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ABSTRACT

Linear Transformers have gained attention as efficient alternatives to standard Trans-
formers, but their performance in retrieval and long-context tasks has been limited.
To address these limitations, recent work has explored two distinct mechanisms:
gating for adaptive memory control and the delta update rule for precise memory
modifications. We observe that these mechanisms are complementary—gating
enables rapid memory erasure while the delta rule facilitates targeted updates.
Building on this insight, we introduce the gated delta rule and develop a parallel
training algorithm optimized for modern hardware. Our proposed architecture,
Gated DeltaNet, consistently surpasses existing models like Mamba2 and DeltaNet
across multiple benchmarks, including language modeling, common-sense rea-
soning, in-context retrieval, length extrapolation, and long-context understanding.
We further enhance performance by developing hybrid architectures that combine
Gated DeltaNet layers with sliding window attention or Mamba2 layers, achieving
both improved training efficiency and superior task performance.

1 INTRODUCTION

The Transformer architecture has significantly advanced the capabilities of Large Language Models
(LLMs), showcasing exceptional performance across a wide range of tasks due to its effective
attention mechanism. This mechanism excels in precise sequence modeling and leverages the parallel
processing capabilities of modern GPUs during training. However, the self-attention component
scales quadratically with sequence length, leading to substantial computational demands that pose
challenges for both training and inference.

To mitigate these issues, researchers have explored alternatives such as linear Transformers
(Katharopoulos et al., 2020a), which replace traditional softmax-based attention with kernelized
dot-product-based linear attention, substantially reducing memory requirements during inference
by reframing as a linear RNN with matrix-valued states. While early versions of linear Trans-
formers underperformed in language modeling tasks compared to standard Transformers, recent
enhancements—such as incorporating data-dependent gating mechanisms akin to those in LSTMs,
exemplified by models like GLA (Yang et al., 2024a) and Mamba2 (Dao & Gu, 2024a)—have shown
promising improvements. However, challenges persist in managing information over long sequences,
particularly for in-context retrieval tasks where traditional Transformers maintain their advantage
(Arora et al., 2023a; 2024a; Jelassi et al., 2024; Wen et al., 2024; Akyürek et al., 2024).

This phenomenon is not surprising: linear Transformers can be interpreted as implementing an
outer-product-based key-value association memory, reminiscent of tensor product representation
(Smolensky, 1990). However, the number of orthogonal key-value pairs they can store is bounded by
the model’s dimensionality. When the sequence length exceeds this dimension, “memory collisions“
become inevitable, hindering exact retrieval (Schlag et al., 2021a).

Mamba2 addresses this limitation by introducing a simple gated update rule, St = αtSt−1 + vtk
⊺
t ,

which uniformly decays all key-value associations at each time step by a dynamic ratio, αt. However,
this approach does not account for the varying importance of different key-value associations,
potentially leading to inefficient memory utilization. If the model needs to forget a specific key-value
association, all key-value associations are equally forgotten, making the process less targeted and
efficient.

1
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In contrast, the linear Transformer with the delta rule (Widrow et al., 1960), known as DeltaNet
(Schlag et al., 2021a; Yang et al., 2024b), selectively updates memory by (softly) replacing an
old key-value pair with the incoming one in a sequential manner. This method has demonstrated
impressive performance in synthetic benchmarks for in-context retrieval. However, since this process
only modifies a single key-value pair at a time, the model lacks the ability to rapidly clear outdated or
irrelevant information, especially during context switches where previous data needs to be erased.
Consequently, DeltaNet has been found to perform moderately on real-world tasks (Yang et al.,
2024b), likely due to the absence of a robust memory-clearing mechanism.

Recognizing the complementary advantages of the gated update rule and the delta rule in memory
management, we propose the gated delta rule, a simple and intuitive mechanism that combines both
approaches. This unified rule enables flexible memory control: it can promptly clear memory by
setting αt → 0, while selectively updating specific content without affecting other information by
setting αt → 1 (effectively switching to the pure delta rule).

The remaining challenge lies in implementing the gated delta rule in a hardware-efficient manner.
Building upon Yang et al. (2024b)’s efficient algorithm that parallelizes the delta rule computation
using the WY representation (Bischof & Loan, 1985), we carefully extend their approach to incor-
porate the gating terms. Our extension preserves the benefits of chunkwise parallelism (Hua et al.,
2022; Sun et al., 2023a; Yang et al., 2024a), enabling hardware-efficient training.

Our resulting architecture, Gated DeltaNet, consistently outperforms both Mamba2 and DeltaNet
across a comprehensive suite of benchmarks, including language modeling, commonsense reason-
ing, in-context retrieval, length extrapolation, and long-context understanding. Building on these
results, we also develop hybrid architectures that strategically combine Gated DeltaNet layers with
sliding window attention or Mamba2 layers, further enhancing both training efficiency and model
performance.

2 PRELIMINARY

2.1 LINEAR ATTENTION WITH CHUNKWISE PARALLEL FORM

It is known that the linear transformer (Katharopoulos et al., 2020b) can be formulated as the following
linear recurrence when excluding normalization and query/key activations:

St = St−1 + vtk
⊺
t ∈ Rdv×dk , ot = Stqt ∈ Rdv

where dk and dv represent the (head) dimensions for query/key and value, respectively. By expanding
the recurrence, we can express it in both vector form (left) and matrix form (right) as follows:

ot =

t∑
i=1

(vik
⊺
i )qt =

t∑
i=1

vi(k
⊺
i qt) ∈ Rdv , O = (QK⊺ ⊙M)V ∈ RL×dv

where L is the sequence length, and M ∈ RL×L is the causal mask defined by Mij = 0 when i < j,
and 1 otherwise.

