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Abstract

Given the increasing adoption of machine learning
techniques in society and industry, it is important
to put procedures in place that can infer and sig-
nal whether the prediction of an ML model may be
unreliable. This is not only relevant for ML special-
ists, but also for laypersons who may be end-users.
In this work, we present a new method for flag-
ging possible misclassifications from a feed-forward
neural network in a general multi-class problem,
called SPARDA-enabled Classification Uncertainty
Scorer (SPARDACUS). For each class and layer, the
probability distribution functions of the activations
for both correctly and wrongly classified samples
are recorded. Using a Sparse Difference Analysis
(SPARDA) approach, an optimal projection along
the direction maximizing the Wasserstein distance
enables p-value computations to confirm or reject the
class prediction. Importantly, while most existing
methods act on the output layer only, our method
can in addition be applied on the hidden layers in
the neural network, thus being useful in applica-
tions, such as feature extraction, that necessarily
exploit the intermediate (hidden) layers. We test
our method on both a well-performing and under-
performing classifier, on different datasets, and com-
pare with other previously published approaches.
Notably, while achieving performance on par with
two state-of-the-art-level methods, we significantly
extend in flexibility and applicability. We further
find, for the models and datasets chosen, that the
output layer is indeed the most valuable for misclas-
sification detection, and adding information from
previous layers does not necessarily improve perfor-
mance in such cases.

1 Introduction

A crucial consideration when deploying a machine
learning (ML) model in real-life applications is the
ability to infer how reliable the predictions are. As
an example, consider a model used to detect a haz-
ardous situation within an industrial facility. First,
it is important that the model can capture an unsafe
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situation as it happens to then signal the operators.
Second, to achieve trust, the model should not raise
false alarms too frequently, or future warnings lose
credibility. Thus, to deploy the ML model in a real-
world setting, the reliability of its predictions need
to be considered in some way prior to making actual
decisions (such as stopping the production line).

In most neural network (NN) classifiers, a softmax
activation function is utilized on the output layer to
interpret each value as the probability of belonging
to a particular class. The class prediction for any
sample is most often equal to the class with the
largest softmax probability in the output layer.

It has been shown that misclassifications may arise
even when the largest softmax probability is close
to one [1]. Nonetheless, a pattern was discovered
where the maximum softmax probability tended to
be smaller for incorrectly classified samples than
for correctly classified samples. This discovery was
used to make a simple threshold-based misclassifi-
cation detector, see [2], called Maximum Softmax
Probability (MSP) Detector.

In [3], a method named DOCTOR for misclassifi-
cation detection was proposed, based on an approxi-
mation of the misclassification probability, Pe(x), for
a particular sample x by only using the softmax out-
put layer values, PŶ |X(c | x), for each class c of total

C classes. In particular Pe(x) ≈ 1−
∑C

c=1 P
2
Ŷ |X(c |

x). The method flags a prediction as untrustworthy
whenever the odds of a misclassification event is
larger than some threshold.

From our literature search, it is apparent that the
DOCTOR and MSP-detector methods represent the
current state of the art of misclassification detection,
which we use for comparison to SPARDACUS.

The SafetyCage, introduced in [4], is another mis-
classification detector. This statistical framework
collects the pre-activation vector in each layer, and
assumes the corresponding multivariate probabil-
ity density function (PDF) of correctly predicted
in-distribution samples to follow a Gaussian distribu-
tion. These PDFs, per class, are fitted to the training
data of the NN model. To infer the uncertainty of a
class prediction, the Mahalanobis distance, inspired
by the approach described in [5], is used to mea-
sure the likeliness that the pre-activation values, in

Proceedings of the 6th Northern Lights Deep Learning Conference (NLDL), PMLR 265, 2025.
LM 2025 P̊al Vegard Johnsen, Filippo Remonato, Shawn Benedict, & Albert Kwesi Ndur-Osei. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/


each layer, are generated from the fitted Gaussian
distribution of correctly predicted samples. This
Mahalanobis-based SafetyCage was tested on two
feed-forward neural networks trained on benchmark
datasets MNIST and CIFAR-10, respectively. The
classifier trained on the MNIST dataset had an accu-
racy of 0.93, whereas the one trained on CIFAR-10
had an accuracy of 0.48. It was observed that for
the well-performing MNIST model, the multivariate
Mahalanobis SafetyCage was able to detect and flag
60% of the wrong classifications. On the other hand,
for the CIFAR-10 model with poor performance, the
SafetyCage was no better than random guessing. Af-
ter closer inspection, the assumption of Gaussianity
of the pre-activation vector for the CIFAR-10 model
was not accurate [4].

