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Abstract

Learning diverse skills without manually designed reward functions can greatly reduce hu-
man effort, making the process more autonomous and realistic. However, existing skill
discovery methods focus solely on maximizing the diversity of skills without considering
human preferences, which leads to undesirable behaviors and possibly dangerous skills. For
instance, a cheetah robot trained using previous methods learns to roll in all directions
to maximize skill diversity, whereas we would prefer it to run without flipping or entering
hazardous areas. In this work, we propose a Foundation model Guided (FoG) skill discov-
ery method, which incorporates human intentions into skill discovery through foundation
models. Specifically, FoG extracts a score function from foundation models to evaluate
states based on human intentions, assigning higher values to desirable states and lower to
undesirable ones. These scores are then used to re-weight the rewards of skill discovery
algorithms. By optimizing the re-weighted skill discovery rewards, FoG successfully learns
to eliminate undesirable behaviors, such as flipping or rolling, and to avoid hazardous areas
in both state-based and pixel-based tasks. Interestingly, we show that FoG can discover
skills involving behaviors that are difficult to define. Interactive visualisations are available
from https://sites.google.com/view/submission-fog.

1 Introduction

Reinforcement learning (RL) has shown promising results in robotics (Tang et al., |2024; [Wu et al. [2023]) and
games (Vasco et al., [2024; |Zhang et al., [2024). Typically, RL requires carefully designed reward functions,
which demand significant expert efforts (Schenck & Fox| |2018; [Sowerby et al., |2022)). In contrast, Unsuper-
vised RL (Laskin et al., 2021; Rajeswar et al.| 2023)) aims to eliminate task-specific reward functions and
train agents in a self-supervised manner. One key direction in unsupervised RL is pre-training agents to
acquire diverse skills that can potentially be useful in downstream tasks (Eysenbach et al., 2018} |Park et al.,
2023b)), termed unsupervised skill discovery. Most prior methods in unsupervised skill discovery focus on
maximizing skill diversity, encouraging agents to achieve diversity in both low-level behaviors and high-level
policies. For instance, a cheetah robot trained using previous methods (Park et all 2022} 2023b|) learns
to flip or roll (low-level behavior) in all directions (high-level policy). However, wide motions like flipping
or rolling could damage the robot, and entering restricted areas might pose safety risks. Ideally, we want
agents to learn skills that are not only diverse, but also aligned with specific intentions, such as eliminating
undesirable behaviors or avoiding certain areas.

To integrate human intentions into skill discovery, we introduce a Foundation model Guided (FoG) method.
More specifically, FoG (see Figure [1)) utilizes foundation models (Radford et al. [2021} |Ouyang et al., [2022;
Bordes et al.l [2024) to assign higher scores for desirable behaviors and lower for undesirable ones. These
scores are then used to re-weight the rewards of unsupervised skill discovery algorithms. By optimizing these
re-weighted rewards, FoG learns diverse skills while aligning with given human intentions. FoG stands out
from previous methods by being more autonomous, as it does not rely on costly expert demonstrations like
Kim et al.|(2024b)), and more versatile, as it works with both visual inputs and compact state information,
unlike Rho et al.| (2024), which requires precise ground-truth states.

Our main contributions are fourfold, and the FoG codebase can be found in the supplemental materials:
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Figure 1: FoG leverages foundation models (such as ChatGPT, Claude and CLIP) to score states in relation
to given commands during training. These scores are used to re-weight the rewards of the underlying skill
discovery algorithm. Left: In state-based tasks (top row), task descriptions are provided to foundation
models, which are queried to generate a score function f(s) based on our requirements. In pixel-based tasks
(bottom row), the current visual state, textual descriptions of desirable and undesirable intentions are input
to foundation models to obtain embeddings. These embeddings are then used to form the score function
f(s), see Equation (ED Right: During training, rewards of the underlying skill discovery method (rsgii)
are re-weighted using the score function. Re-weighting sk (we use METRA (Park et al.l [2023b))) by the
score function is equivalent with using the score function as the distance metric in the DSD objective.

1. We propose FoG, a novel foundation model guided unsupervised skill discovery method that learns
diverse and desirable skills.

2. We evaluate FoG alongside six state-of-the-art baselines on both state-based (i.e. structured, low-
dimensional representations) and pixel-based tasks. FoG outperforms baselines in both scenarios,
showcasing superior input-agnostic generalization capabilities.

3. We show FoG can learn behaviors that are challenging to define, such as being ‘twisted’ and
‘stretched’ on a humanoid robot, suggesting its potential for more complex applications.

4. We perform an extensive ablation study to assess the contribution of each component to FoG’s
performance.

2 Preliminaries and Problem Setting

We consider a reward-free Markov Decision Process defined as M = (A, S,p). S denotes the state space,
A denotes the action space and p is the transition dynamics function. A latent vector z € Z (also called
‘skill’) is sampled during training and its conditioned policy 7 (:|s, z) is executed to get a skill trajectory
7 = (80, 81, ---, ST ) following the process: p(7]z) = p(so) Hzﬂ:_ol m(ag|se, 2)p(se+1]st, at). w(+|s, z) can be learned
by optimizing unsupervised exploration objectives we discuss below (distance-maximization) or in Section
(mutual information). The policy network = (:|s, z) takes the concatenation of the state observation s and
the skill vector z as its input.

FoG utilizes the Distance-maximizing Skill Discovery (DSD) (Park et all 2023a)) objective. Unlike mutual
information based methods (Eysenbach et al., 2018), DSD aims to maximize the Wasserstein dependency
measure (WDM) (Ozair et al., 2019) defined as:

IW(sz) :W(p(svz)vp(s)p(z))a (1)

where W is the 1-Wasserstein distance on the metric space (S x Z,d) for distance metric d. By maximizing
the objective in Equation , the agent will not only maximize the diversity of skills, but also maximize
the distance metric d (Park et al., 2023b)). Under some simplifying assumptions (Ozair et al., 2019; [Villanil
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et al.l |2009)), maximization of Equation can then be rewritten as:

T-1

WPy - S (6(s) = 6(s) " 2| st [lo(x) — 6()l|2 < d(z,y), V(z,y) € S, 2)

t=0

where ¢ is a representation function that maps states to a D-dimensional space, which is the same as the skill
space Z. Intuitively, Equation aims to align the direction of z and ¢(s’) — ¢(s) (to learn distinguishable
and diverse skills), while maximizing the length of ||¢(s") — @(s)||, which leads to an increase in the distance
between states based on the given distance metric d due to the Lipschitz constraint (Park et al., 2023a)).
In principle, d(z,y) in Equation can be replaced by any of the distance metrics in Table [1} resulting in
different unsupervised skill discovery methods. Equation can be optimized with dual gradient descent,
incorporating a Lagrange multiplier A and a small slack variable € > 0:

Update ¢ to maximize: E[(6(s") — ¢(s)) " 2] + X - min(e, d(s, s') — ||p(s) — d(s)]])
Update A to minimize: A - E[min(e, d(s, s') — [|¢(s) — ¢(s)
Update 7 with reward: (p(s") — é(s)) " 2 (5)
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For derivation of these equations we refer to [Park et al.| (2022; [2023aib)).

