Deep Tree Tensor Networks

Chang Nie
Nanjing University of Science and Technology
Nanjing, China
changnie@njust.edu.cn

Abstract

Originating in quantum physics, tensor networks (TNs) have been widely adopted
as exponential machines and parametric decomposers for recognition tasks. Typ-
ical TN models, such as Matrix Product States (MPS), have not yet achieved
successful application in natural image recognition. When employed, they pri-
marily serve to compress parameters within pre-existing networks, thereby losing
their distinctive capability to capture exponential-order feature interactions. This
paper introduces a novel architecture named Deep Tree Tensor Network (DTTN),
which captures 2”-order multiplicative interactions across features through mul-
tilinear operations, while essentially unfolding into a free-like TN topology with
the parameter-sharing property. DTTN is stacked with multiple antisymmet-
ric interaction modules (AIMs), and this design facilitates efficient implemen-
tation. Furthermore, our theoretical analysis demonstrates the equivalence be-
tween quantum-inspired TN models and polynomial/multilinear networks under
specific conditions. We posit that the DTTN could catalyze more interpretable
research within this field. The proposed model is evaluated across multiple
benchmarks and domains, demonstrating superior performance compared to both
peer methods and state-of-the-art architectures. Our code is publicly available at
https://github.com/NieCha/deep_tree_tensor_network.

1 Introduction

“Simplicity is the ultimate sophistication.” — Leonardo da Vinci

The wavefunction of a quantum many-body system typically resides in an extremely high-dimensional
Hilbert space, with its complexity increasing exponentially as the particle count grows [27, 60]]. For
example, consider a system consisting of N spin-% particles; the dimensionality of the corresponding

Hilbert space would be 2%V, Tensor networks (TNs) offer powerful numerical techniques for tackling
the “Curse of Dimensionality” [12]. By leveraging the local entanglement properties of quantum states,
TNs represent complex wavefunctions into multilinear representations of multiple low-dimensional
cores, thereby significantly reducing computational and storage requirements [[11} 44 This class of
methods allows for an accurate representation of quantum states while mitigating the exponential
growth in complexity, making it feasible to simulate large-scale quantum systems [26, 44]].

Recently, TN-based interpretable and quantum-inspired white-box machine learning has attracted the
attention of researchers. It holds the potential to generate novel schemes that can run on quantum
hardware [25| 43]]. Typical TN models, including Matrix Product States [[13]] (MP, Tree Tensor
Network (TTN) [5], and Multi-Scale Entanglement Renormalization Ansatz (MERA) [43]] are

'In tensor network theory, states that satisfy the area law for entanglement entropy can be efficiently
approximated using TNs with finite bond dimensions.

2The MPS is also referred to as Tensor Train [41]], or Tensor Ring [61] with the periodic condition in classical
machine learning.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/NieCha/deep_tree_tensor_network

Quantum-inspired TN model Deep Tree Tensor Network)
Ti i 1 iﬁ Parameter-sharing
l" = C -5 = —WxHxC
IS Al 7 g }
= F R U R
— T == > L im - [w— Im_
| = ® L ‘-; g / >' |F
L_. >‘< D{ z d— : 7 V\ﬁg"‘
z Wel bW . v
Tiny IN 0@ Natural Linear
Image = FeatureMap = MPS = Output _ Image Projection = DTTN = Output)

Figure 1: Schematic diagram of the quantum-inspired MPS model and DTTN towards image
recognition task. The former is applied for tiny inputs and setting a small local mapping dimension
d = 2 and bond dimension D < 64 in general[43]. DTTN handles complex inputs while retaining
spatial locality in linear projection, and its parameter-sharing nature allows for maintaining a high
bond dimension.

skillfully applied in image classification. Routine practice is to map each pixel or local patch of the
image to a d-dimensional vector by a local map function ¢(-), and then use the tensor product to
obtain a joint feature map ®(x) of d”¥ dimensionality (see Fig. [1|left). This process can be expressed
as follows:

f(x) = arg max (W™, d(x)). 1)

Here, W™ represents a (N + 1)-th order tensor with an output index m; f(-) : R¥*"*¢ — R
denotes a multilinear function. In principle, mapping samples into exponential dimensional space to
achieve linear separability instead of adopting activation functions is the essence of TNs [47} 43| 142]].
However, existing methods are limited to simple tasks, e.g., MNIST and Fashion MNIST [5} 43]],
and we reveal that this is mainly due to 1) low computational efficiency and 2) lack of feature
self-interaction capability (Section 3.3 for more details). Consequently, our goal is to address these
challenges by applying TNs to complex benchmarks such as ImageNet-1K, thereby bridging the gap
between TNs and modern architectures.

Alternatively, TNs are popularly employed to parameterize existing network models for acceleration.
For example, the variational parameters of a network can be directly decomposed into TN formats,
including convolutional kernels [40], fully-connected weights [32, [39]], and attention blocks [34]],
to name a few. During inference, one can choose to retain or merge the TN structure as required.
However, such techniques are devoid of probabilistic interpretation and feature multiplicative in-
teraction. Notably, there exist intriguing and previously unexplored similarities between advanced
deep learning architectures and TNs, such as MLP-Mixer [S1], polynomial networks, and multilinear
networks [9} 10 [7], which have demonstrated strong performance on complex visual tasks. As shown
in Fig. 2] we visualize different architectures from the TN perspective for comparison. We note
that contemporary architectures exhibit several key distinctions from existing TNs, including the
incorporation of nonlinear activations and instance normalization. Consequently, we can improve
TNs by drawing insights from advanced architectures through rigorous equivalence analysis, thereby
overcoming their limitations on complex benchmarks.

Concretely, we introduce a novel class of TN architectures, named Deep Tree Tensor Network (DTTN),
which uses multilinear operations to capture exponential-order interactions among features and predict
targets without relying on activation functions or attention mechanisms. DTTN is constructed by
sequentially stacking multiple antisymmetric interaction modules (AIMs) and inherently unfolds into
a tree-like structure to reach on-par performance compared to advanced architectures, with better
interpretability and understanding. Overall, the contributions of this paper are summarized as follows:

* We introduce DTTN, a simple yet effective architecture constructed by sequentially stacking
AIMs. DTTN captures feature 2° multiplicative interactions without activation functions
and achieves state-of-the-art performance compared to other polynomial and multilinear
networks with faster convergence (see Fig. 2] (e)).

» We provide a theoretical analysis of the equivalence between DTTN and other architectures
under specific conditions. Without instance normalization, DTTN essentially reduces to
a tree-topology TN, thereby overcoming the limitations of TN-based Born machines that
excel mainly in simple tasks.

Input
P
@

Input

%) V) Y !
(X @% 3 ! O — *
. ! i —————
Channel:r/ Tokens 1 ! *_/—*"
Linear Linear o . ! 3
pth
LN 1 1 Cony [Linear : 75
Skip Spatial Spatial | I LR
Linear I 1 . i) H—- @ -Nets (2020, 12.3M)
IN Cinead Linear Cone : :(d /@ . W Hybrid M-Nets (2020, 11.9M)
GELU LN - vs PDC-comp (2022, 7.5M)
x = * HY <« PDC (2022, 10.7M)
Linear Linear LN FC] b R-PolyNet (2023, 12.3M)
= / Joren ! 65 @ ® D-PolyNet (2023, 11.3M)
GELU Skij * i | 3 ! 4 MLP-Mixer-B/16 (2021, 59.0M)
¥ ! MONetT (2024, 10.3M)
Mixer Linear, Basic Linear .. Linear ! Y DTTN'-S(ours, 12.3M)
Ski Skip AIM | i 60— - \
 Layer | Block | Mu-Layer | J 90100 120 160 300
; Epoch
(a) MLP-Mixer (b) R-PolyNets (c) MONet (d) DTTN i (e) Comparison on ImageNet-1K

Figure 2: (a-d) Illustration of Core Blocks for Different Architectures. The MLP-Mixer utilizes GELU
activation and other networks via the Hadamard product “x” to enable the network to learn complex
representations. We emphasize that instance batch normalization (IBN) and layer normalization
(LN [57]) preceded before Hadamard product operations disrupt the polynomial unfolding nature of
R-PolyNets [10] and MONet [7]]. In contrast, the succinctly designed AIM circumvents this issue.
The optional LN inside AIM not only enhances performance but also facilitates faster convergence.
(e) Comparison of Different Networks on ImageNet-1k. When comparing various networks trained
on ImageNet over different epochs, DTTN stands out by achieving state-of-the-art performance
compared to other multilinear networks, significantly outperforming them.

