
NLDL
#29

NLDL
#29

NLDL 2025 Full Paper Submission #29. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

SPARDACUS SafetyCage:
A new misclassification detector

Anonymous Full Paper
Submission 29

Abstract001

Given the increasing adoption of machine learning002

techniques in society and industry, it is important003

to put procedures in place that can infer and sig-004

nal whether the prediction of an ML model may be005

unreliable. This is not only relevant for ML special-006

ists, but also for laypersons who may be end-users.007

In this work, we present a new method for flag-008

ging possible misclassifications from a feed-forward009

neural network in a general multi-class problem,010

called SPARDA-enabled Classification Uncertainty011

Scorer (SPARDACUS). For each class and layer, the012

probability distribution functions of the activations013

for both correctly and wrongly classified samples014

are recorded. Using a Sparse Difference Analysis015

(SPARDA) approach, an optimal projection along016

the direction maximizing the Wasserstein distance017

enables p-value computations to confirm or reject the018

class prediction. Importantly, while most existing019

methods act on the output layer only, our method020

can in addition be applied on the hidden layers in021

the neural network, thus being useful in applica-022

tions, such as feature extraction, that necessarily023

exploit the intermediate (hidden) layers. We test024

our method on both a well-performing and under-025

performing classifier, on different datasets, and com-026

pare with other previously published approaches.027

Notably, while achieving performance on par with028

two state-of-the-art-level methods, we significantly029

extend in flexibility and applicability. We further030

find, for the models and datasets chosen, that the031

output layer is indeed the most valuable for misclas-032

sification detection, and adding information from033

previous layers does not necessarily improve perfor-034

mance in such cases.035

1 Introduction036

A crucial consideration when deploying a machine037

learning (ML) model in real-life applications is the038

ability to infer how reliable the predictions are. As039

an example, consider a model used to detect a haz-040

ardous situation within an industrial facility. First,041

it is important that the model can capture an unsafe042

situation as it happens to then signal the operators.043

Second, to achieve trust, the model should not raise044

false alarms too frequently, or future warnings lose045

credibility. Thus, to deploy the ML model in a real-046

world setting, the reliability of its predictions need 047

to be considered in some way prior to making actual 048

decisions (such as stopping the production line). 049

In most neural network (NN) classifiers, a softmax 050

activation function is utilized on the output layer to 051

interpret each value as the probability of belonging 052

to a particular class. The class prediction for any 053

sample is most often equal to the class with the 054

largest softmax probability in the output layer. 055

It has been shown that misclassifications may arise 056

even when the largest softmax probability is close 057

to one [1]. Nonetheless, a pattern was discovered 058

where the maximum softmax probability tended to 059

be smaller for incorrectly classified samples than 060

for correctly classified samples. This discovery was 061

used to make a simple threshold-based misclassifi- 062

cation detector, see [2], called Maximum Softmax 063

Probability (MSP) Detector. 064

In [3], a method named DOCTOR for misclassifi- 065

cation detection was proposed, based on an approxi- 066

mation of the misclassification probability, Pe(x), for 067

a particular sample x by only using the softmax out- 068

put layer values, PŶ |X(c | x), for each class c of total 069

C classes. In particular Pe(x) ≈ 1−
∑C

c=1 P
2
Ŷ |X(c | 070

x). The method flags a prediction as untrustworthy 071

whenever the odds of a misclassification event is 072

larger than some threshold. 073

From our literature search, it is apparent that the 074

DOCTOR and MSP-detector methods represent the 075

