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Abstract

We introduce HBLLM, a wavelet-enhanced high-fidelity 1-bit post-training quanti-
zation method for Large Language Models (LLMs). By leveraging Haar wavelet
transforms to enhance expressive capacity through frequency decomposition,
HBLLM significantly improves quantization fidelity while maintaining minimal
overhead. This approach features two innovative structure-aware grouping strate-
gies: (1) frequency-aware multi-parameter intra-row grouping and (2) ℓ2-norm-
based saliency-driven column selection. For non-salient weights, a shared mean
is employed across quantization groups within each frequency band to optimize
storage efficiency. Experiments conducted on the OPT and LLaMA models demon-
strate that HBLLM achieves state-of-the-art performance in 1-bit quantization,
attaining a perplexity of 6.71 on LLaMA2-13B with an average weight storage of
only 1.08 bits. Code available at: https://github.com/Yeyke/HBLLM.

1 Introduction

Figure 1: Average relative perplexity (normal-
ized to FP16) on PTB, WikiText2, and C4 for
LLaMA-1 family models, comparing LLM
binarization methods and our HBLLM.

In recent years, Large Language Models (LLMs)
have achieved remarkable progress in natural lan-
guage processing tasks. However, their massive pa-
rameter sizes—often reaching tens or even hundreds
of billions—pose significant challenges for deploy-
ment on edge devices and in low-resource environ-
ments. To reduce the computational and memory
burden of these models, a variety of compression
techniques have been proposed, including quantiza-
tion [12, 33, 35], pruning [11, 31], and knowledge
distillation [19, 30]. Among them, Post-Training
Quantization (PTQ) is widely adopted for its effi-
ciency, requiring no additional training and having
low deployment cost, especially in 1-bit quantization,
which is considered a key approach for achieving
extreme inference efficiency [13].

Although existing 1-bit PTQ methods [15, 17, 34]
have achieved some success on base models such as GPT-2 and OPT, they tend to suffer from
significant performance degradation—or even complete failure—when applied to more complex
modern architectures like LLaMA3-8B [16]. To address this, recent studies have introduced several
strategies to improve quantization fidelity:
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• Group quantization: divides the weight matrix into multiple groups for separate quantization. For
instance, outlier-aware partitioning handles critical columns independently but can be constrained
by partition design and scalability [15];

• Residual approximation: adds residual terms on top of primary quantization to partially recover
errors [6], though this provides limited fidelity gains and introduces extra computation;

• Low-Rank Adaptation (e.g., LoRA): inserts low-rank modules to absorb quantization errors with
some flexibility, like [34], but often shows sensitivity to hyperparameters;

• Global orthogonal transformations: apply global rotations in [1, 2, 5] before model compression
to enhance representational capacity, but require expensive inverse transforms (e.g., matrix mul-
tiplications at O(d2) complexity for a d-dimension linear layer), leading to increased inference
latency and energy consumption, making them impractical for deployment.

To overcome the structural trade-off between expressiveness and efficiency, we propose a novel 1-bit
PTQ framework—HBLLM. This method is the first to integrate localized orthogonal transformations
(i.e., Haar wavelets) into a BiLLM-style quantization process. Combined with structure-aware group-
ing, HBLLM significantly enhances expressive power under ultra-low bit budgets while maintaining
negligible inverse transform cost and excellent compatibility with hardware-efficient inference.

Our main contributions are as follows:

• A localized orthogonal transformation mechanism: we apply a single Haar wavelet transform
to decompose the weight matrix into high- and low-frequency components, improving binary
expressiveness while reducing transform computation;

• Frequency-aware multi-parameter intra-row grouping: we introduce intra-row grouping in the
frequency domain to capture structural patterns;

• ℓ2-norm-based saliency-driven column selection: we propose an ℓ2 norm-based ranking method
to retain key columns using saliency metrics, effectively reducing quantization error;

• Intra-frequency-band mean sharing: for non-salient components, we introduce a mechanism
that shares the mean across groups within the same row and wavelet band, reducing storage without
sacrificing fidelity.

We conduct extensive experiments on OPT [37], LLaMA family [32] of LLMs. Results show that
HBLLM achieves state-of-the-art performance under 1-bit quantization: Across language modeling
tasks (C4, PTB, WikiText2), the perplexity ratio between HBLLM and the original FP16 model re-
mains within the range of 1.2–2.2, shown in Fig 1, outperforming the next-best methods by 33%–66%;
On 9 zero-shot QA benchmarks, HBLLM retains 73.8%–88.8% of the original model’s accuracy; On
modern architectures such as LLaMA3-8B, HBLLM remains stable with no performance collapse;
Even with a lower average bit rate and memory usage than BiLLM and ARB-LLMRC [18], HBLLM
outperforms both in overall task accuracy.

These results demonstrate that HBLLM significantly extends the applicability of 1-bit quantization,
balancing extreme compression with high fidelity, and offers a new paradigm for deploying large-scale
language models efficiently.

2 Related Work

2.1 1-Bit Post-Training Quantization

1-bit PTQ has emerged as a critical promising solution for deploying LLMs under extremely low bit
budgets. Representative methods such as BiLLM [15] adopt a salient column separation mechanism,
in which salient weights are quantized independently, while non-salient weights are grouped based
on magnitude and quantized row-wise. ARB-LLMX [18] further introduces column-wise grouping
and alternating refined binarization, achieving notable improvements in fidelity. Unlike [10, 34],
BiLLM can accomplish PTQ tasks without intensive computation for knowledge distillation with
multi-GPUs.

However, current methods face several key limitations: (1) They heavily rely on fixed thresholds or
simple ℓ1-based heuristics for salient column selection, which are insufficient to capture sparse but
significant activation outliers; (2) They fail to account for the structural asymmetry between row and
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column dimensions in weight matrices, limiting their adaptability to complex model architectures; (3)
They completely neglect frequency-domain information.

2.2 Evolution and Limitations of Grouping Strategies

To improve quantization flexibility and fidelity, some studies have proposed learnable or adaptive
grouping strategies. For example, Mixture of Scales [17] introduces a Mixture-of-Experts (MoE)
mechanism to assign scaling factor groups, and OneBitGPT [34] uses frequency masks to control
quantization range sensitivity, and AWQ [3] identifies weights with the greatest impact on model
predictions only based on activation outputs. However, these methods are generally effective only on
unstructured tensors, rely on fine-grained distillation, and lack explicit frequency-domain awareness.

In addition, existing grouping strategies [15, 18] often apply uniform partitioning rules across
the entire weight matrix, ignoring variations across different rows. This can lead to degraded
expressiveness when quantizing models with significant inter-row diversity.

2.3 Comparison Between Global Orthogonal Transforms and Local Wavelet Transforms

Orthogonal transforms have recently been adopted to improve LLM quantization. FrameQuant
[1] and QuIP [5] utilize orthogonal transforms to enhance fidelity, but inference with such global
transforms incurs high overhead, requiring O(d2) matrix multiplications [1] that cannot be fused into
linear layers, leading to increased latency and energy cost.

By contrast, local orthogonal transforms such as the Haar wavelet [20] offer localized spectral
sensitivity and have been widely applied in image compression, denoising, and edge detection [9, 14].
They can be efficiently implemented via lightweight local convolutions with negligible inference cost,
making them well-suited for low-bit compression and edge deployment.

3 HBLLM: A Quantization Framework with Wavelet Transform and
Frequency-Domain Grouping

3.1 Motivation and Core Challenges

Current mainstream 1-bit quantization methods face three key challenges in practice: (1) limited
numerical expressiveness leading to high reconstruction error; (2) insufficient accuracy in salient
column selection, failing to capture critical activation columns; (3) lack of structure-aware grouping
strategies that adapt to heterogeneous model structures.

To characterize expressiveness under ultra-low bit settings, we introduce a new metric: the cardinality
of the Inverse Quantization Set (CIQ), which measures the size of the discrete set of dequantized
values within a row. CIQ serves as a unified indicator of how the above challenges constrain model
fidelity. It acts both as a theoretical tool to analyze the limits of existing methods and as empirical
evidence of the advantage of our proposed method.

Under 1-bit quantization, the CIQ of BiLLM and ARB-LLMX is 8 and 10, respectively. When block
size sets to 128, the CIQ upper bound of ARB-LLMX can reach 128. In contrast, our method achieves
a CIQ of up to 1024 after applying the Haar wavelet transform, significantly improving theoretical
expressiveness. For more information on the benefits introduced by applying Haar transform, please
refer to the appendix B and C.

Based on aboved analysis, we propose: (1) Haar wavelet transform to enhance expressive capacity by
frequency decomposition; (2) ℓ2-norm-based saliency-driven column selection to prioritize critical
columns; (3) frequency-aware multi-parameter intra-row grouping to capture structural patterns. We
also introduce an intra-frequency-band mean sharing strategy and local convolution optimization to
reduce storage and inference cost, thus forming a 1-bit PTQ framework HBLLM .

3.2 Method Overview

We define the objective of HBLLM under the binary quantization setting for LLM weights. Specifi-
cally, the quantization targets the full-precision weight matrix WFP ∈ Rd×d, where a binary diagonal
mask matrix Msal ∈ {0, 1}d×d indicates which columns are selected as salient. The salient and
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Figure 2: Overview of our HBLLM.The HBLLM quantization process consists of four steps: prepa-
ration, salient column selection, haar transform and quantization for the non-salient part, and quanti-
zation for the salient part. Since the salient columns are excluded from the Haar transform of the
non-salient part, their positions must be filled before performing row-wise Haar transforms. This is
handled by a process we refer to as FillAvg, where each missing column is filled with the average of
its adjacent non-salient columns. For the non-salient part, HBLLM supports flexible choice between
row-wise (HBLLM-row) and column-wise (HBLLM-col) transforms. The salient part undergoes
column-wise Haar transformation followed by HaarQuant for quantization.

non-salient parts are quantized in the Haar domain, and their respective quantized Haar coefficients
are denoted by Ŵsal

B and Ŵnon-sal
B . These are then reconstructed using inverse Haar transformsH−1

1

andH−1
2 .

The reconstruction objective of HBLLM is twofold. For the quantization of a matrix layer W, the
objective expressed in the Frobenius norm is formulated as:

min
Ŵ

∥∥∥WX− ŴX
∥∥∥2
F
, (1)

where X is the input of the matrix layer. For quantization of a matrix block WFP of W, the object is:

min
Msal,Ŵsal

B ,Ŵnon-sal
B

∥∥∥WFP −MsalH−1
1

(
Ŵsal

B

)
− (I−Msal)H−1

2

(
Ŵnon-sal

B

)∥∥∥2
F
. (2)

When H1 = H2 are fixed Haar transforms, this formulation simplifies to a quantization problem
entirely in the Haar domain. In this case, the objective is the same to that of BiLLM. Layer-level
quantization is commonly tackled with the GPTQ algorithm [12].

We emphasize that our approach does not aim to solve this objective function via explicit optimization.
Instead, this formulation serves as a conceptual framework that guides our method design. The actual
quantization process is based on a set of heuristics and structure-aware strategies that approximate
this objective in a computationally efficient and scalable manner.

Quantization Pipeline Overview. HBLLM integrates the Haar transform into a BiLLM-style
quantization pipeline (see Algorithm 1 and Figure 2), consisting of the following key steps:

1. Preparation Phase: Compute the column-wise importance scores using a Hessian-based
saliency metric.

4



2. Salient Column Selection and Quantization(SALIENT):
• Sort columns by their ℓ2 norm significance.
• Select top-K salient columns and determine Msal.
• Ŵsal

B = HaarQuant (MsalW).
• Choose the subset with the lowest quantization error.

3. Non-Salient Region Quantization:
• Fill the missing values in salient columns using adjacent averages (FillAvg).
• Ŵnon-sal

B = HaarQuant (MsalWfilled + (I−Msal)W), where Wfilled is from FillAvg.
4. Adjustment and Refinement:

• W̃ = Msal

(
W −H−1

(
Ŵnon-sal

B

))
.