3 Foundation Model Guided Skill Discovery

FoG extracts a score function from foundation models based on human intentions to re-weight skill discovery
rewards, illustrated in Figure For state-based tasks, the foundation model is queried to output a score
function aligned with our intentions. In pixel-based tasks, the score function is formed using state and
intentional text embeddings from the foundation models. The skill-conditioned policy is then trained to
maximize these re-weighted rewards during unsupervised skill discovery.

3.1 Score Function

We extract a score function from foundation models that can assign higher values for desirable state tran-
sitions and lower values for undesirable state transitions with respect to the given intentions. This score
function is then used to re-weight rewards of the underlying skill discovery method. We define the score
function f : (S,S’") — [0,1] which takes a state pair (current state and next state) as input and outputs
a value between 0 and 1, indicating the desirability of the given state transition. This score function is
then used to reweight the skill discovery rewards. The skill discovery reward rgp;; of Equation therefore
becomes:

r=f(s,8") X ropin = f(5,8)(d(s) = d(s)) " . (6)

Since we use METRA (Park et al.,2023b)) as the underlying skill discovery algorithm, using the score function
to re-weight the METRA rewards is equivalent to using it as the distance metric in the DSD objective:

T-1

iugEW,z) Y (Bser1) = se) 2| st [16(s) = d(s) 2 < f(5,5), V(s,8') € Saay, (7)

t=0

where S,q4; represents the set of adjacent state pairs. The derivation of Equation can be found in Ap-
pendix [A] By using the score function as the distance metric in the DSD objective, FoG not only maximizes
the diversity of skills, but also maximizes the output of the score function, leading to skills that are more
aligned with our intentions.

In practice, we find that a binary score function works well, i.e. outputting 1 if the state transition is
desirable and « if it is not, where 0 < a < 1. We examine different values of a and a non-binary score
function in Section @l
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3.2 Implementation Details

We show that the score function f(s,s’) can be simplified to f(s’), which only depends on the next state s'.
Let’s consider the desirability of the current state s and the next state s’ across two scenarios:

o s is desirable: Regardless of s, f(s,s’) should be high to encourage maintaining a desirable state
(if s is desirable) or transitioning from an undesirable one (if s is undesirable).

o s is undesirable: Regardless of s, f(s,s’) must be low to discourage stagnating in an undesirable
state (if s is undesirable) or deviating from a desirable one (if s is desirable).

Since the score depends solely on the next state, we simplify the function as:

fls,s') = = f(s). (8)

High if ¢’ is desirable
Low if ' is undesirable

Our work builds on top of METRA (Park et al.| |2023b), which is the state-of-the-art unsupervised skill
discovery method that works for both state-based and pixel-based input. FoG re-weights the skill discovery
reward of METRA by the score function that is extracted from foundation models. For state-based tasks,
we ask foundation models to generate the score function directly. For pixel-based tasks, we use foundation
models to output embeddings to form the score function. All code is available through the supplemental
materials.

State-based We ask ChatGPT or Claude to generate a score function f(s) that equals 1 if the state satisfies
our intentions, and « otherwise. Unlike Eureka (Ma et al.,2023), which queries foundation models to generate
a reward function for training agents from scratch, FoG instead asks for a score function to modulate skill
discovery. Prompt details for state-based tasks and examples of resulting output score functions are provided

in Appendix

Pixel-based We use CLIP (Radford et al., [2021)), a vision-language model that is trained to align images
and text, to first generate embeddings for images (pixel-based states) and texts (textual descriptions of our
intentions). Then, the score function is formed by computing the Cosine similarity between the image and
text embedding. If the current state is more similar to the description of the desirable intention, the output
is 1. Conversely, if it is more similar to the undesirable one, the output is «. The score function can be
expressed as Equation @

f(s) = {1, if Cosine(FEs, Ey1) > Cosine(Es, Ey). )

«, otherwise.

where E is the embedding of the current pixel-based state, F;; and FE;s are the embeddings of the textual
descriptions of desirable and undesirable intentions, respectively. Setting o = 0 attempts to not learn
undesirable behaviors at all (since a X 75, = 0) while setting o = 1 reduces FoG to the underlying skill
discovery algorithm METRA. We examine different values of « in Section[£.3] Details of textual descriptions
of desirable and undesirable intentions can be found in Appendix [F-7.2}

4 Experiments
Our experiments aim to address the following questions:

e How does FoG perform in state-based tasks where more context and informative features are pro-
vided?

e In pixel-based tasks, where only visual information is provided, can FoG guide agents to learn diverse
and desirable behaviors and skills?
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HalfCheetah Ant Cheetah Quadruped Humanoid

Figure 2: Environments used in our work. HalfCheetah and Ant are state-based while the other three are
pixel-based.

We use common environments in unsupervised skill discovery literature, see Figure [2} including two
state-based tasks and three pixel-based tasks: HalfCheetah and Ant are state-based tasks from OpenAl
gym (Brockman et al) |2016), Cheetah, Quadruped and Humanoid are pixel-based tasks from DMC
lyasuvunakool et al., [2020).

We have seven baselines for FoG to compare against:

o METRA (Park et al., 2023b)), the state-of-the-art unsupervised skill discovery method.