current state of the art of misclassification detection, 076

which we use for comparison to SPARDACUS. 077

The SafetyCage, introduced in [4], is another mis- 078

classification detector. This statistical framework 079

collects the pre-activation vector in each layer, and 080

assumes the corresponding multivariate probabil- 081

ity density function (PDF) of correctly predicted 082

in-distribution samples to follow a Gaussian distribu- 083

tion. These PDFs, per class, are fitted to the training 084

data of the NN model. To infer the uncertainty of a 085

class prediction, the Mahalanobis distance, inspired 086

by the approach described in [5], is used to mea- 087

sure the likeliness that the pre-activation values, in 088

each layer, are generated from the fitted Gaussian 089

distribution of correctly predicted samples. This 090

Mahalanobis-based SafetyCage was tested on two 091

feed-forward neural networks trained on benchmark 092

datasets MNIST and CIFAR-10, respectively. The 093

classifier trained on the MNIST dataset had an accu- 094

racy of 0.93, whereas the one trained on CIFAR-10 095
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had an accuracy of 0.48. It was observed that for096

the well-performing MNIST model, the multivariate097

Mahalanobis SafetyCage was able to detect and flag098

60% of the wrong classifications. On the other hand,099

for the CIFAR-10 model with poor performance, the100

SafetyCage was no better than random guessing. Af-101

ter closer inspection, the assumption of Gaussianity102

of the pre-activation vector for the CIFAR-10 model103

was not accurate [4].104

While the Mahalanobis-based SafetyCage only105

uses samples that are correctly predicted, we pro-106

pose the SPARDACUS method for misclassification107

detection that uses both correctly and wrongly clas-108

sified samples. We compare the results of SPAR-109

DACUS to the previous SafetyCage, the DOCTOR110

method, and the MSP-detector method.111

We note that a task related to the detection of112

misclassifications is what is called out-of-distribution113

(OOD) detection, where the aim is to detect when-114

ever an input sample is inherently different from115

the data used during training of the model, and116

hence the corresponding prediction should not be117

trusted. However, the most insidious misclassifica-118

tions happen with in-distribution data, for which119

the model would be assumed to work correctly, and120

not OOD-data. Indeed, in [6] it is shown that the121

best OOD-detector is not always the best at de-122

tecting NN classification errors. The authors in [6]123

further emphasize that if the focus is on use of NNs124

in safety-critical applications, misclassification detec-125

tion should be the paramount focus, and not OOD-126

detection. For these reasons, this work focuses on127

misclassification detection using in-distribution data,128

and will not draw a comparison to OOD-detection129

methods.130

2 Methods131

2.1 SPARDACUS132

Consider the function Fi,l which corresponds to the133

PDF that generates the activation values at layer134

l for a sample correctly predicted as class i by the135

NN classifier. Conversely, let Gi,l correspond to the136

PDF that generates the activation values for incor-137

rectly classified samples. Given these two PDFs,138

one may infer which distribution a new test sample139

x′ belongs to by designing a decision procedure to140

flag wrongly classified samples. In principle this is141

a binary classification problem to which we could142

apply any ML method to predict if x′ is correctly143

or wrongly classified; but if Fi,l and Gi,l could be144

approximated directly, statistical tests backed by145

solid theory would become available. A direct appli-146

cation of this procedure is however challenging, since147

the dimensionality of the PDFs is linked to the size148

of the NN classifier’s layers; i.e. large layers imply149

high-dimensional PDFs. To combat this, we project150

Figure 1. Notation in high dimension and correspond-
ing notation in dimension 1 after the random vector Xi,l

is projected onto the one-dimensional subspace defined
by β̂i,l for class i and layer l.