• Ŵsal
B = HaarQuant

(
W̃

)
.

Algorithm 1 Framework of HBLLM: Details of each function are shown in Algorithm E.1

func HBLLM(W,X, β, λ)

Input: W ∈ Rn×m - weight matrix
X ∈ Rr×d - calibration data
β - block size
λ - hessian regularizer

Output: B - haared binarized weights

1: H← 2XX⊤ // ℓ2 error hessian matrix
2: Hc ← Cholesky((H+ λI)−1)

3: B← 0n×m

4: for b = 0, β, 2β, . . . , N do
5: Wb ←W:,b:b+β

6: rows{·} ← SALIENT(W:,b:b+β ,H
c)

7: if Row-HBLLM then
8: B:,b:b+β ← Row-HaarQuant(Wb, rows{·})
9: else if Col-HBLLM then

10: B:,b:b+β ← Col-HaarQuant(Wb, rows{·})
11: E← (W:,b:b+β −B:,b:b+β)/H

c
b:b+β,b:b+β

12: W:,b+β: ←W:,b+β: −E ·Hc
b:b+β,b+β:

13: return B

func Row-HaarQuant(W, rows{·})
1: Wfilled ← FillAvg(W:,j /∈rows, rows{·})
2: Bfilled ← HaarQuant(Wfilled, ROW)
3: Ŵ←W −Bfilled

4: Bsalient ← HaarQuant(Ŵ:,j∈rows, COL)
5: B← Bsalient +Bfilled

6: return B

func Col-HaarQuant(W, rows{·})
1: Bunsalient ← HaarQuant(W:,j /∈rows, COL)
2: Ŵ←W −Bfilled

3: Bsalient ← HaarQuant(Ŵ:,j∈rows, COL)
4: B← Bsalient +Bunsalient

5: return B

3.3 HaarQuant: One-Bit Quantization in the Wavelet Domain

To boost expressiveness, we apply Haar wavelet transform to the weight matrix of linear layers,
generating a frequency-domain coefficient matrix, followed by group-wise 1-bit quantization.

To address limited numerical expressiveness, HBLLM introduces the HaarQuant algorithm. Haar-
Quant consists of three stages.

Haar Transform. A row of weights W is decomposed into low- and high-frequency coefficients via
1D Haar transformH:

Ŵ = H (W) = [Hlow-pass (W) ,Hhigh-pass (W)] , (3)

where Ŵ is the Haar coefficient of W,Hlow-pass (W) andHhigh-pass (W) are low- and high-frequency
coefficients, respecively.

Frequency-Aware Multi-Parameter Intra-Row Grouping. For each row, boundary candidates
determined by the row are enumerated, and the best grouping with minimal quantization error is
selected. Furthermore, we split the rows by frequency bands. This adaptive strategy captures intra-row
structural differences better than global uniform boundaries used in BiLLM.
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Coefficient Quantization. Each group ŴFP is quantized using sign-based binarization centered on
its mean:

ŴB = α · sign(ŴFP − µ), (4)

where α ∈ Rd is the row-wise scaling factor and µ is the group-wise mean and ŴB is the result.

3.4 Structure-aware Grouping Strategies

To enhance the fidelity and adaptability of binary quantization under structural constraints, HBLLM
introduces two structure-aware grouping strategies that operate along both column and row dimensions
of the weight matrix.

Saliency-Driven Column Selection via ℓ2 Norm. This strategy is used during salient column
identification and quantization to overcome the limitations of prior heuristics based on fixed thresholds
or simple magnitude criteria.

• Columns are ranked by their ℓ2-norm scores, which correlate with their overall contribution to
activation magnitude.

• The top-K columns are selected as salient and quantized in the Haar-transformed domain using
column-wise transforms.

This approach helps preserve activation-critical directions, especially those dominated by outlier
weights.

Frequency-Aware Multi-Parameter Intra-Row Grouping. This strategy is used during Haar
domain quantization, where conventional row grouping lacks sensitivity to structural variations in
weight distributions.

• Each row is first decomposed into high- and low-frequency components based on Haar subbands.

• Within each frequency band, coefficients are adaptively split into dense and sparse groups using
band-specific, data-driven thresholds.

This grouping effectively doubles the number of quantization subgroups per row, enabling finer
granularity and better error control.

Together, these strategies facilitate fine-grained, structure-preserving quantization across both dimen-
sions of the weight matrix. To further guide saliency-based partitioning, we adopt the parameter
importance metric used in BiLLM, defined as: si = w2

i /[H
−1]2ii, where H denotes the Hessian

matrix of the layer, wi is the full-precision value of the i-th parameter, and [H−1]ii is the i-th diagonal
entry of the inverse Hessian.

This metric reflects the relative sensitivity of the loss to changes in each parameter: higher val-
ues indicate greater influence on the model’s output, and thus prioritize that weight for accurate
reconstruction.

3.5 Intra-frequency-band Mean Sharing

To reduce storage overhead, HBLLM shares a single mean value among 2 groups in the same
frequency band within each row: µshared = 1

n1+n2

(∑n1

i=1 xi +
∑n2

j=1 yj

)
. It not only reduces per-

parameter storage by 0.25 bits, but also maintains accuracy even slightly improving downstream task
performance. This optimization achieves a trade-off between compression and accuracy, improving
deployment viability.

3.6 Efficient Haar Implementation via Local Convolutions

Instead of costly matrix multiplication, HBLLM implements Haar transform using fixed local
convolutions. There are only two predefined 1D kernels, [1/2, 1/2] and [1/2,−1/2], whose kernel
size is 2. Furthermore, it can be hardcoded into the model for zero runtime initialization and
no training or storage is needed. In complexity comparison, HBLLM needs O(d) operatons via
convolutional sliding window, while FrameQuant needs O(d2) operations. As a result, HBLLM
significantly lowers inference cost and is ideal for edge deployment.
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Table 1: Comparison of perplexity and average accuracy across models and methods
LLaMA1 Perplexity↓ AvgQA↑

Size Method W-bits C4 Wiki2 PTB

7B

FullPrecision 16.00 6.71 5.68 35.80 65.62

FrameQuant 2.20 10.89 9.96 104.7 56.19
PB-LLM 1.70 90.19 113.4 830.0 35.71
BiLLM 1.09 43.74 44.85 369.3 40.01

ARB-LLMX 1.09 22.80 24.70 240.5 45.65
ARB-LLMRC 1.09 15.13 13.45 155.8 52.23
HBLLM-row 1.09 9.49 8.82 88.86 57.48
HBLLM-col 1.00 10.38 9.67 117.7 54.03

13B

FullPrecision 16.00 6.24 5.09 25.36 68.09

FrameQuant 2.20 8.79 7.84 50.69 60.69
PB-LLM 1.70 38.41 46.02 190.2 40.39
BiLLM 1.10 13.93 14.99 69.75 50.89

ARB-LLMX 1.10 N/A N/A N/A N/A
ARB-LLMRC 1.10 10.68 10.19 43.85 59.58
HBLLM-row 1.09 7.62 6.68 34.94 62.57
HBLLM-col 1.00 7.77 6.98 37.62 61.25

30B

FullPrecision 16.00 5.62 4.10 21.35 71.06

FrameQuant 2.20 7.35 6.32 28.69 65.13
PB-LLM 1.70 21.73 25.87 127.1 47.22
BiLLM 1.11 10.27 10.55 41.76 58.07

ARB-LLMX 1.11 N/A N/A N/A N/A
ARB-LLMRC 1.11 8.49 7.79 30.98 64.49
HBLLM-row 1.10 6.88 5.82 25.95 66.76
HBLLM-col 1.00 7.03 6.03 26.65 64.86

65B

FullPrecision 16.00 5.31 3.53 21.11 72.27

FrameQuant 2.20 6.69 5.55 27.48 68.58
PB-LLM 1.70 12.66 12.76 99.67 62.48
BiLLM 1.10 9.26 8.58 41.93 62.05

ARB-LLMX 1.10 N/A N/A N/A N/A
ARB-LLMRC 1.10 7.48 6.47 29.14 68.53
HBLLM-row 1.09 6.28 5.07 24.11 69.18
HBLLM-col 1.00 6.44 5.26 30.38 67.83

LLaMA2 Perplexity↓ AvgQA↑
Size Method W-bits C4 Wiki2 PTB

7B

FullPrecision 16.00 8.66 6.94 37.86 65.54

FrameQuant 2.20 14.66 13.34 177.1 52.75
PB-LLM 1.70 63.95 55.40 486.2 36.54
BiLLM 1.08 33.97 31.38 373.0 42.11

ARB-LLMX 1.08 26.55 21.74 314.2 45.41
ARB-LLMRC 1.08 17.87 15.85 462.2 46.71
HBLLM-row 1.07 11.75 10.52 89.23 57.74
HBLLM-col 1.00 12.51 11.33 150.6 54.09

13B

FullPrecision 16.00 6.18 4.88 43.02 69.18

FrameQuant 2.20 9.40 7.80 109.3 61.35
PB-LLM 1.70 313.4 289.4 934.4 32.91
BiLLM 1.08 22.17 19.57 303.4 46.76

ARB-LLMX 1.08 N/A N/A N/A N/A
ARB-LLMRC 1.08 11.90 10.98 151.8 57.35
HBLLM-row 1.07 7.82 6.71 61.75 63.61
HBLLM-col 1.00 8.28 7.00 69.74 62.04

70B

FullPrecision 16.00 5.24 3.32 21.49 72.96

FrameQuant 2.20 N/A N/A N/A N/A
PB-LLM 1.70 N/A N/A N/A 54.26
BiLLM 1.09 15.57 15.86 71.03 55.81

ARB-LLMX 1.09 N/A N/A N/A N/A
ARB-LLMRC 1.09 7.26 6.00 28.43 68.77
HBLLM-row 1.08 6.18 4.82 24.69 70.01
HBLLM-col 1.00 6.63 5.04 26.31 68.61

LLaMA3 Perplexity↓ AvgQA↑
Size Method W-bits C4 Wiki2 PTB

8B

FullPrecision 16.00 11.90 8.29 13.07 68.94

FrameQuant 2.20 28.44 23.36 40.33 52.27
PB-LLM 1.70 111.7 141.5 171.1 36.83
BiLLM 1.06 53.67 56.24 81.27 41.84

ARB-LLMX 1.06 48.45 37.90 52.59 43.40
ARB-LLMRC 1.06 34.44 30.24 45.23 49.08
HBLLM-row 1.06 20.09 16.18 22.83 54.80
HBLLM-col 1.00 22.18 17.80 26.38 51.43

70B

FullPrecision 16.00 6.61 2.85 7.74 74.62

FrameQuant 2.20 N/A N/A N/A N/A
PB-LLM 1.70 33.56 28.93 44.38 47.45
BiLLM 1.09 385.8 137.6 129.5 34.18

ARB-LLMX 1.09 N/A N/A N/A N/A
ARB-LLMRC 1.09 12.80 10.24 12.76 63.90
HBLLM-row 1.08 10.87 8.08 11.44 56.45
HBLLM-col 1.00 13.69 9.09 14.26 55.89

OPT Perplexity↓ AvgQA↑
Size Method W-bits C4 Wiki2 PTB

1.3B

FullPrecision 16.00 13.45 14.62 16.41 52.54

FrameQuant 2.20 24.29 27.15 30.45 44.48
PB-LLM 1.70 186.9 309.0 286.3 33.44
BiLLM 1.09 56.24 68.43 119.2 38.39

ARB-LLMX 1.09 43.23 53.55 67.96 41.42
ARB-LLMRC 1.09 24.23 28.77 33.32 45.28
HBLLM-row 1.07 19.30 21.68 25.34 46.35
HBLLM-col 1.00 21.92 24.08 27.28 44.70

2.7B

FullPrecision 16.00 12.06 12.47 14.61 54.95

FrameQuant 2.20 17.86 18.24 22.60 49.58
PB-LLM 1.70 165.1 216.8 160.4 37.62
BiLLM 1.10 42.92 55.75 103.2 40.02