¢ METRA+, which integrates human intentions through hand-coded reward functions, and was also
used as a baseline in DoDont (Kim et all [2024D).

o LSD (Park et al.,|2022)), an unsupervised skill discovery method that maximizes DSD objective with
Euclidean distance as the distance metric.

e DoDont (Kim et al. [2024b)), a demonstration-guided unsupervised skill discovery method, learns
diverse and desirable behaviors shown in the demonstrations. In some cases, it needs additional
state-based inputs alongside with pixel-based input to work properly, more details can be found
in Appendix

e DoDont+, a variant of DoDont that replaces expert demonstrations with demonstrations annotated
using foundation models.

« FR-SAC, a SAC (Haarnoja et al., |2018) agent rewarded using scores from foundation models
(Foundation Rewards) using Equation (14]).

¢ METRA+FR, an agent that integrates FR into METRA by adding these two rewards together
directly. Instead of using multiplication form in Equation @, it uses the additive form.

All agents in the same task are trained with the same number of environment steps and all experiments are
performed multiple times with different independent seeds (3 seeds in state-based and 8 seeds in pixel-based
tasks), and average results with error bars are reported. For simplicity, we set a = 0 for all experiments.
Details about environments and baseline implementations can be found in Appendix [F] See websitd] for
videos of the learned behaviors and skills.

4.1 State-based Tasks

To test whether FoG can work in state-based tasks, we train FoG in HalfCheetah and Ant. Following the
details in Section[3.2] we input the description of the tasks, information about state space and action space to
foundation models as context, then ask foundation models to generate a score function that returns 1 when
the requirement in the query is satisfied otherwise a. In HalfCheetah, we train FoG to eliminate dangerous
behaviors (flipping over). In Ant, we train FoG to avoid a specific area, in this case to not go south.

Thttps://sites.google.com/view/submission-fog
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Results of these experiments are visualized in Figure 3] with generated score functions for both tasks on
the top. We first of all see that foundation models can recognize feature dimensions of the state that are
important for meeting our requirements. For example, in HalfCheetah the second dimension of the state
is the angle of Cheetah’s front tip, which is important for determining if the agent flips over or not. In
Ant, the first dimension of the state is the y-coordinate of Ant, which can be used to locate the agent in
a south-north position. We see foundation models clearly set the right threshold and implement the logic
to fulfil the intention we asked for, i.e., if the angle of the Cheetah’s front tip is larger than 1.57 in radians
(90 degrees) it flips over, and if the y-coordinate of Ant is larger than 0 it is in the north part of the plane.
By re-weighting the skill discovery rewards using the generated score function from foundation models, FoG
learns to not roll in HalfCheetah while METRA flips a lot (two bottom-left sub-figures of Figure . In
Ant, FoG learns to always move to north and METRA learns to go in every direction (bottom-right part in
Figure |3). However, naively adding rewards of METRA and FR (METRA+FR) leads to static behaviors
near the starting point without any movement.

def score_fn(state):
front_tip_angle = state[2]
threshold = 1.57
if front tip angle > threshold:

def score fn(state):
y_coord = state[l]
if y coord > 0:

return 1 return 1
else:
else: return 0
return 0
Generated score fn for HalfCheetah Generated score fn for Ant
1 00
= METRA "
@ METRA + FR | £
="
® = FoG =
c T 100 e —
] L
o o
5] >
& 3
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[+]
% Rolls State Coverage METRA METRA + FR FoG

Figure 3: Comparison between METRA, METRA+FR and FoG on state-based HalfCheetah and Ant. In
both tasks, foundation models successfully capture the relevant state dimension and set threshold for it. Left:
FoG learns not to roll in HalfCheetah, while METRA rolls over 50% of the time, violating our intention.
Right: FoG learns to not move to south in Ant, and METRA learns to move in all directions.

4.2 Pixel-based Tasks

We now conduct experiments in pixel-based tasks, where only visual information is available. Unlike in
state-based tasks, where we ask foundation models to directly generate a score function, in pixel-based tasks
we leverage foundation models to output embeddings of 1) the visual state and 2) textual descriptions of our
desirable and undesirable intentions. The score function is then computed from Equation @D We examine
FoG in four aspects:

e Can FoG learn diverse skills while eliminating undesirable behaviors?
e Can FoG learn diverse skills without entering certain areas?
e Can FoG learn complex behaviors that are difficult to clearly define?

e What are the most critical design choices of FoG?

Learn to eliminate undesirable behaviors We first focus on guiding the agent to learn desirable low-
level behaviors (e.g., standing normal) while eliminating undesirable ones (e.g., flipping over) that could
potentially damage the robot. In pixel-based Cheetah, we use ‘agent flips over’ and ‘agent stands
normally’ as textual descriptions to express our intentions.
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Figure 4: Left: Executions of example skills from different agents in pixel-based environment, Cheetah.
From top to bottom: METRA, METRA+, LSD, DoDont, DoDont+, FR-SAC, METRA+FR, FoG. Right:
Percentage of flips (which should be prevented based on the guidance) and state coverage for different agents.
METRA, METRA+, DoDont, and DoDont+ discover diverse states but often flip. LSD and FR-SAC fail
to learn diverse skills. FoG excels with high state coverage and minimal flipping.

As shown in the left part of Figure [4] FoG (the bottom one) consistently learns to run without flipping,
demonstrating the lowest percentage of flips during evaluation. In contrast, other methods struggle to
prevent flipping effectively. METRA flips in over 70% of episodes, DoDont in more than 35%, and DoDont-+
in 50% of the episodes. LSD, FR-SAC, METRA+ and METRA+FR struggle to learn to move in different
directions, discovering static behaviors and rarely flipping. Although METRA, DoDont, DoDont+ and FoG
achieve similar state coverage, FoG effectively prevents flipping.