the data for each layer and class to one dimension, 151

effectively collapsing the multi-dimensional PDFs 152

into one-dimensional ones. The goal is to obtain two 153

PDFs along this 1D-projection, denoted fi,l and gi,l, 154

which are minimally overlapping. The PDFs are 155

estimated using the same training data the classifier 156

is constructed from. 157

To this end, Mueller et al. [7] propose an 158

approach referred to as a Sparse Differences 159

Analysis (SPARDA), which given observed samples 160

from two multivariate PDFs, searches for the 161

optimal projection maximising the Wasserstein 162

distance between the projected 1D empirical 163

distribution functions (ECDFs). This is a non- 164

smooth, non-concave optimization problem. We 165

apply the fastSPARDA optimization algorithm 166

available at https://bitbucket.org/jwmueller/ 167

principal-differences-analysis/src/master/. 168

The optimization problem includes a regularization 169

parameter λ to induce sparsity in the projection. We 170

denote the projection direction given by SPARDA 171

as β̂i,l, and ϱi,l as the projected random variable 172

of activations along β̂i,l. Figure 1 summarises the 173

projection operation and notation. 174

If a new sample x′ is predicted to be a member 175

of class i, one can infer at any given layer l whether 176

it is more likely generated from fi,l(ρ) or gi,l(ρ) by 177

inspecting the observed value ρ along the projection. 178

However, fi,l(ρ) and gi,l(ρ) are unknown. To over- 179

come this, we fit each PDF as a Gaussian mixture 180

model due to its flexibility and computational effi- 181

ciency. A typical situation with overlapping can be 182

seen in Figure 2 showing histograms of f7,−1 and 183

g7,−1 on training data and test data for the class 184

(digit) 7 from MNIST, with l = −1 indicating the 185

output layer. 186

2.2 Inference 187

With inspiration from the likelihood ratio test we 188

define the statistic, Si,l(ϱi,l), using the two afore- 189

mentioned PDFs for a random variable ϱi,l with 190

observed values along the projection β̂i,l: 191

Si,l(ϱi,l) = − ln

(
fi,l
(
ϱi,l
)

gi,l (ϱi,l)

)
. (1) 192
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Figure 2. Illustration of the PDFs for f7,−1 and g7,−1

on both the training data and the test data. This repre-
sents the digit 7, output layer, and the MNIST model.