While the Mahalanobis-based SafetyCage only
uses samples that are correctly predicted, we pro-
pose the SPARDACUS method for misclassification
detection that uses both correctly and wrongly clas-
sified samples. We compare the results of SPAR-
DACUS to the previous SafetyCage, the DOCTOR
method, and the MSP-detector method.
We note that a task related to the detection of

misclassifications is what is called out-of-distribution
(OOD) detection, where the aim is to detect when-
ever an input sample is inherently different from
the data used during training of the model, and
hence the corresponding prediction should not be
trusted. However, the most insidious misclassifica-
tions happen with in-distribution data, for which
the model would be assumed to work correctly, and
not OOD-data. Indeed, in [6] it is shown that the
best OOD-detector is not always the best at de-
tecting NN classification errors. The authors in [6]
further emphasize that if the focus is on use of NNs
in safety-critical applications, misclassification detec-
tion should be the paramount focus, and not OOD-
detection. For these reasons, this work focuses on
misclassification detection using in-distribution data,
and will not draw a comparison to OOD-detection
methods.

2 Methods

2.1 SPARDACUS

Consider the function Fi,l which corresponds to the
PDF that generates the activation values at layer
l for a sample correctly predicted as class i by the
NN classifier. Conversely, let Gi,l correspond to the
PDF that generates the activation values for incor-
rectly classified samples. Given these two PDFs,
one may infer which distribution a new test sample
x′ belongs to by designing a decision procedure to
flag wrongly classified samples. In principle this is
a binary classification problem to which we could
apply any ML method to predict if x′ is correctly

Figure 1. Notation in high dimension and correspond-
ing notation in dimension 1 after the random vector Xi,l

is projected onto the one-dimensional subspace defined
by β̂i,l for class i and layer l.

or wrongly classified; but if Fi,l and Gi,l could be
approximated directly, statistical tests backed by
solid theory would become available. A direct appli-
cation of this procedure is however challenging, since
the dimensionality of the PDFs is linked to the size
of the NN classifier’s layers; i.e. large layers imply
high-dimensional PDFs. To combat this, we project
the data for each layer and class to one dimension,
effectively collapsing the multi-dimensional PDFs
into one-dimensional ones. The goal is to obtain two
PDFs along this 1D-projection, denoted fi,l and gi,l,
which are minimally overlapping. The PDFs are
estimated using the same training data the classifier
is constructed from.

To this end, Mueller et al. [7] propose an
approach referred to as a Sparse Differences
Analysis (SPARDA), which given observed samples
from two multivariate PDFs, searches for the
optimal projection maximising the Wasserstein
distance between the projected 1D empirical
distribution functions (ECDFs). This is a non-
smooth, non-concave optimization problem. We
apply the fastSPARDA optimization algorithm
available at https://bitbucket.org/jwmueller/

principal-differences-analysis/src/master/.
The optimization problem includes a regularization
parameter λ to induce sparsity in the projection. We
denote the projection direction given by SPARDA
as β̂i,l, and ϱi,l as the projected random variable
of activations along β̂i,l. Figure 1 summarises the
projection operation and notation.

If a new sample x′ is predicted to be a member
of class i, one can infer at any given layer l whether
it is more likely generated from fi,l(ρ) or gi,l(ρ)
by inspecting the observed value ρ along the pro-
jection. However, fi,l(ρ) and gi,l(ρ) are unknown.
To overcome this, we fit each PDF as a Gaussian
mixture model (GMM) due to its flexibility and
computational efficiency. A typical situation with
overlapping can be seen in Figure 2 showing his-
tograms of f7,−1 and g7,−1 on training data and test
data for the class (digit) 7 from MNIST, with l = −1
indicating the output layer.
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Figure 2. Illustration of the PDFs for f7,−1 and g7,−1

on both the training data and the test data. This repre-
sents the digit 7, output layer, and the MNIST model.