The poor performance of METRA+ suggests that defining a proper score function manually is not trivial (we
follow the definition in [Kim et al.| (2024b)) and use 7y, — 7 f1ip as the score function). The poor performance
of DoDont stems from the inaccurate classifier, which exploits the color of the ground to distinguish different
states (normal and flipping postures), outputting high scores for unseen undesirable behaviors. A more
in-depth analysis on the failure of DoDont can be found in Appendix [D] FR-SAC fails to learn meaningful
behaviors, suggesting only using foundation model scores to train RL agents is insufficient (see more analysis
in Appendix [E.4]). To evaluate how these learned skills perform in downstream tasks, we train a controller
to select from the learned set of skills. This controller trained using FoG skills shows quick adaptations in
the downstream tasks, as shown in Appendix [C]

B METRA m METRA+ 1 LSD mm DoDont mEE DoDont+ W FR-SAC METRA+FR m FoG
ﬂ 15
% S 10|
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S g 3
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B \\y g
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o
3 8
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METRA METRA+ LSD DoDont DoDont+ FR-SAC METRA + FR FoG Safe State Coverage

Figure 5: Top: Results on the pixel-based environment Cheetah, with learned skills shown in x-coordinates.
METRA+ learns to perfectly avoid the undesirable area and FoG has a strong preference to go to the
desirable area, as also clearly visible from the Safe State Coverage on the right. Other agents fail. Bottom:
Results on the pixel-based environment Quadruped, with learned skills shown as xy-coordinates. Similar
conclusions can be drawn regarding most of agents. Unlike in Cheetah, DoDont successfully learns to avoid
the bottom-left areas.
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Learn to avoid hazardous areas Previous methods focus solely on maximizing skill diversity, often
leading agents to explore in all possible directions. In practice, however, we want agents to avoid certain areas
when they are hazardous. For instance, a robot operating in a factory should be able to avoid prohibited
areas. To test whether FoG can learn to avoid certain areas (high-level policies, as opposed to low-level
behaviors in Figure @), we train FoG in the pixel-based versions of Cheetah and Quadruped. We designate
the right area in Cheetah and the bottom-left area in Quadruped as hazardous and train agents to avoid
them. Since there are no explicit indicators of directions in these two tasks, we express our intentions through
colors. For example, in Cheetah, we use descriptions like ‘ground is blue’ and ‘ground is orange’ to
signal whether the agent is on the left or right part and then form the score function following Equation @D

Figure [5| illustrates the learned skills and ‘Safe State Coverage’ (the coverage of safe areas minus that of
hazardous areas) of different agents. FoG clearly biases movement toward the safe areas. In Cheetah it
prefers to go to the left part and in Quadruped it avoids the bottom-left area, resulting in higher safe
state coverage than the baselines. In contrast, METRA explores all directions indiscriminately, LSD and
FR-SAC fail to move, leading to the lowest safe state coverage. DoDont performs well in Quadruped but
not in Cheetah (the classifier are unsure about initial states thus harm the exploration). The slightly worse
performance of DoDont+ (compared to DoDont) in Quadruped stems from its inaccurate demonstrations
annotated by foundation models. METRA+ performs the best, likely because that defining a score function
in these tasks is straightforward (assigning 1 to states in safe regions and 0 for ones in hazardous regions
2024b)). The results suggest that with expert-level demonstrations and ‘perfect’ hand-crafted score
function, DoDont and METRA+ could potentially outperform FoG. However, the strength of FoG shines
in scenarios where obtaining expert-level demonstrations or crafting a perfect score function is challenging,
which is generally the case.

Non-expert demonstrations (like ones annotated by foundation models, which are used in DoDont+) in-
troduce inaccuracies to the classifier, with annotation accuracy around 70%. This leads to an inaccurate
classifier that consistently generates unreliable signals, ultimately resulting in poor performance. In contrast,
FoG leverages CLIP on-the-fly. Although CLIP does not achieve perfect accuracy, it still allows the agent to
learn effectively. As shown in Figure [7] the more accurate the scoring function, the better the performance

= == METRA = METRA
g B FoG g = FoG =
% 7 S S Y
o ¢
0.0 £ T
Random Snapshots Human Selection Learned Skills Random Snapshots Human Selection Learned Skills

Figure 6: Learning results of METRA and FoG on Humanoid (Left) and Puppet (Right). Humans par-
ticipants pick FoG to be more desirable 90% and 70% of the time in two tasks. Learned skills (shown in
xy-coordinates) of different agents.

Learning in Humanoid Humanoid is a challenging high-dimensional control task with a 21-D action
space. Defining postures of this humanoid robot could be both hard and subjective, e.g. when it is “twisted"
or “stretched", “running' or “walking", etc. This also makes it hard to design a reward function that can
guide the agent to learn such behaviors. Since FoG uses foundation models, it overcomes this problem by
directly evaluating whether a given frame or state is desirable—assigning higher scores to configurations like
“twisted,” which we want to encourage. This allows FoG to recognize and reward subtle behaviors that are
otherwise hard to specify explicitly. We could not compare FoG with DoDont (Kim et all) [2024b) as the
original paper does not include results on Humanoid, probably because demonstrations of a humanoid robot
are challenging to obtain (an issue we also encountered).

First, we train FoG in the Humanoid task using intention descriptions ‘agent is stretched’ and ‘agent
is twisted’. To quantitatively assess whether the agent has successfully learned to twist, we create a
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questionnaire and ask ten human participants to evaluate videos of different agents, selecting the ones they
perceive as more “twisted". Videos and the questionnaire can be found on the project website and details of
the experimental setup can be found in Appendix [F]

In the left part of Figure [0} it is clear that FoG learns to exhibits more “twisted" postures while METRA
tends to appear more “stretched". The ‘Human Selection’ shows how participants perceive the trained skills,
with 90% of the time participants selecting FoG as more “twisted", further validating the observed outcomes.
Both FoG and METRA successfully learn to move in different directions, highlighting the diversity of the
learned skills. FoG’s ability to move in different directions with “twisted" postures suggests its potential to
guide agents in discovering skills involving behaviors with subjective definitions.

To further analyze FoG, we modify the
‘Humanoid’ task to a ‘Puppet’ variant,

where the humanoid is pulled by a string - 2 FaG (b=0)
above the head, i.e. the humanoid always & : :g oo
keeps upright. The details of Puppet en- & 05 b=0.5
vironment can be found in Appendix[F.I] METRA
Besides learning diverse skills, we also

ask the puppet to show running postures. 0.0

See results in the right part of Figure [0} alpha No. skip score fn noise
METRA learns to wriggle to all different

directions with squat postures, whereas
FoG learns to show more natural postures
while moving in all directions. Similar to
the Humanoid experiment, 70% of par-
ticipants judged FoG to exhibit a more 'running’ posture. See the website for videos.

Figure 7: Percentages of flips that different FoG variants show
on the Cheetah environment. Smaller o, N and b return better
performance.