This formulation makes it clear that linear attention eliminates the softmax operation used in traditional
attention mechanisms and instead leverages the linearity and associativity of matrix multiplications,
leading to linear complexity. However, both the recurrent and parallel forms are not ideal for efficient
training (Yang et al., 2024a), which motivates the use of the chunkwise parallel form (Hua et al.,
2022; Sun et al., 2023a; Yang et al., 2024a) for hardware-efficient, linear-time training, as introduced
below.

Chunkwise parallel form. To summarize, the chunkwise parallel form splits inputs and outputs
into several chunks of size C, and computes outputs for each chunk based on the final state of the
previous chunk and the query/key/value blocks of the current chunk. Following the notation of
Sun et al. (2023b); Yang et al. (2024a;b), let’s take the query block, q, as an example. We denote
Q[t] := qtC+1:(t+1)C+1 as the query block for chunk t, and qr

[t] := qtC+r as the r-th query within
chunk t. The initial state of chunk t is defined as S[t] := S0

[t] = SC
[t−1]. By partially expanding the

2
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recurrence, we have

Sr
[t] = S[t] +

r∑
i=1

vi
[t]k

i⊺
[t] ∈ Rdv×dk , or

[t] = Sr
[t]q

r
[t] = S[t]q

r
[t] +

r∑
i=1

vi
[t]

(
ki⊺
[t]q

r
[t]

)
∈ Rdv

Equivalently, in matrix form:

S[t+1] = S[t] +V[t]K
⊺
[t] ∈ Rdv×dk , O[t] = Q[t]S

⊺
[t] +

(
Q[t]K

⊺
[t] ⊙M

)
V[t] ∈ RC×dv

where M ∈ RC×C is the causal mask. The above equations are rich in matrix multiplications
(matmuls), and by setting C to a multiple of 16, one can take advantage of tensor cores—specialized
GPU units for efficient half-precision matmul operations—for hardware-efficient training. Typically,
C is set to a small constant (e.g., 64 as implemented in FLA (Yang & Zhang, 2024)), ensuring that the
overall computational complexity remains linear with respect to sequence length, enabling efficient
modeling of extremely long sequences.

2.2 MAMBA2: LINEAR ATTENTION WITH SCALAR-VALUED DATA-DEPENDENT DECAY

Mamba2 (Dao & Gu, 2024a) can be represented by the following linear recurrence (up to specific
parameterization):

St = αtSt−1 + vtk
⊺
t , ot = Stqt

where αt ∈ (0, 1) is a data-dependent scalar-valued decay term. In the following, we will highlight
the decay terms in blue to facilitate a clearer comparison with vanilla linear attention. Define the
cumulative decay product γj =

∏j
i=1 αi, and by expanding the recurrence, we can express the result

in both a vector form (left) and a matrix parallel form (right):

ot =

t∑
i=1

(
γt
γi
vik

⊺
i

)
qt =

t∑
i=1

vi

(
γt
γi
k⊺
i qt

)
, O = ((QK⊺)⊙ Γ)V

Here, Γ ∈ RL×L is a decay-aware causal mask where Γij =
γi

γj
if i ≥ j and Γij = 0 otherwise.

This parallel and recurrent formulation is referred to as state space duality (SSD) in Dao & Gu
(2024a). Notably, this recurrence structure has also been employed in Gated RFA (Peng et al., 2021),
xLSTM (Beck et al., 2024), and Gated RetNet (Sun et al., 2024b).

Chunkwise parallel form. Slightly abusing the notation, we define the local cumulative product of

decays within the chunk as γj
[t] =

∏tC+j
i=tC+1 αi. Additionally, we define (Γ[t])ij =

γj
[t]

γi
[t]

for i ≥ j and

0 otherwise. By partially expanding the recurrence, we obtain the following equations:

Sr
[t] = γr

[t]S[t] +

r∑
i=1

γr
[t]

γi
[t]

vi
[t]k

i⊺
[t], or

[t] = γr
[t]S

r
[t]q

r
[t] = S[t]q

r
[t] +

r∑
i=1

vi
[t]

(
γr
[t]

γi
[t]

ki⊺
[t]q

r
[t]

)
This can be equivalently expressed in matrix form as:

S[t+1] = γC
[t]S[t] +V⊺

[t]Diag

(
γC
[t]

γ[t]

)
K[t]

O[t] = Diag
(
γ[t]
)
Q[t]S

⊺
[t] +

(
Q[t]K

⊺
[t] ⊙ Γ[t]

)
V[t]

We observe that the (cumulative) decay term can be seamlessly integrated into the matmuls with
minimal computational overhead. This ensures that the chunkwise parallel form remains efficient and
compatible with high-performance tensor core-based acceleration.

2.3 DELTA NETWORKS: LINEAR ATTENTION WITH DELTA RULE

The delta update rule (Widrow et al., 1960; Schlag et al., 2021b) dynamically erases the value (vold
t )

associated with the current input key (kt) and writes a new value (vnew
t ), which is a linear combination

3
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of the current input value and the old value. This process updates a key-value association pair at each
time step, where the scalar βt ∈ (0, 1) determines the extent to which the old association is replaced
by the new one, as shown below.