* We conduct a comprehensive evaluation of the proposed model’s effectiveness and broader
applicability across diverse benchmarks and domains, including visual recognition, rec-
ommender systems, and physics-informed neural networks. Our results show that DTTN
achieves performance comparable to, and in certain cases even outperforms, carefully
designed state-of-the-art architectures.

Notations. Throughout this paper, we use © € R, X € Rhix:) x ¢ RO XIN tg denote
first-order vectors, second-order matrices, and /N-th order tensors, respectively. The blackboard
letters are employed to represent a set of objects, e.g., R and Z denote real numbers and integers.
In addition, %, ®, and ® denote the Hadamard product, Khatri-Rao product, and tensor product,
respectively. For brevity, |K| denotes the cardinality of a set K, and K denotes the positive integers
set {1,2,..., N}. Moreover, for given tensors A € R11*12x1s and B € RIaxIsxI6xI7 with [, = I,
and I3 = I5. The tensor contraction is executed by summing along the shared modes of .4, B to
yield a new tensor C = A xy'5 B € R11*16XI7 The entry-wise calculation can be expressed as

Clivigiin) = oot Sor' 1 Aliv inia) Bliayia is.in)- Refer to [29] for additional definitions.

2 Related Work

2.1 Quantum-Inspired TNs

Quantum-inspired tensor networks (TNs) enhance the performance of classical algorithms by mimick-
ing quantum computational characteristics [25]. These methods map inputs into a Hilbert space with
exponential dimensionality, achieving linear separability through local mappings and tensor prod-
ucts, while employing multiple low-order cores to parameterize coefficients, significantly reducing
computational and storage complexity [47, 49]]. The avoidance of activation functions, alongside the
theoretical underpinnings rooted in many-body physics, contributes to the interpretability of TNs [43]].
Recently, numerous studies have successfully applied TN to tasks such as image classification [49],
generation [5], and segmentation [48]. These studies effectively integrate established neural network
techniques like residual connections [38]], multiscale structures [35]], and normalization [47] into TN
frameworks. However, current TNs are predominantly suited for simpler tasks and face limitations in
terms of computational efficiency and expressive power.

2.2 Advanced Modern Networks

In the contemporary landscape of deep learning, the design of network architectures has grown
increasingly sophisticated and varied, each architecture presenting distinct advantages. Advanced
models such as Convolutional Neural Networks (CNNs) renowned for efficient feature extraction [20),

22, Transformers distinguished by their powerful contextual understanding capabilities [54], MLP-
based architectures celebrated for their simple yet effective designs [51]], and Mamba noted for its
linear complexity [18] have become pivotal across a wide array of applications. These networks
leverage nonlinearities, while beneficial for model expressiveness, but limit applicability in domains
such as security and encryption. Notably, Leveled Fully Homomorphic Encryption schemes can only
support addition and multiplication operations [2,[7].

2.3 Polynomial and Multilinear Networks

Polynomial and multilinear networks employ addition and multiplication operations to construct
intricate network representations [9} 10, [7]]. Specifically, the pioneering Polynomial Network (PN)
[9] constructs higher-order polynomial expansions of the input features in a modular fashion while
supporting end-to-end training, achieving notable success in both image recognition and generation
tasks. In their follow-up work, Chrysos et al. [[10] introduce regularization strategies—such as data
augmentation, instance normalization, and higher-order feature interactions—to further enhance
model performance. Cheng et al. [7]] drew inspiration from modern architectural designs to propose
MONet, aiming to narrow the gap between multilinear networks and modern architectures. It is
worth noting that both polynomial and multilinear networks can capture exponential-order feature
interactions. However, a key distinction lies in their structural unfoldability: polynomial networks
maintain an unfoldable structure, whereas multilinear networks may lose this property when LN is
applied, as

zZ) * zZ) =veclz z T T
{LN(A) (Bz) (z@2)(A" ©BY),)

(Az) * (Bz) # vec(z ® z) LN(AT @ BY).
Here LN(+) represents layer normalization, while A and B are learnable matrices.

In this work, we aim to achieve two objectives: (1) re-establish the polynomial expansion form and
analyze the differences between multilinear and quantum-inspired TNs; and (2) develop a layer-
normalized multilinear DTTN' that outperforms existing high-performance multilinear networks [7].

3 Method

In this section, we provide a detailed description of the Deep Tree Tensor Network (DTTN). We aim
to construct a tree topology network by sequentially stacking AIM blocks, which consist solely of
multilinear operations. For an input image @, we apply a vanilla linear projection, also known as
patch embedding [51]], to obtain the feature map ¢(z, Ay) € R *H*C_ Similar approaches are used

in other methodologies. Here Ay € RS*xC represents a learnable matrix, where .S, C' € N denote
the local patch size and the number of output channels, respectively. This procedure corresponds to
the local mapping illustrated in Fig. |1} with its output serving as the input for the DTTN. It should
be noted that batch normalization (BN) operations following the linear layer have been omitted for
brevity, as these operations can be integrated with the nearest linear layer during inference through
structural re-parameterization technique [[15]].

3.1 Antisymmetric Interaction Module

The antisymmetric interaction module (AIM) is the core of DTTN. As illustrated in Fig. Ekd), for the
l-th block input feature map X Le RWixHixCi | we utilize an antisymmetric two-branch structure
to capture the linear interactions of the input features separately. Both parts, denoted as f!, fi,
incorporate a depthwise convolution layer and a linear layer, but apply them in reversed order. These
layers are designed to capture spatial locality and channel interactions, respectively, effectively
combining the advantages of CNN and MLP architectures [20, 51]]. The antisymmetric design
specifically targets reducing the complexity of AIM. The ratio of parameters and FLOPs between the
two branches can be expressed as follows:

RPara = TemkaCl + rezpCIQ ~ 1 5
Te.’ckaCl + T‘zprZQ Texp 3)
R _ TemkaVVZHlCl + ’I“eprlHlC? 1
Flops —

TezkaWlHlCl + T'gmleHlClz Tezp’

4

Table 1: Specifications of different DTTN variants config-
DTTN Architecture uration. “Tiny”, “Small”, and “Large” refer to DTTN-
T, DTTN-S, and DTTN-L configurations, respectively,

| S e ; . e
i E g% g each differing in parameter sizes. The primary distinc-
R g tion among these variants lies in the number of blocks and
R - 5
g

Morg NIV

the hidden-sizes within their multi-stage structures. Addi-
tionally, models with layer normalization (LN) layers are
w/ LN denoted with a ’{’, such as DTTN'-S.

p o
i L4 Specificati Ti Small L
¢ 7 ? ? A* /A ? ?j pecification iny ma arge
* ~

. ~a Numbers of Blocks 34 44 56
C, cL;N‘ Hidden-size 64,128,160,192 96,128,192,192 128,192,256,384
B [Stages 6,6,16,6 6,6,24,8 8,8,32,8
I-th Block ' Lth Block Expansion ratio 3 3 3
Parameters (M) 7.1 12.3 359
Figure 3: Schematic overview of the FLOPs (B) 23 4.1 123
DTTN architecture.

where r.;, € N, represents the expansion ratio in the inverted bottleneck design, typically set to
3, k € N, denotes the kernel size, and C;, W, H; are the number of channels, width and height
of the [-th block input feature map, respectively. We use the hardware-friendly Hadamard product
() to capture the second-order interactions of the branch outputs. Following this, an optional LN
and a linear projection layer are sequentially applied to the computation results. Finally, a shortcut
connection is used to preserve the input signal and accelerate training (see Fig.[2)). Overall, the AIM
forward calculation can be expressed as

X = X' 4 Pro (ff(Xl)*fé(Xl)) Ve Ky, @)

where Pro(-) denotes the projection transformation operation. In summary, AIM captures second-
order multiplicative interactions among input elements through multilinear operations without em-
ploying nonlinear activations. In contrast to core blocks inside other architectures, such as the Basic
Block in R-PolyNets [10] and Mu-layeﬂ in MONet [7], AIM employs an antisymmetric design with
only one shortcut connection.