2.2 Inference

With inspiration from the likelihood ratio test we
define the statistic, Si,l(ϱi,l), using the two afore-
mentioned PDFs for a random variable ϱi,l with
observed values along the projection β̂i,l:

Si,l(ϱi,l) = − ln

(
fi,l
(
ϱi,l
)

gi,l (ϱi,l)

)
. (1)

Moreover, consider the statistic Si,l
C (ϱi,lf ) where

ϱi,lf ∼ fi,l(ρ). The corresponding PDF of Si,l
C , de-

noted hC(s
i,l
c ), is the PDF we expect for samples

with correct class prediction i. The larger the value
of si,l, the more unlikely it is generated from hC(s

i,l
C ).

We define the following hypothesis test for a test
sample x′ with class prediction ŷ′:

H0 : S
ŷ′,l ∼ hC(s

ŷ′,l) vs. H1 : S
ŷ′,l ̸∼ hC(s

ŷ′,l).
(2)

A corresponding p-value for an observed value

sŷ
′,l can be computed as pSC

= P (Sŷ′,l
C ≥ sŷ

′,l) =

1−HC(s
ŷ′,l) with HC(s

ŷ′,l) the CDF of Sŷ′,l
C . Recall

that a p-value under the null hypothesis will follow
a uniform probability distribution (pH0

SC
∼ U(0, 1)).

A small p-value indicates the unlikeliness that sŷ
′,l

is generated from fŷ′,l(ρ). Rather, it is an indica-

tion that sŷ
′,l is generated from gŷ′,l(ρ). The null

hypothesis can then be rejected, ultimately flagging
a prediction as wrong, for a p-value less than a
predefined significance level αC .
Notice that one can also define the statistic

Si,l
W (ϱi,lg ) where ϱi,lg ∼ gi,l(ρ). Using this statistic

instead, one can construct in the same way a hypoth-
esis test with significance level αW . See Appendix
A for more information.

We emphasize that, unlike the Mahalanobis Safe-
tyCage [4], the SPARDACUS SafetyCage does not
rely on pre-activation values, as there is no longer
need to assume Gaussianity.

2.2.1 Estimation of p-values from the S
statistics

As the PDFs fi,l and gi,l are estimated as a Gaus-

sian mixture model, the corresponding PDFs of Si,l
C

and Si,l
W are not always easily accessible. An easy

way to estimate the PDFs of Si,l
C and Si,l

W is via
Monte Carlo simulation. After a specified number of
repeated generations from fi,l and gi,l, we can com-

pute the ECDFs of Si,l
C and Si,l

W , denoted F̂ i,l
C (si,l)

and F̂ i,l
W (si,l). From this we can estimate the corre-

sponding p-values as:

p̂lSC
(sŷ′,l) = 1− F̂ ŷ′,l

c (sŷ′,l),

and
p̂lSW

(sŷ′,l) = F̂ ŷ′,l
w (sŷ′,l).

Whether to use Si,l
C or Si,l

W to get the most ro-
bust results will be based on the accuracies of the
estimated PDFs fi,l and gi,l.

The notation so far has been focused on a partic-
ular layer l. By our method, each layer l provides a
p-value. These p-values can be combined into one,
using any p-value combination test. To this end,
we will apply the Cauchy combination test as it is
robust for statistically correlated p-values [8]. We
denote p̂SC

and p̂SW
the final p-values when using ei-

ther statistic SC or SW , respectively. Algorithms for
the method is given in B.1 and B.2 in the Appendix
where we separate between the training phase of the
SPARDACUS method, and the subsequent detection
procedure.

3 Results

We will evaluate our method by using the same
setup as in [4], where a feed-forward neural network
is trained on MNIST, yielding a well-performing
model (accuracy of 0.98), and on CIFAR-10 yielding
a poor-performing model (accuracy of 0.48). The
neural network consists of two hidden layers, with
256 and 128 neurons respectively, and ReLu activa-
tion functions, along with an output layer featuring
ten neurons with Softmax activation. Training uti-
lized the standard Adam optimizer. Once the model
is trained, our method estimates the projections β̂i,l

and corresponding PDFs fi,l, gi,l for all classes and
layers (except the input layer, i.e. the images). On
a held-out test data disjoint from the data the NN
model was trained on, we evaluate our misclassifi-
cation detector for different values of αC and αW .
Additionally, we present tables showing the preci-
sion, recall, specificity, negative predictive value as
well as the MCC for the best performing α value.