Moreover, consider the statistic Si,l
C (ϱi,lf ) where193

ϱi,lf ∼ fi,l(ρ). The corresponding PDF of Si,l
C , de-194

noted hC(s
i,l
c ), is the PDF we expect for samples195

with correct class prediction i. The larger the value196

of si,l, the more unlikely it is generated from hC(s
i,l
C ).197

We define the following hypothesis test for a test198

sample x′ with class prediction ŷ′:199

H0 : S
ŷ′,l ∼ hC(s

ŷ′,l) vs. H1 : S
ŷ′,l ̸∼ hC(s

ŷ′,l).
(2)200

A corresponding p-value for an observed value201

sŷ
′,l can be computed as pSC

= P (Sŷ′,l
C ≥ sŷ

′,l) =202

1−HC(s
ŷ′,l) with HC(s

ŷ′,l) the CDF of Sŷ′,l
C . Recall203

that a p-value under the null hypothesis will follow204

a uniform probability distribution (pH0

SC
∼ U(0, 1)).205

A small p-value indicates the unlikeliness that sŷ
′,l

206

is generated from fŷ′,l(ρ). Rather, it is an indica-207

tion that sŷ
′,l is generated from gŷ′,l(ρ). The null208

hypothesis can then be rejected, ultimately flagging209

a prediction as wrong, for a p-value less than a210

predefined significance level αC .211

Notice that one can also define the statistic212

Si,l
W (ϱi,lg ) where ϱi,lg ∼ gi,l(ρ). Using this statistic213

instead, one can construct in the same way a hypoth-214

esis test with significance level αW . See Appendix215

A for more information.216

We emphasize that, unlike the Mahalanobis Safe-217

tyCage [4], the SPARDACUS SafetyCage does not218

rely on pre-activation values, as there is no longer219

need to assume Gaussianity.220

2.2.1 Estimation of p-values from the S221

statistics222

As the PDFs fi,l and gi,l are estimated as a Gaus-223

sian mixture model, the corresponding PDFs of Si,l
C224

and Si,l
W are not always easily accessible. An easy225

way to estimate the PDFs of Si,l
C and Si,l

W is via226

Monte Carlo simulation. After a specified number of227

repeated generations from fi,l and gi,l, we can com-228

pute the ECDFs of Si,l
C and Si,l

W , denoted F̂ i,l
C (si,l) 229

and F̂ i,l
W (si,l). From this we can estimate the corre- 230

sponding p-values as: 231

p̂lSC
(sŷ′,l) = 1− F̂ ŷ′,l

c (sŷ′,l), 232

and 233

p̂lSW
(sŷ′,l) = F̂ ŷ′,l

w (sŷ′,l). 234

Whether to use Si,l
C or Si,l

W to get the most ro- 235

bust results will be based on the accuracies of the 236

estimated PDFs fi,l and gi,l. 237

The notation so far has been focused on a partic- 238

ular layer l. By our method, each layer l provides a 239

p-value. These p-values can be combined into one, 240

using any p-value combination test. To this end, 241

we will apply the Cauchy combination test as it is 242

robust for statistically correlated p-values [8]. We 243

denote p̂SC
and p̂SW

the final p-values when using ei- 244

ther statistic SC or SW , respectively. Algorithms for 245

the method is given in B.1 and B.2 in the Appendix 246

where we separate between the training phase of the 247

SPARDACUS method, and the subsequent detection 248

procedure. 249

3 Results 250

We will evaluate our method by using the same 251

setup as in [4], where a feed-forward neural network 252

is trained on MNIST, yielding a well-performing 253

model (accuracy of 0.98), and on CIFAR-10 yielding 254

a poor-performing model (accuracy of 0.48). The 255

neural network consists of two hidden layers, with 256

256 and 128 neurons respectively, and ReLu activa- 257

tion functions, along with an output layer featuring 258

ten neurons with Softmax activation. Training uti- 259

lized the standard Adam optimizer. Once the model 260

is trained, our method estimates the projections β̂i,l 261

and corresponding PDFs fi,l, gi,l for all classes and 262

layers (except the input layer, i.e. the images). On 263

a held-out test data disjoint from the data the NN 264

model was trained on, we evaluate our misclassifi- 265

cation detector for different values of αC and αW . 266

Additionally, we present tables showing the preci- 267

sion, recall, specificity, negative predictive value as 268

well as the MCC for the best performing α value. 269

We advocate for using the Matthews correlation 270

coefficient (MCC) as the most meaningful perfor- 271

mance metric to evaluate any binary classification 272

model [9]. The MCC ranges from -1, meaning the 273

classifier is always wrong, to 1 meaning a perfect 274

classifier. A coin tossing classifier with a 50 % chance 275

to assign a prediction to either of the two classes will 276

give MCC = 0 [9]. Also by definition, a classifier that 277

predicts only one class every time will give MCC = 278

0 (see [9] for more details). We compare our method 279

with the MSP-detector method introduced in [2], the 280

DOCTOR method [3], and the SafetyCage method 281

introduced in [4]. The threshold in SPARDACUS 282
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and in [4] can be interpreted as the same, as they283

