
Under review as submission to TMLR

Deconfounding Imitation Learning
with Variational Inference

Anonymous authors
Paper under double-blind review

Abstract

Standard imitation learning can fail when the expert demonstrators have different sensory
inputs than the imitating agent. This is because partial observability gives rise to hidden
confounders in the causal graph. Previously, to work around the confounding problem,
policies have been trained by accessing the expert’s policy or using inverse reinforcement
learning (IRL). However, both approaches have drawbacks as the expert’s policy may not be
available and IRL can be unstable in practice. Instead, we propose to train a variational in-
ference model to infer the expert’s latent information and use it to train a latent-conditional
policy. We prove that using this method, under strong assumptions, the identification of the
correct imitation learning policy is theoretically possible from expert demonstrations alone.
In practice, we focus on a setting with less strong assumptions where we use exploration
data for learning the inference model. We show in theory and practice that this algorithm
converges to the correct interventional policy, solves the confounding issue, and can under
certain assumptions achieve an asymptotically optimal imitation performance.

1 Introduction

(a) Expert (b) Ignorant policy

Figure 1: Bayes nets for (a) an expert trajectory and
(b) an imitator trajectory. The expert action depends
on the latent variable θ (red arrows) whereas the imi-
tator action does not.

Successful training of policies via behavioral cloning
(BC) requires a high quality expert dataset. The
conditions under which the dataset is collected have
to exactly match those encountered by the imitator.
Sometimes such data collection may not be feasible.
For example, imagine collecting data from human
drivers for training a driving policy for a self-driving
car. The drivers are aware of the weather forecast
and lower their speed in icy conditions, even when
the ice is not visible on the road. However, if the
driving policy in the self-driving car does not have
access to the same forecast, it is unaware of the ice
on the road and may thus be unable to adapt to the
conditions. In this paper, we focus on such imitation
learning in settings where the expert knows more
about the world than the imitator.

The information the expert observes about the world but the imitator does not can be modeled as a latent
variable that affects the dynamics of the environment. Imitating an expert who observes the latent variable,
with a policy that does not, results in the learned policy marginalizing its uncertainty about the latent
variable. This can result in poor performance, as the agent always acts randomly in states where the expert
acts on its knowledge about the latent. To fix this, we assume that the imitator policy is dependent on the
entire history of interaction with the environment instead of just the current observation. This enables the
agent to make an inference about the value of the latent variable based on everything it has observed so far,
which eventually allows it to break ties over the actions in states where the latent variable matters. However,

1

Under review as submission to TMLR

this introduces another problem where the latent variable of the environment acts as a causal confounder in
the graph modeling the interaction of the agent with its environment as illustrated in Figure 1.

In such a situation, an imitating agent may take their own past actions as evidence for the values of the
confounder. The self-driving car, for instance, could conclude that as it is driving fast there can be no ice
on the road. This issue of causal delusion was first pointed out in Ortega & Braun (2010a;b) and studied
in more depth by Ortega et al. (2021). This problem can be a source of “delusions” in generative models
including large language models. Ortega et al. (2021). Instead of general generative modeling, we focus on
a control setting where we have access to the true environment where the agent is going to be deployed.

Ortega et al. (2021) show that using the classic dataset aggregation (DAgger) algorithm (Ross et al., 2011)
solves this problem by querying the expert policy in the new situations the agent encounters to provide new
supervision for learning the correct behavior. However, this kind of query access to the expert may not
be available in practice. As another solution to the confounded imitation learning problem, Swamy et al.
(2022b) propose to use inverse reinforcement learning (IRL) (Russell, 1998; Ng et al., 2000). However, IRL
typically requires adversarial methods (Ho & Ermon, 2016; Fu et al., 2017), which are not as well behaved
and scalable as supervised learning.

To get around the confounding problem without query access to the expert or IRL, we propose a practical
algorithm based on variational inference. In our approach, an inference model for the latent variable is
learned from exploration data collected using the imitator’s policy. This inference model is used for inferring
the latent variable on the expert trajectories for training the imitator and for inferring the latent variable
online when the imitator is deployed in the environment. We show that, in theory, this algorithm converges
to the expert’s policy. In other words, we show that the expert’s policy can be identified. Furthermore we
show that under strong assumptions this identification can be carried out purely from offline data. Finally, we
validate its performance empirically in a set of confounded imitation learning problems with high-dimensional
observation and action spaces. These contributions can be summarized as follows:

• We propose a practical method based on variational inference to address confounded IL without
expert queries. We verify its performance empirically in various confounded control problems, out-
performing naive BC and IRL.

• We propose a theoretical method for confounded IL, purely from offline data, without expert queries
nor exploration.

• We provide theoretical insight into the proposed methods by proving under strong assumptions that
the expert’s policy can be identified.

2 Related work

Imitation learning Learning from demonstration has a long history with applications in autonomous
driving (Pomerleau, 1988; Lu et al., 2022) and robotics (Schaal, 1999; Padalkar et al., 2023). Standard
algorithms include BC, IRL (Russell, 1998; Ng et al., 2000; Ziebart et al., 2008), and adversarial methods (Ho
& Ermon, 2016; Fu et al., 2017).

Imitation learning can suffer from a mismatch between the distributions faced by the expert and imitator due
to the accumulation of errors when rolling out the imitator policy. This is commonly addressed by querying
experts during the training (Ross et al., 2011) or by noise insertion in the expert actions Laskey et al. (2017).
Note that this issue is qualitatively different from the one we discuss in the paper: it is a consequence of the
limited support of the expert actions and occurs even in the absence of the latent confounders.

Kumar et al. (2021) and Peng et al. (2020) consider a similar setting to ours where the environment has a
latent variable, which explains the dynamics. They use privileged information to learn the dynamics encoder
via supervised learning. In contrast, only the expert has access to privileged information in our setting.

Causality-aware imitation learning Ortega & Braun (2010a;b) and Ortega et al. (2021) pointed out
the issue of latent confounding and causal delusions that we discuss in this paper. In particular, Ortega et al.

2

Under review as submission to TMLR

(2021) propose a training algorithm that learns the correct interventional policy. Unlike our algorithm, their
approach requires querying experts during the training. However, as we discuss in section 4, their solution
has weaker assumptions and also applies to non-Markovian dynamics.

Most similar to our work is Swamy et al. (2022b), which finds theoretical bounds on the gap between expert
behavior and an imitator in the confounded setting, when imitating via BC, DAgger (Ross et al., 2011),
which requires expert queries, or inverse RL. Inverse RL suffers from two key challenges: (1) it requires
reinforcement learning in an inner loop with a non-stationary reward, and (2) the reward is typically learned
via potentially unstable adversarial methods (Ho & Ermon, 2016; Fu et al., 2017). In contrast, our method
trains the behavior policy using a well-behaved BC objective, which often enjoys better robustness and
scalability compared to inverse RL.

There are various other works on the intersection of causality and IL which differ in setup. De Haan et al.
(2019) consider the confusion of an imitator when the expert’s decisions can be explained from causal and
non-causal features of the state. It differs from our work as they assume the state to be fully observed,
meaning it does not apply to our situation in which there is a latent confounder which needs to be inferred.
This problem has been also discussed in Codevilla et al. (2019); Wen et al. (2020; 2022) and Spencer et al.
(2021) under various names. Rezende et al. (2020) point out that the same problem appears in partial
models that only use a subset of the state and find a minimal set of variables that avoid confounding.
Swamy et al. (2022a) consider imitation learning with latent variables that affect the expert policy, but
not the state dynamics, which is different from our case, in which the latent affects both the state and the
expert’s actions. Kumor et al. (2021) study the case in which a graphical model of the partially observed
state is known and find which variables can be adjusted for so that conditional BC is optimal. An extension,
Ruan et al. (2022), also handles sub-optimal experts.