4.3 Ablation Study

FoG introduces two hyperparameters. The first, « in the binary score function of Equation @D, controls the
re-weighting of skill discovery rewards for undesirable states. Higher values make rewards for undesirable
and desirable states less distinguishable, increasing the likelihood of agents learning undesirable behaviors.
We evaluate three values, o = 0,0.5,0.8. As shown in the left part of Figure [7] higher a leads to more
undesirable behaviors (e.g., increased flipping in the Cheetah task). Directly using similarity of visual states
and textual intentions (sim, calculated with Equation ) to re-weight rewards yields poor performance.
While o = 0 works well across experiments, it may overly constrain exploration in some cases (see examples

in Appendix |E.1)).

In pixel-based tasks, obtaining embeddings for every pixel state
is computationally expensive. Instead, embeddings are com-
puted every Nth state, with the score applied to the following
(N —1) states. Smaller N values improve accuracy but increase 1.0
costs. As shown in the middle part of Figure[7] smaller N leads

Turn upside down mm Flip over

mm Roll over mm Upend

to fewer flips (better performance), but there is no significant % 5
difference between N = 10 and N = 20, suggesting behaviors *E' 0.5 B
in Cheetah are quite smooth thus skipping 10 or 20 states leads E %
to similar results. a O
0.0
Prompt robustness: The FoG score function relies on tex- % Flips State Coverage

tual intentions. Here, we examine the sensitivity of FoG in
the pixel-based Cheetah, with using different undesirable tex-
tual prompts. Although these texts have similar meanings,
we observe significant variance in performance across different
phrasings; notably, obscure terms (e.g., ‘Upend’) lead to poor
results. Our findings suggest that using common, straightforward descriptions such as ‘Flip over’ or ‘Roll
over’ yields the best performance.

Figure 8: Performance of FoG on the Chee-
tah environment with different textual in-
tentions used.
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Sensitivity to score function noise: Although FoG’s CLIP-based score function is not perfectly accurate,
it still enables the agent to learn effective behaviors. To assess how performance depends on the score
accuracy, we inject noise by flipping the score output (0 <> 1) with probability b during training. As the
score function becomes noisier, the percentage of flips in Cheetah increases (see Figure [7)) while the state
coverage remains mostly constant (all 29, except 26.7 £ 0.67 for b = 0.5). These findings indicate that while
FoG is robust to some noise, improved scoring enhances performance.

5 Related Work

Mutual information (MI) based unsupervised skill discovery aims to maximize MI between latent skill vari-
ables and visited states to learn diverse and distinguishable skills. This line of research focuses on max-
imizing mutual information (MI) I(-;-) between skills Z and states S, i.e., I(S;Z) = H(S) — H(S|Z) =
H(Z)— H(Z|S), where H(-) denotes entropy. By associating states s € S with different latent skill vectors
z € Z, these methods learns diverse skills that are mutually distinct (Eysenbach et all 2018; |Sharma et al.|
2019; |Laskin et al) 2022). SASD (Kim et al. 2023) and EDL (Hussonnois et al., |2023|) integrate preference
into MI methods by a pre-defined function and human feedback, and they operate only with state-based
input. In contrast, FoG eliminates the need for human involvement and supports both state and pixel-based
input.

However, these MI-based methods do not always encourage the agent to discover distant states, as the MI
objective can be satisfied by learning simple and static skills (Park et al., [2023bj 2022). To address this
limitation, [Park et al| (2023al) introduces a Distance-maximizing Skill Discovery (DSD) framework that
learns diverse skills while maximizing the traveled distance under the given distance metric d. LSD (Park
et al.,|2022)) uses Euclidean distance between states as the distance metric to encourage agents to visit states
that are as far apart as possible. CSD (Park et al [2023al) employs a density function over visited states
as the distance metric, to encourage agents to visit less frequently visited states. However, LSD and CSD
only work with state-based inputs and fail in pixel-based tasks. METRA (Park et al., [2023b)) instead uses
a temporal distance function that is applicable in visual tasks as well, as the distance metric to push the
agent to discover states that are temporally far apart. LGSD (Rho et al.| |2024) utilizes foundation models to
first convert state-based inputs to text descriptions, then uses embedding distance between text descriptions
as the distance metric to encourage agents to learn semantic diverse skills. DoDont (Kim et al., 2024b)
employs demonstrations to guide agents in learning desirable behaviors. Specifically, it trains a classifier
over the demonstrations of what the agent should and should not do, and uses it as a distance metric in
DSD, encouraging agents to learn to maximize intentions of the given demonstrations. Some distance metrics
used by different methods are summarized in Table [I Note that FoG can be interpreted as using a score
function extracted from foundation models as the distance metric in DSD. We refer to Section B.1] for further
details.

Table 1: Distance metrics used by different methods in the distance-maximizing skill discovery objective. gq is
a density function parameterized by 6. Temporal distance is defined as the minimum number of environmental
steps needed for the agent to go from one state to another state. sjang is the textual description of the state
5. Dy is a classifier parameterized by ¢.

LSD CSD METRA LGSD DoDont Ours
|[s" —s|| | —logge(s'ls) | temporal dis | dis(},,y, Stang) | Pe(s’s8) | score fn

FoG is most closely related to DoDont and LGSD, as both these methods aim to incorporate human pref-
erences into skill discovery. However, DoDont relies on expert demonstrations, which can be costly (Fu
et al., [2024; |[Pertsch et al., [2021) or infeasible for tasks where human performance is limited (e.g., defining
“stretched" or “twisted" posture for a humanoid robot). Additionally, DoDont’s classifiers require ground-
truth state-based inputs to avoid being misled by unrelated information when learning behavioral intentions
(see examples in Appendix@[). LGSD leverages language models but is limited to low dimensional state-based
tasks. As the states (e.g. [0.3,0.2]) need to be first converted to text (e.g. object at position [0.3,0.2])
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with a rule-based annotator, then gptd-turbo (Achiam et al. [2023) is queried to generated descriptions.
Furthermore, querying gpt4-turbo in a step-wise, chat-style manner is expensive. In contrast, FoG utilizes
vision-language models and extracts a score function, applied either once (state-based tasks) or via batch
processing (pixel-based tasks), to re-weight the underlying skill discovery rewards. It therefore has a fast
response time and works well in both state-based and pixel-based tasks. We discuss related work on using
foundation models for RL in Appendix [B]

6 Conclusion and Future Work

We propose a novel unsupervised skill discovery method, FoG, guided by foundation models to incorporate
human intentions. FoG first extracts a score function from foundation models based on input intentions,
assigning higher preference to desirable states and lower preference to undesirable ones. This score function
is then used to re-weight the underlying skill discovery rewards. By optimizing re-weighted rewards, FoG
discovers not only diverse but also desirable skills. In addition, we also show FoG can learn skills involving
behaviors that are complex and subjectively defined.