3.2 Network Architecture

Our proposed architecture is constructed by stacking L AIM blocks sequentially. As shown in
Fig.[3] the final output is derived through average pooling and a fully-connected layer. The DTTN
architecture is multi-stage, in line with its peers [9} 21} [7]. By varying the hidden-sizes and the
number of blocks in each stage, we have designed three variants: DTTN-T, DTTN-S, and DTTN-L
(see Table[I)), each with distinct parameters to facilitate a comparative analysis. At a high level, we
assert that the DTTN exhibits the following theoretical property:

Proposition 1. The DTTN has the capability to capture 2% multiplicative interactions among
input elements, which can be represented in the format of Equation (1) as ®(x) = ®2L¢(:B, Ay).

Consequently, the elements of f(x) are homogeneous polynomials of degree 2© over the feature map
(]5(£B, A¢)

It is important to note, however, that this characteristic no longer holds when LN is incorporated
into the network, as LN introduces second-order statistical information. This phenomenon is clearly
exemplified in models like MONet and DTTNT, where the network essentially behaves as a standard
multilinear model.

Unfolding Topology. As illustrated in Fig. 3| the AIM is equivalent to a binary tree node in the
absence of LN. In this case, AIM forward computation can be regarded as a TN contraction, which

3The MONet architecture comprises a stack of two variants of Mu-Layer. The second variant differs from the
one shown in Fig. Erc) in that it does not incorporate a spatial shift operation.

can be formulated as
2!t —a! + B' ((Ala') « (Aha!))
—=x! + Reshape (Bl(AllT O] AlQT)T) xég (' @ x') &)
=C! xézg (' @ z)

Here &' = wvec(X l) e RWHiC ¢t signifies a third-order tensor representing structural re-

parameterization with the learnable matrices All, Al2 and B'. The AIM captures the second-order
multiplicative interactions among input elements via tensor product and structures the three-order
tensor utilizing PyTorch operators. Thus, one DTTN composed of L AIMs can essentially be unfolded
into a tree network with 2% leaf nodes, as pictured in Fig.

3.3 DTTN vs. Other Architectures

DTTN & Polynomial Networks. DTTN can be expressed in the same polynomial expansion form
as II-Net [9], which is given by

2L

@)=Y (Wl xgl, (9'6()) + 8, ©)

=1

where 3 € R™ represents the constant term, and W is a (I + 1)-th order learnable parameter tensor.
Notably, equations (I)) and (6) become equivalent upon introducing a bias term for the elements of
the input vector . The networks exhibit different structured representations of the coefficients W!I!,
for all | € K,z due to their distinct network blocks and computational graphs.

DTTN & Multilinear Networks. We note that networks which exclusively involve multilinear
operations—such as MONet, DTTNT, and R-PolyNets—yet lack the polynomial expansion structure
can be classified as multilinear networks.

DTTN & Quantum-inspired TNs. The main advantages of DTTN over Quantum-inspired TNs
are twofold. (1) The alternative of the local map function. Existing TNs employ trigonometric
functions for local mapping, which leads to the absence of higher-order (> 2) terms involving input
elements in the network’s unfolded form. This limitation results in a loss of feature self-interaction
capabilities. (2) Higher bond dimension induced by parameter-sharing properties. Quantum-inspired
TN facilitate the parallel contraction of shared indices among N cores within the same layer.
However, due to limited memory capacity, the bond dimension must often be restricted to smaller
values. The following theorem establishes the equivalence between DTTNs and TNs:

Theorem 1. Given the local mapping function ¢ (x;) = [x(;, . 717?L]T, a polynomial network
with the expansion form of Equation ([6) can be transformed into a quantum-inspired TNs model with
finite bond dimension.

Since the internal cores of a TN can be decomposed into a “core-diagonal factor-core” structure
via Higher-order Singular Value Decomposition (HOSVD) [29] and subsequently merged with
connectivity cores, we regard the structural differences between DTTN and quantum-inspired TNs
as negligible. We believe the above theorem not only establishes an equivalence between quantum-
inspired TNs and modern architectures, but also offers insights for the future development of more
interpretable and high-performance TN models.

4 Experiments

In this section, we provide a comprehensive assessment of the DTTN’s effectiveness. Specifically,
in Section 4.1, we perform experiments on a series of image classification benchmarks to validate
the model’s superiority over other multilinear and TN architectures. In Section 4.2, we show the
broader impact of the DTTN across other domains, including recommendation system and partial
differential equation (PDE) solving. Section 4.3 presents ablation studies aimed at examining the
impact of various design choices. The paper concludes with a discussion of the model’s limitations.
Further analysis and detailed results are provided in the appendix.

Table 2: ImageNet-1K classification accuracy for various network architectures. Models that can be
polynomially expanded are marked in red, whereas other multilinear models that do not include acti-
vation functions but incorporate layer normalization are marked in green. Our DTTNT-T outperforms
the previous SOTA model MONet-T by 0.9% with fewer parameters and FLOPs.

Model Top-1(%) Params (M) FLOPs(B) Epoch Activation Attention Reso.
CNN-based
ResNet-50 [20] 77.2 25.0 4.1 - ReLU X 2242
A%Net [4] 77.0 334 31.3 - ReLU v 2242
AA-ResNet-152 [1] 79.1 61.6 23.8 100 ReLU v 2242
RepVGG-B2g4 [15] 79.4 55.7 11.3 200 ReLU X 2242
Transformer- and Mamba-based
ViT-B/16 [16] 719 86.0 55.0 300 GeLU v 2242
DeiT-S/16 [53] 81.2 24.0 5.0 300 GeLU v 2242
Swin-T/16 [36] 81.3 29.0 4.5 300 GeLU v 2242
Vim-S [62] 80.5 26.0 - 300 SiLU v 2242
MLP-based
MLP-Mixer-B/16 [51 76.4 59.0 11.6 300 GeLU X 2242
MLP-Mixer-L/16 [51] 71.8 507.0 44.6 300 GeLU X 2242
CycleMLP-T [3 81.3 28.8 44 300 GeLU X 2242
Hire-MLP-Tiny [19] 79.8 18.0 2.1 300 GeLU X 2242
ResMLP-24 [52] 79.4 6.0 30.0 300 GeLU X 2242
S2MLP-Wide [59] 80.0 71.0 14.0 300 GeLU X 2242
S2MLP-Deep [59] 80.7 10.5 51.0 300 GeLU X 2242
ViP-Small/14 [21] 80.5 30.0 6.5 300 GeLU v 2242
AFFNet [24] 79.8 6.0 1.5 300 ReLU v 2562
Polynomial- and Multilinear-based
II-Nets [9] 65.2 12.3 1.9 90 - X 2242
DTTN-S(ours) 71.8/77.2 12.3 4.1 90/300 - X 2242
Hybrid II-Nets [9] 70.7 11.9 1.9 90 ReLU+Tanh X 2242
PDC [8] 71.0 10.7 1.6 100 ReLU+Tanh X 2242
PDC-comp 8] 70.2 7.5 1.3 100 ReLU+Tanh X 2242
R-PolyNets [10] 70.2 12.3 1.9 120 - X 2242
D-PolyNets [10] 70.0 11.3 1.9 120 - X 2242
MONet-T [7] 71.0 10.3 2.8 300 - X 2242
DTTN'-T(ours) 77.9 7.1 2.3 300 - X 2242
DTTN'-S(ours) 79.4 12.3 4.1 300 - X 2242
MONet-S [7] 81.3 329 6.8 300 - X 2242
DTTN'-L(ours) 82.4 35.9 12.3 300 - X 2242

4.1 Visual Recognition

Setup and Training Details. A series of benchmarks with different types, scales, and resolutions are
employed for the experiments, including CIFAR-10 [30], Tiny ImageNet [31]], ImageNet-100 [58]],
ImageNet-1K [46], MNIST, and Fashion-MNIST [56]. A detailed description of the benchmarks and
training configurations is included in the supplement.