ARB-LLMX 1.10 30.02 34.15 41.35 44.60
ARB-LLMRC 1.10 18.02 19.53 24.46 49.53
HBLLM-row 1.09 15.70 16.85 19.54 48.80
HBLLM-col 1.00 17.28 18.80 22.63 48.56

6.7B

FullPrecision 16.00 10.68 10.86 12.73 58.95

FrameQuant 2.20 14.53 14.59 18.71 53.77
PB-LLM 1.70 122.9 206.7 222.3 34.87
BiLLM 1.11 39.96 54.91 90.10 37.40

ARB-LLMX 1.11 19.39 19.50 24.78 49.79
ARB-LLMRC 1.11 14.29 15.16 17.92 53.76
HBLLM-row 1.10 12.56 13.04 15.26 56.17
HBLLM-col 1.00 13.29 13.67 15.70 54.44

13B

FullPrecision 16.00 10.16 10.13 11.89 58.41

FrameQuant 2.20 12.26 12.51 14.59 55.42
PB-LLM 1.70 42.89 81.02 94.98 39.50
BiLLM 1.13 17.01 18.34 21.56 49.82

ARB-LLMX 1.13 N/A N/A N/A N/A
ARB-LLMRC 1.13 12.60 13.14 15.14 55.35
HBLLM-row 1.12 11.47 11.72 13.78 55.91
HBLLM-col 1.00 11.71 12.34 14.13 55.66

30B

FullPrecision 16.00 9.60 9.56 11.50 62.09

FrameQuant 2.20 10.92 11.15 13.25 59.62
PB-LLM 1.70 21.60 28.62 45.63 46.14
BiLLM 1.06 13.43 13.44 16.66 54.22

ARB-LLMX 1.06 N/A N/A N/A N/A
ARB-LLMRC 1.06 11.18 10.94 13.27 58.59
HBLLM-row 1.06 10.41 10.13 12.58 60.04
HBLLM-col 1.00 10.53 10.29 12.75 58.91

Note: All methods are calibrated on C4 with 128 samples and a sequence length of 2048. A block size of 128
is used for channel-wise quantization, as commonly done in prior work. N/A: ARB-LLMX method cannot run
on a single 3090 GPU - 24GB. W-bits is the average weight overhead per weight. For more details, please
refer to the appendix D.
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4 Experiments

4.1 Experimental Settings

Models and Evaluation Datasets. In our study, we evaluate HBLLM on various models, including
those from the OPT, LLaMA-1, LLaMA-2, and LLaMA-3, as well as the recently introduced
f-R1-Distill-Llama-8B. Specifically, we utilize the OPT models with 1.3B and 2.7B parameters,
the LLaMA-1 and LLaMA-2 models with 7B and 13B parameters for our evaluations, and the
LLaMA-3 model with 8B parameters. We measure language modeling capabilities of these models
by evaluating their perplexity on the C4[26], WikiText2[22] and PTB[21] datasets. Additionally, we
assess zero-shot accuracy on various Common Sense Reasoning Tasks such as PIQA[4], BoolQ[7],
OpenBookQA[23], WinoGrande[28], ARC-e, ARC-c[8], HellaSwag[36], which are commonly
used for evaluating the performance of LLM quantization methods. To further enhance evaluation
coverage, we also include COPA[27] for causal reasoning and LAMBADA[25] for long-context
language modeling. All evaluations are conducted using the open-source LLM evaluation framework,
LM-Evaluation-Harness[24].

Details of Experiments. All experiments are conducted with PyTorch on NVIDIA GeForce RTX
3090 GPUs with 24GB of memory. For the calibration data, we follow the settings adopted in GPTQ
and BiLLM, selecting 128 samples from the C4 dataset, with a sequence length of 2048. During
quantization, we set the block size to 128 in BiLLM, PB-LLM, ARB-LLM, and HBLLM. Activations
are kept in full precision (FP16).

Baselines. We compare HBLLM against several state-of-the-art LLM binarization methods, including
BiLLM, ARB-LLM and PB-LLM, ensuring that all implementations adhere to the details provided in
their respective papers. BiLLM, ARB-LLM and PB-LLM all utilize the PTQ approach for model
calibration through OBQ based method of GPTQ. For ARB-LLM, we evaluate two of its best-
performing variants, ARB-LLMX and ARB-LLMRC. Both ARB-LLMx and ARB-LLMRC employ the
salient column bitmap and group bitmap (CGB) for better performance. For PB-LLM, which allows
variable ratios of salient weights to enhance accuracy, we have set the ratio of salient weights to 10% to
ensure the average bit width of weight parameters remains below 2 bits. Given the significant accuracy
improvements demonstrated by HBLLM over traditional binarization techniques, we also include
a comparison with a leading method using orthogonal transforms: FrameQuant. For FrameQuant,
quantization is performed not in the original weight space but in the structured orthogonal basis
constructed through Fusion Frames. We evaluate two configurations: FrameQuant (r = 1.0) and
FrameQuant (r = 1.1), where the redundancy factor r controls the amount of redundancy introduced
during the transformation.

4.2 Perplexity and Accuracy Results of 1–2 Bit Quantized Models

The perplexity and zero-shot accuracy results of previous 1-2 bit quantization methods and the
proposed HBLLM are presented in Table1. HBLLM consistently outperforms existing 1-2 bit
quantization techniques across all evaluation metrics.

Specifically, HBLLM reduces the language modeling perplexity by 33%-66% compared to previous
methods, while achieving substantial improvements in QA task accuracy, with relative gains ranging
from −0.73% to +11.3%. In our experiments, HBLLM slightly outperforms FrameQuant, a 2.2-
bit quantization method, and exhibits a particularly significant advantage on the LLaMA-3-8B
model. Moreover, when compared with BiLLM and ARB-LLMX, HBLLM-col, demonstrates a clear
advantage in both perplexity and accuracy, despite operating at comparable or lower bit-widths. These
results indicate that HBLLM effectively narrows the performance gap between quantized models
and their Float16 counterparts, achieving 1.22× to 2.48× of the original perplexity and retaining
73.8%-88.8% of the original QA accuracy.

4.3 Ablation Study

Salient Column Selection Criterion. To evaluate the impact of selection criteria in salient column
screening on quantization effectiveness, we compare two strategies: the column ℓ1 norm and the
column ℓ2 norm as significance indicators. Experimental results in Table 2a reveal that the column ℓ2
norm consistently achieves lower quantization error and superior performance in downstream tasks,
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Table 2: Ablation study on LLaMA2-7B. Results are measured by perplexity, with final results
highlighted in bold.

(a) Study of salient column selection criterion

SelectionMethod criterion Wiki2↓ PTB↓

HBLLM-row ℓ1 10.78 143.7
ℓ2 10.52 89.23

HBLLM-col ℓ1 11.45 308.2
ℓ2 11.33 150.6

(b) Study of grouping granularity

GroupMethod Partition Wiki2↓ PTB↓

HBLLM-row global 16.32 1990
row-wise 11.08 95.58

HBLLM-col global 13.99 1546
row-wise 12.02 146.1

(c) Effectiveness of shared mean

SharedMethod mean Wiki2↓ PTB↓

HBLLM-row ✗ 11.08 95.58
✓ 10.52 89.23

HBLLM-col ✗ 12.02 146.1
✓ 11.33 150.6

(d) Study of partitioning candidates number

CandidateMethod number Wiki2↓ PTB↓

HBLLM-row

10 11.16 108.8
20 11.32 165.8
40 11.08 95.58
80 11.13 113.8

indicating its greater effectiveness in capturing energy distribution across columns and enhancing
quantization quality.

Granularity of Group Quantization. To explore the influence of grouping granularity on model
performance, we compare global grouping with row-wise grouping strategies, evaluating both
quantization error and perplexity, as shown in Table 2b. The results reveal that row-wise grouping
significantly reduces quantization error and achieves lower perplexity compared to global grouping.
This suggests that finer-grained row-wise partitioning better preserves local data fidelity, leading to
improved quantized inference performance.

Shared Mean Strategy. Under the standard dual-partition quantization setting, we further explore
a compression strategy that shares the quantization center across two partitions within each row.
By unifying the mean for both partitions, the storage overhead of quantization coefficients can be
significantly reduced. Experimental results in Table 2c demonstrate that the shared mean strategy
even slightly reduces quantization error without degrading perplexity, verifying its effectiveness.

Choice of Partitioning Number. We investigate the impact of varying the number of partition
candidates on final quantization performance under the row-wise grouping setting. Specifically,
for each row, we generate partition candidates based on absolute value percentiles ranging from
10% to 90%, and evaluate the corresponding quantization error and perplexity, as shown in Table
2d. Experimental results indicate that moderately increasing the number of partition candidates can
effectively reduce quantization error and further lower perplexity, while excessive partitioning yields
diminishing returns and increases computational cost. Consequently, we adopt 40 partition candidates
as the default setting to balance performance and efficiency.

4.4 Time and Memory Analysis

Table 3: Time comparison between LLM binariza-
tion methods and our HBLLM on LLaMA-1 with
different model sizes.

Method 7B 13B 30B
BiLLM 36min 71min 142min
ARB-LLMx 88min ✗ ✗
ARB-LLMRC 76min 119min 239min
PB-LLM 18min 29min 57min
FrameQuant 14min 22min ✗
HBLLM 44min 98min 173min

Time Comparison. As a binary PTQ frame-
work, HBLLM eliminates the need for finetun-
ing. The introduction of Haar wavelet trans-
forms requires additional computation during
quantization, yet this overhead remains fully
acceptable. As shown in Table 3, HBLLM in-
creases the quantization time by approximately
20%-30% compared to BiLLM across different
model sizes. It is worth noting that ARB-LLMX
and FrameQuant fail to complete quantization
for LLaMA-1-13B and LLaMA-1-30B under
the single-GPU-24 GB setting, while HBLLM
successfully completes the process, demonstrating better scalability.
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Table 4: Memory comparison LLM binarization
methods and our HBLLM on LLaMA-1 with dif-
ferent model sizes.

Method 7B 13B
FP16 13.48GB 26.03GB
BiLLM 2.93GB 5.36GB
ARB-LLMx 3.23GB 5.95GB
ARB-LLMRC 2.83GB 5.17GB
PB-LLM 2.91GB 5.33GB
FrameQuant 11.36GB 16.08GB
HBLLM-row 3.29GB 6.07GB
HBLLM-col 2.86GB 5.22GB

Memory Comparison. As shown in Table 4,
HBLLM-col achieves better performance while
occupying a storage size comparable to ARB-
LLM. By employing a grouped shared-mean
strategy, HBLLM improves compression effi-
ciency without sacrificing performance. Specif-
ically, HBLLM-col applies Haar transforms
along the column dimension, such that only one
grouped quantization operation is required per
row on the transformed coefficients. Compared
to HBLLM-row, this leads to reduced data fi-
delity but provides clear advantages in storage
cost. Notably, the reported memory usage is
measured at runtime in our setup and may be
influenced by model variants and implementation choices, leaving room for further engineering
optimizations. The detailed storage calculation formulas can be found in the appendix D.

4.5 Inference Latency Estimation

To evaluate the inference latency of HBLLM, we conduct an experiment that combines direct
measurement with estimation. Due to there is no existing inference framework that fully supports
the dequantization algorithm used in HBLLM, we test GEMV on layers from the OPT-175B model
instead. The tests are run on an NVIDIA P100 GPU following the GPTQ benchmark setup [1]. Our
estimation results show that the inference latency of HBLLM is approximately 31.8% of the FP16
baseline inference time. For more details, please refer to the appendix G.

5 Conclusion

We introduce a 1-bit weight only quantization HBLLM, which applies Haar transform to BILLM
pipeline. Besides quantifying the coefficients on frequence domain, HBLLM integrates two innovative
structure-aware grouping strategies to enhance fidelity. Furthermore, HBLLM optimize storage
efficiency. As a results, HBLLM outperforms SOTA QAT quantization methods of LLM at 1-bit
across different LLM families and tests. The current HBLLM supports only quantized dense models.
Next, we will focus on the MoE PTQ algorithm.
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A Introducing Haar Wavelet Transform into LLM Quantization

Haar wavelet transform converts an original vector into a new matrix containing low- and high-frequency
information by computing averages and differences. This transformation can be extended to larger vectors and
multidimensional data and is commonly used in image processing and signal analysis.