FoG uses CLIP due to its widespread adoption, it is open-source with readily available pre-trained weights
and lightweight to run (the variant we use, has only 0.4B parameters). Importantly, our framework is not
tied to CLIP specifically: FoG is designed to work with any vision-language model that provides image-
text embeddings which can be used to compute similarity scores (Equation @D) We expect that stronger
or task-specific vision-language models would further improve FoG’s performance. We leave exploration of
alternative backbones for future work.

Although FoG performs well, it is not without limitations. First, there is no guarantee that score functions
generated by foundation models are always appropriate. Additionally, since the score function is defined
based on individual states, FoG may struggle to capture process-based alignment. This limitation could be
addressed by defining the score function over a sequence of states (Sontakke et al., |2024). Furthermore,
we believe FoG could benefit from more advanced and task-specific foundation models (Liu et al., |2023aj
[Yao et al., 2024; [Padalkar et al., |2023; Valevski et al. 2024). One could also explore the performance of
FoG with more complex intentions and more challenging tasks. Some preliminary results can be found
in Appendix We hope FoG inspires future efforts in incorporating human intentions in unsupervised
skill discovery.
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A Derivation of Equation (|7

The original DSD objective is shown in Equation . It is crucial to define a appropriate distance metric
to encourage agents to not only learn diverse skills but also maximize the given distance metric.
(2023b)) uses the temporal distance as the distance metric for the DSD objective in METRA, shown

in Equation .

sup By - [i <¢<8t+1>—¢<st>fz] st 16(s) = ¢()ll2 < 1, Y(5,8') € Sugs- (10)

K t=0

Now, we use the score function f(s,s’) to re-weight the METRA rewards to get the objective of FoG. The
new objective (FoG) now becomes Equation (11)):

T-1

DBy [Zﬂs,s')w(sm)¢<st>>Tz] st 16() = 6(&)l2 < 1, V(s,8) € Sagp. (11)

t=0

Following [Kim et al.| (2024al), let scaled state function ¢(s) — é(s') = (¢(s) — é(s'))f(s,s'). By replacing
B(s) —p(s) with (¢(s) — ¢(s"))/f(s,s') and transforming the constraint in Equation (11)) (since f(s,s’) > 0),
we derive Equation (Equation @), which is using the score function as the distance metric in the DSD
objective.
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T —

i

S Epra) | S (Hse51) = 6(50) 2| st 18(s) = B(lla < F(s.8), V(s,8) € Sugg. (12)
0

TP t=

Since we will optimize exclusively over this new scaled representation, for notational simplicity, we rename
¢ to ¢ in the final objective (Equation ) Hereby, we show that using the score function to re-weight the
METRA rewards is equivalent as using it as the distance metric in the DSD objective.

B Extended Related Work

Foundation Models in Reinforcement Learning FoG leverages
foundation models to guide unsupervised skill discovery in learning desir-

able behaviors. Thanks to success of foundation models (Touvron et al.|

[2023; [Liu et al. |2023b]) they can now be used to provide information for

RL agents. Motif (Klissarov et all 2023) and IGE (Lu et al. 2024) em-

ploys large language models to generate exploration bonuses. Eureka
uses large language models to generate reward functions for
state-based robotic tasks, outperforming human designed reward func-
tions across multiple tasks. Lift (Nam et al.,|2023) uses LLM and VLM
to guide learning in Minedojo (Fan et al., 2022). LAMP
[2023) and |[Rocamonde et al.| (2023) utilize the similarity between pixel em-
bedding and text-commands embedding, as output by a vision-language
model, as the step-wise reward in visual robotic tasks. Results show that
such step-wise signals alone barely work (matching the results we had

=
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Figure 9: Downstream task per-
formance.

in Section , and require either fine-tuning or special task modifications to perform well. Task-specific
foundation models generally can achieve better performance on specific tasks, such as Minedojo
in Minecraft and EmbodiedGPT in robotics. Despite this, FoG demonstrates that
pre-trained foundation models, even without fine-tuning or any modifications of tasks, can be used to guide
RL agents to discover diverse and desirable skills. In state-based tasks, FoG uses foundation models to
generate a score function aligned with human intentions. Unlike Eureka 2023), FoG: 1) avoids
iterative feedback loops with the environment, as Eureka requires multiple rounds of feedback to refine the
reward function, and 2) uses the score function to re-weight skill discovery rewards, whereas Eureka directly

trains agents with the generated reward function.

C Downstream Tasks

After obtaining skills, we can train a controller to select these
(frozen) learned skills to achieve given downstream goals. We
follow the implementation of [Park et al.| (2023b)), and set g ~
[-10,10] as the goal. During training, the agent receives a
reward of 10 if the goal is reached. We train a controller to
select a skill z every K = 50 steps, and the learned policy
7(+]s, z) is executed for K steps. We use SAC
for training the controller and all hyperparameters are
kept the same as the METRA codebase. Results are shown
in Figure [0] The controller that is trained using frozen skills
learned by FoG shows better performance at the beginning

Cheetah Quadruped

and converges faster than the baselines, indicating that FoG Figure 10: Tasks with non-colored ground
effectively learns meaningful skills that can be quickly adapted ~that DoDont uses.
to downstream tasks. LSD does not learn useful skills thus the trained controller performs poorly. METRA

slightly lags behind of DoDont.
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D Analysis of DoDont

The performance of DoDont in our paper is quite different to the one from the original paper due to different
experimental setup. Here, we provide a more in-depth analysis of why DoDont fails in our experiments.