Table 4: Experimental valida-
tion was conducted comparing the
DTTN-S with quantum-inspired
TNs on the MNIST and Fashion-
MNIST datasets. The highest per-
formances, marked in bold, are
achieved by our DTTN-S, which
outperforms previous tensor net-
works, including aResMPS that

Table 3: Experimental validation of vari-
ous network architectures was conducted on
smaller benchmarks with differing resolu-
tions. The top-performing results are high-
lighted in bold. Among these, our DTTN'-S
model achieves the best performance across
all benchmarks, outperforming other polyno-
mial and multilinear networks.

| CIFAR-10 Tiny ImageNet ImageNet-100 utilizes residual connections and
Resolution | 322 642 2242 ReL.U activation.
Resnet18 94.4 61.5 85.6
MLP-Mixer 90.6 45.6 84.3 Model | MNIST Fashion-MNIST
oL o » o MPS Machine | 09880 0.8970
Hybrid II-Nets | 94.4 61.1 85.9 Bayesian TN - 0.8692
PDC 90.9 452 82.8 PEPS - 0.883
D-PolyNets 94.7 61.8 86.2 LoTeNet 0.9822 0.8949
MONet-T 94.8 61.5 872 aResMPS 0.9907 0.9142
DTTN'-S | 950 63.8 87.7 DTTN-S | 0.9930 0.9236

DTTN vs. Polynomial Networks. Table [2]reports the results of the unfoldable networks DTTN-S
and II-Nets [9] on ImageNet-1K (light red areas), using neither activation functions nor instance

PINN (L2 error =0.0006) PINN-DTTN (L2 error =0.0005)

Table 5: Validating AIM as a pluggable mod-
ule for enhancing feature interaction in rec-
ommendation models with consistent perfor-
mance gains.

MOdel ‘ Criteo AVaZu (SA-PINN (EZ error =0.0094) SA-PINN-DTTN(L2 error =0.0064)\
DeepFM 80.12 75.46 I |
DeepFM+AIM | 80.44.1932 75.7340.27 - :
FiBiNet 80.42 76.01 15 -
FiBiNet+AIM | 80.97 1055 76.0840.07 I —
DCN-V2 80.93 76.14 e

DCN-V2+AIM | 81.1540.22 76.5210.38 Figure 4: Performance of PINNs on

linear and nonlinear Allen-Cahn PDEs:
L2 error and absolute error across the
Spatial-Temporal domain.

Table 6: The influence of network Table 7: The influence of differ- Table 8: The influence of layer
depth and width on model perfor- ent design choices for AIM on normalization inside AIM on

mance. the performance of the DTTN the performance of the DTTN
variants. variants.
| Top-1(%) Params(M) Model | Top-1(%) Params(M)
L=8, d=256 79.2 56 | Top-1 (%) Params(M) DTIN-T 85.6 69
L=16,d=256 85.5 10.2 SIM-Conv 86.2 9.1 DTTNT-T‘ 86.4, 1.5 6.9
. . - DTTNI-T 86.4 6.9 DTTN'-S | 877,04 21
L=32,d=64 634 1.3 Sim-Conv 87.8 15.9 DTIN-L 87.6 35.6
L=32,d=128 82.5 4.9 Sim-Linear 85.2 8.3 DTTN'-L | 88.1 35.6
L=32,d=512 87.9 76.8 DTTN'-S 877 12.1 o5 .

normalization. DTTN-S achieves Top-1 accuracy of 71.8% and 77.2% after 90 and 300 training
epochs, respectively, significantly outperforming I1-Nets by 5.6% and 12%, respectively. Additionally,
DTTN-S maintains a significant advantage—nearly a 10% improvement in accuracy—over Hybrid
II-Nets that incorporate activation functions (which lose their unfolding properties).

DTTN vs. Multilinear Networks. Fig. [J[e) illustrates the performance of various multilinear
networks trained on ImageNet-1K over different epochs, with the curve for DTTNT-S showing
superior results compared to others. Tables 2] and [3] detail the Top-1 accuracies of multilinear
architectures across a range of benchmarks of varying scales, including CIFAR-10, Tiny ImageNet,
ImageNet-100, and ImageNet-1K. Specifically, DTTN-S achieves improvements of 0.2%, 2.3%, 0.5%,
and 2.4% over the previous best models at similar scales. Moreover, the unfoldable DTTN-S attains an
impressive 77.2% accuracy on ImageNet-1K without instance normalization. Additionally, DTTNT-T
surpasses the prior state-of-the-art model MONet [7] by 0.9%, while utilizing approximately 30%
fewer parameters and reducing FLOPs by 20%. These comparisons demonstrate that DTTN achieves
significantly faster convergence and superior performance.

DTTN vs. Quantum-inspired TNs. DTTN outperforms other quantum-inspired TNs on smaller
benchmarks like MNIST and Fashion-MNIST. Notably, these models have not yet been success-
fully scaled to large benchmarks. The baselines included for comparison are MPS [49], Bayesian
TNS, PEPS [6], LoTeNet [47], and aResMPS [38]]. The test results are reported in Tab. E} where
DTTN-S consistently achieves the best performance. Specifically, on the Fashion-MNIST dataset,
DTTN-S outperformed the second-best model, aResMPS, by 0.96%. This superior performance
can be attributed to the higher bond dimension facilitated by parameter sharing and self-interaction
capabilities, as discussed in Section 3.3.

DTTN vs. Advanced Architectures. We further demonstrate the competitive performance of
DTTN relative to modern architectures, marking it as the first TN model to be applied to large-
scale benchmarks. Table [2] reports the Top-1 accuracy of the DTTN family compared to other
models, including CNN-based, Transformer-based, Mamba-based, and MLP-based architectures

trained on ImageNet-1K. The DTTNT-L achieves an accuracy of 82.4% with 35.9M parameters,
which is competitive and outperforms models such as DeiT-S/16 [53]], ViP-Small/14 [21], and Vim-
S [62]. Additionally, results in Tab. E] further illustrate that DTTN achieves the highest accuracy on
small benchmarks. The ViP-Small/14 [21] with an MLP architecture and MONet exhibit slower
convergence on ImageNet-100 compared to ResNet-50 (see Appendix B), which is due to their
inductive bias. In contrast, DTTN demonstrates remarkable training efficiency and superior accuracy
relative to its counterparts.

4.2 Broader Impact

Recommendation System. Given the critical role of feature interaction in recommendation sys-
tems [33]], we select two widely-used datasets, Criteo and Avazu, to evaluate the effectiveness of AIM
in enhancing feature interaction modeling. In our implementation, AIM is designed as a pluggable
module and seamlessly integrated into existing Click-Through Rate (CTR) prediction models, includ-
ing DeepFM, FiBiNet [23]], and DCN-V2 [SSﬂ In this setup, AIM replaced all linear layers in the
target models, with internal convolution operations removed, leaving only linear and normalization
layers. Experimental validation, reported in Tab. [5] and evaluated using AUC, shows that AIM
consistently enhances performance across both datasets for all tested CTR models. Specifically,
FiBiNet saw a 0.55% improvement on the Criteo dataset.

DTTN-based PDE Solver. Physics-Informed Neural Networks (PINNs) [[14] incorporate physical
constraints of systems into the training process, enabling the model to learn governing physical laws
for describing system behaviors. The nonlinear activation functions serve as the critical component
for PINNS to capture complex patterns. Here, we apply DTTN to solve specific partial differential
equations (PDEs), including both the linear case and the highly nonlinear Allen-Cahn equation
(defined as u; = eAu + u — u3, where € controls interface width and F'(u) = u® — u represents
nonlinear reaction terms. The two equations to be solved are as follows:

Gu — —y uy — 0.0001tyg + 5u” — 5u =0
u(z,t =0) = sin(nz) u(z,t = 0) = 2%cos(nx) (7
u(l,t) =u(-1,t) =0 u(l,t) =u(-1,t) = —1.