Meta-learning behaviors Our problem is related to meta-IL (Duan et al., 2017; Beck et al., 2023)
where the aim is to train an imitation learning agent that can adapt to new demonstration data efficiently.
Differently from our problem, the tasks in meta-IL can vary in the reward function. For imitation learning
to work with the new reward functions, demonstrations of policies maximizing the new rewards are required.
While meta-IL also considers a distribution of MDPs, the motivations and methods are different from
ours. Our work does not consider adapting to new demonstrations, whereas meta-IL does not consider
the confounding problem in the demonstrations.

Furthermore, our problem is related to meta-reinforcement learning (RL) (Duan et al., 2016; Wang et al.,
2016; Beck et al., 2023), where an adaptive agent is trained to learn new tasks quickly via RL. Rakelly
et al. (2019) and Zintgraf et al. (2020) propose meta-RL algorithms that consist of a task encoder and
a task-conditional policy, similar to our inference model and latent-conditional policy. Zhou et al. (2019)
propose agents that learn to probe the environment to determine the latent variables explaining the dynamics.
Differently from our problem, the true reward function of the task is known.

3 Background

We begin by introducing confounded imitation learning. Following Ortega et al. (2021), we discuss how BC
fails in the presence of latent confounders. We then define the interventional policy, the ideal (but a priori
intractable) solution to the confounding problem.

3.1 Imitation learning

Imitation learning learns a policy from a dataset of expert demonstrations via supervised learning. The
expert is a policy that acts in a (reward-free) Markov decision process (MDP) defined by a tuple M =
(S,A, P (s′ | s, a), P (s0)), where S is the set of states, A is the set of actions, P (s′ | s, a) is the transition
probability, and P (s0) is a distribution over initial states. The expert’s interaction with the environment
produces a trajectory τ = (s0, a0, . . . , aT−1, sT). The expert may maximize the expectation over some reward
function, but this is not necessary (and some tasks cannot be expressed through Markov rewards (Abel et al.,
2021)). In the simplest form of imitation learning, a BC policy πη(a | s) parametrized by η is learned by

3

Under review as submission to TMLR

maximizing the likelihood of the expert data, i.e., minimizing the loss −
∑
s,a∈D log πη(a | s), where D is the

dataset of state-action pairs collected by the expert’s policy.

3.2 Confounded imitation learning

We now extend the imitation learning setup to allow for some latent variables θ ∈ Θ that are observed by
the expert, but not the imitator. We define a family of Markov decision processes as a latent space Θ, a
distribution P (θ), and for each θ ∈ Θ, a reward-free MDP Mθ = (S,A, P (s′ | s, a, θ), P (s0 | θ)). Here,
we make the crucial assumption that the latent variable is constant in each trajectory. We assume there
exists an expert policy πexp(a | s, θ) for each MDP. When it interacts with the environment, it generates the
following distribution over trajectories τ :

Pexp(τ |θ) = P (s0 |θ)
T∏
t=0

P (st+1 |st, at; θ)πexp(at |st; θ).

In this setting, the trajectories from the expert distributions are called confounded, because the states and
actions have an common ancestor, the latent variable θ. The imitator does not observe this latent variable.
It may thus need to implicitly infer it from the past transitions, so we take it to be a non-Markovian policy
πη(at | s1, a1, . . . , st), parameterized by η. The imitator generates the following distribution over trajectories:

Pη(τ | θ) = P (s0 | θ)
T∏
t=0

P (st+1 | st, at; θ) πη(at | s0, a0, . . . , st) .

The Bayesian networks associated to these distributions are shown in Figure 1.

The goal of imitation learning in this setting is to learn imitator parameters η such that when the imitator
is executed in the environment, the imitator agrees with the expert’s decisions. This means we wish to
maximise Eθ∼P (θ) Eτ∼Pη(τ ;θ)[

∑
st,at∈τ log πexp(at | st, θ)]. If the expert solves some task (e. g. maximizes

some reward function), this amounts to solving the same task. The latent variable θ stays fixed during the
entire interaction of the agent with the environment.

3.3 Naive behavioral cloning

If we have access to a data set of expert demonstrations, we can use BC on the demonstrations to learn the
maximum likelihood estimate of the expert’s policy. At optimality, this learns the conditional policy:

πcond(at |s1, a1, . . . , st) = E
θ∼pcond(θ|τ)

πexp(at |st, θ) , (1)

pcond(θ | τ) ∝ p(θ)
∏
t

p(st+1 | st, at, θ)πexp(at | st, θ) .

Following Ortega et al. (2021), consider the following example of a confounded multi-armed bandit with
A = Θ = {1, . . . , 5} and S = {0, 1}:

p(θ) = 1
5 , πexp(at | st, θ) =

{
6

10 if at = θ
1

10 if at ̸= θ
, P (st+1 = 1 | st, at, θ) =

{
3
4 if at = θ
1
4 if at ̸= θ.

(2)

The expert knows which bandit arm is special (and labeled by θ) and pulls it with high probability, while the
imitating agent does not have access to this information. We define the reward in this bandit environment
as rt = st+1. However, note that we compare imitation learning algorithms that do not access the reward of
the environment and only use the rewards for comparing the learned behaviors at evaluation time.

If we roll out the naive BC policy in this environment, shown in Figure 2, we see the causal delusion at
work. At time t, inferring the latent by pcond takes past actions as evidence for the latent variable. This
makes sense on the expert demonstrations, as the expert knows the latent variable. However, during an

4

Under review as submission to TMLR

Expert

Conditional

Interventional

Figure 2: Actions from rollouts from bandit environment defined by Equation 2. The x-axis is episode time.
In the y-axis five roll-outs are shown from the expert and policies Equation 1 and Equation 3. Colors denote
actions, with the correct arm labelled green. The interventional imitator tends to the expert policy, while
the conditional policy tends to repeat itself.

imitator roll-out, the past actions are not evidence of the latent, as the imitator is blind to it. Concretely,
the imitator will take its first action uniformly and later tends to repeat that action, as it mistakenly takes
the first action to be evidence for the latent.

3.4 Interventional policy

A solution to this issue is to only take as evidence the data that was actually informed by the latent, which
is the dynamics distribution p(st+1 | st, at, θ). This defines the following imitator policy:

πint(at | s1, a1, . . . , st) = E
θ∼pint(θ|τ)

πexp(at | st, θ) , pint(θ | τ) ∝ p(θ)
∏
t

p(st+1 | st, at, θ) (3)

In a causal framework, this corresponds to treating the choice of past actions as interventions. To see this,
consider the distribution p(at, s1, . . . , st|do(a1, . . . , at−1). By classic rules of the do-calculus (Pearl, 2009),
this is equal to ∫

Θ
p(θ)p(at|st, θ)

∏
τ<t

p(sτ+1|sτ , aτ , θ)dθ

Taking the conditional p(at|s1, . . . , st, do(a1, . . . , at−1) of that expression leads to equation (3). The policy
in Equation 3 is therefore known as interventional policy (Ortega et al., 2021).

3.5 Failure of the conditional policy

Whether the conditional policy of Equation 1 is able to imitate expert behaviors under latent confounding
depends on the relative contribution of evidence due to the dynamics p(st+1 | st, at, θ) and the policy
πexp(at | st, θ) when inferring the latent in the posterior pcond(θ | τ). If most evidence comes from the
dynamics, we expect the conditional and the interventional policies to be similar. On the other hand, when
most evidence comes from the policy decisions, we expect large delusion. This is for instance the case
when the expert policy is deterministic and the dynamics stochastic, or when the latent influences the state
transitions only in parts of the state space, but always affects the expert behavior. In Appendix Appendix A,
we quantitatively study the behavior of the conditional and interventional policies on the bandit example
for varying amounts of dynamics and expert stochasticity.

3.6 Optimality of the interventional policy

To understand why the interventional policy may tend to the expert’s policy consider pint(θ|τ) in Equation 3.
Applying it to the bandit example, each subsequent observation st+1 after taking action at provides some
evidence for the latent θ: if we find st+1 = 1, then the latent θ is more likely to equal at, if we find st+1 = 0,
then θ is less likely to equal at. In Figure 2, we see that this “true interventional” indeed approaches the
expert’s policy. This is further illustrated in subsection 6. In this case, the interventional policy thus presents
a solution to the confounding problem. In the rest of this paper, we focus on the question if and how it can
be learned from data.