St = St−1 − (St−1kt)︸ ︷︷ ︸
vold
t

k⊺
t + (βtvt + (1− βt)St−1kt))︸ ︷︷ ︸

vnew
t

k⊺
t = St−1 (I− βtktk

⊺
t ) + βtvtk

⊺
t

Chunkwise parallel form. By partially expanding the recurrence, we have

Sr
[t] = S[t]

(
r∏

i=1

I− βi
[t]k

i
[t]k

i
[t]

⊺

)
︸ ︷︷ ︸

:=Pr
[t]

+

r∑
i=1

βi
[t]v

i
[t]k

i
[t]

⊺
r∏

j=i+1

(
I− βj

[t]k
j
[t]k

j
[t]

⊺
)

︸ ︷︷ ︸
:=Hr

t

(1)

where Pj
[t] involves cumulative products of transition matrices. Yang et al. (2024b) show these take

the form of (generalized) Householder matrices, allowing memory-efficient computation through
classical WY representation (Bischof & Loan, 1985). Based on this, they introduce two compact
representations to optimize the process:

Pr
[t] = I−

r∑
i=1

wi
[t]k

i⊺
[t] ∈ Rdk×dk Hr

[t] =

r∑
i=1

ui
[t]k

i⊺
[t] ∈ Rdv×dk (2)

wr
[t] = βr

[t]

(
kr
[t] −

r−1∑
i=1

(
wi

[t](k
i⊺
[t]k

r
[t])
))

ur
[t] = βr

[t]

(
vr
[t] −

r−1∑
i=1

(
ui
[t](k

i⊺
[t]k

r
[t])
))

(3)

where wr
[t] ∈ Rdk and ur

[t] ∈ Rdv . Substituting these back into Eq. 1 and in matrix form, we have:

S[t+1] = S[t] +
(
U[t] −W[t]S

⊺
[t]

)⊺
K[t] (4)

O[t] = Q[t]S
⊺
[t] + (Q[t]K

⊺
[t] ⊙M)

(
U[t] −W[t]S

⊺
[t]

)
(5)

3 GATED DELTA NETWORKS

3.1 FORMULATION: GATED DELTA RULE

The proposed gated delta rule is simple yet effective:

St = St−1 (αt(I− βtktk
⊺
t )) + βtvtk

⊺
t (6)

where the data-dependent gating term αt ∈ (0, 1) controls state decay. This formulation unifies the
advantages of both gating mechanisms and the delta rule: the gating term enables adaptive memory
management, while the delta update structure facilitates effective key-value association learning.

We present a formal analysis of the gated delta rule through the lens of the online learning framework
introduced by Liu et al. (2024). In this framework, recurrent state updates emerge as solutions to
an online learning problem with objective function Lt(S). As shown in Table 1, recent linear RNN
architectures typically incorporate a regularization term in their online learning objective to prevent
state divergence from previous values, thereby enabling memory retention. However, this retention
mechanism becomes problematic when the state becomes saturated with information. In such cases,
each state must encode a superposition of multiple information pieces, making precise retrieval
challenging. To address this limitation, Mamba2 and Gated DeltaNet introduce an adaptive scaling
factor αt that relaxes the regularization term, allowing controlled deviations between St and St−1.
This modification enables dynamic memory management through selective forgetting.

On the other hand, Linear Attention (LA) and Mamba2 use a simple linear prediction loss ⟨Stkt,vt⟩,
while Longhorn (Liu et al., 2024) uses a more expressive online regression objective ∥Stkt−vt∥2 for
better modeling of key-value associations. The resulting Longhorn’s update rule closely resembles

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Comparison of different linear RNN models and their corresponding online learning objectives using
the framework from Liu et al. (2024). For convenience, we simplify Longhorn’s vector-valued β to scalar β.

Method Online Learning Objective Lt(S) Online Update

LA ∥St − St−1∥2
F − 2⟨Stkt,vt⟩ St = St−1 + vtk

T
t

Mamba2 ∥St − αtSt−1∥2
F − 2⟨Stkt,vt⟩ St = αtSt−1 + vtk

T
t

Longhorn ∥St − St−1∥2
F − βt∥Stkt − vt∥2

St = St−1(I − ϵktk
T
t ) + ϵtvtk

T
t , ϵt =

βt

1 + βtk⊤
t kt

DeltaNet ∥St − St−1∥2
F − 2⟨Stkt, βt (vt − St−1kt)⟩ St = St−1(I − βtktk

T
t ) + βtvtk

T
t

Gated DeltaNet ∥St −αtSt−1∥2
F − 2⟨Stkt, βt (vt − αtSt−1kt)⟩ St = St−1

(
αt(I − βtktk

T
t )

)
+ βtvtk

T
t

the delta update rule 1, suggesting the superiority of the (gated) delta rule over Mamba2 in in-context
associative recall.

From the perspective of fast weight programming (Irie et al., 2022a) and test-time training (Sun et al.,
2024a), the hidden state S can be interpreted as a weight matrix, with the delta rule optimizing the
objective L(St) =

1
2∥Stkt − vt∥2 via online stochastic gradient descent (SGD):

St+1 = St − βt∇SL(St) = St − βt(Stkt − vt)k
⊺
t = St (I− βtktk

⊺
t ) + βtvtk

⊺
t

where βt represents the (adaptive) learning rate. From this perspective, the gated delta rule can be
viewed as incorporating an adaptive weight decay term αt into the SGD update, a technique widely
used in deep learning (Krogh & Hertz, 1991; Andriushchenko et al., 2023).

3.2 ALGORITHM: HARDWARE-EFFICIENT CHUNKWISE TRAINING

In this subsection, we describe an efficient chunkwise algorithm for gated delta rule.