Applying the Haar wavelet transform to LLM quantization offers three advantages:

• The inverse quantization set becomes richer in representation, which can be demonstrated via the CIQ metric.

• The data distribution becomes more concentrated: with approximately 65% probability, the variance of the
high- and low-frequency coefficient sets in each row is smaller than before the transformation.

• The additional computational cost for inference is O(d), where d is the input length, as the Haar transform can
be implemented using local convolutional layers, resulting in lower cost than methods such as FrameQuant.

A.1 Definition of Haar Transform

Let the one-dimensional input signal be x. The output after wavelet transformation is:

x̂ := [a1, b1, . . . , ai, bi], (5)

where ai denotes low-frequency coefficients and bi denotes high-frequency coefficients.

This process can also be expressed in matrix form:

x̂T = H(x) := Udiagx
T , (6)

where

Udiag :=


U

U
. . .

U

 . (7)

Because the Haar matrix is orthogonal, the inverse Haar transform is:

xT = UT
diagx̂

T . (8)

A.1.1 Row-wise and Column-wise Haar Transforms on Matrices

Define row-wise and column-wise Haar transforms of a matrix W as:

Hrow(W) := WUT
diag, Hcol(W) := UdiagW. (9)

Below is a simple example showing how to apply Haar transforms to a matrix.

Given a 4× 4 matrix defined as:

A =

16 18 22 20
12 14 10 8
24 26 30 28
20 22 18 16

 , (10)

the result after applying row-wise Haar transform is denoted as

Ârow =
√
2×

17 −1 21 1
13 −1 9 1
25 −1 29 1
21 −1 17 1

 , (11)

and after applying column-wise Haar transform is denoted as

Âcol =
√
2×

15 0 23 0
−2 0 −2 0
15 0 23 0
−2 0 −2 0

 . (12)

where each element of matrices is multiplied by the coefficient
√
2.
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B Relationship Between Richness of Inverse Quantization Set and Model
Fidelity

B.1 Definition and Application of CIQ Metric

The cardinality of an inverse quantization set (CIQ) measures the number of distinct values that can be recovered
from quantized weights in each row. For linear quantization without partitioning, CIQ equals the bit-width
of quantized weights, since linear quantization evenly distributes several points across the original data range.
When partitioning strategies are applied, it characterize expressiveness of the quantization algorithm.

In HBLLM, which follows the GPTQ quantization scheme, quantization is done per row of each matrix block.
We define CIQ in terms of a single row of a matrix block in the following discussion without loss of generality.
Furthermore,

CIQ = min{row length,maximum recovery ability under given quantization parameters}.

holds.

To study the composition of IQ, we introduce a mapping from the set of quantized weights to the set of
dequantized weights. Several mappings from quantized weights to inverse quantized values exist:

• Identity mapping

• Group merging mapping

• Residual merging mapping

• Inverse transformation mapping

For example, an inverse quantization set brought by residual merging mapping is defined as:

IQresidual = invresidual (X1,X2) := {z : z = (x+ y), ∀x ∈ X1, ∀y ∈ X2} . (13)

Furthermore,
CIQ residual ≤ |X1| · |X2|, (14)

where | · | is the cardinality of a set.

An inverse quantization set brought by Haar inverse transformation is defined as:

IQHaar = invHaar

(
X̂low, X̂high

)
:=

{
z : z =

1√
2
(x+ y) or z =

1√
2
(x− y), ∀x ∈ X̂low, ∀y ∈ X̂high

}
.

(15)

And then,
CIQHaar ≤ 2|X̂low| · |X̂high|. (16)

Let an inverse quantization set produced by BiLLM algorithm be denoted as IQBiLLM. According to BiLLM
algorithm, IQBiLLM can be expressed in the following form:

IQBiLLM = IQsal
residual ∪ IQnon-sal

= invresidual

(
Xsal

1 , Xsal
2

)
∪Xnon-sal

1 ∪Xnon-sal
2 .

(17)

where IQsal
residual and IQnon-sal represent inverse quantization sets of the salient and non-salient parts, respectively.

Lemma 1. BiLLM has at most 8 different dequantized values per row.

Proof. According to (17) and the definition of CIQ, we can infer that

CIQBiLLM ≤ CIQ sal
residual + |Xnon-sal

1 |+ |Xnon-sal
2 |. (18)

Since the salient part adopts a residual approximation strategy, it follows that

CIQ sal
residual ≤ |X1|sal · |X2|sal. (19)

Given that |Xsal
1 | = |Xsal

2 | = |Xnon-sal
1 | = |Xnon-sal

2 | = 2, substituting (19) into (18) yields:

CIQBiLLM ≤
∣∣∣Xsal

1

∣∣∣ ∣∣∣Xsal
2

∣∣∣+ ∣∣∣Xnon-sal
1

∣∣∣+ ∣∣∣Xnon-sal
2

∣∣∣ = 2× 2 + 2 + 2 = 8. (20)
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Next, we analyze theoretical upper bounds of CIQ for HBLLM algorithms. We first consider the case of
HBLLM-col. Let an inverse quantization set produced by HBLLM-col be denoted as IQHBLLM-col. According to
HBLLM-col algorithm, IQHBLLM-col can be expressed in the following form:

IQHBLLM-col = IQsal
Haar ∪ IQnon-sal

Haar

= invHaar

(
X̂sal

low, X̂
sal
high

)
∪ invHaar

(
X̂non-sal

low , X̂non-sal
high

)
,

(21)

where IQsal
Haar and IQnon-sal

Haar represent the dequantized sets of the salient and non-salient parts, respectively. Both
parts employ a group quantization strategy under Haar transform, so the upper bound for each part is the product
of the cardinality of the two Haar sub-band quantization sets. Additionally, within HBLLM-col algorithm, each
sub-band has two groups, resulting in a total of four quantized values. Based on the above analysis, we arrive at
the second conclusion.
Lemma 2. HBLLM-col has at most 64 different dequantized values per row.

Proof.

CIQHBLLM-col ≤ 2
∣∣∣X̂sal

low

∣∣∣ ∣∣∣X̂sal
high

∣∣∣+ 2
∣∣∣X̂non-sal

low

∣∣∣ ∣∣∣X̂non-sal
high

∣∣∣ = 64. (22)

The CIQ upper bound of HBLLM-row algorithm is significantly larger than that of HBLLM-col algorithm. Let
an inverse quantization set produced by HBLLM-row algorithm be denoted as IQHBLLM-row.By HBLLM-row
algorithm, IQHBLLM-row can be shown in the following form:

IQHBLLM-row = IQsal
HBLLM-row ∪ IQnon-sal

Haar , (23)

where IQsal
HBLLM-row is defined as

IQsal
HBLLM-row = invresidual

(
IQsal

Haar, IQ
non-sal
Haar

)
. (24)

Unlike HBLLM-col, the non-salient part of HBLLM-row encompasses the entire matrix area, resulting in overlap
with the salient part. Therefore, HBLLM-row incorporates a residual approximation on the salient part, further
increasing the CIQ upper bound. Additionally, within HBLLM-row algorithm, each sub-band has two groups,
resulting in a total of four quantized values. Based on the above analysis, we arrive at the third conclusion.
Lemma 3. HBiLLM-row can have over 1024 different dequantized values per row.

Proof.

CIQ sal
HBLLM-row ≤

∣∣∣IQsal
Haar

∣∣∣ ∣∣∣IQnon-sal
Haar

∣∣∣
=

∣∣∣invHaar

(
X̂sal

low, X̂
sal
high

)∣∣∣× ∣∣∣invHaar

(
X̂non-sal

low , X̂non-sal
high

)∣∣∣
≤ 2

∣∣∣X̂sal
low

∣∣∣ ∣∣∣X̂sal
high

∣∣∣× 2
∣∣∣X̂non-sal

low

∣∣∣ ∣∣∣X̂non-sal
high

∣∣∣
= 1024.

(25)

CIQHBLLM-row ≤ 1024 + 32 = 1056. (26)

Lemma 3 is a result that holds under the assumption that there are sufficiently many columns in the salient part.
In practical algorithms, due to the dual constraints of the quantized matrix size and the total bitrate, the upper
bound of CIQHBLLM-row is much less than 1024. The specific upper bound can be described in Lemma 4.
Lemma 4. Let the size of a quantized matrix block be d × d, where d ≤ 256, and let the proportion of the
number of columns in the salient part to the total number of columns be p (where 0 < p < 1). Then, we have

CIQHBLLM-row ≤ 32 + p · d, (27)

and
CIQHBLLM-col ≤ 32 + min{p · d, 32}. (28)

Proof. It is easy to get by Lemma 2 and Lemma 3.

Theorem 1. Under the same proportion p of the salient part, CIQHBLLM-row ≥ CIQHBLLM-col holds.

Proof. This follows from Lemma 4.
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(a) HBLLM-row

(b) HBLLM-col
Figure B.1: CIQ and Distribution of inverse quantization Values

B.2 Measured Values of the CIQ Metric for the HBLLM Algorithm

To validate the theoretical analysis of CIQ, we present two representative examples under the HBLLM-row and
HBLLM-col schemes, respectively. These examples illustrate how the CIQ values measured in practice align
with the theoretical bounds derived earlier.

Example 1: HBLLM-row. As shown in B.1a, consider a row of length 128 where 14 elements are marked
as salient. After quantization and reconstruction, the total number of distinct values observed is 42. Among
these, 30 values originate from the non-salient part (i.e., |IQnon-sal

Haar | = 30) and 7 values from the salient part (i.e.,
|IQsal

Haar| = 7).

Although the salient part involves residual merging, the final reconstructed set still satisfies:
CIQHBLLM-row = 42 ≤ 30 + 14 = 44, (29)

which confirms that the practical CIQ value stays within the theoretical upper bound in Lemma 4.

Example 2: HBLLM-col. As shown in B.1b, In a second example under the HBLLM-col scheme, a row
consists of 119 non-salient and 9 salient elements. The measured CIQ is 23, with 16 values from the non-salient
part and 7 values from the salient part. This result again satisfies:

CIQHBLLM-col = 23 ≤ 16 + 9 = 25. (30)

These observations demonstrate that in practice, the effective size of the inverse quantization set is significantly
below the worst-case bounds, especially when some quantized values are shared or overlap. They also confirm
the effectiveness of the HBLLM decomposition strategies in maintaining a compact and expressive representation
of quantized weights.

B.3 Limitations of CIQ Metric Analysis and the Necessity of Introducing a Structure-Aware
Grouping Strategy

Although HBLLM significantly outperforms BiLLM in the CIQ metric, it lacks a clear advantage in quantization
performance without the structure-aware grouping strategy introduced in this paper.

To assess the performance differences before and after implementing this strategy, we conduct experiments
evaluating perplexity and QA accuracy. Experiment data can be found in Table B.1:

• BiLLM+ℓ†2: Employing ℓ2-based saliency-driven column selection together with multi-parameter intra-row
grouping.

• Haar+BiLLM: This refers to a method obtained by removing the ℓ2-norm-based saliency-driven column
selection and multi-parameter intra-row grouping strategies from HBLLM. This method integrates the
one-dimensional discrete Haar wavelet transform applied row-wise or column-wise, thereby deriving two
approaches: Row-Haar+BiLLM and Col-Haar+BiLLM, respectively.

• DCT+BiLLM: This approach applies the BiLLM algorithm to coefficient matrices obtained from the one-
dimensional Discrete Cosine Transform (DCT) applied row-wise or column-wise on weight matrices, resulting
in Row-DCT+BiLLM and Col-DCT+BiLLM. Unlike the Haar+BiLLM method, DCT+BiLLM uses a global
transformation strategy by first mapping the entire matrix to the Fourier domain before quantization. In
contrast, Haar+BiLLM applies the Haar transform to matrix blocks, with quantization following the BillM
process, making it a local orthogonal transformation.