Note that the interventional policy may only achieve optimal performance after observing many time steps.
However, it is not guaranteed to be the policy that adapts identifies the latent as fast as possible. This may
require a form of active exploration (Zhou et al., 2019) that is beyond the scope of this work.

5

Under review as submission to TMLR

4 Deconfounding imitation learning

In this section, we discuss how, instead of the conditional policy, we can learn the interventional policy and
thus fix the confounding problem. This improvement we call deconfounding the imitation learning. First,
we illustrate how this is provably possible in theory under strong assumptions. We then show how to learn
it in practice, even when these assumptions don’t fully hold.

4.1 Identifying the interventional policy in theory

Based on the graphical model shown in Figure 1, and applying the rules of do-calculus, we can identify the
interventional policy πint(at | s1, a1, . . . , st) = p(at|s1, . . . , st, do(a1, . . . , at−1) by back-door adjustment Pearl
(2009) if we observe the latent variable θ. This results in Equation 3. But since the latent θ is unobserved,
the interventional policy is not identifiable without further assumptions on the distribution.

However, we will now show that under some assumptions, the interventional policy does become identifiable.
First, we assume that the latent variable θ of the MDP is static, or in other words stays fixed during the
interaction of the policy with the MDP. This makes the dynamics and expert policy stationary in each
trajectory. If we combine this with the strong assumption of recurrence, commonly used in theoretical
reinforcement learning (Watkins & Dayan, 1992, Thm. 1), the interventional policy becomes identifiable.
Assumption 1. We assume that the MDP is recurrent (Norris, 1997, Sec. 1.5), meaning that all state-
action pairs s, a are reached infinitely often in each trajectory.

If the MDP is recurrent with the expert policy, it is possible to identify the interventional policy in theory
from an infinite dataset D of expert demonstrations of infinite length. On each individual trajectory τi
with index i, we are able to count the state and action transitions to estimate the transition probability
p̂i(s′|s, a) and expert policy π̂i(a|s) of that trajectory. We can then compute the likelihood of a dataset
trajectory i given a state-action sequence (s1, a1, . . . , st) based on the estimated environment transitions,∏
t p̂i(st+1|st, at). The corresponding belief over dataset trajectories i follows from Bayes’ theorem as

p̂int(i|s1, at, ..., st) =
∏
t p̂i(st+1|st, at)∑

i′
∏
t p̂i′(st+1|st, at)

.

Then we can estimate
π̂int(at|s1, a1, .., st) = Ei∼p̂int(i|s1,at,...,st)π̂i(at|st) . (4)

This successfully identifies the interventional policy:
Theorem 1. From infinitely many demonstrations of infinite length from a MDP that is recurrent with the
expert policy πexp, we have that π̂int from Equation 4 equals πint from Equation 3.

Proof. Because of the recurrence assumption, we can correctly estimate p̂i(s′|s, a) = p(s′|s, a, θi) and
π̂i(a|s) = πexp(a|s, θi). Then, suppressing a normalization factor that is constant in aT , we write:

πint(aT |s1, ..., sT) ∝
∫

Θ
p(θ)

[∏
t

p(st+1|st, at, θ)
]
πexp(aT |sT , θ)dθ

∝
∫

Θ

∑
i

p(θ|i)p(i)
[∏

t

p(st+1|st, at, θ)
]
πexp(aT |sT , θ)dθ

∝
∑
i

p(i)
[∏

t

p(st+1|st, at, θi)
]
πexp(aT |sT , θi)

∝
∑
i

p(i)
[∏

t

p̂i(st+1|st, at)
]
π̂i(aT |sT)

∝ π̂int(aT |s1, ..., sT)

6

Under review as submission to TMLR

Figure 3: Overview of the method. On the left, the inference model consisting of the encoder qϕ and
decoder pψ is trained using variational inference. Training data is sampled from the environment using an
exploratory policy. The dotted arrow depicts how the exploratory policy can optionally be the imitation
policy πη trained on the right. On the right, the imitation policy is trained with behavioral cloning on
expert data. The expert does not need to interact with the environment at training time. Instead, stored
expert trajectories can be used. To learn the deconfounded policy, the encoder trained on the left is used
for inferring the latent variable on the expert trajectories.

where we recognized p(θ|i) as the (Dirac) delta distribution around θi, and p(i) is the uniform distribution
over samples from the dataset D.

In this proof, the stationarity of the dynamics and expert make it possible to collect statistics across the
time steps into distributions. Furthermore, the proof crucially relies on the recurrence assumption, as it
allows us to evaluate the likelihood of any state-action sequence on each of the trajectories’ distributions.
Without this assumption, we will in general only be able to learn an approximation of the likelihood from
state-action pairs observed in the trajectory.

The interventional policy estimated in Equation 4 requires marginalization over the entire demonstration
dataset and thus isn’t very practical. Instead, we propose to match the expert data with a learned latent
variable model pψ,η

pψ,η(τ) =
∫

Θ̂
pψ(θ̂)

∏
t

pψ(st+1|st, at, θ̂)πη(at|st, θ̂)dθ̂. (5)

Similar to the argument in Theorem 1, under the same assumptions, if we match the ground-truth demon-
stration likelihood p(τ) with the latent variable model pψ,η, then the interventional policy derived from the
latent variable model pψ,η matches the ground truth interventional policy πint.

4.2 Learning from demonstrations and explorations

If each expert demonstration covers the entire state-action space, we have shown that we can estimate state
dynamics and expert policy, and thus the interventional policy using Equation 4 or the latent variable model
in Equation 5.

What if this strong assumption on the expert data does not hold? We can make the problem easier by
allowing our agent to interact with the environment during training. That allows us to see more samples of
the environment dynamics, making up for the lack of recurrence guarantees. Allowing interactions with the
environment is a common modification to the imitation learning problem, used for example in IRL.

In that case, if we explore with policy πexpl(a|s), the state distribution is

pexpl(τ) =
∫

Θ
p(θ)

∏
t

πexpl(at|st)p(st+1|st, at, θ)dθ . (6)

The corresponding latent model is given by

pψ,expl(τ) =
∫

Θ̂
pψ(θ̂)

∏
t

πexpl(at|st)pψ(st+1|st, at, θ̂)dθ̂ , (7)

7

Under review as submission to TMLR

where we assume that we can evaluate the likelihood of the exploration policy.

We propose to learn the latent model of Equation 7 via amortized variational inference, using an inference
model qϕ(θ̂|τ) (Kingma & Welling, 2014) that infers the latent variable from a trajectory. This involves
maximizing the evidence lower bound (ELBO), a lower bound of the log likelihood, with respect to ψ and ϕ:

Eτ∼pexpl log pψ,expl(τ) ≥ Eτ∼pexplEθ̂∼qϕ(θ̂|τ)

[
log pψ(θ̂)− log qϕ(θ̂|τ) +

∑
t

log πexpl(at|st) + log pψ(st+1|st, at, θ̂)
]

= Eτ∼pexplEθ̂∼qϕ(θ̂|τ)

[
log pψ(θ̂)− log qϕ(θ̂|τ) +

∑
t

log pψ(st+1|st, at, θ̂)
]

+ const = LVI

(8)

where we can ignore the exploration policy likelihood as it does not depend on the parameters. At optimality,
and assuming sufficient expressivity, the inference model learns the model posterior

qϕ(θ̂|τ) = pψ,expl(θ̂|τ) ∝ pψ(θ̂)
∏
t

pψ(st+1|st, at, θ̂).

Crucially, the learned inference model qϕ(θ̂|τ) does not depend on the likelihood of the policy selecting
actions. This is because we explore with a policy that—unlike the expert—does not depend on the latent
θ. Therefore, we learn exactly the interventional latent inference model from Equation 3, with the learned
dynamics.