Chunkwise parallel form. By partially expanding the recurrence, we have

Sr
[t] = S[t]

(
r∏

i=1

αi
[t]

(
I− βi

[t]k
i
[t]k

i
[t]

⊺
))

︸ ︷︷ ︸
:=Pr

[t]

+

r∑
i=1

βi
[t]v

i
[t]k

i
[t]

⊺
r∏

j=i+1

αj
[t]

(
I− βj

[t]k
j
[t]k

j
[t]

⊺
)

︸ ︷︷ ︸
:=Hr

[t]

We adapt the WY representation in Eq. 2-3 to incorporate the decay term as below,

Pr
[t] = γr

[t]

(
I−

r∑
i=1

wi
[t]k

i⊺
[t]

)
Hr

[t] =

r∑
i=1

γr
t

γi
t

ui
[t]k

i⊺
[t] (7)

wr
[t] = βr

[t]

(
kr
[t] −

r−1∑
i=1

(
wi

[t](k
i⊺
[t]k

r
[t])
))

ur
[t] = βr

[t]

(
vr
[t] −

r−1∑
i=1

(
ui
[t](

γr
[t]

γi
[t]

ki⊺
[t]k

r
[t])

))
(8)

and the proof of correctness can be found at Appendix. Equivalently, in matrix form:

S[t+1] = γC
[t]S[t] +

(
U[t] −Diag

(
γ[t]
)
W[t]S

⊺
[t])

⊺K[t] (9)

O[t] = Diag
(
γ[t]
)
Q[t]S

⊺
[t] + (Q[t]K

⊺
[t] ⊙ Γ[t])

(
U[t] −Diag

(
γ[t]
)
W[t]S

⊺
[t]

)
(10)

UT transform. To maximize hardware efficiency, we apply the UT transform (Joffrain et al., 2006)
to Eq. 8. This technique reformulates operations into matmul form, reducing non-matmul FLOPs,

1The theoretical distinction lies in the optimization approach: Longhorn uses implicit online learning (Kulis
& Bartlett, 2010) to derive closed-form globally optimal updates, while DeltaNet optimizes the same objective
through one-step explicit gradient descent, as noted by Liu et al. (2024). Despite Longhorn’s stronger theoretical
grounding, we found no significant empirical performance differences between these approaches and thus
maintain DeltaNet’s original formulations.
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Figure 1: Visualization of the (hybrid) architecture and block design of Gated DeltaNet models. Gated DeltaNet-
H1 and H2 use Gated DeltaNet + SWA and Mamba2 + Gated DeltaNet + SWA patterns, respectively. In the
block design, query/key paths consist of linear proj., shortconv., SiLU and L2 norm; value path includes linear
proj., shortconv. and SiLU; alpha/beta use linear proj.; and output gate applies linear proj. with SiLU.

which is crucial to enable better hardware utilization during training (Dao, 2023; Fu et al., 2023;
Yang et al., 2024a).

W[t] = AW
[t] Diag(β[t])K[t], AW

[t] =
(
I− lower(Diag(β[t])K[t]K

⊺
[t])
)−1

U[t] = AU
[t] Diag

(
β[t]

)
V[t], AU

[t] =
(
I− lower

(
Diag(β[t])

(
Γ[t] ⊙K[t]K

⊺
[t]

)))−1

where lower(·) := tril(·,−1); and the inverse of a lower triangle matrix can be calculated efficiently
by forward substitution.

Remark on speed. Similar to Mamba2, the gating term (colored in blue) only performs elementwise
multiplication with (intermediate) variables without affecting matrix multiply structures, enabling
tensor core GPU optimization. As shown in Fig. 3, Gated DeltaNet maintains the same speed
as DeltaNet, with only a small performance gap to Mamba2 despite having a more complex and
expressive transition matrix.

3.3 GATED DELTA NETWORKS AND HYBRID MODELS

Token mixer block. The basic Gated DeltaNet follows Llama’s macro architecture, stacking token
mixer layers with SwiGLU MLP layers, but replaces self-attention with gated delta rule token mixing.
Fig. 1 (right) shows its block design. For the gated delta rule (Eq. 6), queries, keys and values
{q,k,v} are generated through linear projection, short convolution and SiLU, with L2 normalization
applied to q,k for training stability. α, β use linear projection only.2 Following Sun et al. (2023a),
the output is processed through normalization and gating before applying output projection.

Hybrid models. Linear transformers have limitations in modeling local shifts and comparisons,
and their fixed state size makes it hard for retrieval tasks (Arora et al., 2024a). Following recent
hybrid architectures like Griffin (De et al., 2024) and Samba (Ren et al., 2024), we combine linear
recurrent layers with sliding window attention (SWA), resulting in GatedDeltaNet-H1. We also stack
Mamba2, GatedDeltaNet and SWA, resulting in GatedDeltaNet-H2.

2We use Mamba2’s parameterization for α but omit it for brevity.
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Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

Recurrent models
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
HGRN2 19.10 17.69 39.54 70.45 49.53 52.80 69.40 35.32 40.63 56.66 51.79
Mamba 17.92 15.06 43.98 71.32 52.91 52.95 69.52 35.40 37.76 61.13 53.12
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14
Gated DeltaNet 16.42 12.17 46.65 72.25 55.76 57.45 71.21 38.39 40.63 60.24 55.32

Attention or hybrid models
Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
Samba 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Gated DeltaNet-H1 16.07 12.12 47.73 72.57 56.53 58.40 71.75 40.10 41.40 63.21 56.40
Gated DeltaNet-H2 15.91 12.55 48.76 72.19 56.88 57.77 71.33 39.07 41.91 61.55 56.18

Table 2: Performance comparison on language modeling and zero-shot common-sense reasoning.