both are based on p-values. The threshold for the284

MSP-detector method is with respect to the prob-285

ability of the prediction, while for the DOCTOR286

method it is with respect to the estimated odds of287

misclassification.288

For the Mahalanbois SafetyCage and the SPAR-289

DACUS method, we evaluate the results for different290

layer aggregations (combining p-values from differ-291

ent layers) to investigate the information that is292

covered in the different layers. Specifically, we in-293

vestigate when only applying the output layer (out),294

the penultimate layer (pen) or all hidden layers plus295

the output layer (all).296

3.1 SPARDACUS Results297

In all results to come, the SPARDA projection β̂i,l298

was computed by setting λ = 0, imposing no regular-299

ization, and using the fastSPARDA algorithm. We300

used Monte Carlo simulations to estimate the CDFs301

of the S statistics by generating 1 million samples.302

Tables 1 and 2 show the best results, ranked with303

respect to the MCC, for the four methods on the304

MNIST model and CIFAR-10 model respectively305

when the optimal threshold as well as the parame-306

ters and PDFs for the Mahalanobis SafetyCage and307

SPARDACUS methods are estimated on the train-308

ing data. The methods are evaluated on the unseen309

test data.310

Notice that for all methods, only using the output311

layer turned out to give the largest MCC value. The312

same applies to the SafetyCage Mahalanobis, an313

aspect that was not investigated in the original paper314

[4] where only hidden layers up to the penultimate315

layer were investigated.316

We also show the precision, recall, specificity, and317

negative predictive value (NPV) for each case. While318

the outputs of the MSP and DOCTOR methods319

are deterministic, the 1D-projections calculated in320

SPARDACUS using the SPARDA algorithm, result321

in stochasticity. For this method we therefore show322

the result of five runs in terms of mean and standard323

deviation. Notice the small variation in MCC. After324

closer inspection, this is due to nearly equal 1D-325

projection.326

In Figures 3 and 4, for each of the misclassification327

detectors, we show how the MCC varies for differ-328

ent threshold values on the test data for MNIST329

and CIFAR-10 respectively. We see that the SPAR-330

DACUS method is most sensitive to the choice of331

threshold with respect to performance, with a sharp332

peak for the optimal threshold. At the same time,333

if we compare the MCC values at the peaks for334

each method, the SPARDACUS method achieves335

by a small margin the highest MCC values for both336

datasets. See Table C.1 in Appendix C where the337

MCC values at the peaks for the SPARDACUS338

Figure 3. Plots showing thresholds vs MCC for the
misclassification detectors for the test data with the
MNIST model.

Figure 4. Plots showing thresholds vs MCC for the
misclassification detectors for the test data with the
CIFAR-10 model.

method are extracted. Here, we also include results 339

when applying different sets of layers for the SPAR- 340

DACUS method which confirms that only using the 341

output layer yields the highest MCC values. 342

In practice we do not know in advance what the 343

optimal threshold is. To estimate the threshold on 344

the same data that the ML model is trained on can 345

make sense in terms of utilizing all data available, 346

particularly for data-driven methods such as the Ma- 347

halanobis SafetyCage and the SPARDACUS, where 348

also PDFs are fitted to data. However, in certain 349

situations the training data is not available, and 350

instead new data must be collected during deploy- 351

ment. Moreover, using the training data may lead to 352

overfitting and less generalization capabilities. For 353

comparison, we include the scenario where the pa- 354

rameters needed for each misclassification detection 355

method, including the threshold value, are estimated 356

based on data never used by the ML model. We 357

do this by randomly splitting the test data (10 000 358

samples) equally in two subsets, estimate the param- 359

eters on the first subset, and evaluate the detection 360

methods on the second subset. To account for dif- 361

ference in performance with respect to the splitting 362

of data, we repeat the process five times each with 363

random splitting of the test data. The results are 364

4
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Method S L Threshold Prec. Recall Spec. NPV MCC
DOCTOR — out 1.13E-01 0.409 0.662 0.978 0.992 0.507
MSP — out 9.46E-01 0.408 0.658 0.978 0.992 0.504
SPARDACUS SC out 9.41E-03 0.457 0.554 0.985 0.990 0.491 ± 0.010
SafetyCage Maha. — out 8.98E-03 0.213 0.518 0.957 0.988 0.310

Table 1. Results ordered by the MCC score for each method on the MNIST dataset when the threshold is
optimized on the training data, and evaluated on the test data. Due to Stochasticity in the SPARDACUS method
we do five runs, and present the performance metrics with the respect to the average, and additionally the MCC
with ± standard deviation. The SafetyCage Mahalanobis method is taken from [4]. The MSP-detector and
DOCTOR methods utilise a threshold T , while SPARDACUS and SafetyCage have a significance level α.