We employ PINN [[14] and Self-Adaptive PINN (SA-PINN [50]) with hard boundary conditions
to address these problems. For comparison, we replace the linear layers with the AIM module
to construct PINN-DTTN and SA-PINN-DTTN, which maintain identical configurations to their
baselines but omit the Tanh nonlinearity. Numerical results, including the average L2-error and the
absolute error of the prediction in the spatial-temporal domain, are presented in Fig. d] DTTN-based
PINNs achieve lower prediction errors without activation nonlinearity.

4.3 Ablation Study

Here, we conduct ablation studies to evaluate the effectiveness of various design choices, including
network depth and width, the antisymmetric design of AIM, and layer normalization. We utilize
ImageNet-100—a representative subset of ImageNet-1K—as our test benchmark, which is well-suited
for model validation and hyperparameter tuning under limited computational resources. Throughout
these experiments, all hyperparameters are kept consistent with those of the final model, except for
the variable under investigation. Each model was trained from scratch. We report the experimental
results in Tables[6][7] and 8}

Depth and Width. To control the depth and width of DTTN, we vary the number of AIM blocks
and the hidden-size denoted as L and d, for brevity. For ease of comparison, we kept d fixed
across different stages. As illustrated in Tab. @ we first set L to {8, 16,24, 32} with d = 256, and
subsequently varied d to {64, 128,256,512} while fixing L at 32. This approach enables us to
explore how network depth and width affect model performance. Notably, performance declines
significantly as both L and d are reduced. Specifically, Top-1 accuracy falls by 24.5% when d is
reduced from 512 to 64. Furthermore, the number of model parameters grows linearly with L and
quadratically with d. These observations provide indirect evidence for the effectiveness of DTTN’s
multi-stage design.

*nttps://github.com/shenweichen/DeepCTR-Torch

https://github.com/shenweichen/DeepCTR-Torch

Antisymmetrical Design of AIM. We evaluate the effectiveness of the antisymmetric design of
AIM on the DTTN'-T and DTTN'-S architectures. As shown in Tab. |7, we compare the impact
of symmetric versus antisymmetric designs on model performance. In this context, SIM-Conv and
SIM-Linear refer to the Symmetric Interaction Module (SIM), which uses prioritized convolutional
and linear layers, respectively, as alternatives to AIM. We observe that DTTNT-T achieves the best
results among its counterparts, whereas DTTN-S performs only slightly worse than SIM-Conv (by
0.1%), while using approximately 20% fewer parameters. Furthermore, the reduction in the number
of parameters aligns with the theoretical predictions corresponding to Equation 3]

Importance of LN. Figure [3(d) and Table 2| highlight the essential role of the Layer Normalization
(LN) layer in enhancing the network’s representational capacity—a key technique for improving the
performance of multilinear networks [[10,[7]. Table[8|reports the improvements in DTTN variants after
incorporating LN, showing gains of 1.8%, 0.4%, and 0.5%, respectively. Moreover, by comparing
the results in Fig.[2e) and Tab.[2] we observe that DTTN-S achieves a Top-1 accuracy that is 5.6%
and 2.2% lower than DTTNT-S after 90 and 300 training epochs, respectively.

Moreover, by combining the data from Figure[2(e) and Tab. 2] it can be seen that DTTN-S exhibits
a Top-1 accuracy that is 5.6% and 2.2% lower than DTTNT-S after training for 90 and 300 epochs,
respectively. This further underscores the importance of LN in boosting the performance and
convergence of our proposed architecture.

Limitations. Although we have conducted an extensive evaluation of DTTN’s effectiveness and
advantages, computational resource limitations prevented us from performing additional experiments.
These include pre-training on larger datasets like JFT-300M and evaluating model robustness. Future
research will focus on a theoretical analysis of the proposed model, as well as investigate multilinear
transformer architectures tailored for large language models (LLMs).

S CONCLUSION

This paper introduces a multilinear network architecture named DTTN, which bridges the gap be-
tween quantum-inspired TNs and advanced architectures, achieving this uniquely without activation
nonlinearity. Specifically, DTTN employs a modular stacking design to capture exponential interac-
tions among input features, essentially unfolding into a tree-structured TN. We conducted extensive
experiments to showcase the effectiveness of DTTNs across various benchmarks. Notably, this is
the first validation of TNs’ effectiveness on large-scale benchmarks, yielding competitive results
compared to advanced architectures. Additionally, we explored the broader applicability of DTTN
in other domains, such as recommendation systems and solving PDEs. Lastly, more theoretical
discussions about DTTN will be addressed in future work.

6 Acknowledgment

We thank Yajie Chen and Junfang Chen for their valuable feedback and suggestions for improving
this paper.

References

[1] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention
augmented convolutional networks. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 3286-3295, 2019.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1-
36, 2014.

[3] Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, and Ping Luo. Cyclemlp: A
mlp-like architecture for dense prediction. arXiv preprint arXiv:2107.10224, 2021.

[4] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, and Jiashi Feng. A" 2-nets:
Double attention networks. Advances in neural information processing systems, 31, 2018.

10

[5] Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative
modeling. Physical Review B, 99(15):155131, 2019.

[6] Song Cheng, Lei Wang, and Pan Zhang. Supervised learning with projected entangled pair
states. Physical Review B, 103(12):125117, 2021.

[7] Yixin Cheng, Grigorios G Chrysos, Markos Georgopoulos, and Volkan Cevher. Multilinear
operator networks. arXiv preprint arXiv:2401.17992, 2024.

[8] Grigorios G Chrysos, Markos Georgopoulos, Jiankang Deng, Jean Kossaifi, Yannis Panagakis,
and Anima Anandkumar. Augmenting deep classifiers with polynomial neural networks. In
European Conference on Computer Vision, pages 692—716. Springer, 2022.

[9] Grigorios G Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Jiankang Deng, Yannis Pana-
gakis, and Stefanos Zafeiriou. Deep polynomial neural networks. IEEE transactions on pattern
analysis and machine intelligence, 44(8):4021-4034, 2021.

[10] Grigorios G Chrysos, Bohan Wang, Jiankang Deng, and Volkan Cevher. Regularization of
polynomial networks for image recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16123-16132, 2023.

[11] Andrzej Cichocki. Era of big data processing: A new approach via tensor networks and tensor
decompositions. arXiv preprint arXiv:1403.2048, 2014.

[12] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P Mandic,
et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank
tensor decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249-429, 2016.

[13] J Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete. Matrix product
states and projected entangled pair states: Concepts, symmetries, theorems. Reviews of Modern
Physics, 93(4):045003, 2021.

[14] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar
Raissi, and Francesco Piccialli. Scientific machine learning through physics—informed neural
networks: Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

[15] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun.
Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 13733-13742, 2021.

[16] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[17] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249-256. IMLR Workshop and Conference Proceedings, 2010.

[18] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[19] Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han Wu, Chao Xu, Chang Xu, and Yunhe
Wang. Hire-mlp: Vision mlp via hierarchical rearrangement. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 826836, 2022.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[21] Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng, Shuicheng Yan, and Jiashi Feng. Vision
permutator: A permutable mlp-like architecture for visual recognition. IEEE transactions on
pattern analysis and machine intelligence, 45(1):1328-1334, 2022.

[22] Qibin Hou, Cheng-Ze Lu, Ming-Ming Cheng, and Jiashi Feng. Conv2former: A simple
transformer-style convnet for visual recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

11

[23] Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. Fibinet: combining feature importance and
bilinear feature interaction for click-through rate prediction. In Proceedings of the 13th ACM
conference on recommender systems, pages 169-177, 2019.

[24] Zhipeng Huang, Zhizheng Zhang, Cuiling Lan, Zheng-Jun Zha, Yan Lu, and Baining Guo.
Adaptive frequency filters as efficient global token mixers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6049-6059, 2023.