4 EXPERIMENTS

Setup Our experiments encompass a comprehensive comparison of recent state-of-the-art archi-
tectures, including pure Transformer models, RNN-based approaches, and hybrid architectures. We
evaluate against the following baselines: RetNet (Sun et al., 2023a), HGRN2 (Qin et al., 2024),
Mamba (Gu & Dao, 2023), Mamba2 (Dao & Gu, 2024b), Samba (Ren et al., 2024), and DeltaNet
(Yang et al., 2024b). For fair comparison, all models are trained under identical conditions with 1.3B
parameters on 100B tokens sampled from the FineWeb-Edu dataset (Penedo et al., 2024). We use the
AdamW optimizer with a peak learning rate of 4e-4, weight decay of 0.1, and gradient clipping of
1.0. The learning rate follows a cosine annealing schedule with a 1B token warm-up period and batch
size of 0.5M tokens. All models employ the LLaMA 2 tokenizer with a vocabulary size of 32,000.
For sequence modeling, we set the training length to 4K tokens, with Samba and our hybrid models
using a sliding window size of 2K. See appendix for evaluation settings.

Common-sense reasoning In Table 2, we present the language modeling perplexity and zero-shot
accuracy on commonsense reasoning benchmarks for models with 400M and 1.3B parameters. Gated
DeltaNet consistently outperforms other linear models, including RetNet, HGRN2, Mamba, Mamba2,
and DeltaNet, at both scales. As expected, the hybrid variant further enhances performance.

S-NIAH-1 S-NIAH-2 S-NIAH-3
(pass-key retrieval) (number in haystack) (word in haystack)

Model 1K 2K 4K 8K 1K 2K 4K 8K 1K 2K 4K

DeltaNet 97.4 96.8 99.0 98.8 98.4 45.6 18.6 14.4 85.2 47.0 22.4
Mamba2 99.2 98.8 65.4 30.4 99.4 98.8 56.2 17.0 64.4 47.6 4.6
Gated DeltaNet 98.4 88.4 91.4 91.8 100.0 99.8 92.2 29.6 86.6 84.2 27.6

Table 3: Performance comparison on S-NIAH benchmark suite.

In-context retrieval on synthetic data Table 3 shows the results on Single Needle-
In-A-Haystack (S-NIAH) benchmark suite from RULER (Hsieh et al., 2024).

Models SWDE SQD FDA TQA NQ Drop Avg

Recurrent models
RetNet 14.0 28.5 7.0 54.4 16.2 17.3 22.9
HGRN2 8.3 25.3 4.8 51.2 14.2 16.9 20.1
Mamba 9.8 25.8 3.7 54.3 14.9 17.4 21.0
Mamba2 19.1 33.6 25.3 61.0 20.8 19.2 29.8
DeltaNet 17.9 30.9 18.4 53.9 17.3 18.6 26.2
Gated DeltaNet 25.4 34.8 23.7 60.0 20.0 19.8 30.6

Attention or hybrid models
Transformer++ 29.5 38.0 52.2 58.3 22.5 21.6 37.0
Samba 33.0 39.2 50.5 57.7 23.5 20.2 37.3
Gated DeltaNet-H1 35.6 39.7 52.0 60.1 24.6 22.2 39.0
Gated DeltaNet-H2 38.2 40.4 50.7 63.3 24.8 23.3 40.1

Table 4: Accuracy on recall-world retrieval tasks with input
truncated to 2K tokens. SQD: SQUADE. TQA: Trivial QA.

In the simplest S-NIAH-1 setting with
synthetic inputs, DeltaNet achieves near-
perfect performance across all sequence
lengths, benefiting from its delta update
rule which is specifically advantageous for
in-context recall (§3.1). In contrast, Gated
DeltaNet shows slightly lower retrieval
accuracy since its gating mechanism dis-
cards information, compromising perfect
memory retention, while Mamba2’s perfor-
mance degrades significantly beyond 2K
sequences. However, retrieval from mem-
ory depends on not only retention but also
the ability to "forget": given fixed state size,
lack of memory clearance leads to memory
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collision when the state becomes saturated - multiple pieces of information become superimposed,
making them indistinguishable. This becomes evident in NIAH-2 and NIAH-3 where needles
are grounded in real-world text data: DeltaNet’s performance degrades significantly, while Gated
DeltaNet’s adaptive memory management demonstrates clear advantages over both Mamba2 and
DeltaNet.

In-context retrieval on real-world data Table 4 presents results on real-world recall-intensive tasks
used by Arora et al. (2024b). As expected, linear recurrent models show a significant performance
gap compared to Transformers, while hybrid models combining linear recurrence and attention
outperform pure attention models in retrieval tasks.

For pure recurrent models, despite DeltaNet’s superior performance on synthetic in-context retrieval
tasks (Yang et al., 2024b), its real-world retrieval performance lags behind Mamba2, consistent with
our observations in S-NIAH-2 and S-NIAH-3 (Table 3). Gated DeltaNet outperforms both DeltaNet
and Mamba2 thanks to its gated delta rule, though the improvement margin is smaller than in Table
3. We attribute this reduced performance gap to instruction-unaligned small language models being
prone to repetition errors, which are the primary source of errors in these tasks (cf. Arora et al. (2024b,
Appendix E)). Since this issue is largely independent of the update rule choice, the performance
differences between models are less pronounced compared to Table 3.
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Figure 2: Length extrapolation on six long benchmarks.

Length extrapolation on long sequences. As shown in Fig.2, we evaluate the models’ capacity
to extrapolate to sequences of up to 20K tokens across six long-context benchmarks. Among
RNN architectures, Gated DeltaNet demonstrates superior performance with the lowest overall
perplexity and exhibits more stable behavior during length extrapolation, indicating enhanced memory
management. The hybrid models further improve upon this by leveraging attention for local context
modeling, which reduces the memory management burden on their recurrent components. Future
work will explore these models’ capabilities on even longer sequences.

Long context understanding As demonstrated in Table 5, we evaluated the models’ performance
on LongBench (Bai et al., 2023). In recurrent models, Gated DeltaNet shows consistent advantages,
especially in single-doc QA and Code tasks.