We advocate for using the Matthews correlation
coefficient (MCC) as the most meaningful perfor-
mance metric to evaluate any binary classification
model [9]. The MCC ranges from -1, meaning the
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classifier is always wrong, to 1 meaning a perfect
classifier. A coin tossing classifier with a 50 % chance
to assign a prediction to either of the two classes will
give MCC = 0 [9]. Also by definition, a classifier that
predicts only one class every time will give MCC =
0 (see [9] for more details). We compare our method
with the MSP-detector method introduced in [2], the
DOCTOR method [3], and the SafetyCage method
introduced in [4]. The threshold in SPARDACUS
and in [4] can be interpreted as the same, as they
both are based on p-values. The threshold for the
MSP-detector method is with respect to the prob-
ability of the prediction, while for the DOCTOR
method it is with respect to the estimated odds of
misclassification.

For the Mahalanbois SafetyCage and the SPAR-
DACUS method, we evaluate the results for different
layer aggregations (combining p-values from differ-
ent layers) to investigate the information that is
covered in the different layers. Specifically, we in-
vestigate when only applying the output layer (out),
the penultimate layer (pen) or all hidden layers plus
the output layer (all).

3.1 SPARDACUS Results

In all results to come, the SPARDA projection β̂i,l

was computed by setting λ = 0, imposing no regular-
ization, and using the fastSPARDA algorithm. We
used Monte Carlo simulations to estimate the CDFs
of the S statistics by generating 1 million samples.

Tables 1 and 2 show the best results, ranked with
respect to the MCC, for the four methods on the
MNIST model and CIFAR-10 model respectively
when the optimal threshold as well as the parame-
ters and PDFs for the Mahalanobis SafetyCage and
SPARDACUS methods are estimated on the train-
ing data. The methods are evaluated on the unseen
test data.

Notice that for all methods, only using the output
layer turned out to give the largest MCC value. The
same applies to the SafetyCage Mahalanobis, an
aspect that was not investigated in the original paper
[4] where only hidden layers up to the penultimate
layer were investigated.

We also show the precision, recall, specificity, and
negative predictive value (NPV) for each case. While
the outputs of the MSP and DOCTOR methods
are deterministic, the 1D-projections calculated in
SPARDACUS using the SPARDA algorithm, result
in stochasticity. For this method we therefore show
the result of five runs in terms of mean and standard
deviation. Notice the small variation in MCC. After
closer inspection, this is due to nearly equal 1D-
projection.

In Figures 3 and 4, for each of the misclassification
detectors, we show how the MCC varies for differ-
ent threshold values on the test data for MNIST

Figure 3. Plots showing thresholds vs MCC for the
misclassification detectors for the test data with the
MNIST model.

Figure 4. Plots showing thresholds vs MCC for the
misclassification detectors for the test data with the
CIFAR-10 model.

and CIFAR-10 respectively. We see that the SPAR-
DACUS method is most sensitive to the choice of
threshold with respect to performance, with a sharp
peak for the optimal threshold. At the same time,
if we compare the MCC values at the peaks for
each method, the SPARDACUS method achieves
by a small margin the highest MCC values for both
datasets. See Table C.1 in Appendix C where the
MCC values at the peaks for the SPARDACUS
method are extracted. Here, we also include results
when applying different sets of layers for the SPAR-
DACUS method which confirms that only using the
output layer yields the highest MCC values.

In practice we do not know in advance what the
optimal threshold is. To estimate the threshold on
the same data that the ML model is trained on can
make sense in terms of utilizing all data available,
particularly for data-driven methods such as the Ma-
halanobis SafetyCage and the SPARDACUS, where
also PDFs are fitted to data. However, in certain
situations the training data is not available, and
instead new data must be collected during deploy-
ment. Moreover, using the training data may lead to
overfitting and less generalization capabilities. For
comparison, we include the scenario where the pa-
rameters needed for each misclassification detection
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Method S L Threshold Prec. Recall Spec. NPV MCC
DOCTOR — out 1.13E-01 0.409 0.662 0.978 0.992 0.507
MSP — out 9.46E-01 0.408 0.658 0.978 0.992 0.504
SPARDACUS SC out 9.41E-03 0.457 0.554 0.985 0.990 0.491 ± 0.010
SafetyCage Maha. — out 8.98E-03 0.213 0.518 0.957 0.988 0.310

Table 1. Results ordered by the MCC score for each method on the MNIST dataset when the threshold is
optimized on the training data, and evaluated on the test data. Due to Stochasticity in the SPARDACUS method
we do five runs, and present the performance metrics with the respect to the average, and additionally the MCC
with ± standard deviation. The SafetyCage Mahalanobis method is taken from [4]. The MSP-detector and
DOCTOR methods utilise a threshold T , while SPARDACUS and SafetyCage have a significance level α.