Failure in Figure To keep a fair comparison, we use pixel
inputs for both the classifier and the RL part in DoDont (since — o — o
FoG does not require ground-truth state information and works 0.4 —— ——
with only pixel inputs), which differs from the original exper- 50
iments in the DoDont paper. In the Appendix D.1 of DoDont 0.2 ﬂ‘

paper, authors mentioned that DoDont uses state information
as input for the RL agent (both the policy and the critic). The
classifier might exploit the background color as a shortcut to
distinguish between different states rather than observing the
agent’s embodiment, thus DoDont instead uses a non-colored
ground (see in Figure|10). However, the backbone of DoDont,
METRA, cannot learn diverse skills without the colored ground
(since there will be no indication of directions). Thus, DoDont
uses state-information for the RL part. During the training,
image states are first input to the classifier to get rewards, then the corresponding compact ground-truth
states are used to train the RL agents along with the rewards obtained from the classifier. Our experiments
show that indeed, if pixel inputs are used for both the RL part and the classifier, DoDont fails (see results in
Figure ). The classifier indeed exploits the background color as a shortcut to distinguish between different
states rather than observing the agent’s embodiment, classifies unseen ‘Dont’ states as ‘Do’. See videos on
https://sites.google.com/view/submission-fogl

% Flips State Coverage

Figure 11: Results on the Quadruped task.
Setting o = 0 explores less (lower state
coverage) thus results in worse performance
(more flips).

Failure in Figure In Figure[5] DoDont successes in Quadruped while fails in Cheetah. The performance
of the classifier shows that it is able to accurately classifying “going left" and “going right", but unsure about
states at the beginning. Our intuition is that such uncertainty hurts the exploration at the beginning,
resulting in poor performance later on. See videos on https://sites.google.com/view/submission-fog.

E Additional Experiments

E.1 Quadruped Learns to Not Flip

Although we found that setting o = 0 works well in experiments presented in Section Experiments, sometimes
it might hurt the exploration. Similar with experiments performed in Figure[4] here, we train FoG to not flip
in Quadruped. We see in Figure FoG learns to not flip most of time (less than 20%) when setting oo = 0,
but it almost always stays near the starting point and does not explore, resulting in low state coverage. After
loosing o a bit and set it to 0.1, FoG learns to eliminate all flips and has a significant higher state coverage.

E.2 Results on Franka Kitchen

To examine FoG in more complicated tasks, we train FoG in Franka Kitchen (introduced by |Gupta et al.
(2019)) with different textual descriptions of intentions, such as ‘robotic arm is stretched’, ‘robotic
arm is twisted’ and ‘robotic arm is on the right of the scene’. Results can be seen in Figure|12]
By using different intentions, we see robotic arms clearly bias the movements to different areas. However, we
did not find a way to use these skills to better solve the downstream tasks yet. We hope this could inspire
future efforts in investigating FoG in more complex tasks.

We also found that the baseline method METRA learns to open the cabinet very often, e.g. in our case 78%
of time. We test FoG to bias towards ‘cabinet is closed‘. It learns to stop opening the cabinet (only
22%), and please see the videos on our project website. We see the agent stops the intention to open the
cabinet in most of cases.
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FoG: “stretched” FoG: “on the right” FoG: “twisted” METRA Franka Kitchen

Figure 12: In Franka Kitchen, different skills FoG learned with different textual descriptions of intentions.
Skills are displayed with x-y coordinates of the robotic arm.

E.3 Results on Multiple Intentions

In Section Experiments, only one intention is used in FoG. In principle, multiple intentions could be used
simultaneously to form the score function. Then, Equation @ becomes:

1, if Cosine(Es, E}) > Cosine(Es, E)) and

Cosine(Es, E%) > Cosine(Es, E3,) and

Cosine(Es, ElY) > Cosine(Es, E})
«, otherwise.

where B}, and E}, are the nth textual descriptions of our intentions.

Now, the score function f(s) only assigns higher values to desirable states when all provided inten-
tions are satisfied. For example, we could ask FoG to not only learns to not flip, but also to
avoid the right area. The textual descriptions we should use are: 1) ‘agent flips over’, ‘agent
stands normally’; 2) ‘ground is Yellow-Orange’, ‘ground is Green-Blue’. See the result in Fig-
ure the agent does not learn to avoid the right part at all but it does learn to eliminate flips
(not shown in the figure). We found that using multiple intentions restricts the exploration too
much so that the agent might just learn to fulfill one intention and ignore others or ignore all of
them and learns to not move at all. Using multiple intentions in FoG still needs more investigations
and we hope the preliminary results and ideas presented in this section could inspire future efforts.

E.4 Using scores as step-wise reward signals in FR-SAC

FoG uses foundation model scores to re-weight the unsupervised skill
discovery rewards, learning diverse and desirable behaviors. However, —
directly optimizing these scores is not ideal. In Figure [T4] scores for -
pre-collected episodes aligned with human intentions (‘Yes’) and mis-
aligned ones (‘No’) reveal significant noise despite correct overall trends
(we use the same textual intentions from previous experiments, i.e. Chee- -15-
tah in Figure [4| and Quadruped in Figure [5)). For example, in Cheetah,

after flipping upside down at step 50, the agent consistently receives low  Figure 13: Skills learned by FoG
scores. In Quadruped, scores either remain high or gradually decrease as ith two intentions.

the agent moves diagonally. This noise makes direct score optimization

unreliable. As can be seen in Figure [4] and Figure 5] the agent trained solely with such noisy reward sig-
nals (FR-SAC) learns only static postures, resulting in low (safe) state coverages, suggesting that directly
optimizing these scores is insufficient.

15 -10 -5 0 5 10 15
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F Experiment Details

F.1 Environment Details

State-based HalfCheetah and Ant are from OpenAl

Gym (Brockman et al., 2016). The state space of HalfChee- 10
tah is 18-dimensional and the one of Ant is 29-dimensional. 1
HalfCheetah has a 6-dimensional action space while Ant has a L’s]”

8-dimensional action space. Sl Wﬂ In

— Yes FL L‘{'Lr

—— No W
Pixel-based Cheetah, Quadruped and Humanoid are from 0.0'5 5 oo 55 00 Steps
DeepMind Control Suite (Tunyasuvunakool et al., 2020). Fol- Cheetah Quadruped

lowing previous work (Lee et al., 2021} [Park et al., 2024} |[2023D),

pixel-based DMC tasks are all with gradient-colored floors to  Figure 14: Scores outputted by foundation
indicate different directions. The size of visual observations models on the pre-collected episode that are
is 64 x 64 x 3. The dimension of action space for Cheetah, (not) aligned with human intentions.
Quadruped and Humanoid are 6, 12 and 21, respectively. The

episode length is 200 for Ant, HalfCheetah and Cheetah, 400 for Quadruped and Humanoid.