Throughput Comparison. The training throughput comparison across different models is presented
in Fig. 3. As our analysis shows, the proposed gated delta rule introduces only marginal overhead
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Single-Doc QA Multi-Doc QA Summarization Few-shot Code Avg
Model NQA QQA MFQ HQA 2WM Mus GvR QMS MNs TRC TQA SSM LCC RBP

Recurrent models
RetNet 12.1 10.7 19.1 10.7 18.0 5.8 4.8 15.8 7.9 19.0 18.0 12.8 14.1 17.9 13.2
HGRN2 10.7 12.1 19.1 11.3 15.7 6.0 5.2 15.1 9.2 16.0 15.8 10.3 18.6 20.8 13.5
Mamba 13.0 10.1 20.4 10.1 16.7 6.0 7.2 15.9 8.4 23.1 21.9 11.2 17.9 19.0 14.6
DeltaNet 12.9 10.8 21.5 10.9 13.2 5.1 6.5 13.5 7.2 15.5 23.3 11.6 17.6 20.3 13.6
Mamba2 11.1 11.3 18.6 11.8 15.1 6.7 6.7 14.5 7.4 13.0 23.6 8.4 17.9 20.6 13.5
Gated DeltaNet 14.1 14.0 23.3 13.7 14.4 5.8 7.5 16.4 7.9 30.0 22.4 23.0 18.7 22.1 16.6

Attention or hyrbid models
Transformer++ 11.8 9.3 10.0 10.9 4.2 6.1 7.4 15.8 6.6 16.9 13.5 3.9 17.2 18.7 11.0
Samba 12.5 12.9 25.4 11.2 19.7 6.8 9.1 15.7 11.0 20.0 22.7 22.8 18.1 21.1 15.9
Gated DeltaNet-H1 14.5 12.3 26.6 12.6 23.6 6.1 9.1 16.1 12.8 33.5 23.9 26.8 15.5 19.2 17.8
Gated DeltaNet-H2 12.7 13.0 27.1 12.7 20.6 7.5 10.4 16.2 13.0 40.5 22.7 27.9 19.9 22.1 18.4

Table 5: Accuracy on 14 tasks from LongBench (Bai et al., 2023): Narrative QA, QasperQA, MultiField QA,
HotpotQA, 2WikiMulti QA, Musique, GovReport, QMSum, MultiNews, TRec, Trivia QA, SamSum, LCC, and
RepoBench-P by order.

2K×16 4K×8 8K×4 16K×2

25

30

35

40

45

50

55

60

Sequence Length × Batch Size

T
ho

us
an

ds
To

ke
n

Pe
rS

ec
on

d
(K

t/s
)

Transformer++ DeltaNet

Gated DeltaNet Mamba1

Mamba2 Gated DeltaNet-H1

Samba Gated DeltaNet-H2

Figure 3: Training throughput comparison of 1.3B models on a single H100 GPU.

compared to the original delta rule, with Gated DeltaNet achieving essentially the same throughput
as DeltaNet. Both are slightly slower than Mamba2 (2-3K tokens/sec) due to their more expressive
transition matrices.

The Transformer++ achieves the best performance in the 2K context window domain, thanks to the
highly optimized Flash-Attention-2 kernel (Dao, 2023). Consequently, hybrid approaches combining
2K window-size SWA attention with other token mixers demonstrate higher throughput than stan-
dalone mixers: Samba outperforms Mamba, while Gated DeltaNet-H1 and -H2 outperform Gated
DeltaNet. Notably, Gated DeltaNet-H1 maintains compelling training throughput across all sequence
lengths, even on short sequences.

5 RELATED WORK

Gated linear RNN. Large linear recurrent language models have attracted significant attention
due to their training and inference efficiency. The field of linear RNNs has rapidly evolved from
using data-independent decay mechanisms, as exemplified by models like S4 (Gu et al., 2022), S5
(Smith et al., 2023), LRU (Orvieto et al., 2023), RWKV4/5 (Peng et al., 2023), and RetNet (Sun
et al., 2023a), to incorporating data-dependent decay mechanisms in more recent architectures such
as HGRN1/2 (Qin et al., 2024; 2023b), Mamba1/2 Gu & Dao (2023); Dao & Gu (2024a), RWKV6
(Peng et al., 2024), and GSA (Zhang et al., 2024). This transition stems from the proven advantages
of gating/forgetting mechanisms (termed selective mechanisms in Mamba)—a classical concept
originating in the gated RNN literature (Gers et al., 2000) whose significance has been consistently
reaffirmed (Greff et al., 2015; van der Westhuizen & Lasenby, 2018; Qin et al., 2024; 2023b; Gu &
Dao, 2023).
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Modern forget gates differ from traditional designs like those in LSTM by removing the dependency
on the previous hidden state, relying solely on input data. This modification enables efficient
parallelism across sequence lengths (Martin & Cundy, 2018; Qin et al., 2023b). The absence of a
forget gate has been a notable limitation in DeltaNet, and our gated extension addresses this gap in a
natural and effective way.