• HBiLLM+: These method, refer to those derived from Haar+BiLLM, utilizing the strategies proposed in our
paper. They include HBLLM-row+ℓ2, HBLLM-col+ℓ2, HBLLM-col+ℓ†2 and HBLLM-col+ℓ†2.
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Table B.1: Perplexity (↓, C4, Wiki2, PTB) and AvgQA accuracy (↑, AvgQA over 9 zero-shot tasks)
of BiLLM variants with Haar.

OPT-1.3B LLaMA2-7B
Method C4↓ Wiki2↓ PTB↓ AvgQA↑ C4↓ Wiki2↓ PTB↓ AvgQA↑

BiLLM 56.24 68.43 119.2 38.39 33.97 31.38 373.0 42.11
BiLLM+ℓ2 55.95 72.42 105.9 37.95 33.46 31.34 695.8 41.11
BiLLM+ℓ†2 56.88 70.48 92.16 39.28 28.17 25.08 226.3 41.77
Row-Haar+BiLLM 47.45 52.81 62.81 39.57 25.77 25.12 138.0 44.67
Col-Haar+BiLLM 95.56 128.8 171.3 36.92 41.03 37.25 5193 39.60
Row-DCT+BiLLM 8010 11517 6729 31.36 45358 49395 26888 34.48
Col-DCT+BiLLM 107.1 150.5 250.1 34.19 26.54 24.64 1202 44.82
HBLLM-row+ℓ2 26.47 33.68 41.17 41.17 16.26 19.86 87.90 47.90
HBLLM-col+ℓ2 26.37 29.99 36.24 42.13 15.04 13.99 154.6 49.38
HBLLM-row+ℓ†2 19.55 26.95 25.70 46.87 13.00 13.20 85.50 50.86
HBLLM-col+ℓ†2 21.98 23.69 27.39 45.21 13.18 12.02 146.1 51.34

Note: ℓ2 denotes activation of ℓ2-norm-based saliency-driven column selection; † denotes activation of
frequency-aware multi-parameter intra-row grouping.

The main experimental results are summarized as follows:

• Directly applying Haar transform into BiLLM pipeline does not significantly improve 1-bit quantization
performance.

– Row-Haar+BiLLM shows slight improvement.
– Col-Haar+BiLLM decreases performance.

• Implementing the ’saliency-driven column selection via ℓ2 norm’ strategy leads to:

– Significant improvements for HBLLM-row+ℓ2 and HBLLM-col+ℓ2 compared to their predecessors.
– Perplexity tests show:

* 32-64% reductions on C4 and Wiki2 test sets.
* HBLLM-col+ℓ2 shows notable improvements, but still lags behind BiLLM on the PTB test set.

– QA testing accuracy improves by 3-10%.

• Further introducing ’frequency-aware multi-parameter intra-row grouping’ results in:

– HBLLM-row+ℓ2+Row-wise-grouping is the best.
– 26-45% reductions in perplexity on C4 and Wiki2.
– Significant improvements on the PTB test set, surpassing BiLLM.
– Cumulative accuracy in QA testing increases by 2-8%.

This experimental result demonstrates that introducing a structure-aware grouping strategy is essential for
effectively combining the Haar transform with the BiLLM algorithm.

B.4 Effectiveness of Haar Transform and the Importance of Local Orthogonality

As shown in Table B.1, although HBLLM integrates multiple strategies, it is important to disentangle the specific
contribution of the Haar-based frequency decomposition from other components such as saliency selection
and structure-aware grouping. To this end, we conduct dedicated ablation studies to quantify the standalone
effectiveness of the Haar transform and contrast it with global orthogonal alternatives such as Discrete Cosine
Transform (DCT).

We summarize our key observations below:

• Effectiveness of Haar Transform: While incorporating either the ℓ2-based saliency selection or the structure-
aware grouping alone yields only modest improvements to BiLLM, introducing the Haar transform leads to
consistently more substantial gains in both perplexity and QA accuracy. Notably, even under partial activation
(e.g., HBLLM-col+ℓ2), the models outperform their BiLLM counterparts.

– Both HBLLM-row+ℓ2† and HBLLM-col+ℓ2† significantly outperform BiLLM and BiLLM+ℓ†2, underscor-
ing the crucial role of Haar in preserving the frequency-domain structure of weights.

– Row-Haar+BiLLM, even without ℓ2-norm-based saliency-driven column selection or grouping, shows
consistent performance gains, confirming that Haar decomposition independently enhances quantization
representation capacity.
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• Local vs. Global Orthogonal Transforms: We further analyze the impact of replacing Haar transform with
global DCT.

– Applying the global row-wise DCT results in severe degradation across all benchmarks, with Row-
DCT+BiLLM performing significantly worse than BiLLM.

– Applying the global column-wise DCT offers moderate improvement on LLaMA2-7B; however, Col-
DCT+BiLLM still lags behind BiLLM in all OPT-1.3B tests.

– These results highlight that global transforms struggle to capture local variations in weight distributions,
which are effectively preserved by block-wise Haar decomposition.

As shown in Table B.2, global transforms such as DCT also incur substantial computational overhead compared
to local Haar transforms:

Table B.2: Time comparison between BiLLM, DCT+BiLLM, and HBLLM on LLaMA-1 with
different model sizes. The DCT implementation used in this test is from pytorch.

Method 7B 13B 30B
BiLLM 36 min 71 min 142 min
DCT+BiLLM 211 min 414 min 1012 min
HBLLM 44 min 98 min 173 min

In conclusion: Haar transform independently and robustly contributes to quantization fidelity, even in the
absence of auxiliary strategies such as ℓ2-norm-based saliency-driven column selection or grouping; local
orthogonal transforms like Haar are consistently more effective than global ones like DCT in preserving localized
frequency-domain structures—an essential property for stable and expressive 1-bit quantization.

C Analysis of the Correlation Between Data Concentration and Model
Fidelity

In this section, we explores the positive correlation between improved data concentration and enhanced model
fidelity after quantization, following the application of the Haar transform and structure-aware grouping strategy
proposed by HBLLM. This correlation provides a theoretical foundation for the effectiveness of the HBLLM
quantization method. We first observe that the concentration of coefficient distribution improves with a 65%
probability after applying the Haar row transform. Based on this observation, we mathematically model the
probability of variance improvement in data concentration. We then apply this variance improvement probability
to the HBLLM-row and HBLLM-col methods to validate the correlation between enhanced data concentration
and improved model fidelity after quantization.

C.1 Improvement of Data Concentration by Haar Transform

We discusses the improvement in data concentration resulting from the Haar transform, which is typically
described by variance—lower variance indicates higher data concentration. We examine the impact of the Haar
row transform on the distribution characteristics of the weight matrix. Specifically, we select a matrix block
from the OPT-1.3B model and compare the variance of each original weight vector with the variances of the
low-frequency and high-frequency subbands obtained after Haar decomposition. The variances of each row from
different methods are arranged in ascending order, as shown in Figure C.1. Notably, approximately 65% of the
rows exhibit a variance in at least one subband that is lower than the original value, indicating that the Haar row
transform generally enhances data concentration.

Figure C.1: Row-wise Variance Comparison Before and After Haar Transform
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Therefore, we anticipate that the application of HBLLM’s structure-aware grouping strategy may further improve
data concentration.

C.2 Mathematical Modeling of Variance Improvement Probability

To quantify the improvement in data concentration achieved by the Haar transform combined with the structure-
aware grouping strategy, we introduce a random variable p to describe the probability of improvement in data
concentration for each row after applying the strategy, as well as the expected probability of improvement E(p)
for each matrix block. Let the matrix block size be d× d, and the j-th row, after the Haar row transform, be
divided into M subgroups, each containing nj

i coefficients, with an intra-group variance of V j
i . The variance

of the entire row before transformation is denoted as Ṽ0. The sample value pj for the j-th row is calculated as
follows:

pj :=

∑M
i=1 n

j
i × sign

(
max{0, (Ṽ0 − Vj)}

)
d

, (31)

where, the sign function sign(·) takes the value of 1 only when the subgroup variance is less than the original
row variance; otherwise, it is 0. The value pj represents the proportion of coefficients in the j-th row that belong
to subgroups with improved concentration. Based on this, we define the expected value E(p) for the entire
matrix block to characterize the average level of overall data concentration improvement:

E(p) =

∑d
j=1 pj

d
. (32)

C.3 Analysis of the Relationship Between Data Concentration and Quantization Fidelity

To further investigate the impact of improved data concentration on model fidelity, we collected data on the
probability of variance improvement, the relative ℓ2 error of matrix blocks before and after quantization, and the
corresponding model fidelity, as shown in Figure C.2. The relative ℓ2 error serves as the optimization criterion
for HBLLM quantization, while model fidelity is measured by perplexity—lower perplexity indicates higher
fidelity after quantization.

We analyzed the distribution changes of relative ℓ2 errors for all matrix blocks across different models before
and after quantization, and we plotted the perplexity performance under various grouping strategies. The
experimental results demonstrate that HBLLM not only significantly enhances data concentration but also
effectively mitigates the growth of quantization error, thereby better preserving the model’s original performance.

Figure C.2a displays the proportion E(p) of Haar coefficients across all matrix blocks that meet the variance
improvement criterion after combining the row wavelet transform and grouping strategy. The points on the graph
represent E(p) for a matrix block in a quantized model, with each graph showing the values of E(p) arranged
in ascending order. As illustrated, after applying the strategy, over 65% of Haar coefficients in all matrix blocks
achieved an improvement in data concentration, with median improvements of 67% and 68%, respectively.

The results from Figure C.2 lead to the following conclusion: after applying Haar transform combined with the
structure-aware grouping strategy proposed by HBLLM, there is a positive correlation between the improvement
in data concentration and the enhancement of model fidelity after quantization.

C.4 Empirical Analysis of Saliency Ratio Distribution Across Layers and Blocks

To better understand the structure-aware quantization behavior of our method, we analyze how saliency ratio is
distributed across different types of layers and transformer blocks. A saliency ratio is defined as the proportion
of weights selected by our Hessian-based criterion during quantization.

We visualize the results using two plots: a histogram showing the saliency ratio distribution across different
layer types, and a line plot depicting the evolution of block-wise saliency ratio across the network. As shown in
Figure C.3a and Figure C.3b, query and key projections exhibit low saliency (mostly below 5%), while value,
gate, and up-projection layers tend to have significantly higher saliency. Additionally, we observe a gradual
increase in saliency ratio from shallow to mid transformer blocks, followed by stabilization.

These results confirm that saliency ratio is not uniformly distributed, but highly dependent on layer type and
block depth. This validates our strategy of adapting quantization granularity according to the structure of the
model.

D Storage Cost Analysis and Inference Execution Process

To comprehensively assess compression effectiveness, we divide the stored data into three types: weight overhead
, coefficient overhead, and flag overhead.
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(a) Variance Improvement Score E(p) per block (b) Relative ℓ2 quantization error per block

(c) Perplexity Comparison
Figure C.2: Comparative Evaluation of Grouping Strategies on Data Concentration, Quantization
Error, and Model Perplexity.

(a) Saliency Ratio Distribution Across Layers and
Blocks

(b) Saliency Statistics Across Layers and Blocks

Figure C.3: The Distribution of Saliency between Different Types of Weight Layers and across
Different Transformer Blocks.

Weight Overhead (W-bits). This refers to the number of bits used to store binarized weights. In standard 1-bit
schemes, each weight requires only 1 bit. However, in schemes that retain salient weights, these may be stored
with higher precision (e.g., 2-bit or 8-bit), increasing the overall weight overhead.

To increase fidelity, some weights would use more than 1 bit. For example, the salient part employs two 1-bit
values with residual approximation. As a result, the average weight overhead per weight (denoted as W-bits) of
Billm results would become fractional, such as 1.08 bits.