Method S L Threshold Prec. Recall Spec. NPV MCC
SPARDACUS SW out 3.67E-06 0.646 0.783 0.550 0.707 0.343± 0.003
MSP — out 6.27E-01 0.636 0.807 0.515 0.718 0.338
DOCTOR — out 9.99E-01 0.623 0.858 0.462 0.744 0.337
SafetyCage Maha. — out 8.98E-03 0.213 0.51 0.15 0.57 0.070

Table 2. Same procedure and results as for Table 1, however with respect to the CIFAR-10 dataset.

given in Tables 3 and 4.365

Based on the experiments and following results366

we see that the SPARDACUS method is superior to367

the SafetyCage Mahalanobis method from [4]. More-368

over, compared to the MSP-detector and DOCTOR369

methods, the SPARDACUS method using the SC370

and SW is essentially on par.371

As expected, all methods performed much better372

on the well-performing model, due to there being373

more useful information encoded in the activation374

values that could be extracted and used to flag in-375

correct predictions. Interestingly, the output layer376

was by far the most useful layer, which aids to show377

how this is a markedly different problem compared378

to OOD where the output layer can be less infor-379

mative [5]. An interesting observation can be made380

regarding the SPARDACUS method yielding the381

best results when evaluating only the output layer.382

When inspecting the fitted projection at the output383

layer, β̂i,−1, and specifically looking at using SC384

for the MNIST model, we see that for every pre-385

dicted class, the associated projection vector has its386

maximal-value element in the position corresponding387

to the predicted class itself. In fact, on average the388

maximum value along the class prediction dimen-389

sion was 2.88 times larger than the second largest390

element. This shows that the projection vector for a391

specific class is heavily dominated by the dimension392

along the class itself. This is in fact in correspon-393

dence with the MSP-detector method, where the394

corresponding projection would have zero-elements395

along all dimensions except for the class dimension.396

This shows that, in the special case of being applied397

to only the output layer, SPARDACUS can be seen398

as an extension of the MSP-detector method.399

In all cases, SC performed better for the well-400

performing model, while SW was better for the poor-401

performing model.402

4 Discussion and Conclusion 403

In this work, we presented a method to infer whether 404

a particular sample is wrongly classified by an un- 405

derlying NN model. SPARDACUS is based on a 406

SPARDA projection maximizing the Wasserstein 407

distance of the PDFs of the samples that were cor- 408

rectly and wrongly classified, and a hypothesis test 409

inspired by the likelihood-ratio test. SPARDACUS 410

can be applied at any stage of an NN classifier, and 411

with an easy extension it could also draw information 412

from any arbitrary combination of layers. 413

We tested SPARDACUS on two simple NN clas- 414

sifiers, one well-performing trained on MNIST and 415

one poorly performing trained on CIFAR-10. The 416

results have further been compared with three pre- 417

existing methods from the literature: The DOCTOR 418

method, the Mahalanobis-based method presented 419

in [4], and the MSP-detector method [2]. 420

Our results show that SPARDACUS significantly 421

outperforms the Mahalanobis SafetyCage [4], where 422

in particular, detection performance on the inaccu- 423

rate classifier for CIFAR-10 has been improved by 424

an order of magnitude. The MSP, DOCTOR and 425

SPARDACUS are essentially performing at com- 426

parable levels with respect to the MCC values as 427

shown in Tables 1, 2, 3 and 4. It is worth not- 428

ing how SPARDACUS is an extension of the MSP- 429

detector, being in principle (for large λ) equivalent 430

to it when only considering the output layer. How- 431

ever, in contrast to the MSP and DOCTOR method, 432

SPARDACUS can draw information from not only 433

the output layer, but also hidden layers in the NN 434

classifier. For the particular examples of datasets/- 435

models shown in this work, including information 436

from the hidden layers has not shown a definite ad- 437

vantage when compared to only using the output 438

layer’s information. Nonetheless, we regard it as 439
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Method S L Threshold Prec. Recall Spec. NPV MCC
MSP — out 9.33E-01 0.434 0.629 0.980 0.991 0.509 ± 0.0159
DOCTOR — out 1.24E-01 0.415 0.657 0.979 0.992 0.507 ± 0.023
SPARDACUS SC out 3.19E-02 0.373 0.700 0.974 0.994 0.496 ± 0.023
SafetyCage Maha. — out 2.26E-02 0.173 0.613 0.934 0.991 0.295 ± 0.027

Table 3. Results ordered by the MCC score for each misclassification detetction method on the MNIST dataset
when the threshold is optimized on half the test data (5000 samples), and the methods are evaluated on the other
half. The threshold and performance metrics are presented with the average value based on five random splits of
the test data. The variation in MCC is additionally presented in terms of ± standard deviation.