[25] William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley, and E Miles Stoudenmire.
Towards quantum machine learning with tensor networks. Quantum Science and technology,
4(2):024001, 2019.

[26] Daniel Jaschke, Simone Montangero, and Lincoln D Carr. One-dimensional many-body entan-
gled open quantum systems with tensor network methods. Quantum science and technology,
4(1):013001, 2018.

[27] Hong-Chen Jiang, Zheng-Yu Weng, and Tao Xiang. Accurate determination of tensor network
state of quantum lattice models in two dimensions. Physical review letters, 101(9):090603,
2008.

[28] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollar. Panoptic feature pyramid net-
works. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 6399-6408, 2019.

[29] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455-500, 2009.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[31] Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[32] Heng-Chao Li, Zhi-Xin Lin, Tian-Yu Ma, Xi-Le Zhao, Antonio Plaza, and William J Emery.
Hybrid fully connected tensorized compression network for hyperspectral image classification.
IEEE Transactions on Geoscience and Remote Sensing, 61:1-16, 2023.

[33] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong
Sun. xdeepfm: Combining explicit and implicit feature interactions for recommender systems.
In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 1754-1763, 2018.

[34] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably
efficient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024.

[35] Ding Liu, Shi-Ju Ran, Peter Wittek, Cheng Peng, Raul Bldzquez Garcia, Gang Su, and Maciej
Lewenstein. Machine learning by unitary tensor network of hierarchical tree structure. New
Journal of Physics, 21(7):073059, 2019.

[36] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012—-10022, 2021.

[37] T Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

[38] Ye-Ming Meng, Jing Zhang, Peng Zhang, Chao Gao, and Shi-Ju Ran. Residual matrix product
state for machine learning. SciPost Physics, 14(6):142, 2023.

[39] Chang Nie, Huan Wang, and Lu Zhao. Stn: Scalable tensorizing networks via structure-aware
training and adaptive compression. arXiv preprint arXiv:2205.15198, 2022.

[40] Chang Nie, Huan Wang, and Lu Zhao. Adaptive tensor networks decomposition for high-order
tensor recovery and compression. Information Sciences, 629:667-684, 2023.

[41] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295-2317, 2011.

12

[42] Siddhartha Patra, Saeed S Jahromi, Sukhbinder Singh, and Roman Orts. Efficient tensor network
simulation of ibm’s largest quantum processors. Physical Review Research, 6(1):013326, 2024.

[43] Shi-Ju Ran and Gang Su. Tensor networks for interpretable and efficient quantum-inspired
machine learning. Intelligent Computing, 2:0061, 2023.

[44] Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Luca Tagliacozzo, Gang Su, and Maciej
Lewenstein. Tensor network contractions: methods and applications to quantum many-body
systems. Springer Nature, 2020.

[45] Justin Reyes and Miles Stoudenmire. A multi-scale tensor network architecture for classification
and regression. arXiv preprint arXiv:2001.08286, 2020.

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

[47] Raghavendra Selvan and Erik B Dam. Tensor networks for medical image classification. In
Medical imaging with deep learning, pages 721-732. PMLR, 2020.

[48] Raghavendra Selvan, Erik B Dam, Sgren Alexander Flensborg, and Jens Petersen. Patch-
based medical image segmentation using matrix product state tensor networks. arXiv preprint
arXiv:2109.07138, 2021.

[49] Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. Advances
in neural information processing systems, 29, 2016.

[50] Shashank Subramanian, Robert M Kirby, Michael W Mahoney, and Amir Gholami. Adaptive
self-supervision algorithms for physics-informed neural networks. In ECAI 2023, pages 2234—
2241. 1I0S Press, 2023.

[51] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-
mixer: An all-mlp architecture for vision. Advances in neural information processing systems,

34:24261-24272, 2021.

[52] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby,
Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.
Resmlp: Feedforward networks for image classification with data-efficient training. IEEE
transactions on pattern analysis and machine intelligence, 45(4):5314-5321, 2022.

[53] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347-10357. PMLR, 2021.

[54] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[55] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi.
Dcn v2: Improved deep & cross network and practical lessons for web-scale learning to rank
systems. In Proceedings of the web conference 2021, pages 1785-1797, 2021.

[56] H Xiao. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.
arXiv preprint arXiv:1708.07747, 2017.

[57] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. Advances in neural information processing systems, 32, 2019.

[58] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3014-3023, 2021.

[59] Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. S2-mlp: Spatial-shift mlp architecture
for vision. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pages 297-306, 2022.

13

[60] Hui-Hai Zhao, Zhi-Yuan Xie, Qihong N Chen, Zhong-Chao Wei, Jianwei W Cai, and Tao
Xiang. Renormalization of tensor-network states. Physical Review B—Condensed Matter and
Materials Physics, 81(17):174411, 2010.

[61] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liging Zhang, and Andrzej Cichocki. Tensor ring
decomposition. arXiv preprint arXiv:1606.05535, 2016.

[62] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning with bidirectional state space model.
arXiv preprint arXiv:2401.09417, 2024.

14

Appendix

A Experimental Setup
A.1 Image Classification Benchmarks and Training Settings

A detailed description of the benchmarks and training configurations is provided below.

* CIFAR-10 [30] consists of 60K color images of 32 x 32 resolution across 10 classes, with
50K images for training and 10K for testing. We train our model using the SGD optimizer
with a batch size of 128 for 160 epochs. The MultiStepLR strategy is applied to adjust the
learning rate, and data augmentation settings are in accordance with [10].

* Tiny ImageNet [31]], ImageNet-100 [58], and ImageNet-1K [46] contain 100k, 100k, and
1.2M color-annotated training images with resolutions of 64 x 64, 224 x 224, 224 x 224 pixels,
respectively. These datasets serve as standard benchmarks for evaluating image recognition
models. During training, we optimized our model using a configuration consistent with
[7, SIﬂ Specifically, we utilized the AdamW optimizer [37] alongside a cosine decay
schedule for learning rate tuning, and applied data augmentations including label smoothing,
Cut-Mix, Mix-Up, and AutoAugment. Note that we did not employ additional large-scale
datasets such as JFT-300M for pre-training, nor did we use unsupervised or semi-supervised
methods to optimize our model. All experiments were conducted on 8 GeForce RTX 3090
GPUs using native PyTorch.

* MNIST and Fashion-MNIST [56]] both contain 60,000 grayscale images for training and
10,000 for validation, with each image sized at 28 x 28. We conducted comparison experi-
ments between DTTN and other TN models on these two benchmarks, employing training
configurations consistent with those used for CIFAR-10.

A.2 Hyperparameters for Training on ImageNet-1K

Table[TT|shows the experimental hyperparameters used for training the DTTN family on the ImageNet-
1K benchmark. We utilize the timm libraryﬂ and ensure all settings are aligned with the comparison
method MONet [7]].

B More Experimental Results

Image Segmentation. We employ the Semantic FPN framework [28ﬂ for performing semantic
segmentation on the ADE20K dataset, which includes 20,000 training images and 2,000 validation
images. DTTN'-S and DTTN'-L were initialized using pre-trained ImageNet-1K weights before
being integrated as the backbone of the framework. Additionally, all newly added layer weights were
initialized using Xavier initialization [17]. Table [Q|presents the outcomes of the DTTN model trained
for 12 epochs using the AdamW optimizer, evaluated by Mean Intersection over Union (mlIoU). Some
experimental data are derived from [[7]. Notably, DTTNT-L achieves better performance over other
multilinear networks, underscoring the efficacy of our designed AIM.

Training Convergence. Figure [5]displays the Top-1 accuracy and loss curves of the proposed
model alongside other architectures—such as ResNet-50 [20]], ViP-Small [21] representing the MLP
architecture, and MONet [7]—all trained on ImageNet-100 for 90 epochs. It can be observed that
DTTN achieves significantly faster convergence and superior performance.