Coefficient Overhead (C-bits). This refers to the additional bit-width required to store scaling factors and
means. For example, OneBit introduces two scaling vectors per row or column, while ARB-LLMRC further
computes scaling factors for both rows and columns. Although these parameters are smaller in size than the
weight matrix, they must be tightly controlled in precision-critical applications.

Flag Overhead (F-bits). These bits are used to store indicators for salient/non-salient weights (such as the
"salient column" tag in PB-LLM or bitmap/group masks in BiLLM), or group affiliation information (e.g., group
IDs).

To objectively evaluate the compression efficiency of various methods, we use the “average bit-width per weight”
(Average-Bit) as a unified metric. This metric characterizes not only storage cost but also the bandwidth required
from memory to GPU registers. The average bit-width is computed as:

AvgBit =
Total storage bits

Total number of parameters
× Structure expansion factor. (33)

here, the total number of parameters refers to the product of the matrix dimensions. The structure expansion
factor accounts for mismatches in the number of stored units and original parameters (e.g., 1 for non-restructuring
methods, > 1 for methods like FrameQuant).
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Figure D.1: Overview of storage and inference procedure across different LLM binarization methods.

Table D.1: Storage data composition of different LLM binarization methods.

Method W-Bits F-Bits C-Bits Average-Bits

PB-LLM 1.70 1.000 0.500 3.200
BiLLM 1.09 1.008 0.875 2.973
ARB-LLM 1.09 1.008 1.25 3.348
HBLLM-row 1.08 1.088 1.25 3.418
HBLLM-col 1.00 1.008 0.875 2.883

D.1 Data Distributions of Various Binarization Methods

Taking LLaMA1-7B as an example, Figure D.1 and Table D.1 illustrate how different LLM binarization methods
distribute their storage data. PB-LLM uses a hybrid-precision quantization strategy that encodes 10% of weights
with 8-bit asymmetric linear quantization and binarizes the remaining 90%. A 1-bit flag differentiates salient
from non-salient weights. Non-salient parts are recovered using shared scaling and mean vectors, while salient
weights use separate parameters and zero-points. All coefficients are stored in FP16 and shared per output
channel, resulting in 0.5 bits of coefficient overhead per weight. PB-LLM’s AvgBit is 3.2 bits.

BiLLM extends basic binarization with residual approximation for salient weights. Columns are divided into
salient and non-salient parts. 90% of weights use standard 1-bit encoding, while the salient portion is enhanced
with residual binarization. This yields a weight overhead of 1.09 bits per weight. Additional structure information
(bitmap, grouping) accounts for 1.008 bits per weight. With FP16-stored coefficients and two sets of residual
parameters for salient parts, total coefficient overhead is 0.875 bit per weight. Hence, BiLLM’s AvgBit is 2.973
bits.

ARB-LLM introduces group modeling for salient columns based on BiLLM to better capture complex distribu-
tions. weight overhead remains 1.09 bits per weight. Structure metadata (CGB) takes 1.008 bits per weight. All
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coefficients are stored in FP16. Salient columns are grouped and assigned two sets of second-order coefficients,
bringing coefficient overhead to 1.25 bits per weight. ARB-LLM’s AvgBit reaches 3.348 bits.

HBLLM extends BiLLM by introducing structure-aware grouping strategies to improve quantization fidelity
in the Haar domain. The weight matrix is split into salient and non-salient parts. Salient columns undergo
column-wise Haar transforms, while non-salient parts are transformed along either row or column directions,
followed by grouped binarization. All weights are quantized using standard 1-bit encoding. HBLLM-col
has a weight overhead of 1.00 bit per weight; HBLLM-row employs a neighborhood averaging strategy
(FillAvg) to reconstruct missing values, increasing the weight overhead to 1.08 bits/weight.Saliency bitmaps
and frequency-aware grouping metadata add 1.008 bits per weight. All reconstruction coefficients are stored
in FP16. HBLLM-row forms four subgroups per row with independent scale and mean values, resulting in a
coefficient overhead of 1.25 bits per weight. HBLLM-col shares four subgroups across two rows, averaging two
groups per row, and applies intra-band mean sharing to reduce coefficient overhead to 0.875 bit per weight. The
final average bit-widths of HBLLM-row and HBLLM-col are 3.418 and 2.883 bits, respectively.

D.2 Details of Average Bit-Width Calculation

The average bit-width of a quantized matrix Ŵ ∈ Rn×m is defined as the total memory cost (in bits) divided by
the number of elements in the original matrix:

AvgBit = M
n×m

. (34)

For W ∈ Rn×m, block size k, the memory of Ŵ after standard row-wise binarization is

M1st =

B︷ ︸︸ ︷
n×m+

multiple blocks︷ ︸︸ ︷
⌈m/k⌉ ×

row-wise FP16 α and µ︷ ︸︸ ︷
2× n× 16 . (35)

Moreover, second-order row-wise binarization can be represented as

M2nd =

B1 and B2︷ ︸︸ ︷
2× n×m+

multiple blocks︷ ︸︸ ︷
⌈m/k⌉ ×

row-wise FP16 α1,α2, and µ︷ ︸︸ ︷
3× n× 16 , (36)

since row-wise µ1 and µ2 can be combined together as µ = µ1 + µ2. Thus, the memory required by BiLLM
can be formulated as

MBiLLM =

second-order binarization︷ ︸︸ ︷
2× n× c+ ⌈m/k⌉ × 3n× 16 (37)

+

first-order binarization︷ ︸︸ ︷
n× (m− c) + ⌈m/k⌉ × 2n× 16× 2︸ ︷︷ ︸

2 groups

+

group bitmap︷ ︸︸ ︷
n×m +

salient column bitmap︷︸︸︷
m̃ , (38)

where c is the number of salient columns for W.

Similarly, we can formulate the memory occupation of first-order row-column-wise binarization and ARB-RC as

MARB-RC =

second-order binarization︷ ︸︸ ︷
2× n× c+ (⌈m/k⌉ × 2n+ 2c)× 16︸ ︷︷ ︸

2 groups

(39)

+

first-order binarization︷ ︸︸ ︷
n× (m− c) + (⌈m/k⌉ × n+ (m− c))× 16× 2︸ ︷︷ ︸

2 groups

+

group bitmap︷ ︸︸ ︷
n×m +

salient column bitmap︷︸︸︷
m̃ . (40)

In addition, since CGB is used in the experiments, the total memory of ARC-RC + CGB is

MARB-RC+CGB =

second-order binarization︷ ︸︸ ︷
2× n× c+ (⌈m/k⌉ × 2n+ 2c)× 16× 2︸ ︷︷ ︸

2 groups

(41)

+

first-order binarization︷ ︸︸ ︷
n× (m− c) + (⌈m/k⌉ × n+ (m− c))× 16× 2︸ ︷︷ ︸

2 groups

+

group bitmap︷ ︸︸ ︷
n×m +

salient column bitmap︷︸︸︷
m̃ . (42)

22



Furthermore, we formulate the memory cost of PBLLM by considering both unsalient weights and salient
weights as

MPBLLM =

unsalient weights︷ ︸︸ ︷
rbinary × n×m+ ⌈m/k⌉ × 2n× 16 (43)

+

salient weights︷ ︸︸ ︷
(1− rbinary)× n×m× 8 + ⌈m/k⌉ × 2n× 16 +

group bitmap︷ ︸︸ ︷
n×m , (44)

where rbinary denotes the ratio of the binarized weights.

HBLLM-row adopts four subgroups per row with independent α and µ, intra-band mean sharing, and a
neighborhood-based reconstruction strategy (FillAvg), which increases the group bitmap cost.

MHBLLM-row =

unsalient weights︷ ︸︸ ︷
n×m+ ⌈m/k⌉ × 3n× 16× 2︸ ︷︷ ︸

2 groups

(45)

+

salient weights︷ ︸︸ ︷
n× c+ ⌈m/k⌉ × 2n× 16× 2︸ ︷︷ ︸

2 groups

+

group bitmap︷ ︸︸ ︷
n× (m+ c) +

salient column bitmap︷︸︸︷
m̃ . (46)

HBLLM-col shares four subgroups across two rows and applies intra-band mean sharing.

MHBLLM-col =

unsalient weights︷ ︸︸ ︷
n× (m− c) + ⌈m/k⌉ × 1.5n× 16× 2︸ ︷︷ ︸

2 groups

(47)

+

salient weights︷ ︸︸ ︷
n× c+ ⌈m/k⌉ × 2n× 16× 2︸ ︷︷ ︸

2 groups

+

group bitmap︷ ︸︸ ︷
n×m +

salient column bitmap︷︸︸︷
m̃ . (48)

Example: Average Bit-width of HBLLM-row and HBLLM-col

Assume W ∈ Rn×m , block size k = 128 and the number of salient columns is c = 0.08m. The total memory
cost for HBLLM-row can be expressed as:

MHBLLM-row = nm +
⌈m
k

⌉
· 3n · 16 · 2 + nc +

⌈m
k

⌉
· 2n · 16 · 2 + n(m+ c) + m̃ (49)

= 2nm+ 2nc+ 160n
⌈m
k

⌉
+ m̃. (50)

Thus, the average bit-width is:

AvgBit = MHBLLM-row

nm
= 2.16 +

160n
⌈
m
k

⌉
nm

+
m̃

nm
≈ 3.418 bits. (51)

Similarly, for HBLLM-col:

MHBLLM-col = n(m− c) +
⌈m
k

⌉
· 1.5n · 16 · 2 + nc+

⌈m
k

⌉
· 2n · 16 · 2 + nm+ m̃ (52)

= 2nm+ 112n
⌈m
k

⌉
+ m̃. (53)

Then, the average bit-width becomes:

AvgBit = MHBLLM-col

nm
= 2 +

112n
⌈
m
k

⌉
nm

+
m̃

nm
≈ 2.883 bits. (54)

E HBLLM Implementation

The implementation details of the HBLLM quantization pipeline are provided in Algorithm E.1.
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Algorithm E.1 HBLLM: Detailed functions process

func SALIENT(W ,Hc)

1: S ←W 2/[Hc
b:b+β,b:b+β ]

2 // salient matrix
2: rows{·} ← topk(∥S∥2, dim = 0)

3: e←∞ // searching error
4: K ← 0 // optimal number of salient columns
5: for i = 1, 2, . . . , len(rows) do
6: B1 ← BINARY(W:,j∈rows[:i])

7: B2 ← BINARY(W:,j /∈rows[:i])

8: if ∥W − (B1 ∪B2)∥2 < e then
9: e← ∥W − (B1 ∪B2)∥2

10: K ← i

11: end if
12: end for
13: return rows[: K]

func HAARQUANT(W , mode ∈ {COL, ROW})
1: Wlow ← Hlow(W )

2: p∗1 ← SEG_ROW_SEARCH(Wlow)

3: Blow ← BINARY(W
(b)
|wi,j |≤p∗

1 ,low) +

BINARY(W
(b)
|wi,j |>p∗

1 ,low)

4: Wdiff ←W −H−1(Blow,0)

5: Whigh ← Hhigh(Wdiff)

6: p∗2 ← SEG_ROW_SEARCH(Whigh)

7: Bhigh ← BINARY(W
(b)
|wi,j |≤p∗

1 ,high) +

BINARY(W
(b)
|wi,j |>p∗

1 ,high)

8: B ← Blow +Bhigh

9: return B

func BINARY(W )

1: µ← 1
m

∑m
j=1 W.j // row-wise mean

2: W̃ ←W − µ // centered matrix

3: α =

√
∥W̃ ∥2

2

m // row-wise scale

4: B ← α · sign(W̃ ) + µ

5: return B

func SEG_ROW_SEARCH(W )

1: n← number of rows in W

2: e← +∞× 1n×1 // row-wise error
3: p∗ ← 0n×1

// optimal break-point of each row
4: for τ = 0.1, 0.2, . . . , 0.9 do
5: p← τ ×max(abs(W ).(dim = 1))

6: B1 ← BINARY(W|wi∈[n],:| ≤ p)

7: B2 ← BINARY(W|wi∈[n],:| > p)

8: if ∥W − (B1 +B2)∥2 < e then
9: e← ∥W − (B1 +B2)∥2

10: p∗ ← p

11: end if
12: end for
13: return p∗

Table F.1: Perplexity and zero-shot accuracy results of DeepSeek-R1-Distill-Llama-8B.