In a next step, we use the inference model qϕ(θ̂|τ) together with a learned dynamics model pψ(st+1|st, at, θ̂)
to learn an imitation policy πη(a|s, θ̂), that approximates the expert policy πexp(a|s, θ). Again, we use
variational inference and train the model pψ,η from Equation 5 with samples from the demonstrations.
Thus, we maximize η in the ELBO

Eτ∼p log pψ,η(τ) ≥ Eτ∼pEθ̂∼qϕ(θ̂|τ)

[
log πη(at|st, θ̂)

]
+ const = LBC , (9)

which effectively becomes a behavioral cloning loss. Here we omitted terms constant in the policy parameters
η.

The training based on these two objectives is illustrated in Figure 3. By optimizing the loss in Equation 8,
we learn a model to infer the latent variable just based on the dynamics of a trajectory; by optimizing the
loss in Equation 9, we learn a policy conditional on that latent. Combined, we learn to approximate the
interventional policy of Equation 3.

5 Practical algorithm

We now present a practical algorithm for training an agent from expert data in the presence of latent
confounders. As outlined in section 4, we learn to infer the latent variable by interacting with the environment
using an exploratory policy, and learn to clone the expert on the demonstrations conditioned on the inferred
latent. At test time, the agent alternates between updating its belief about the latent variable and imitating
an expert dictated by its current belief. In Appendix C, we describe an algorithm that does not require the
ability to gather more data interactively, but faces a more difficult learning problem in practice.

Components The agent consists of: 1) an inference model qϕ, which maps trajectories τ = (s0, a0, . . . , sn)
to a belief over a latent variable qϕ(θ̂ | τ); 2) a dynamics model pψ mapping latent, state, and action to a
distribution over the next state pψ(s′ | s, a, θ̂); and 3) a latent-conditional policy πη(a | s, θ̂). An overview
of the training algorithm is presented in Figure 3.

Training the model for online inference The inference model training closely follows the outline given
in section 4. However, since at test time, the agent needs to infer the latent online from partial trajectories,

8

Under review as submission to TMLR

we adjust the model and the ELBO of Equation 8 slightly. At timestep t, the encoder qϕ takes as input the
trajectory observed until timestep t, and predicts a distribution of the belief over the latent θ̂.

We follow Zintgraf et al. (2020) by defining the prior at timestep t as the inferred latent distribution from
timestep t − 1, starting with a diagonal Gaussian with unit variance as the initial prior. This process is
similar to Bayesian filtering, where beliefs about the state of a process are updated sequentially in response
to new evidence. As such, each prior evolves based on the latest observed data, similar to the updating
mechanisms in Kalman filters and other Bayesian state estimators (Kalman, 1960; Krishnan et al., 2015).
The modified ELBO can then be written as

L̂VI = Eτ∼pexpl

[
Eθ̂∼qϕ(θ̂|τ:t)

[
log pψ(st+1 | st, at, θ̂)

]
− βDKL

(
qϕ(θ̂ | τ:t)

∥∥∥ qϕ(θ̂ | τ:t−1)
)]

, (10)

where DKL is the KL divergence andτ:t denotes the trajectory until timestep t. Following prior work on
VAEs, we use a coefficient β for the prior regularization (Higgins et al., 2017).

As an exploration policy, we use the latent-conditional policy πη conditioned on θ̂ inferred by qϕ. This is
a convenient choice because using πη means we do not have to train multiple policies. Furthermore, using
πη for exploration biases the training data distribution for the inference model toward data that the policy
encounters when it is deployed in the environment potentially improving the generalization of the inference
model. In practice, we condition the policy on the mean of the inferred distribution instead of a sample from
it. We find that using either does not make a big difference. Other exploration policies may be used as long
as they explore sufficiently diverse trajectories and do not depend on the true latent θ.

As described in section 4, the learned inference model is used for inferring the latents on the expert trajectories
τ je . The policy πη is then trained to minimize Equation 9. We show the pseudocode for the full training
algorithm in Appendix B.

Test time At test time, the agent faces an environment with an unknown latent and needs to adapt
to the correct expert behavior. We solve this problem by alternating between updating a posterior belief
over the latent and acting under the current belief. Concretely, the agent initially samples a latent from
the prior θ̂ ∼ N (0,1) and an action a ∼ πη(a|s, θ̂) to imitate the expert corresponding to that latent. It
observes the state transition and computes the posterior belief with the inference network. Another latent
is sampled from the updated belief, and so on. In practice, as during exploration, we do not sample from
the inferred distribution but instead condition the policy on the mean. Once the inference has converged to
match the true latent for the environment, the true expert for the environment will be imitated consistently.
We summarize the test-time behavior in pseudocode in Appendix B.

6 Experiments

To test our method in practice, we conduct experiments in the multi-armed bandit problem from Ortega
et al. (2021) and in multiple control environments. We aim to answer three questions: 1) How big is the effect
of confounding on naive BC — large enough to justify the use of specialized methods? 2) Is our algorithm
capable of identifying the interventional policy? 3) How well does the interventional policy imitate the
expert?

6.1 Investigating deconfounding in a multi-armed bandit

We begin the empirical study by experimenting with the multi-armed bandit problem proposed by Ortega
et al. (2021) and described in section 3. The expert policy is defined in Equation 2. We consider episodes of
length 100. As we are only interested in the effects of confounding on imitation learning, and not in effects
arising from over-fitting a small dataset, we generate new training data from the expert for each update
of the learning algorithms. Each learning algorithm is run for ten independent seeds and the results are
averaged. The hyperparameters for the algorithms are provided in Appendix D.

9

Under review as submission to TMLR

Deconfounded Naive BC True interventional True conditional Expert

0 20 40 60 80 100
Episode step

0.2

0.3

0.4

0.5

0.6

π(
a

=
θ)

(a) Best arm probability on expert data

0 20 40 60 80 100
Episode step

0.2

0.3

0.4

0.5

0.6

π(
a

=
θ)

(b) Best arm probability on online data

0 500 1000 1500 2000
Training iterations

20

30

40

50

Be
st

 a
rm

 c
ou

nt

(c) Learning curves

Figure 4: Imitation learning in a multi-armed bandit problem. The shading shows the standard error of the
mean. The left panel compares the policies when evaluated on trajectories sampled by the expert policy.
The x-axis is the step on the trajectory and the y-axis is the probability of choosing the best arm. The
middle panel is otherwise the same, except run on trajectories sampled online with the policies themselves.
The right panel shows the learning curves. The x-axis shows training iterations and the y-axis shows the
number of times the best arm is chosen by the policy under training during a trajectory with 100 time steps.
The curves are averages for sliding window of length 10 training iterations.

Naive BC and the conditional policy To answer our first question, we compare a naive BC to the true
conditional policy described in section 3. As the latter policy is non-Markovian, we also allow the BC policy
to observe the history. One way to enable this adaptation is to equip the agent with a memory, which the
agent can learn to use for representing its belief about the latent variable. To provide such a memory, we
implement the imitation learner as a recurrent neural network (RNN). Figure 4 a) shows the probability the
different policies assign to choosing the best arm when evaluated on data collected by the expert policy. We
see that the naive BC agent learns a policy that matches the true conditional policy closely. This results
in problems for the policy learned with naive BC when it is deployed in the environment and has to choose
the actions itself, as shown in Figure 4 b). The naive BC closely tracks the action probability of the true
conditional policy, which performs much worse than the expert policy. These results suggests that it has
suffered the full impact of the confounding problem.

Deconfounded imitation learning and the interventional policy To answer our second question,
we implement the deconfounded imitation learner as described in section 5.Figure 4 a) and b) show that
the proposed method closely matches the true interventional policy both on expert trajectories and online.
Figure 4 c) shows the number of times the policies chose the best arm during an episode. Our deconfounded
imitator converges to the true interventional policy, showing that it learned to optimally imitate the expert
in the presence of latent confounders, and answering our third question. This near-perfect imitation perfor-
mance comes at the price of requiring exploration data to train the inference model as well as an increased
number of training iterations needed for convergence.