C Motivation and Interpretability

The principal motivation of this work is to uncover both the potential and inherent limitations of
quantum-inspired tensor networks (TNs) on large-scale benchmarks, by establishing their equivalence
with DTTN through Theorem 1. Although TNs have been extensively studied in the fields of quantum
mechanics and white-box machine learning, state-of-the-art models are still largely restricted to small
datasets and limited tasks. DTTN overcomes this barrier by extending Tensor Network Networks

Shttps://github.com/Allencheng97/Multilinear Operator_Networks
®https://github.com/huggingface/pytorch-image-models
"nttps://github.com/CSAILVision/semantic-segmentation-pytorch

15

https://github.com/Allencheng97/Multilinear_Operator_Networks
https://github.com/huggingface/pytorch-image-models
https://github.com/CSAILVision/semantic-segmentation-pytorch

BackBone | mIoU(%)

Resnet18 32.9 v

FCN 29.3 <
Sog Pormer | 374 — s | 8
R-PDC 20.7 'é o — MONeTt (84.5 Acc) .S
R-PolyNets 19.9 - w
MONet-S 37.5 Sespe T’
DTTNT-S 36.9 ” ”
DTTNT-L 38.6 o i 3 s % = %

Figure 5: Top-1 accuracy and loss visualiza-

Table 9: Ex.perimental yalida— tion for architectures trained from scratch on
tion of semantic segmentation on ImageNet-100.

ADK?20K with Semantic FPN.

(TNNG5) to large-scale applications through techniques such as parameter sharing and exponential
interaction modeling, thereby achieving competitive performance.

Furthermore, DTTNs retain a high degree of interpretability that aligns with quantum-inspired TN,
offering intuitive deterministic linear representations and probabilistic interpretations. For a deeper
understanding of the theoretical underpinnings, readers are referred to related works [43}44].

Table 10: Comparison of inference latency, throughput, and memory usage on an NVIDIA
A6000 GPU.

Model Batch Size Latency (ms/batch) Throughput (sample/sec) Peak Memory (GB)
MONet_T 64 128.39 498.47 1.14
ViP-Small/14 (ours) 64 86.1 743.28 0.584
DTTN-S (ours) 64 81.94 781.08 1.099

D Latency Analysis

Table [T0] presents a detailed comparison of inference latency and memory usage, benchmarked on
an NVIDIA A6000 GPU. Compared to the previous state-of-the-art model, MONet-T, our DTTN-S
reduces latency by nearly 35% while also achieving a 2.4% performance gain on ImageNet (see Table
1). Furthermore, DTTN demonstrates faster convergence on both the ImageNet and ImageNet-100
benchmarks, as shown by the convergence curves in Fig. 2e and Fig. 5.

Table 11: Training settings for ImageNet-1K in Section 4.1

Item Setting
Optimizer AdamW
Base learning rate le-3
Warmup-Ir le-6
Learning rate schedule cosine
Weight Decay 0.01 & 0.02
Batch size 320 x 4 GPU
Label smoothing 0.1
Auto augmentation v
Random erase 0.1
Cutmix 0.5
Mixup 0.5
Dropout 0.0

16

|

- |
- |

Linear PDE

=

Allen-Cahn PDE

m wm

PINN-DTTN

—
_—
—
. ‘”MM W

B
-8
= =K
| =

Figure 6: Visualization of training loss and prediction results of PINNs solving PDEs across the
spatial-temporal domain.

-
8
5
il

I A l SA-PINN

-DTTN
'. \--u-um Jd.l

SA-PINN

E Details of DTTN Resolving PDEs

In this study, we use the Physics-Informed Neural Network (PINN) [14] and the Self-Adaptive PINN
(SA-PINN) [50] as our baseline models. These are multi-layer feedforward networks with a hidden
dimension of d = 32. Each linear layer is succeeded by a tanh activation functiotﬂ Subsequently, we
replaced these linear layers with AIM modules while removing the activation functions, yielding the
novel architectures PINN-DTTN and SA-PINN-DTTN. These enhanced networks are then applied
to solve both the linear PDE and the nonlinear Allen-Cahn equation presented in Equation (). As
noted in reference [S0], the Allen-Cahn PDE serves as an intriguing benchmark for testing PINNs,
requiring the network to approximate solutions with sharp transitions in space and time, along with
periodic boundary conditions.

Fig. [f]illustrates the prediction results and absolute errors for various PINN variants addressing the
two equations across the spatial-temporal domain x 7' — [—1, 1] x [0, 1]. For the first equation,
which has an analytical solution of 4 = e~ sin(nx), the PINN-DTTN exhibits lower errors in both
training and prediction. However, for the second equation, despite the SA-PINN-DTTN achieving
lower errors, there are noticeable spikes in training loss. This phenomenon may be due to instability
when fitting complex functions with simple polynomials.

F Implementation and Motivation of the AIM Design

In Algorithm[T] we provide a PyTorch-style implementation of AIM. The main difference between
training and inference lies in structural re-parameterization. Specifically, during training, BN layers
are integrated with adjacent convolutional or linear layers. During inference, the AIM propagation
process simplifies, matching the schematic shown in Fig. 2{(d).

The primary motivation for designing DTTN was to develop a computationally efficient model, based
solely on tensor operations, that is capable of scaling to large benchmarks. The core of our solution is
the AIM, which is designed to facilitate direct multiplicative interactions. A tree structure emerges as
a natural consequence of this design: since each AIM module performs a binary fusion of two feature
tensors into one, stacking these modules hierarchically inherently constructs a tree. Significantly, this
straightforward, hierarchical construction is provably equivalent to a powerful Tree Tensor Network

$https://github.com/ZzYyPp47/Attention_pinn

17

https://github.com/ZzYyPp47/Attention_pinn

PN

N

Algorithm 1 Code for AIM (PyTorch-like)

H: height, W: width, C: channel, R: expansion ratio

x: input tensor of shape (B, C, H, W)

FHAFHFH##FHFFF Initialization #H#F#FH##FFFFFH

proj_1l = nn.Linear(C, C * R) # Aggregate channel information

conv_l = nn.Conv2d(C R, C x R, kernel_size=3, groups=C % R) # Aggregate
spatial information

proj_r = nn.Linear(C * R, C % R) # Aggregate channel information

conv_r = nn.Conv2d(C, C % R, kernel_ size=3, groups=C) # Aggregate spatial

information
proj = nn.Conv2d(C * R, C, kernel_size=1) # For information fusion
In_norm = nn.LayerNorm([C x R]) # Layer normalization

1_norm = nn.BatchNorm2d(C = R) # Batch normalization

r norm = nn.BatchNorm2d(C = R) # Batch normalization

res_norm = nn.BatchNorm2d(C) # Batch normalization

scale = nn.Parameter (torch.ones (1))

#Hff#f4# 44 #### Training stage ##H######FF###4

def AIM(x, use_l1n):
x_1 = conv_1(proj_1l(x.permute (0, 2, 3, 1).permute(0, 3, 1, 2))
X_r = proj_r(conv_r(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

if use_ln:

out = In_norm(x_1 * X_r)
else:

out = 1_norm(x_1l) * r_norm(x_r)
out = res_norm(proj(out))

return x + scale * out
#Hff#fd####### Inference stage #######F##H#4#
def AIM(x, use_ln):
x_1 = conv_1(proj_1l(x.permute (0, 2, 3, 1).permute(0, 3, 1, 2))
X_r = proj_r(conv_r(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
out = x_1 » x_r
if use_1ln:
out = 1ln_norm()
return x + proj(out)

(TTN), bypassing the complex methods that have historically limited their application [5]. Thus,
while the tree topology was not an initial design constraint, it is fundamental to our model’s expressive
power and theoretical grounding.

Training Stability of DTTN. The training of traditional TNs is often hindered by well-known
challenges, such as gradient instability (i.e., exploding or vanishing gradients) and high sensitivity
to hyperparameters. In contrast, our DTTN model trains stably across all scenarios, showing no
signs of these issues, as evidenced by the smooth loss curves in Fig.[5] This stability provides a
significant advantage over traditional TNs, where long chains of sequential tensor contractions can
lead to optimization problems. Although DTTN is theoretically equivalent to a TTN, its hierarchical
optimization process mirrors that of a standard deep network, ensuring a more robust and stable
training dynamic.