Modified Humanoid Since none of existing unsupervised skill discovery methods can train the visual
Humanoid agent to stand up, limiting FoG to showcase more interesting behaviors, such as running, etc. We
created a ‘Puppet’ task based on the DMC Humanoid environment, see Figure [I5] The humanoid robot is
pulled by a puppet anchor on the top of its head. Thus, the humanoid robot keeps standing by default and
never falls down. The anchor also moves with the humanoid.

F.2 Baseline Details

METRA We take the official codebasd?] from [Park et al| (2023b) and
use default hyperparameters for all experiments performed in this paper.

METRA+ We follow the implementation of METRA+ in the DoDont
paper. For experiments in Figure @, We US€ T'ryn — Tfisp as the reward.
For experiments in Figure [5] we assign +1 for the safe region and 0 for
the hazardous region.

LSD We take the codebase of METRA, by setting correct arguments
(turning off the dual regularization and turning on the spectral normal- :
ization), to run LSD. Detailed instructions can be found in the METRA \ l
codebase.

Figure 15: The Puppet environ-

DoDont We take the official codebase from [Kim et al.| (2024b) and ment.

implement the training of the instruction net ourselves. We use eight demonstrations for each task, so four
for “dos" and four for “donts". Demonstrations are obtained from trained FoG agents and can be found
on our project website: https://sites.google.com/view/submission-fog. We stop the training of the
classifier after it has more than 97% of accuracy.

DoDont+ A variant of DoDont, instead of using expert-level demonstrations, it uses demonstrations
annotated by foundation models. In our case, we use CLIP to score frames (follow Equation @[)) in demon-
strations that are used to train DoDont, and assign frames with score of 0 in the “dos" demonstration to
“donts" demonstrations, and vice versa. Since CLIP cannot perfectly score frames, some states from “dos"
demonstration are moved to “donts" demonstrations, and some states from “donts" demonstration are moved
to “dos" demonstration. After training, the classifier of DoDont+ has about 70% of accuracy.

2https://github.com/seohongpark/METRA
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FR-SAC A soft actor-critic RL agent with using the score function as the reward function. We reuse the
FoG codebase and set the number of skills to 1. Then, we train the skill-conditioned policy with the scores
obtained from the foundation model (i.e. using the score function as the reward function), reducing to a
normal RL agent.

F.2.1 Hyperparameters Details

We use a = 0 and N = 2 for all our experiments, unless otherwise mentioned. We train all agents in the
same task with the same number of epochs and the performance at the end of training is reported. Details
can be seen in Table 2] The same number of episodes is executed in each epoch, and within each episode
the same number of environment steps is taken. We train continuous skills and the number of dimensions
we used to train all agents in each task can be found in Table[2] We refer readers to read [Park et al.| (2023b))
for details of all used hyperparameters.

Table 2: Number of epochs and dimensions of skills we used for training agents in different environments.

HalfCheetah | Ant | Cheetah | Quadruped | Humanoid
9000 9000 2000 3000 4000
4D 2D 4D 4D 2D

F.3 Non-binary Score Function

Instead of using a binary score function in Equation @, we can also form a non-binary score function.

eCOSiHE(Es7Ete:ztl)

f(S) = 6Cosine(Es,Etmt1) + eCosine(ES,Etmtg)’ (14)

where F is the embedding of the current pixel-based state, Fye,¢1 is the embedding of textual descriptions
of the desirable intention and Fje.s o is the embedding of textual descriptions of the undesirable intention.

F.4 Computation Usage

We run our experiments on an internal cluster consisting of A100 and H100 GPUs. Each run takes no
more than 24 hours. Since FoG utilizes foundation models, it incurs additional computational overhead,
approximately 1.5x slower than METRA.

F.5 Experimental Setup for Human Judge

In Figure[6] we train FoG to be twisted in DMC Humanoid task. However, it is difficult for human to design
a reward function to measure if learned skills contains more twisted postures or not. Thus, we ask human
to be the judge to tell if FoG learns more twisted skills than the ones learned by the baselines.

We pick ten skills of each method randomly, in this case, FoG and METRA, and then pair them randomly.
Participates are asked to select the video that shows the most ‘twisted’ behaviors without given any other
information. Please see the full questionnaire we used in https://sites.google.com/view/iclr-fog/
questionnaire-of-humanoid.

F.6 Foundation Models

For state-based tasks, we query ChatGPTﬂ or Cluadeﬂ to generate score functions that meet our require-
ments. For pixel-based tasks, we use pre-trained CLIP (clip-vit-large-patch14) from huggingfacdﬂ

Shttps://chatgpt.com
4https://claude.ai/new
Shttps://huggingface.co/openai/clip-vit-large-patchl4
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F.7 Prompts Used
F.7.1 State-based Tasks

Input to foundation models for HalfCheetah [Descriptions of the task, state space and
action space] According to the given info, could you please write a python function to
check if the cheetah is flipped over or not. If yes, output 1 otherwise 0. Output:

python

(observation):

angle = observation[1]

threshold = np.pi /

{(angle) > threshold:

21



Under review as submission to TMLR

Input to foundation models for Ant [Descriptions of the task, state space and action
space] The agent always starts at [0, 0]. According to the given info, could you please
write a python function to check if the agent is in the north part or not. If yes,
output 1 otherwise 0. Output:

python

(state):

y_position = state[1]

y_position > @:

22



Under review as submission to TMLR

F.7.2 Pixel-based Tasks

Textual descriptions of intentions we used for Cheetah:

o Figure ‘The simulated two-leg robot flips over’, ‘The simulated two-leg robot
stands normally’

o FR-SAC agent in Figure @} ‘The simulated two-leg robot flips over’, ‘The simulated
two-leg robot is running normally’

o Figure ‘The underneath plane is Yellow-Orange’, ‘The underneath plane is
Green-Blue’
Textual descriptions of intentions we used for Quadruped in Figure ‘The underneath plane is
Pink-Purple’, ‘The underneath plane is Green-Blue’.

Textual descriptions of intentions we used for Humanoid in Figure[6} ‘The simulated humanoid robot is
stretched’, ‘The simulated humanoid robot is twisted’.
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