6.2 Demonstrating deconfounding in confounded MDPs

Next, we demonstrate that the confounding issue affects MDPs with considerably more complex dynamics
than the bandit and that the answers to the three questions do not change with the increased complexity.
For LunarLander-v2 (Brockman et al., 2016), we consider a modified version with unknown key bindings:
a latent θ specifies a permutation in the map between two of the the agent’s actions and the behaviors
(firing the left and right engines of the space craft). This permutation is known to the expert, but not
the imitator. For HalfCheetahBulletEnv-v0 (Coumans & Bai, 2016–2021), we modify the environment
similarly to Swamy et al. (2022b) by varying the target speed. The expert observes the true target speed
while the imitator only observes a noisy indicator, which shows whether it is running faster or slower than
the target speed. For AntGoal-v0 (Todorov et al., 2012), we consider a version, where the task is to run
to a goal randomly sampled from within a circle around the starting point. The expert observes the true

10

Under review as submission to TMLR

DAgger Deconfounded GAIL Naive BC Oracle

0 100 200
Training iterations

−600

−400

−200

0

200

Ep
iso

de
 re

tu
rn

(a) Lunar Lander

0 100 200
Training iterations

−1500

−1000

−500

Ep
iso

de
 re

tu
rn

(b) Half Cheetah

0 100 200
Training iterations

−2500

−2000

−1500

−1000

−500

Ep
iso

de
 re

tu
rn

(c) Ant

Figure 5: Experiments in our confounded, stochastic environments. We show the episodic return of each
agent over the course of training. The curves for the are averages sliding window of length 5. The shading
shows the standard error of the mean.

goal coordinates, while the imitator only observes a noisy indicator of the goal direction and distance. In all
environments, in addition to providing the imitator with less information about the latent variable than the
expert, we make the environment somewhat stochastic. These changes make the naive imitators try to infer
the latent from the more deterministic expert actions rather than the stochastic dynamics, which results in
the confounding problem. For full details about the environments, and how the confounding problem may
arise in each of them, please see the Appendix E.

The expert policies are trained with proximal policy optimization (Schulman et al., 2017). In order to avoid
finite-sample-size effects, we use an infinite-size training dataset by generating expert trajectories on the fly.
Each learning algorithm is run for 5 or 6 independent seeds and the results are averaged. Additional details
are provided in Appendix E.

Naive BC Like in the bandit example, we first analyze how strongly confounding affects the naive BC
policy. The naive learner is again implemented as an RNN. In Figure 5 we see that the naive BC agent fails
to imitate the expert behavior and performs much worse than an oracle imitator, which is otherwise exactly
the same setting but it is trained with knowledge of the latents. This failure to generalize is again evidence
for causal delusions: the agent learned to infer the latent from the expert behavior rather than the noisy
dynamics of the environment.

Deconfounded imitation learning To solve the confounding issue in these environments, we first test
the DAgger algorithm (Ross et al., 2011), which queries the experts during training. We find that it indeed
solves the confounding problem: the agent quickly approaches the performance of the oracle imitator in all
three environments. The DAgger performance serves as an unachievable upper bound for our method, as
it not only solves the confounding issue but also reduces the more common distribution shift issue present
in imitation learning. However, recall that the expert policy may be defined by, e.g., a human expert, who
would be expensive or impossible to query at imitation learning time making DAgger a potentially difficult
method to use in practice.

Can our deconfounded imitator also solve the confounding problem? We test the deconfounded imitation
learning algorithm described in section 5 on the control environments. We find it beneficial to modify
the described algorithm in two ways: 1) extending the reconstruction loss in Equation 10 to multi-step
predictions (Hafner et al., 2020); 2) conditioning the policy on the inferred latent θ̂jt at the current timestep
t instead of the last time step θ̂jH when training the policy. See Appendix E for details.

In Figure 5, we see that the deconfounded learner clearly outperforms the naive BC baseline, matching the
performance of the policy learned by DAgger in two out of three environments and coming close in the third.
While it is hard to interpret what functions high-dimensional neural networks have learned exactly, matching
the performance of DAgger, which we know can recover the interventional policy, is encouraging. It suggests

11

Under review as submission to TMLR

that the deconfounded agent learned to infer the latent from environment transitions and learn a policy that
acts like the expert under the inference. In the Ant environment, it is impossible to infer the direction from
the noisy indicator from a single observation. Therefore, the agent may start moving the wrong way in the
beginning of the episode. Recovering from such a false start may be much easier with the help of extra
supervision from the expert, giving DAgger a particularly strong advantage in this environment.

Inverse reinforcement learning In theory, IRL is capable of recovering the expert performance even in
confounded environments (Swamy et al., 2022b). We test this theory in practice, by comparing to generative
adversarial imitation learning (GAIL) (Ho & Ermon, 2016). We implemented GAIL closely following a
popular publicly available implementation1 and using recurrent PPO by Raffin et al. (2021) as the RL
algorithm. To stabilize GAIL, we sample four times more data for every training step compared to the other
algorithms.

In LunarLander, GAIL is able to achieve higher returns than Naive BC, but does not recover the performance
of the proposed method. In HalfCheetah and Ant, GAIL does not recover the performance of Naive BC.
In Appendix D, we provide results for GAIL in the bandit environment from subsection 6. We found that in
the bandit, GAIL does not recover the interventional policy and therefore does not converge to the expert
behavior during an episode. This is because the reward function defined by GAIL can always be maximized
by a deterministic policy, even in the case when the expert is a stochastic policy, like in the bandit. From
these results, we conclude that while IRL is in theory capable of solving confounded imitation learning
problems, where the expert is a deterministic policy, getting it to work well can be difficult in practice.

7 Limitations

While the proposed method recovers the policy DAgger learns under ideal conditions, it does not address
the original challenge DAgger is designed to solve. That is, if the expert data does not cover the state-action
space sufficiently, the proposed method may not be enough to learn the optimal policy. Furthermore, while
the proposed method does not require access to the expert, it does require sampling access to the environment
similarly to IRL. To find the deconfounded policy fully offline, an algorithm outlined in the in section 4 could
be used. For the methods to work provably, we need to make strong assumptions of recurrence.

Following Ortega et al. (2021) we model the confounded IL setting with a CMDP where the latent stays
fixed during the entire interaction of the policy with the environment. This may be a limiting assumption,
for example in a driving scenario, where the environment may have latent factors that govern the dynamics
over a small section of the road but the agent is expected to be able to traverse many different sections.

Finally, while the environments we experiment in are commonly used to evaluate RL and IL policies, we
acknowledge that these are fairly limited domains and do not reflect the full complexity of training useful
policies for the real world. The components of our algorithm, variational inference and behavioral cloning,
are commonly used techniques elsewhere in machine learning. Therefore, scaling the proposed method to real
world problems should be possible. However, we did not optimize for sample complexity of either learning
algorithm, which would limit the application of our method to real world problems. Developing a more
sample efficient version of the algorithm and testing it in real world domains is an exciting avenue of future
work.

8 Conclusion

Naive imitation learning algorithms can fail in the presence of latent confounders — for instance when the
expert has access to more information than the imitator. This work presents a breakdown of this confounding
problem. First, we studied under which conditions latent confounding impacts the performance of BC.
We demonstrated that this issue is more relevant when there is substantial stochasticity in environment
transitions or the expert policy is nearly deterministic. We then analyzed in which settings the interventional
policy, which solves the confounding issue, is identifiable without query access to the expert.

1https://github.com/HumanCompatibleAI/imitation

12

https://github.com/HumanCompatibleAI/imitation

Under review as submission to TMLR

Informed by the theoretical results, we proposed a practical algorithm for deconfounding imitation learning
with variational inference that provably converges to the interventional policy. While this problem has been
previously studied in theory with inverse RL, we propose a novel variational inference solution, which we
analyze theoretically and evaluate in practice. Finally, we evaluated the proposed method with experiments
in a multi-armed bandit and confounded MDPs. We found it was able to learn interventional policies in all
of the settings, alleviating the confounding problem that limits naive imitation learning.