Delta rule. The delta learning rule has been shown to offer superior memory capacity compared
to the Hebbian learning rule (Gardner, 1988; Prados & Kak, 1989). While linear transformers rely
on a Hebbian-like learning rule, DeltaNet utilizes the delta rule, and this advantage in memory
capacity is empirically evident in synthetic in-context learning tasks. Moreover, this superiority
extends across various applications, including language modeling (Irie et al., 2021; Yang et al.,
2024b), reinforcement learning (Irie et al., 2022b), and image generation (Irie & Schmidhuber,
2023). Yang et al. (2024b) further parallelized delta rule computations across sequence lengths and
demonstrated the enhanced expressiveness of DeltaNet’s transition matrix. Specifically, DeltaNet’s
data-dependent identity-plus-low-rank structure (I − βtktk

⊺
t ) offers greater flexibility compared

to Mamba2’s data-dependent diagonal matrices (αtI). This architectural shift from diagonal to
structured dense matrices substantially improves the model’s capabilities in complex reasoning tasks,
including regular language recognition (Fan et al., 2024; Grazzi et al., 2024) and state-tracking tasks
beyond the TC0 complexity class (Merrill et al., 2024)—capabilities that are particularly crucial
for applications like coding. Recent work by Grazzi et al. (2024) suggests that allowing negative
eigenvalues in DeltaNet could further enhance its state tracking capabilities, which could be directly
incorporated into Gated DeltaNet as well.

The delta rule shares an intriguing connection with online (meta) learning via gradient descent
(Munkhdalai et al., 2019; Irie et al., 2022a). Recent architectures like Longhorn (Liu et al., 2024) and
TTT (Sun et al., 2024a) revisit this relationship by reformulating state space learning as a gradient-
based online learning problem (see also §3.1). While Longhorn offers a more theoretically rigorous
formulation, its reliance on diagonal approximation significantly compromises expressiveness. TTT
presents an interesting case: its linear variant without Layernorm is equivalent to DeltaNet, but adding
Layernorm transforms it into a non-linear RNN model. This transformation necessitates a hybrid
training approach where a "delta-like-rule" is applied at the chunk level every N tokens (where N is
the chunk size).

Despite its advantages, the delta rule has theoretical limitations (Irie et al., 2023) and shows moderate
performance on real-world datasets (Yang et al., 2024b). Previous extensions enhance expressiveness
through strict nonlinear recurrence (Irie et al., 2021; 2022b), but sacrifice training parallelism. Our
Gated DeltaNet maintains a linear RNN, enabling efficient training while improving expressiveness
through gating, leading to consistent improvement across tasks. Future work could adopt GLA-like
diagonal gating (Yang et al., 2024a) to further relax gating restrictions.

6 CONCLUSION

In this work, we introduced Gated DeltaNet, which enables better key-value association learning
compared to Mamba2 and more adaptive memory clearance than DeltaNet, leading to consistently
better empirical results across various tasks. We extended the parallel algorithm from Yang et al.
(2024b) to enable hardware-efficient training of Gated DeltaNet. Our hybrid Gated DeltaNet model
achieves even higher training throughput and overall performance, making it well-suited for practical
deployment.
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A APPENDIX

A.1 EXTENDED WY REPRESENTATION FOR GATED DELTA RULE

To reduce notation clutter, we only consider the first chunk here.

For St, the extended WY representation is

St =

t∑
i=1

γt
γi
uik

⊺
i , ut = βt

(
vt −

t−1∑
i=1

γt
γi
uik

T
i kt

)
We proof this by mathmetical induction.

Proof.
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For Pt,
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⊺
t kn)

has already been proved in Yang et al. (2024b).

A.2 ABLATION STUDY AND ADDITIONAL EXPERIMENTS

Table S.1 presents ablation studies on the Gated DeltaNet block’s components. Our experiments
demonstrate that both the short convolution and output gate are crucial for model performance, while
output normalization yields marginal improvements. Consistent with Yang et al. (2024b), we found
L2 normalization to be essential for optimal performance, though the choice of feature map was
less influential. Nevertheless, SiLU consistently outperformed other activation functions, aligning
with observations from Qin et al. (2023a). Through empirical analysis, we determined that a head
dimension of 128 provides an optimal trade-off between performance and computational efficiency.
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Table S.1: Ablation study on the Gated DeltaNet block. Avg-PPL and Avg-Acc denote average perplexity and
zero-shot commonsense reasoning accuracy (as in Table 2), respectively. All models have 400M parameters and
are trained for 15B tokens on the same subset of FineWeb-Edu dataset (Penedo et al., 2024).

Gated DeltaNet Ablations (400M) Avg-PPL (↓) Avg-Acc (↑)

Gated DeltaNet w Head Dim 128, 27.35 47.26

Macro Design
w. naive Delta Rule 30.87 45.12
w/o. Short Conv 28.95 46.16
w/o. Output Gate 29.12 45.46
w/o. Output Norm 27.55 47.07

Normalization & Feature Map
w. L1-norm & ReLU 30.79 45.92
w. L1-norm & 1+ELU 30.34 46.05
w. L1-norm & SiLU 30.18 46.09
w. L2-norm & ReLU 27.67 46.94
w. L2-norm & 1+ELU 27.58 47.17

Model Dimensions
w. Head Dim 64 28.31 46.35
w. Head Dim 256 27.13 47.38

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

Hybrid Ablations (500M/15B)

Gated DeltaNet + SWA + Mamba2 24.02 28.20 34.77 67.08 40.84 50.74 60.35 28.83 38.94 61.49 47.88
Gated DeltaNet + Mamba2 + SWA 23.69 26.83 36.17 67.51 41.51 51.85 61.19 29.77 38.58 53.73 47.54
Mamba2 + SWA + Gated DeltaNet 24.14 25.21 36.79 64.96 41.18 52.01 60.90 30.03 38.07 59.44 47.92
Mamba2 + Gated DeltaNet + SWA 23.54 24.11 36.92 66.48 41.70 52.72 61.06 30.54 39.91 60.51 48.73

Table S.2: Ablation studies of Gated DeltaNet models. All evaluations are performed by using
lm-evaluation-harness (Gao et al., 2021). All models use the Llama tokenizer and are trained on the
same subset of the FineWeb-Edu dataset (Penedo et al., 2024).