Method S L Threshold Prec. Recall Spec. NPV MCC
SPARDACUS SW out 3.67E-06 0.646 0.783 0.550 0.707 0.343± 0.003
MSP — out 6.27E-01 0.636 0.807 0.515 0.718 0.338
DOCTOR — out 9.99E-01 0.623 0.858 0.462 0.744 0.337
SafetyCage Maha. — out 8.98E-03 0.213 0.51 0.15 0.57 0.070

Table 2. Same procedure and results as for Table 1, however with respect to the CIFAR-10 dataset.

method, including the threshold value, are estimated
based on data never used by the ML model. We
do this by randomly splitting the test data (10 000
samples) equally in two subsets, estimate the param-
eters on the first subset, and evaluate the detection
methods on the second subset. To account for dif-
ference in performance with respect to the splitting
of data, we repeat the process five times each with
random splitting of the test data. The results are
given in Tables 3 and 4.

Based on the experiments and following results
we see that the SPARDACUS method is superior to
the SafetyCage Mahalanobis method from [4]. More-
over, compared to the MSP-detector and DOCTOR
methods, the SPARDACUS method using the SC

and SW is essentially on par.

As expected, all methods performed much better
on the well-performing model, due to there being
more useful information encoded in the activation
values that could be extracted and used to flag in-
correct predictions. Interestingly, the output layer
was by far the most useful layer, which aids to show
how this is a markedly different problem compared
to OOD where the output layer can be less infor-
mative [5]. An interesting observation can be made
regarding the SPARDACUS method yielding the
best results when evaluating only the output layer.
When inspecting the fitted projection at the output
layer, β̂i,−1, and specifically looking at using SC

for the MNIST model, we see that for every pre-
dicted class, the associated projection vector has its
maximal-value element in the position corresponding
to the predicted class itself. In fact, on average the
maximum value along the class prediction dimen-
sion was 2.88 times larger than the second largest
element. This shows that the projection vector for a
specific class is heavily dominated by the dimension
along the class itself. This is in fact in correspon-

dence with the MSP-detector method, where the
corresponding projection would have zero-elements
along all dimensions except for the class dimension.
This shows that, in the special case of being applied
to only the output layer, SPARDACUS can be seen
as an extension of the MSP-detector method.

In all cases, SC performed better for the well-
performing model, while SW was better for the poor-
performing model.

4 Discussion and Conclusion

In this work, we presented a method to infer whether
a particular sample is wrongly classified by an un-
derlying NN model. SPARDACUS is based on a
SPARDA projection maximizing the Wasserstein
distance of the PDFs of the samples that were cor-
rectly and wrongly classified, and a hypothesis test
inspired by the likelihood-ratio test. SPARDACUS
can be applied at any stage of an NN classifier, and
with an easy extension it could also draw information
from any arbitrary combination of layers.

We tested SPARDACUS on two simple NN clas-
sifiers, one well-performing trained on MNIST and
one poorly performing trained on CIFAR-10. The
results have further been compared with three pre-
existing methods from the literature: The DOCTOR
method, the Mahalanobis-based method presented
in [4], and the MSP-detector method [2].