Method S L Threshold Prec. Recall Spec. NPV MCC
DOCTOR — out 9.55E-01 0.618 0.862 0.443 0.755 0.338 ± 0.012
MSP — out 5.98E-01 0.645 0.772 0.554 0.701 0.336 ± 0.009
SPARDACUS SW out 3.20E-06 0.649 0.749 0.579 0.690 0.333± 0.013
SafetyCage Maha. — out 6.53E-01 0.524 0.634 0.401 0.528 0.043 ± 0.015

Table 4. Same procedure and results as for Table 3, however with respect to the CIFAR-10 dataset.

an interesting research path to investigate whether440

this is always the case, or whether modifications are441

needed to take more advantage of the information in442

the hidden layers. Of all investigated methods, the443

performance of the SPARDACUS method is most444

sensitive to the choice of threshold. Clearly, SPAR-445

DACUS is more involved than the MSP-detector446

and DOCTOR methods both in terms of theoretical447

background and computational complexity. Even448

though MSP, DOCTOR and SPARDACUS are close449

in performance with respect to the MCC, we regard450

SPARDACUS to have three advantages: Firstly,451

SPARDACUS is most flexible. The flexibility that452

the three methods share is the choice of threshold.453

Other than that the MSP and DOCTOR method is454

static in terms of deterministic computations (in the455

output layer only), while the SPARDACUS method456

can be investigated further in several ways. Here,457

we list some aspects to investigate: 1) We have458

used the Wasserstein distance, but one may substi-459

tute it with other statistically-relevant distances. 2)460

The SPARDA projection can be investigated fur-461

ther using other optimization algorithms. 3) The462

importance from different layers can be weighted463

during training, e.g. by deploying Cauchy weights464

in the Cauchy combination test. 4) Experiment-465

ing with the λ regularization parameter, or other466

significant statistics in place of Si,l is possible. Sec-467

ondly, SPARDACUS can be refitted and updated for468

newly labelled data of misclassifications, in terms469

of projections and PDFs, while the MSP-detector470

and DOCTOR methods can only be updated with471

respect to the threshold. Thirdly, by being able to472

inspect not only the output layer, but also the inner473

working of the neural network in terms of previous474

layers, we believe that the framework SPARDACUS475

builds on can help us not only answer the question476

whether a classification is false, but also why it is477

false.478
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7.531

A The statistic SW532

In a similar fashion as for the statistic SC , define533

the statistic534

Sŷ′,l
W = − ln

fŷ′,l

(
ϱŷ

′,l
g

)
gŷ′,l

(
ϱŷ

′,l
g

)
 , (3)535

where ϱi,lg ∼ gi,l(ρ). Using this statistic, one can536

construct in the same way as for the statistic SC ,537

develop a hypothesis test:538

H0 : S
ŷ′,l ∼ hW (sŷ

′,l) vs. H1 : S
ŷ′,l ̸∼ hW (sŷ

′,l).
(4)539

The null hypothesis in this case shows that the540

sample x′ is wrongly classified, and the p-value is541

computed as pSW
= P (Sŷ′,l

w ≤ sŷ
′,l), this time as a542

right-sided test since a small observed sŷ
′,l now indi-543

cates the sample x′ is correctly classified. The null544

hypothesis is rejected for a predefined significance545

level αw.546

B Algorithms547

Algorithm B.1 outlines the training phase of the548

SPARDACUS method where the 1D projections are549

estimated followed by PDFs fitted to data along550

the projections for correctly and wrongly classified551

predictions. Algorithm B.2 outlines the deployment552

phase of the SPARDACUS method for a new incom-553

ing data point {x′, ŷ′}.554

Algorithm B.1 Training phase of SPARDACUS

Consider a dataset D = {xk, yk, ŷ(xk)}Nk=1 of in-
put samples xk, true class labels yk ∈ {i}Ci=1 and
model predictions M(xk) = ŷk. The activation
values of layer l for sample k in model M is de-

noted as a
(M)
k,l . Define statistic S = SC or S = SW .