References
David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup, and Satinder

Singh. On the expressivity of markov reward. Advances in Neural Information Processing Systems, 34:
7799–7812, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon White-
son. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder-decoder approaches. In Workshop on Syntax, Semantics and Structure in
Statistical Translation, 2014.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the limitations of behavior
cloning for autonomous driving. April 2019. URL http://arxiv.org/abs/1904.08980.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016–2021.

Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. Advances in
Neural Information Processing Systems, 32, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Yan Duan, Marcin Andrychowicz, Bradly C Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter
Abbeel, and Wojciech Zaremba. One-Shot imitation learning. 2017.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforcement
learning. 2017.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. "International Conference on Learning Representations", 2020.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. ICLR (Poster), 3, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

13

http://arxiv.org/abs/1904.08980
http://pybullet.org

Under review as submission to TMLR

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations, 2014.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint arXiv:1511.05121,
2015.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for legged
robots. 2021.

Daniel Kumor, Junzhe Zhang, and Elias Bareinboim. Sequential causal imitation learning with unobserved
confounders. 2021. URL https://openreview.net/forum?id=o6-k168bBD8.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on robot learning, pp. 143–156. PMLR, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Becca Roelofs, Benjamin Sapp, Brandyn
White, Aleksandra Faust, Shimon Whiteson, et al. Imitation is not enough: Robustifying imitation with
reinforcement learning for challenging driving scenarios. arXiv preprint arXiv:2212.11419, 2022.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In International Confer-
ence on Machine Learning, 2000.

J R Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 1997.

PA Ortega and DA Braun. A bayesian rule for adaptive control based on causal interventions. In Third
Conference on Artificial General Intelligence, 2010a.

Pedro A Ortega and Daniel A Braun. A minimum relative entropy principle for learning and acting. Journal
of Artificial Intelligence Research, 38:475–511, 2010b.

Pedro A Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Joel Veness, Jonas
Buchli, Jonas Degrave, Bilal Piot, Julien Perolat, Tom Everitt, Corentin Tallec, Emilio Parisotto, Tom
Erez, Yutian Chen, Scott Reed, Marcus Hutter, Nando de Freitas, and Shane Legg. Shaking the founda-
tions: delusions in sequence models for interaction and control. October 2021.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
atsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic learning datasets
and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Judea Pearl. Causality. Cambridge University Press, September 2009. URL https://www.cambridge.org/
core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and Sergey Levine.
Learning agile robotic locomotion skills by imitating animals. In Robotics: Science and Systems, 07 2020.
doi: 10.15607/RSS.2020.XVI.064.

Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in Neural Information
Processing Systems, 1988.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

14

https://openreview.net/forum?id=o6-k168bBD8
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://github.com/DLR-RM/rl-baselines3-zoo

Under review as submission to TMLR

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In International conference on machine learning.
PMLR, 2019.

Danilo J Rezende, Ivo Danihelka, George Papamakarios, Nan Rosemary Ke, Ray Jiang, Theophane We-
ber, Karol Gregor, Hamza Merzic, Fabio Viola, Jane Wang, et al. Causally correct partial models for
reinforcement learning. arXiv preprint arXiv:2002.02836, 2020.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to No-Regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.),
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, Fort Lauderdale, FL, USA, 2011. PMLR.

Kangrui Ruan, Junzhe Zhang, Xuan Di, and Elias Bareinboim. Causal imitation learning via inverse rein-
forcement learning. In International Conference on Learning Representations, 2022.

Stuart Russell. Learning agents for uncertain environments (extended abstract). In The Eleventh Annual
Conference on Computational Learning Theory, 1998.

S Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3(6):233–242,
1999.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, and J Andrew Bagnell. Feedback
in imitation learning: The three regimes of covariate shift. February 2021. URL http://arxiv.org/abs/
2102.02872.

Gokul Swamy, Sanjiban Choudhury, J. Andrew Bagnell, and Zhiwei Steven Wu. Causal imitation learning
under temporally correlated noise, 2022a.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Zhiwei Steven Wu. Sequence model imitation
learning with unobserved contexts. Advances in Neural Information Processing Systems, 35, 2022b.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. In Annual Meeting
of the Cognitive Science Society, 2016.

Christopher J C H Watkins and Peter Dayan. Q-learning. Mach. Learn., 8(3):279–292, May 1992. URL
https://doi.org/10.1007/BF00992698.

Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, and Yang Gao. Fighting
copycat agents in behavioral cloning from observation histories. Adv. Neural Inf. Pro-
cess. Syst., 33:2564–2575, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1b113258af3968aaf3969ca67e744ff8-Abstract.html.

Chuan Wen, Jianing Qian, Jierui Lin, Jiaye Teng, Dinesh Jayaraman, and Yang Gao. Fighting fire with fire:
Avoiding DNN shortcuts through priming. June 2022. URL http://arxiv.org/abs/2206.10816.

15

http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/2102.02872
http://arxiv.org/abs/2102.02872
https://doi.org/10.1007/BF00992698
https://proceedings.neurips.cc/paper/2020/hash/1b113258af3968aaf3969ca67e744ff8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1b113258af3968aaf3969ca67e744ff8-Abstract.html
http://arxiv.org/abs/2206.10816

Under review as submission to TMLR

Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies. In International
Conference on Learning Representations, 2019.

B D Ziebart, A L Maas, J A Bagnell, and A K Dey. Maximum entropy inverse reinforcement learn-
ing. Aaai, 2008. URL https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf?source=post_
page---------------------------.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and Shimon
Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning. In International
Conference on Learning Representations, 2020.

16

https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf?source=post_page---------------------------
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf?source=post_page---------------------------

Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Environment stochasticity

0.0

0.2

0.4

0.6

0.8

1.0
Ex

pe
rt

st
oc

ha
st

ici
ty

Expert

0.0 0.2 0.4 0.6 0.8 1.0
Environment stochasticity

Interventional

0.0 0.2 0.4 0.6 0.8 1.0
Environment stochasticity

Conditional

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

Re
wa

rd

Figure 6: Conditional and interventional policies in the bandit environment Equation 2 as a function of
environment stochasticity and expert stochasticity. We show the expected success probability for the expert
(left), the interventional policy (middle), and the conditional policy (right). Along the axes, we vary the
expert policy from deterministic (bottom) to stochastic (top) and the environment transitions from determin-
istic (left) to stochastic (right); see text for details. The interventional policy performs similar to the expert,
while the conditional policy performs worse due to latent confounding when the environment stochasticity
is larger than the expert stochasticity.

A Confounding and stochasticity

The behavior success of the conditional and interventional policies depend on the stochasticity of the envi-
ronment and the expert, as this affects the evidence for the inference of the latent variable. If most evidence
comes from the dynamics, which would e. g. be the case when the expert policy is very noisy and the dy-
namics deterministic, we expect the conditional and the interventional policies to be similar. However, when
most evidence comes from the policy decisions, we expect large delusion.

See figure 6 for a plot of the rewards of the various policies given varying amounts of stochasticity. Instead
of the fixed coefficients of Equation 2, we vary πexp(at = θ) between 1 (deterministic expert) and 1

5 (maxi-
mally stochastic expert) and P (st+1 = 1|at = θ) between 1 (deterministic environment) and 1

2 (maximally
stochastic environment).

In the left panel, we show the expected success probability of the expert policy: as expected, it is highest
when both the expert and the environment are deterministic. The interventional policy of Equation 3
performs similarly. However, the conditional policy, shown in the right panel, is only able to match the
expert behavior if the stochasticity in the expert policy outweighs the stochasticity in the environment.
When the environment is stochastic and the expert comparably deterministic, the conditional policy (and
thus naive BC) infers latents largely from past actions, suffers from delusions, and fails to imitate.

B Training deconfounded imitators

Algorithm 1 shows how an agent is trained in practice from expert data in the presence of latent confounders.
Algorithm 2 shows the test time implementation of the deconfounded imitation learners, which alternate
between updating a posterior belief over the latent and acting under the current belief.