Our results show that SPARDACUS significantly
outperforms the Mahalanobis SafetyCage [4], where
in particular, detection performance on the inaccu-
rate classifier for CIFAR-10 has been improved by
an order of magnitude. The MSP, DOCTOR and
SPARDACUS are essentially performing at com-
parable levels with respect to the MCC values as
shown in Tables 1, 2, 3 and 4. It is worth not-
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Method S L Threshold Prec. Recall Spec. NPV MCC
MSP — out 9.33E-01 0.434 0.629 0.980 0.991 0.509 ± 0.0159
DOCTOR — out 1.24E-01 0.415 0.657 0.979 0.992 0.507 ± 0.023
SPARDACUS SC out 3.19E-02 0.373 0.700 0.974 0.994 0.496 ± 0.023
SafetyCage Maha. — out 2.26E-02 0.173 0.613 0.934 0.991 0.295 ± 0.027

Table 3. Results ordered by the MCC score for each misclassification detetction method on the MNIST dataset
when the threshold is optimized on half the test data (5000 samples), and the methods are evaluated on the other
half. The threshold and performance metrics are presented with the average value based on five random splits of
the test data. The variation in MCC is additionally presented in terms of ± standard deviation.

Method S L Threshold Prec. Recall Spec. NPV MCC
DOCTOR — out 9.55E-01 0.618 0.862 0.443 0.755 0.338 ± 0.012
MSP — out 5.98E-01 0.645 0.772 0.554 0.701 0.336 ± 0.009
SPARDACUS SW out 3.20E-06 0.649 0.749 0.579 0.690 0.333± 0.013
SafetyCage Maha. — out 6.53E-01 0.524 0.634 0.401 0.528 0.043 ± 0.015

Table 4. Same procedure and results as for Table 3, however with respect to the CIFAR-10 dataset.

ing how SPARDACUS is an extension of the MSP-
detector, being in principle (for large λ) equivalent
to it when only considering the output layer. How-
ever, in contrast to the MSP and DOCTOR method,
SPARDACUS can draw information from not only
the output layer, but also hidden layers in the NN
classifier. For the particular examples of datasets/-
models shown in this work, including information
from the hidden layers has not shown a definite ad-
vantage when compared to only using the output
layer’s information. Nonetheless, we regard it as
an interesting research path to investigate whether
this is always the case, or whether modifications are
needed to take more advantage of the information in
the hidden layers. Of all investigated methods, the
performance of the SPARDACUS method is most
sensitive to the choice of threshold. Clearly, SPAR-
DACUS is more involved than the MSP-detector
and DOCTOR methods both in terms of theoretical
background and computational complexity. Even
though MSP, DOCTOR and SPARDACUS are close
in performance with respect to the MCC, we regard
SPARDACUS to have three advantages: Firstly,
SPARDACUS is most flexible. The flexibility that
the three methods share is the choice of threshold.
Other than that the MSP and DOCTOR method is
static in terms of deterministic computations (in the
output layer only), while the SPARDACUS method
can be investigated further in several ways. Here,
we list some aspects to investigate: 1) We have
used the Wasserstein distance, but one may substi-
tute it with other statistically-relevant distances. 2)
The SPARDA projection can be investigated fur-
ther using other optimization algorithms. 3) The
importance from different layers can be weighted
during training, e.g. by deploying Cauchy weights
in the Cauchy combination test. 4) Experiment-
ing with the λ regularization parameter, or other
significant statistics in place of Si,l is possible. Sec-

ondly, SPARDACUS can be refitted and updated for
newly labelled data of misclassifications, in terms
of projections and PDFs, while the MSP-detector
and DOCTOR methods can only be updated with
respect to the threshold. Thirdly, by being able to
inspect not only the output layer, but also the inner
working of the neural network in terms of previous
layers, we believe that the framework SPARDACUS
builds on can help us not only answer the question
whether a classification is false, but also why it is
false.
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A The statistic SW

In a similar fashion as for the statistic SC , define
the statistic

Sŷ′,l
W = − ln

fŷ′,l

(
ϱŷ

′,l
g

)
gŷ′,l

(
ϱŷ

′,l
g

)
 , (3)

where ϱi,lg ∼ gi,l(ρ). Using this statistic, one can
construct in the same way as for the statistic SC ,
develop a hypothesis test:

H0 : S
ŷ′,l ∼ hW (sŷ

′,l) vs. H1 : S
ŷ′,l ̸∼ hW (sŷ

′,l).
(4)

The null hypothesis in this case shows that the
sample x′ is wrongly classified, and the p-value is

computed as pSW
= P (Sŷ′,l

w ≤ sŷ
′,l), this time as a

right-sided test since a small observed sŷ
′,l now indi-

cates the sample x′ is correctly classified. The null
hypothesis is rejected for a predefined significance
level αw.