Model Method Wbits Perplexity↓ AvgQA↑
C4 Wiki2 PTB

DeepSeek-R1-Distill-Llama-8B

FullPrecision 16.00 18.40 13.14 20.57 63.80

FrameQuant 2.20 59.60 46.71 70.79 43.95
PB-LLM 1.70 316.3 224.6 344.3 34.52
BiLLM 1.06 234.4 219.5 442.9 35.91

ARB-LLMX 1.06 74.31 54.73 69.35 42.92
ARB-LLMRC 1.06 67.77 54.27 92.37 43.00
HBLLM-row 1.05 40.88 29.26 45.00 47.06
HBLLM-col 1.00 55.82 35.80 62.80 45.71

F Additional Experimental Results

F.1 Experimental Results for DeepSeek-R1-Distill-Llama-8B

Table F.1 provides further experimental results on DeepSeek-R1-Distill-Llama-8B model. In line with the
trends observed in Table 1, HBLLM consistently outperforms existing 1-2 bit quantization techniques across
all these evaluation metrics. Remarkably, even when applied to the more complex and modern DeepSeek-R1-
Distill-Llama-8B architecture, HBLLM preserves the same performance advantages previously demonstrated on
LLaMA3-8B. This assessment highlights the effectiveness of HBLLM for LLMs.

24



Table F.2: Accuracy of 9 QA datasets on LLaMA1 family models. We compare the results among
FrameQuant, PB-LLM, BiLLM, ARB-LLM and HBLLM to validate the quantization effect.

LLaMA1 Zero-shot Accuracy↑ AvgQA↑
Size Method Wbits PIQA BoolQ OBQA WinoG ARC-e ARC-c HSwag COPA LAMBD

7B

FullPrecision 16.00 78.67 75.02 34.20 70.01 75.34 41.89 56.94 85.00 73.51 65.62

FrameQuant 2.20 71.16 69.69 23.60 66.54 61.57 29.78 43.67 81.00 58.70 56.19
PB-LLM 1.70 54.62 58.04 13.20 49.17 29.38 21.25 27.61 61.00 7.10 35.71
BiLLM 1.09 59.63 54.62 15.00 53.20 35.27 19.80 30.38 71.00 21.15 40.01

ARB-LLMX 1.09 63.55 64.10 16.80 56.75 42.21 21.93 34.21 73.00 38.27 45.65
ARB-LLMRC 1.09 69.15 64.10 22.40 61.25 52.90 25.26 39.26 78.00 57.71 52.23
HBLLM-row 1.08 73.67 71.07 24.60 62.75 64.81 30.80 47.60 79.00 63.03 57.48
HBLLM-col 1.00 71.93 62.60 22.00 62.27 61.15 28.58 44.68 78.00 55.09 54.03

13B

FullPrecision 16.00 79.16 77.92 33.20 72.61 77.36 46.42 59.93 90.00 76.19 68.09

FrameQuant 2.20 75.14 73.64 26.20 68.67 66.71 34.64 48.58 83.00 69.59 60.69
PB-LLM 1.70 58.00 62.02 14.60 52.96 33.25 18.26 29.99 69.00 25.44 40.39
BiLLM 1.10 67.19 67.09 19.00 60.69 53.66 25.34 39.90 74.00 51.12 50.89

ARB-LLMX 1.10 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.10 72.03 72.51 24.40 68.11 64.73 31.14 45.54 88.00 69.80 59.58
HBLLM-row 1.09 76.28 68.93 28.60 68.90 70.37 38.31 52.54 86.00 73.22 62.57
HBLLM-col 1.00 75.03 70.46 24.80 69.69 69.02 34.39 51.01 87.00 69.82 61.25

30B

FullPrecision 16.00 80.96 82.69 36.00 75.93 80.35 52.73 63.35 90.00 77.55 71.06

FrameQuant 2.20 76.39 73.58 31.20 72.85 72.18 38.14 53.97 92.00 75.84 65.13
PB-LLM 1.70 63.60 64.34 16.00 60.30 44.78 20.90 34.80 74.00 46.30 47.22
BiLLM 1.11 71.49 68.87 24.40 67.96 63.59 29.69 44.51 84.00 68.10 58.07

ARB-LLMX 1.11 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.11 74.86 76.64 29.60 73.64 70.62 37.46 50.29 91.00 76.31 64.49
HBLLM-row 1.10 77.09 79.72 32.20 71.67 74.24 43.34 55.79 91.00 75.80 66.76
HBLLM-col 1.00 76.66 72.23 29.80 71.35 73.91 39.68 53.81 90.00 76.29 64.86

65B

FullPrecision 16.00 81.34 84.86 38.00 77.43 81.31 52.82 64.56 91.00 79.12 72.27

FrameQuant 2.20 79.00 83.27 32.00 74.66 77.23 45.56 56.58 90.00 78.92 68.58
PB-LLM 1.70 71.98 79.45 28.20 74.98 67.34 34.47 46.57 89.00 70.37 62.48
BiLLM 1.10 74.05 80.40 26.20 70.40 69.32 36.60 48.15 85.00 68.35 62.05

ARB-LLMX 1.10 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.10 77.97 83.94 32.60 75.93 76.64 44.28 55.58 90.00 79.84 68.53
HBLLM-row 1.09 78.89 81.96 33.80 75.77 76.94 45.65 59.03 91.00 79.58 69.18
HBLLM-col 1.00 79.00 81.47 31.40 74.51 75.17 42.66 57.98 91.00 77.28 67.83

F.2 Comparison on 9 zero-shot QA datasets

In the main paper, we report the average accuracy (AvgQA) across 9 zero-shot QA datasets to provide a high-level
comparison of different quantization methods. In this appendix, we present the detailed accuracy on each
individual dataset. As shown in Tables F.2–F.5 our method consistently delivers strong performance across all
datasets, further validating its effectiveness and robustness in diverse zero-shot question answering tasks.

F.3 Comparison of Avg. Relative Perplexity and Avg. Relative QA Accuracy across Models

To provide a unified view of model performance across both language modeling and common sense reasoning
tasks, we compute two metrics: Avg. Relative Perplexity and Avg. Relative QA. Avg. Relative Perplexity
is calculated as the average over three language modeling datasets: C4, Wiki2 and PTB. Avg. Relative QA is
computed as the average across 9 zero-shot QA datasets.

Relative Perplexity is defined as:

RS Perplexity :=
SPerplexity

SFP
Perplexity

, (55)

where SPerplexity and SFP
Perplexity are the perplexities of the models after and before quantization, respectively.

Relative QA is defined as:

RSQA :=
SQA

SFP
QA

. (56)

where SQA and SFP
QA are the QA scores of the models after and before quantization, respectively.

Figure F.1 presents the comparison of these two metrics across the LLaMA-1, LLaMA-2, LLaMA-3, and OPT
family models. HBLLM consistently shows lower relative perplexity and higher relative QA accuracy compared
to prior 1–2 bit quantization methods (PB-LLM, BiLLM, and ARB-LLMRC), demonstrating both effectiveness
and scalability across diverse LLMs.
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Table F.3: Accuracy of 9 QA datasets on LLaMA2 family models. We compare the results among
FrameQuant, PB-LLM, BiLLM, ARB-LLM and HBLLM to validate the quantization effect.

LLaMA2 Zero-shot Accuracy↑ AvgQA↑
Size Method Wbits PIQA BoolQ OBQA WinoG ARC-e ARC-c HSwag COPA LAMBD

7B

FullPrecision 16.00 76.44 79.72 33.40 66.46 73.91 44.20 57.80 87.00 70.95 65.54

FrameQuant 2.20 68.55 67.13 19.00 61.80 56.61 27.56 42.20 78.00 53.89 52.75
PB-LLM 1.70 54.84 61.90 11.80 48.07 27.90 19.45 27.78 60.00 17.14 36.54
BiLLM 1.08 59.85 63.82 12.80 54.14 40.15 21.67 31.66 64.00 30.93 42.11

ARB-LLMX 1.08 61.97 66.42 16.20 57.70 43.27 22.78 33.81 68.00 38.54 45.41
ARB-LLMRC 1.08 61.15 59.51 18.00 59.27 41.75 23.46 39.62 67.00 50.61 46.71
HBLLM-row 1.07 72.96 73.58 25.60 60.93 61.87 32.17 47.50 84.00 61.03 57.74
HBLLM-col 1.00 71.11 69.66 21.40 61.33 59.22 29.35 45.33 74.00 55.44 54.09

13B

FullPrecision 16.00 79.05 80.55 35.20 72.14 79.42 48.46 60.05 91.00 76.73 69.18

FrameQuant 2.20 73.83 76.30 25.60 69.61 69.02 33.79 47.15 85.00 71.84 61.35
PB-LLM 1.70 54.30 41.25 12.60 50.12 27.27 20.14 27.00 59.00 4.52 32.91
BiLLM 1.08 61.81 66.51 18.00 56.35 43.64 21.84 33.33 75.00 44.34 46.76

ARB-LLMX 1.08 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.08 69.64 72.42 25.40 64.17 62.12 30.03 40.99 85.00 66.35 57.35
HBLLM-row 1.07 75.63 77.74 29.80 68.27 71.21 37.12 52.54 88.00 72.19 63.61
HBLLM-col 1.00 74.86 77.61 26.80 69.14 70.66 35.75 50.46 84.00 69.12 62.04

70B

FullPrecision 16.00 82.26 83.76 37.20 77.98 82.74 54.35 64.77 94.00 79.60 72.96

FrameQuant 2.20 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
PB-LLM 1.70 64.04 74.77 21.20 64.72 55.64 27.22 38.77 80.00 61.94 54.26
BiLLM 1.09 68.39 70.64 24.40 65.98 64.23 32.34 41.85 82.00 52.47 55.81

ARB-LLMX 1.09 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.09 77.53 80.21 34.40 75.85 77.31 44.80 55.84 92.00 80.98 68.77
HBLLM-row 1.08 79.65 81.56 33.40 75.06 79.29 50.51 59.02 91.00 80.56 70.01
HBLLM-col 1.00 78.84 78.99 30.80 76.24 77.99 45.39 58.61 92.00 78.59 68.61

Table F.4: Accuracy of 9 QA datasets on LLaMA3 family models. We compare the results among
FrameQuant, PB-LLM, BiLLM, ARB-LLM and HBLLM to validate the quantization effect.

LLaMA3 Zero-shot Accuracy↑ AvgQA↑
Size Method Wbits PIQA BoolQ OBQA WinoG ARC-e ARC-c HSwag COPA LAMBD

8B

FullPrecision 16.00 78.35 83.18 34.20 71.67 81.61 52.90 57.66 89.00 71.88 68.94

FrameQuant 2.20 65.40 71.87 19.20 59.04 60.19 29.69 47.06 78.00 46.94 52.27
PB-LLM 1.70 57.18 62.26 11.60 50.36 31.31 18.00 28.59 55.00 17.16 36.83
BiLLM 1.06 59.14 64.46 15.20 53.75 37.54 19.45 32.01 65.00 30.04 41.84

ARB-LLMX 1.06 61.15 63.91 15.00 56.43 45.37 20.14 31.84 66.00 36.07 43.40
ARB-LLMRC 1.06 62.73 69.72 18.80 56.91 50.34 25.94 35.18 74.00 49.08 49.08
HBLLM-row 1.05 67.68 72.94 23.80 63.54 56.52 28.07 43.55 81.00 56.14 54.80
HBLLM-col 1.00 67.03 69.94 21.20 60.93 49.79 25.85 42.79 81.00 44.30 51.43

70B

FullPrecision 16.00 82.15 85.38 37.80 80.51 86.87 60.07 66.34 93.00 79.45 74.62

FrameQuant 2.20 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
PB-LLM 1.70 57.89 68.07 17.60 58.96 37.37 19.62 38.86 80.00 48.67 47.45
BiLLM 1.09 52.39 42.26 12.60 51.78 25.34 20.73 28.11 65.00 9.41 34.18

ARB-LLMX 1.09 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.09 74.86 80.89 25.80 72.69 72.69 40.44 51.99 85.00 70.76 63.90
HBLLM-row 1.08 52.88 83.18 28.80 78.06 27.19 20.48 53.83 89.00 74.64 56.45
HBLLM-col 1.00 56.04 77.83 29.00 73.40 33.63 18.34 53.19 91.00 70.56 55.89

Table F.5: Accuracy of 9 QA datasets on DeepSeek-R1-Distill-Llama-8B. We compare the results
among FrameQuant, PB-LLM, BiLLM, ARB-LLM and HBLLM to validate the quantization effect.