G Complexity Analysis

We now analyze the complexity of DTTN in terms of its storage requirements and computational
cost. Without loss of generality, we consider the multi-stage DTTN with hidden-size d for each stage,
and the total depth is L. We then consider the complexity of the main components of the network,
including the local mapping, the core blocks, and the classification head separately.

In this section, we analyze the complexity of a DTTN, focusing on both storage requirements and
computational cost. Without loss of generality, we consider a multi-stage DTTN where each stage has
a hidden size of d, and the overall depth is L. We then examine the complexity associated with the
main components of the network: the local mapping function, the core blocks, and the classification
head.

18

Local Mapping. The local mapping function ¢(-) consists of two consecutive convolutional layers,
each with a kernel size and stride of 2. This function is applied to the input image x to produce
a feature map ¢(z, Ag) € R"V*H*C Here, Ay € RS *C represents a learnable matrix, where
S,C = d € N denote the local patch size and the number of output channels, respectively. The
parameters and floating-point operations (FLOPs) involved in this process are given by:

Params™ = O(14-d + 4 - d?),

L 0 ®)

FLOPs®"=0(48-d-WH +4-d°-WH).
Core Blocks. we analyze the complexity associated with the core AIM blocks within the DTTN
architecture. Assuming that each of the four stages contains an equal number of blocks, the corre-
sponding feature map sizes are W x H % X % % X %, and % X %, respectively. Our analysis
focuses on the parameters and FLOPs involved in the three linear layers and two convolutional layers
of AIM. The total parameters and FLOPs can be expressed as follows:

3
L
PCI,TCLTH/SAIA{ =0 ((Z 22- Teaxp * d+ (2 *Texp + rzzp) -d? + d) : 4)
s=0

=0 ((22 Feap + 2 (reap +72,p) -d+1)-d- L),

WH
48

3)
FLOPs*'™ =0 ((Z 18- 7pgy - d - WH, L)
s=0

+ (2 *Texp + Tf,a:p) -d?- 45) 4

765 85)
=0 <(128 *Teap + ﬁ) (Teazp + Tezp) . d) -d-WH - L) .

Classification Head. For a classification head with m classes, we receive a feature map of size
% X % x d, which is then processed through an average pooling layer followed by a fully-connected
layer to output an m-dimensional vector. The parameters and FLOPs involved in this process are
given by:
Params™ = O(d- (m + 1)),
WH (10)

FLOPsf = O d+m-d).

In summary, our conclusions regarding the number of parameters and FLOPs for the DTTN architec-
ture can be expressed as:

AIM H

Params = Params® + Params + Params™,

(11)
FLOPs = FLOPs* + FLOPs*™ 4 FLOPs".

It can be observed that the number of parameters in the DTTN architecture remains fixed, while the
computational complexity exhibits a linear relationship with the input image scale. This characteristic
represents a significant advantage of the DTTN over modern MLP and Transformer architectures,
which typically exhibit quadratic complexity.

H Proofs

Here, we derive the proofs of Proposition 1 and Theorem 1 from the main paper and further elucidate
their significance.

Proposition. The DTTN has the capability to capture 2% multiplicative interactions among input ele-
ments, which can be represented in the format of Equationas O(x) = ®2" é(x, Ay). Consequently,
the elements of f(x) are homogeneous polynomials of degree 2L over the feature map ¢(x, Ay).

Proof. For each AIM block with input &' = vec(X') € RWiHiC let D! = W, x H; x C; and
I € K. Suppose that the left and right branches of AIM can be represented as f}(x!) = Allccl

and fl(x!) = ALa!, where A', AL € RP'*DP" are obtained through structured combinations of
convolutional and linear layer weights. The feedforward propagation of the AIM block can then be

19

expressed as:
ztt =2! + B! ((Alla:l) * (AZQCL'Z))
=z + Reshape (Bl(AllT ©) AlQT)T) xéi (x' ® x') (12)
=al 4+ 2" x (sc ® x').

where B' denotes the fused linear layer inside AIM, and Z' = Reshape (Bl(AllT ® AZQT)T> €

RD'*D'xD" jg 4 structured learnable tensor. Then each element of 2!+ can be calculated by

D! D!

o w22 B T (a3

Thus, each AIM module captures second-order multiplicative feature interactions of the input. By
induction, the DTTN stacked with L. AIMs captures 2 interactions of the input . Note that the
network’s bias terms and shortcut connections can be eliminated by introducing an additional homo-

geneous dimension in the local mapping. Hence, we have x!* ZD i ZD ez (w,p, T)wiua:lp €
RPi+1 Therefore, the expression f(a) is a homogeneous polynomial of degree 2L of p(x, Ay),

which concludes our proof.

Theorem. Given the local mapping function ¢ (x1) = [29,- - ,x%L]T, a polynomial network with
the expansion form of Equation ((6) can be transformed into a quantum-inspired TN model with finite
bond dimension.

Proof. For an input image x € R"*H*C the computation in the vanilla quantum-inspired TN
model can be expressed as

f@) =TN ({¢"(@(r,pu) Hir ARILL) - (14)

where N = WHC,m € Kw.,p € Kg,w € K¢, and {Ry}L,} denotes the tensor cores. T'N(-) :
2" +1)--- (2" +1)

R N — R™ represents the contraction operation that outputs an m-dimensional

vector. We can further complete the contraction of 2% physical indices and transform Equatlon.
into

f(m) =TN (¢1(w(7,p,w)) X% Rla co 7¢N(w(‘r,p,w)) X% RN)

15)
=TN(Zy, -, ZnN).
Since each output element of a polynomial network can be expressed as
2L
Z waxl1x12""ri2Lv §< N7 . (16)
The above equation is equivalent to

Zw§x1 . xN where k; >0 and ki + -+ ky = 2F (17)
Since Equation [I3]encompasses each term of Equation[I7} this proves our claim. O

The above proof indicates that by selecting an appropriate local mapping, the DTTN can be trans-
formed into a standard tensor network model. We re-emphasize that this is the first work demonstrat-
ing that tensor networks can achieve competitive performance on large-scale benchmarks, such as
attaining 77.2% Top-1 accuracy on ImageNet-1K. Previous TNs have been limited to much smaller
tasks due to expression limitations and lower bond dimensions. We hope that this research will inspire
further explorations into tensor networks.

20

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of this paper are summarized in the abstract and
detailed in the introduction. Specifically, the scope of the study is outlined in the first two
paragraphs of the introduction, while the contributions are highlighted in the final paragraph.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in the last paragraph of Section 4.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21

Answer: [Yes]

Justification: Detailed proofs of the propositions and theorems presented in this paper are
provided in Appendix H.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of the experiments in the experimental section and the
Appendix. We plan to make the code publicly available to ease the reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All experimental datasets used are publicly available. The pseudocode for the
AIM module is provided in Appendix F.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental settings, including data split, optimizer
configurations, and other parameters, in Section 4 (Experimental Section) of the main paper.
Additional implementation details are provided in Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Given the substantial computational resources and time required, a statistical
analysis is not conducted.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the software and hardware platforms for the experiments in the
Experiments section, with specific resource consumption consistent with regular deep model
training.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive impacts of our approach in the Introduction and
Experimental sections.

Guidelines:

24

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk of misuse of the proposed method and the datasets used in the
paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper or attached the link to the existing assets used
in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

25

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Quantum-Inspired TNs
	Advanced Modern Networks
	Polynomial and Multilinear Networks

	Method
	Antisymmetric Interaction Module
	Network Architecture
	DTTN vs. Other Architectures

	Experiments
	Visual Recognition
	Broader Impact
	Ablation Study

	CONCLUSION
	Acknowledgment
	Experimental Setup
	Image Classification Benchmarks and Training Settings
	Hyperparameters for Training on ImageNet-1K

	More Experimental Results
	Motivation and Interpretability
	Latency Analysis
	Details of DTTN Resolving PDEs
	Implementation and Motivation of the AIM Design
	Complexity Analysis
	Proofs