C Deconfounded imitation learning from expert data alone

As discussed in section 4, when suitable demonstrations from the expert are available, the interventional
policy is identifiable from the expert data alone, without access to the environment or the expert. In this
section, we present a practical algorithm for learning the deconfounded imitation policy from such an expert
dataset. At test time, the agent works the same way as the algorithm 1 presented in the paper.

17

Under review as submission to TMLR

Data: Initial parameters of the imitation policy η, inference model ϕ, and dynamics model ψ; expert
dataset {τ je }, MDP family Mθ, true latent distribution p(θ), learning rates α1, α2, α3.

while not done do
θ ∼ p(θ), s0 ∼ p0(s0);
τ = s0, t = 0;
for t ≤ H do

θ̂t ∼ qϕ(θ̂t | τ:t); // Infer the latent for trajectory
at ∼ πη(at | st, θ̂); // Sample action from a Markov policy
st+1 ∼ p(st+1 | st, at, θ); // True dynamics
Append (at, st+1) to τ ;
t← t+ 1;

end
ϕ← ϕ− α1∇ϕL̂VI(τ); // Sample estimate of Equation 10
ψ ← ψ − α2∇ψL̂VI(τ);
θ̂jH ∼ qϕ(θ̂jH | τ je); // Infer latent from j-th expert trajectory
η ← η − α3∇η

∑
j

∑
s,a∈τj

e
log πη(a | s, θ̂jH);

end
Algorithm 1: Training deconfounded imitators

Data: Parameters of the policy η and inference model ϕ; MDP Mθ with ground-truth latent θ.
s0 ∼ p0(s0);
τ ← s0, t← 0;
for t ≤ H do

θ̂t ∼ qϕ(θ̂t | τ:t) ; // Infer the latent for trajectory
at ∼ πη(at | st, θ̂t) ; // Condition on inferred latent
st+1 ∼ p(st+1 | st, at, θ) ; // True dynamics
Append (at, st+1) to τ ;
t← t+ 1;

end
Algorithm 2: Deconfounded imitators at test time

18

Under review as submission to TMLR

Training an inference model directly on the expert demonstration faces the same problem as naive imitation
learning, i. e., the trained model takes the expert’s actions as evidence for the latent. However, by the
assumption, that the expert is uniquely determined by the environment dynamics, we can directly learn the
conditional policy and dynamics model explaining the expert trajectories from the demonstrations because a
latent that explains the dynamics also explains the expert. To train such models, we use variational inference
to learn a trajectory encoder qϕoff , which infers the latent for the expert trajectories, and a factorized decoder,
which reconstructs the dynamics of the environment and the expert’s policy using networks pψ and πη
respectively. The variational inference objective is given by

Loff,i = Eθ̂∼qϕ(θ̂|τ i
e)

[H∑
t=0

log pψ(st+1 | st, at, θ̂) + log πη(at|st, θ̂)
]
− βDKL

(
qϕoff(θ̂ | τ ie)

∥∥∥ p(θ̂)) , (11)

which, unlike the objective in the main paper, represents a VAE where the encoder qϕoff takes as input the
full expert trajectory τ ie, and the decoder decodes both the action and transition probabilities throughout
the trajectory.

This gives us a way for training the conditional policy imitating the experts in the demonstrations and a
dynamics model. However, we cannot directly use the learned inference model qϕoff for implementing the
interventional policy, because it takes the expert’s actions as evidence for the latent. The algorithm 1 works
by separately learning an inference model from interactions with the environment and using that inference
model for deconfounding the expert trajectories. When we do not have sampling access to the environment,
we cannot learn the inference model directly. Instead, we observe that one factor of the decoder used for
training the inference model is a dynamics model of the environment conditional on the predicted latent.
Therefore, we can use it to generate synthetic trajectories for training an online inference model qϕon to
minimize the online variational inference objective given in the main paper. The online inference model can
then be used for implementing the interventional policy similarly as in 2. The full offline dynamics learning
algorithm is presented in algorithm 3.

Data: The initial parameters of the imitation policy η, offline inference model ϕoff, online inference
model ϕon, dynamics model ψ, prior distribution for the learned latent space p(θ̃), a dataset of
expert trajectories {τ ie}, an MDP (S,A, p, p0, H), learning rates α1, α2, α3, and α4.

while not done do
θ̃ ∼ p(θ̃) ; // Sample from the prior
s0 ∼ p0(s0) ; // Sample from a learned model or expert data
τsynth = s0, t = 0;
for t ≤ H do

at ∼ π(at | st) ; // Sample action from a Markov policy
st+1 = pψ(st+1 | st, at, θ̃) ; // Dynamics model
Append (at, st+1) to τsynth;
t = t+ 1;

end
ϕon = ϕon − α1∇ϕonL̂(τsynth) ; // Train the online model on 10.
ϕoff = ϕoff − α2∇ϕoff

∑
j L̂off(τ je) ; // Train the offline model on 11.

ψ = ψ − α3∇ψ
∑
j L̂off(τ je) ; // Train the dynamics model on 11.

η = η − α4∇η
∑
j L̂off(τ je) ; // Train the policy on 11.

end
Algorithm 3: Training deconfounded imitators, offline variant

D Multi-armed bandit experiment

Implementation details The inference model qϕ is implemented as an RNN with GRU architecture Cho
et al. (2014) with a hidden layer of 256 units. Before the RNN, the observation is preprocessed by an

19

Under review as submission to TMLR

Hyperparameter Value
Episode length 100

Imitation training steps 5000
Dynamics model training batch size (full episodes) 100

Imitation training batch size (full episodes) 100
Behavioral cloning learning rate 0.001

Variational inference learning rate 0.0001
KL coefficient (β) 0.001

Table 1: Hyperparameters for the deconfounded behavioral cloning and naive behavioral cloning algorithms

MLP with two hidden layers of size 256 units and output size 32. The action is preprocessed by a linear
transformation to a 32 dimensional vector. The outputs of the RNN are processed by a linear transformation
to a vector which parametrizes the latent distribution. The latent distribution is a 256 dimensional Gaussian.
One half of the predicted vector represents the mean of the latent distribution and the other half, after softplus
activation has been applied to it represents the variance.

The decoder is an MLP with two hidden layers of size 256 and a linear output layer. It uses the same
input preprocessing networks for the observations and actions as the inference model. The policy is an
MLP, which takes the latent sample, and an observation as inputs. It uses the same observation embedding
network as the other networks and then has two hidden layers with 256 units each. The naive BC baseline
uses the same network architecture as the deconfounded algorithm, except it does not represent the belief as
a probabilistic latent variable and therefore there is no sampling step. It just directly passes output of the
trajectory encoder as the input to the policy network. All of the MLPs use ReLU activations. All networks
are optimized using the Adam optimizer (Kingma & Ba, 2015) with default settings from PyTorch (Paszke
et al., 2019), except for the learning rate.

Hyperparameter settings The hyperparameters used for the learning algorithms are presented in Ta-
ble 1.

Computing the ground truth policies All of the probabilities relevant to the bandit problem are known
exactly from the definition of the problem and the conditional and interventional policies given in the main
paper. Using these probabilities we can compute the true conditional and interventional policies, allowing
us to compare the learned algorithms to the relevant optimal policies.