Models State size SWDE SQuAD FDA TriviaQA NQ Drop Avg
↑ ↑ ↑ ↑ ↑ ↑

400M params / 15B tokens
Transformer++ N/A 22.1 28.3 30.2 43.1 15.6 17.5 26.1
Samba 2062×Ld 23.1 29.9 31.0 45.1 16.3 16.7 27.0
RetNet 512×Ld 6.0 19.6 1.5 39.4 8.7 14.9 15.0
HGRN2 128×Ld 6.1 15.3 1.0 36.9 7.6 12.1 13.1
Mamba 32×Ld 6.8 15.7 1.1 37.8 8.0 12.2 13.6
Mamba2 256×Ld 12.0 24.9 10.8 43.3 11.8 17.3 20.1
DeltaNet 128×Ld 7.4 22.4 6.5 41.8 12.3 16.7 17.8

Gated DeltaNet 128×Ld 11.3 26.0 4.5 42.2 10.2 18.0 18.7
Gated DeltaNet 256×Ld 13.6 26.5 9.8 48.3 13.7 16.0 21.3
Gated DeltaNet-H2 1418×Ld 20.1 31.8 41.0 48.9 17.5 19.1 29.7
Gated DeltaNet-H1 2112×Ld 20.7 33.2 33.1 49.8 19.5 18.9 29.2

Table S.3: Results on real-world in-context retrieval tasks for 0.4B models trained for 15B tokens.

Additionally, Table S.2 demonstrates that among various hybrid architectures, the combination of
Mamba2, Gated DeltaNet, and SWA in this specific order produces superior results.

Tables S.4 and S.3 present zero-shot performance on common-sense reasoning and retrieval tasks
for smaller-scale models. The results in Table S.3 demonstrate that Gated DeltaNet with half the
state size of Mamba2 shows lower performance than Mamba2, while outperforming Mamba2 when
using the same state size. This highlights the critical role of state size in RNN model performance in
retrieval task.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

Transformer++ 30.63 37.37 29.64 64.27 37.72 51.53 54.95 27.36 38.07 61.59 45.64
RetNet 29.92 46.83 29.16 65.23 36.97 51.85 56.01 27.55 37.30 59.66 45.47
HGRN2 32.33 47.14 26.12 64.52 35.45 52.24 55.97 25.51 37.35 59.02 44.52
Mamba 29.22 39.88 29.82 65.72 37.93 50.11 58.37 26.70 37.76 61.13 45.94
Mamba2 26.34 33.19 32.03 65.77 39.73 52.48 59.00 27.64 37.92 60.72 46.91
DeltaNet 27.69 44.04 29.96 64.52 37.03 50.82 56.77 27.13 38.22 60.09 45.57
Gated DeltaNet 25.47 29.24 34.40 65.94 40.46 51.46 59.80 28.58 37.43 60.03 47.26
Gated DeltaNet-H2 24.19 28.09 36.77 66.43 40.79 52.17 59.55 29.09 39.04 58.56 47.69
Gated DeltaNet-H1 24.06 28.72 36.00 65.50 40.73 51.30 60.69 28.49 37.71 61.77 47.88

Table S.4: Zero-shot common sense reasoning results on 0.4B models trainsed for 15B tokens.

B EXPERIMENTAL SETTINGS

B.1 EVALUATION

Commonsense reasoning Following Gu & Dao (2023), we evaluate our model on multiple com-
monsense reasoning benchmarks: PIQA (Bisk et al., 2020), HellaSwag (Hella.; Zellers et al., 2019),
WinoGrande (Wino.; Sakaguchi et al., 2020), ARC-easy (ARC-e) and ARC-challenge (ARC-c)
(Clark et al., 2018), SIQA (Sap et al., 2019), BoolQ (Clark et al., 2019), Wikitext (Wiki.; Merity
et al., 2017), and LAMBADA (LMB.; Paperno et al., 2016).

In-context retrieval Our evaluation comprises both synthetic and real-world tasks. For synthetic
tasks, we utilize the Needle-In-A-Haystack Single (NIAH-S) benchmark suite from RULER (Hsieh
et al., 2024), which includes three increasingly complex tasks: S-NIAH-1 (passkey retrieval), S-NIAH-
2 (numerical needle in haystack), and S-NIAH-3 (word-based needle in haystack). For real-world
tasks, following Arora et al. (2024b), we evaluate on diverse datasets: SWDE (Lockard et al., 2019)
for structured HTML relation extraction, FDA (Arora et al., 2023b) for PDF key-value retrieval, and
several question-answering datasets including SQuAD (Rajpurkar et al., 2018), TriviaQA (Joshi et al.,
2017a), Drop (Dua et al., 2019), and NQ (Kwiatkowski et al., 2019). Since our pretrained models
lack instruction tuning, we employ the Cloze Completion Formatting prompts provided by Arora
et al. (2024b), which better align with our models’ next-word-prediction training objective.

Long context understanding We evaluate on 14 tasks from Longbench (Bai et al., 2023), encom-
passing: narrative comprehension (Narrative QA (Kočiský et al., 2018)), scientific understanding
(QasperQA (Dasigi et al., 2021)), multi-hop reasoning (MultiField QA, HotpotQA (Yang et al.,
2018), 2WikiMulti QA (Ho et al., 2020), Musique (Trivedi et al., 2022)), document summarization
(GovReport (Huang et al., 2021), QMSum (Zhong et al., 2021), MultiNews (Fabbri et al., 2019)), and
various specialized tasks (TRec (Li & Roth, 2002), Trivia QA (Joshi et al., 2017b), SamSum (Gliwa
et al., 2019), LCC (Guo et al., 2023), and RepoBench-P (Liu et al., 2023)).
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