DeepSeek-R1-Distill-Llama Zero-shot Accuracy↑ AvgQA↑
Size Method Wbits PIQA BoolQ OBQA WinoG ARC-e ARC-c HSwag COPA LAMBD

8B

FullPrecision 16.00 76.33 82.94 31.40 67.48 70.54 40.27 55.54 89.00 60.72 63.80

FrameQuant 2.20 61.48 65.50 17.00 55.17 42.05 22.10 35.42 67.00 29.81 43.95
PB-LLM 1.70 55.01 59.54 12.60 48.07 29.08 16.98 27.56 52.00 9.82 34.52
BiLLM 1.06 55.01 60.37 12.80 49.41 26.89 19.62 29.20 57.00 12.87 35.91

ARB-LLMX 1.06 60.34 67.55 15.60 55.64 39.90 22.35 32.97 68.00 23.97 42.92
ARB-LLMRC 1.06 60.50 63.15 15.40 53.51 40.24 21.76 34.55 64.00 33.90 43.00
HBLLM-row 1.05 63.71 72.26 18.00 56.20 41.75 23.38 39.74 74.00 34.47 47.06
HBLLM-col 1.00 64.53 68.53 18.40 56.35 42.42 22.44 39.75 70.00 28.99 45.71
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Table F.6: Accuracy of 9 QA datasets on OPT family models. We compare the results among
FrameQuant, PB-LLM, BiLLM, ARB-LLM and HBLLM to validate the quantization effect.

OPT Zero-shot Accuracy↑ AvgQA↑
Size Method Wbits PIQA BoolQ OBQA WinoG ARC-e ARC-c HSwag COPA LAMBD

1.3B

FullPrecision 16.00 71.65 57.77 23.40 59.27 57.03 23.38 41.53 81.00 57.85 52.54

FrameQuant 2.20 64.91 57.00 16.40 55.17 46.51 20.73 34.01 71.00 34.58 44.48
PB-LLM 1.70 53.81 48.38 12.60 50.67 28.49 19.97 26.20 59.00 1.88 33.44
BiLLM 1.09 59.41 61.07 13.80 52.49 35.65 17.06 29.53 62.00 14.54 38.39

ARB-LLMX 1.09 60.39 60.61 14.60 52.72 39.98 18.09 30.65 64.00 31.73 41.42
ARB-LLMRC 1.09 65.13 56.88 17.60 53.75 47.22 20.05 33.58 71.00 42.27 45.28
HBLLM-row 1.07 66.49 62.14 17.80 56.20 47.94 21.42 35.70 69.00 40.42 46.35
HBLLM-col 1.00 65.61 50.18 18.20 56.43 45.75 20.90 35.25 72.00 38.02 44.70

2.7B

FullPrecision 16.00 73.83 60.34 25.00 61.33 60.73 26.79 45.88 77.00 63.63 54.95

FrameQuant 2.20 67.36 61.93 18.20 57.22 52.23 22.70 36.88 75.00 54.71 49.58
PB-LLM 1.70 54.79 62.11 13.00 50.67 30.13 19.20 27.35 69.00 12.30 37.62
BiLLM 1.10 60.45 62.08 13.20 53.59 35.90 20.56 30.54 63.00 20.88 40.02

ARB-LLMX 1.10 63.00 62.35 15.40 54.78 42.85 19.45 32.20 69.00 42.38 44.60
ARB-LLMRC 1.10 67.74 57.03 18.20 58.17 51.05 22.61 37.33 74.00 59.62 49.53
HBLLM-row 1.09 68.66 58.35 20.20 56.91 52.86 22.87 39.49 72.00 47.86 48.80
HBLLM-col 1.00 67.79 62.51 19.40 56.27 51.05 22.18 37.24 76.00 44.61 48.56

13B

FullPrecision 16.00 75.84 65.75 27.00 65.19 67.09 32.94 52.45 81.00 68.66 58.41

FrameQuant 2.20 72.85 66.15 22.60 63.69 62.54 28.07 45.49 82.00 68.25 55.42
PB-LLM 1.70 54.90 62.17 12.80 52.01 29.46 20.99 26.68 57.00 9.96 39.50
BiLLM 1.13 67.25 63.91 18.20 58.64 51.73 24.66 38.18 76.00 54.03 49.82

ARB-LLMX 1.13 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.13 73.34 67.92 23.40 64.25 60.14 27.30 44.41 82.00 67.44 55.35
HBLLM-row 1.12 73.94 67.98 22.60 61.64 62.50 29.10 46.55 83.00 66.64 55.91
HBLLM-col 1.00 73.56 66.51 22.00 64.56 62.04 28.92 45.65 82.00 68.06 55.66

30B

FullPrecision 16.00 77.58 70.40 30.20 68.35 70.03 34.47 54.28 82.00 71.47 62.09

FrameQuant 2.20 75.08 70.49 26.60 64.48 66.79 30.72 48.37 82.00 72.04 59.62
PB-LLM 1.70 64.47 62.94 16.40 53.67 44.65 21.84 35.95 70.00 45.37 46.14
BiLLM 1.13 71.33 63.91 21.80 61.80 57.87 25.09 41.94 80.00 64.23 54.22

ARB-LLMX 1.13 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ARB-LLMRC 1.13 74.27 67.37 27.40 64.33 63.76 30.03 48.03 78.00 74.15 58.59
HBLLM-row 1.12 75.46 70.80 26.80 66.22 66.12 30.97 49.76 82.00 72.23 60.04
HBLLM-col 1.00 74.70 68.90 25.00 64.96 66.16 30.03 48.90 81.00 70.52 58.91

Figure F.1: Average relative perplexity and average relative QA accuracy (normalized to FP16) for
LLaMA-1/2/3 family models, comparing LLM binarization methods and our HBLLM.
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(a) Study of salient column selection criterion (b) Study of grouping granularity

(c) Effectiveness of shared mean (d) Study of partitioning candidates number
Figure F.2: Ablation study on OPT-1.3B and LLaMA2-7B. Results are measured by ℓ2 Relative
Quantization Error.

F.4 Ablation Study from the Perspective of ℓ2 Relative Error

To complement the ablation studies presented in the main paper, we provide an additional analysis from the
perspective of relative quantization error in terms of the Frobenius norm. Specifically, we compute the relative
ℓ2 error for each quantized weight block, defined as the Frobenius norm of the quantization residual normalized
by the original weight norm. We then examine the distribution of these errors across different layers and
quantization methods to assess fidelity at the matrix level.

The relative error of a quantized weight matrix is defined as:

REweight =
∥WFP −WB∥2F

∥WFP∥2F
. (57)

where WFP and WB denote the full-precision and quantized weight matrices, respectively.

Figure F.2 visualizes the sorted relative quantization errors under different ablation settings, including (a) salient
column selection criterion, (b) grouping granularity, (c) shared mean strategy, and (d) number of partitioning
candidates. Across all cases, our proposed HBLLM consistently achieves lower median relative error compared
to prior approaches, further confirming the effectiveness of each component.

In Figure F.2a, we observe that using the ℓ2 norm as the column selection criterion leads to significantly lower
quantization errors than ℓ1, validating its stronger ability to capture the energy distribution of weights. In Figure
F.2b, row-wise grouping substantially outperforms global grouping, indicating the importance of fine-grained
adaptivity. In Figure F.2c, the shared mean strategy slightly reduces quantization error while offering better
compression efficiency. Finally, in Figure F.2d, increasing the number of partition candidates reduces error up to
a point, with 40 candidates offering the best trade-off.

These observations align well with perplexity-based trends, and jointly confirm the robustness and precision of
HBLLM under various quantization design choices.

G Inference Latency Estimation and Efficiency Analysis

To evaluate the computational efficiency of HBLLM in practical inference scenarios, we design an estimation-
based experiment to analyze its inference latency. This is necessary because no current inference framework fully
supports the dequantization algorithm used in HBLLM, and constructing such a backend involves significant
engineering effort beyond the current scope.

Our findings suggest that the inference latency of HBLLM is approximately 31.8% of the FP16 baseline,
indicating strong computational benefits despite the algorithm’s structural complexity.

Latency Estimation Methodology. We define the relative inference time of HBLLM compared to FP16
as:

R(p, l) :=
THBLLM

TFP16
= (1− p) +

p

l
, (58)
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where p is the portion of time spent on matrix-vector multiplication (GEMV) during inference, and l is the
acceleration factor of GEMV after quantization. Following prior works such as GPTQ [? ], we use p = 0.78.

To compute l, we measure:

l :=
Ttorch

Thqmv
, (59)

where Ttorch denotes the runtime of FP16 GEMV using PyTorch, and Thqmv refers to our quantized matrix-vector
multiplication kernel (HQMV).

Since the current hqmv implementation does not support Intra-Frequency Grouping (IFG), we use the runtime of
HBLLM-col without IFG (denoted HBLLM-col w/o IFG) as a proxy to estimate the runtime of HBLLM-col
with full IFG. Notably, applying IFG doubles the number of groups, potentially leading to: roughly 2× more
CUDA warp divergence, a 90% increase in average data loading (Avgbit increases to 2.88 bit).

However, since data loading and computation can overlap on GPU, we conservatively estimate that the runtime
with IFG should not exceed twice the runtime without IFG.

Table G.1: GEMV Runtime and Inference Latency Estimation for HBLLM (OPT-175B Linear Layer,
P100 GPU).

Method Ttorch (s) Thqmv (s) R(p, l)

FP16 Baseline 1.35× 10−3 — 1.00
HBLLM-col (w/o IFG) — 8.54× 10−5 —
HBLLM-col (with IFG) — 1.70× 10−4 0.318

• Setup: We benchmark a single linear layer of OPT-175B under the same GEMV input/output shape used in
GPTQ [12]. All timing experiments are conducted on an NVIDIA P100 GPU.

– Measured: Ttorch = 1.35× 10−3s
– Measured: Thqmv for HBLLM-col w/o IFG = 8.54× 10−5s
– Estimated: Thqmv for full HBLLM-col (with IFG) ≈ 1.70× 10−4s

This yields:

l =
1.35× 10−3

1.70× 10−4
= 7.94, R = (1− 0.78) +

0.78

7.94
≈ 0.318 (60)

• Discussion: This result indicates that HBLLM inference, despite involving additional processing (e.g.,
dequantization and grouping), maintains high efficiency due to:

– Lightweight binary matrix operations;
– Reduced memory bandwidth consumption;
– Effective overlap of memory access and computation in GPU execution.

Overall, HBLLM achieves strong acceleration over FP16 without relying on highly specialized hardware or
handcrafted fusion kernels, making it a viable candidate for practical deployment in low-bit LLM inference
systems.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our main contributions, which are
supported by the theoretical and empirical results presented in the Section 3 and Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Please refer to Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please refer to Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be made publicly available upon acceptance of this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Quantization for models <30B was run on 4×RTX 3090 (24GB), and for
models ≥30B on A800-80GB. See Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We carefully read and follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper is purely fundamental research and does not involve social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: This paper does not release new models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: : The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not involved as core components in the development of the method
or results in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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