In practice, the true belief over theta can be computed for any trajectory as follows

log p(θ̂0) = log 1
5 , log p(θ̂t+1[At]) =

{
log p(θ̂t[At]) + st log 3

4 + (1− st) log 1
4 if At = at

log p(θ̂t[At]) + st log 1
4 + (1− st) log 3

4 otherwise
. (12)

The true interventional policy can then be computed by sampling a belief θ̂t ∼ log p(θ̂t), and sampling an
action from πexp(at|st, θ̂t). This can be seen as a Thompson sampling policy (Thompson, 1933), which acts
optimally given its current belief of the task. The true conditional policy is computed similarly, except taking
the actions as evidence for the latent is added to the update

log p(θ̂t+1[At]) =
{

log p(θ̂t)[At] + st log 3
4 + (1− st) log 1

4 + log 6
10 if At = at

log p(θ̂t)[At] + st log 1
4 + (1− st) log 3

4 + log 1
10 otherwise

. (13)

E Confounded MDPs

Environment descriptions For LunarLander-v2 (Brockman et al., 2016), we consider a modified version
with unknown key bindings: a latent θ specifies a permutation in the map between two of the the agent’s
actions and the behaviors (firing the left and right engines of the space craft). This permutation is known

20

Under review as submission to TMLR

0 50 100 150 200 250
Training iterations

−1400

−1200

−1000

−800

−600

−400

Ep
iso

de
 re

tu
rn

Naive BC
Oracle

Figure 7: Comparing naive BC and oracle in a deterministic variant of HalfCheetahBulletEnv-v0. Most of
the difference in the episodic returns here compared to the returns reported in Swamy et al. (2022b) follows
from their results adding a constant 1000 to the episodic return for plotting.

to the expert, but not the imitator. In addition, we make the environment stochastic: at each step, with
a probability of 0.15, a uniformly chosen random action is performed instead of the action chosen by the
agent. The confounding problem arises because the expert’s actions are temporally correlated, for example
it may select the same action multiple times to adjust the lander’s attitude. A naive recurrent BC policy
may thus use past actions to predict future actions - causing confounding if the controls are swapped, as a
wrong initial guess influences future decisions.

For HalfCheetahBulletEnv-v0 (Coumans & Bai, 2016–2021), we modify the environment similarly
to Swamy et al. (2022b) by varying the target speed. The expert observes the true target speed while
the imitator only observes an indicator, which shows whether it is running faster or slower than the target
speed. The expert smoothly tends to the target speed. This leads to correlated actions, in which the trend
of past speeds can be extrapolated. A confounded naive BC imitator may attempt to extrapolate a random
trend of its past speeds. Contrary to Swamy et al. (2022b), we find that the deterministic version of this
environment does not necessarily differentiate between naive BC and DAgger. Therefore, we make the indi-
cator stochastic by randomizing it 20% of the time. For a detailed discussion about the effect of stochasticity
on HalfCheetahBulletEnv-v0, see below.

In AntGoal-v0 (Todorov et al., 2012), we consider a version of the classic ant robot locomotion environment,
where the task is to run to a goal randomly sampled from within a circle around the starting point. This is
similar to the ant environment considered by Zintgraf et al. (2020). We make the goal radius 10

3 times larger
to make the locomotion task more challenging and remove the control cost. The imitators receive noisy
observations of the length and angle of the vector between the ant and the goal in the global coordinate
frame. Gaussian noise with scale 0.1 is added to the indicator. The expert knows the true goal location
and starts moving toward it immediately, making its actions correlated across time. The confounding arises
because on the expert trajectories, the goal direction and distance can be inferred from the expert actions
and states without considering the noisy indicator.

Deterministic vs stochastic variant of HalfCheetah. We test the different imitation learning algo-
rithms on the HalfCheetahBulletEnv-v0 environment from Swamy et al. (2022b). We found that running
our implementation of naive BC matches the performance of our implementation of DAgger, which is incon-
sistent with the results of Swamy et al. (2022b), where they report that DAgger outperforms naive BC. See
figure 7 for learning curves. One reason for why their results show a difference between the algorithms may
be that their implementation of BC may suffer from covariate shift resulting from it having been trained on
a small number of samples compared to DAgger. However, if that is the case, it is not an example of the
confounding problem we are interested in. To make sure that we are testing for the ability of the algorithms
to deal with the confounding problem in this environment, we make the indicator variable stochastic. The
results for the stochatic variant are reported in the main paper.

21

Under review as submission to TMLR

Hyperparameter Value
Top-level training iterations 300

Imitation / inference training steps per top-level iteration 100
Dynamics model training batch size (full episodes) 16

Imitation training batch size (full episodes) 16
BC learning rate 0.0003

Variational inference learning rate 0.0003
KL coefficient (β) 1.0

Table 2: Hyperparameters for the deconfounded BC, DAgger, and naive BC algorithms for LunarLander-v2,
HalfCheetahBulletEnv-v0, and AntGoal-v0 environments. We fix the episode length for LunarLander-v2
to 500 steps, for HalfCheetahBulletEnv-v0 to 1000 steps, and for AntGoal-v0 to 200 steps.

Implementation details For LunarLander, HalfCheetah, and Ant we use the same network architecture
as the bandit experiments with the following changes. The output of the encoder parametrizes the mean
and the log-variance of the latent distribution. There is no parameter sharing between the different input
processing networks in the encoder, policy, and decoder. The RNN has a hidden size of 500. The MLPs have
two hidden layers of size 128. The action embedding has size 128. The latent distribution is a 64 dimensional
Gaussian for LunarLander and HalfCheetah, and 8 dimensional Gaussian for Ant. In practice, the latent
dimensionality does not matter very much. The MLPs use ELU (Clevert et al., 2015) activations followed
by LayerNorm (Ba et al., 2016). The networks are optimized with AdamW (Loshchilov & Hutter, 2017).

The experts are trained using a PPO implementation by Raffin et al. (2021) with hyperparameters from
Raffin (2020). Additionally, a running normalization layer (Raffin et al., 2021) is applied to the observations
and fixed after expert training to make the distribution of the observations easier to learn the decoder on.

On each iteration of the training algorithm, a batch of new episodes are collected with the appropriate policy
or policies. Naive BC only collects data using the expert policy. DAgger collects data using a policy defined
by a mixture of the expert and imitator policies, which is linearly annealed from the expert policy to the
imitator policy during the training. Deconfounded algorithm collects a batch episodes with the expert policy
for BC and a batch episodes with the imitation policy for training the encoder. These trajectories are saved
in circular buffers that hold 2 ∗ 106 transitions. After each data collection step, the imitator (and encoder)
are updated for 100 steps with the update function corresponding to the algorithm.

We implemented GAIL closely following a popular publicly available implementation and using recurrent
PPO from stable-baseline3 Raffin et al. (2021) as the RL algorithm. We use the same data sampling
pipeline as the deconfounded imitation learning for GAIL. Deconfounded algorithm collects a batch episodes
with the expert policy for BC and a batch episodes with the imitation policy for training the encoder and
stores those samples in separate buffers. The network architectures are the same as for the other policies,
where applicable. We found that getting GAIL to work at all in our environments, we had to increase the
number of episodes sampled between each update from 16 to 64. Furthermore, we found that GAIL did not
work with reward function parameterized as a function of (s, a, s′) in our environments, but worked better
as a function of just (s′).

Hyperparameter settings The hyperparameters used for the learning algorithms are presented in table 2.

22

https://github.com/HumanCompatibleAI/imitation

Under review as submission to TMLR

Hyperparameter Value
Top-level training iterations 300

PPO training iterations per algorithm iteration 1
PPO batch size (timesteps) 400

PPO gradient max norm 0.5
PPO normalize advantage True

PPO epochs per training iterations 10
PPO discount rate γ 0.99

PPO GAE-λ 0.95
PPO learning rate 0.0003

PPO episodes per training iteration 64
Discriminator training steps per top-level iteration 20

Discriminator batch size (full episodes) 16
Discriminator maximum gradient norm 100

Table 3: Hyperparameter settings for GAIL.

23

	Introduction
	Related work
	Background
	Imitation learning
	Confounded imitation learning
	Naive behavioral cloning
	Interventional policy
	Failure of the conditional policy
	Optimality of the interventional policy

	Deconfounding imitation learning
	Identifying the interventional policy in theory
	Learning from demonstrations and explorations

	Practical algorithm
	Experiments
	Investigating deconfounding in a multi-armed bandit
	Demonstrating deconfounding in confounded MDPs

	Limitations
	Conclusion
	Confounding and stochasticity
	Training deconfounded imitators
	Deconfounded imitation learning from expert data alone
	Multi-armed bandit experiment
	Confounded MDPs