B Algorithms

Algorithm B.1 Training phase of SPARDACUS

Consider a dataset D = {xk, yk, ŷ(xk)}Nk=1 of in-
put samples xk, true class labels yk ∈ {i}Ci=1 and
model predictions M(xk) = ŷk. The activation
values of layer l for sample k in model M is de-

noted as a
(M)
k,l . Define statistic S = SC or S = SW .

Let Q be number of Monte Carlo simulations. Let
T i,l, F i,l include activation values in layer l for
correct and incorrect predictions of class i.
for l in L do
for i in 1, . . . , C do

▷ Pi = {k | ŷ(xk) = i}: Extract samples
predicted to belong to class i. T i,l, F i,l ← ∅
for k ∈ Pi do

▷ xk,l = a
(M)
k,l .

if ŷ(xk) = yk then
▷ T i,l ← T i,l ∪ {xk,l}: Add activations
to set T i,l.

else
▷ F i,l ← F i,l ∪ {xk,l}: Add activations
to set F i,l.

end if
▷ β̂i,l = SPARDA(T i,l, F i,l, dw): Use

SPARDA to compute projection β̂i,l that
maximizes the Wasserstein distance, dw,
between T i,l and F i,l.
▷ Estimate fi,l(ρ) as GMM from the sam-

ples along β̂i,l in T i,l.
▷ Estimate gi,l(ρ) as GMM from the sam-

ples along β̂i,l in F i,l.
if S = SC then
▷ ρ1, . . . , ρQ ∼ fi,l(ρ): Monte-Carlo gen-
erations
▷ ComputeQ realizations from the statis-
tic in (1).
▷ Estimate CDF of SC via ECDF of the
Q realizations and collect.

else if S = SW then
▷ ρ1, . . . , ρQ ∼ gi,l(ρ): Monte-Carlo gen-
erations
▷ ComputeQ realizations from the statis-
tic in (1).
▷ Estimate CDF of SW via ECDF from
the Q realizations and collect.

end if
end for

end for
end for
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Algorithm B.1 outlines the training phase of the
SPARDACUS method where the 1D projections are
estimated followed by PDFs fitted to data along
the projections for correctly and wrongly classified
predictions. Algorithm B.2 outlines the deployment
phase of the SPARDACUS method for a new incom-
ing data point {x′, ŷ′}.

Algorithm B.2 Inference phase of SPARDACUS

Given input x′ with model prediction ŷ′, and
threshold α ∈ [0, 1].
for l in L do
▷ Compute p-value based on estimated CDF
(ECDF) of Sŷ′,l.

end for
▷ Compute Cauchy combination test statistic
pcauchy from observed p-values from investigated
layers [8].
▷ Declare prediction ŷ′ as false if pcauchy < α

C All SPARDACUS results

Table C.1 shows the maximum MCC values achiev-
able for SPARDACUS method on the test data for
several different parameter sets including which lay-
ers are used (output, hidden, penultimate, all) and
which statistic (SC or SW ).

Data Method S L Thresh. Prec. Recall Spec. NPV MCC
MNIST SPARDACUS SC out 1.46E-02 0.420 0.700 0.970 0.993 0.529 ± 0.002
MNIST SPARDACUS SC all 3.25E-02 0.332 0.721 0.967 0.993 0.473 ± 0.001
MNIST SPARDACUS SW out 2.43E-06 0.391 0.551 0.980 0.990 0.450 ± 0.014
MNIST SPARDACUS SC pen 4.08E-02 0.207 0.406 0.965 0.986 0.267 ± 0.001
CIFAR SPARDACUS SW all 6.80E-06 0.645 0.790 0.543 0.712 0.345± 0.001
CIFAR SPARDACUS SW out 3.28E-06 0.650 0.773 0.563 0.703 0.344± 0.001
CIFAR SPARDACUS SC out 3.80E-01 0.650 0.690 0.609 0.652 0.301± 0.000
CIFAR SPARDACUS SC all 5.37E-01 0.604 0.774 0.486 0.664 0.255± 0.001
CIFAR SPARDACUS SW pen 1.24E-01 0.593 0.692 0.500 0.608 0.196± 0.000

Table C.1. Results for the SPARDACUS method when
applying different sets of layers for both the MNIST and
CIFAR-10 datasets.
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