Let Q be number of Monte Carlo simulations. Let
F i,l and T i,l be the set of correctly and incorrect
predictions for class i and layer l.
for l in L do
for i in 1, . . . , C do

▷ Pi = {k | ŷ(xk) = i}: Extract samples
predicted to belong to class i.
for k ∈ Pi do

▷ xk,l = a
(M)
k,l .

if ŷ(xk) = yk then
▷ T i,l ← T i,l ∪ {xk,l}: Add activations
to set T i,l.

else
▷ F i,l ← F i,l ∪ {xk,l}: Add activations
to set F i,l.

end if
▷ β̂i,l = SPARDA(T i,l, F i,l, dw): Use

SPARDA to compute projection β̂i,l that
maximizes the Wasserstein distance, dw,
between T i,l and F i,l.
▷ Estimate fi,l(ρ) using GMM from the

projections along β̂i,l in T i,l.
▷ Estimate gi,l(ρ) using GMM from from

the projections along β̂i,l in F i,l.
if S = SC then
▷ ρ1, . . . , ρQ ∼ fi,l(ρ): Monte-Carlo gen-
erations
▷ ComputeQ realizations from the statis-
tic in (1).
▷ Estimate CDF of SC via ECDF of the
Q realizations and collect.

else if S = SW then
▷ ρ1, . . . , ρQ ∼ gi,l(ρ): Monte-Carlo gen-
erations
▷ ComputeQ realizations from the statis-
tic in (1).
▷ Estimate CDF of SW via ECDF from
the Q realizations and collect.

end if
end for

end for
end for

Algorithm B.2 Inference phase of SPARDACUS

Given input x′ with model prediction ŷ′, and
threshold α ∈ [0, 1].
for l in L do
▷ Compute p-value based on estimated CDF
(ECDF) of Sŷ′,l.

end for
▷ Compute Cauchy combination test statistic
pcauchy from observed p-values from investigated
layers [8].
▷ Declare prediction ŷ′ as false if pcauchy < α
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C All SPARDACUS results555

Table C.1 shows the maximum MCC values achiev-556

able for SPARDACUS method on the test data for557

several different parameter sets including which lay-558

ers are used (output, hidden, penultimate, all) and559

which statistic (SC or SW ).560

Data Method S L Thresh. Prec. Recall Spec. NPV MCC
MNIST SPARDACUS SC out 1.46E-02 0.420 0.700 0.970 0.993 0.529 ± 0.002
MNIST SPARDACUS SC all 3.25E-02 0.332 0.721 0.967 0.993 0.473 ± 0.001
MNIST SPARDACUS SW out 2.43E-06 0.391 0.551 0.980 0.990 0.450 ± 0.014
MNIST SPARDACUS SC pen 4.08E-02 0.207 0.406 0.965 0.986 0.267 ± 0.001
CIFAR SPARDACUS SW all 6.80E-06 0.645 0.790 0.543 0.712 0.345± 0.001
CIFAR SPARDACUS SW out 3.28E-06 0.650 0.773 0.563 0.703 0.344± 0.001
CIFAR SPARDACUS SC out 3.80E-01 0.650 0.690 0.609 0.652 0.301± 0.000
CIFAR SPARDACUS SC all 5.37E-01 0.604 0.774 0.486 0.664 0.255± 0.001
CIFAR SPARDACUS SW pen 1.24E-01 0.593 0.692 0.500 0.608 0.196± 0.000

Table C.1. Results for the SPARDACUS method when
applying different sets of layers for both the MNIST and
CIFAR-10 datasets.
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