to their own (different) policies,
a fundamental difficulty that our AFedPG paper solves, as verified theoretically and empirically.
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