
Under review as a conference paper at ICLR 2022

LOCAL AUGMENTATION FOR GRAPH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data augmentation has been widely used in image data and linguistic data but
remains under-explored for Graph Neural Networks (GNNs). Existing methods
focus on augmenting the graph data from a global perspective and largely fall
into two genres: structural manipulation and adversarial training with feature
noise injection. However, recent graph data augmentation methods ignore the
importance of local information for the GNNs’ message passing mechanism. In
this work, we introduce the local augmentation, which enhances the locality of
node representations by their subgraph structures. Specifically, we model the data
augmentation as a feature generation process. Given a node’s features, our local
augmentation approach learns the conditional distribution of its neighbors’ features
and generates more neighbors’ features to boost the performance of downstream
tasks. Based on the local augmentation, we further design a novel framework:
LA-GNN, which can apply to any GNN models in a plug-and-play manner. Ex-
tensive experiments and analyses show that local augmentation consistently yields
performance improvement for various GNN architectures across a diverse set of
benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) and their variants (Abu-El-Haija et al., 2019; Kipf & Welling, 2017;
Veličković et al., 2018) have achieved state-of-the-art performance for many tasks on graphs such as
recommendation system (Ying et al., 2018) and traffic prediction (Guo et al., 2019). However, most
of the GNN models, such as GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018), learn
the node representations by aggregating information over only the 2-hop neighborhood. Such shallow
architectures limit their ability to extract information from higher-layer neighborhoods (Wang &
Derr, 2021). But deep GNNs are prone to over-smoothing (Li et al., 2018), which suggests the node
representations tend to converge to a certain vector and thus become indistinguishable. One solution
to address this problem is to preserve the locality of node representations when increasing the number
of layers. For example, JKNet (Xu et al., 2018) densely connects (Huang et al., 2017) each hidden
layer to the final layer. GCNII (Chen et al., 2020) employs an initial residual to construct a skip
connection from the input layer. Besides, Zeng et al. (2021) pointed out that the key for GNN is
to smooth the local neighborhood into informative representation, no matter how deep it is. And
they decouple the depth and scope of GNNs to help capture local graph structure. Prior works have
emphasized the importance of local information, but one property of the graph is that the number of
nodes in the local neighborhood is far fewer than higher-order neighbors. And this property limits the
expressive power of GNNs due to the limited neighbors in the local structure. A very intuitive idea is
to use data augmentation to increase the number of nodes in the local substructure.

However, existing graph data augmentation methods ignore the importance of local information
and only perturb at the topology-level and feature-level from a global perspective, which can be
divided into two categories: topology-level augmentation (Rong et al., 2020; Wang et al., 2020b; Zhao
et al., 2021) and feature-level augmentation (Deng et al., 2019; Feng et al., 2019; Kong et al., 2020).
Topology-level augmentation perturbs the adjacency matrix, yielding different graph structures. On
the other hand, existing feature-level augmentation mainly exploits perturbation of node attributes
guided by adversarial training (Deng et al., 2019; Feng et al., 2019; Kong et al., 2020). These
augmentation techniques have two drawbacks. 1) Some of they employ full-batch training for
augmentation, which is computationally expensive, and introduce some additional side effects such

1

Under review as a conference paper at ICLR 2022

as over-smoothing. 2) The type of feature-level augmentation is coarse-grained, which focuses on
global augmentation and overlooks the local information of the neighborhood. Moreover, to our best
knowledge, none of the existing approaches combines both the feature representations and the graph
topology, especially the local subgraph structures, for graph-level data augmentation.

In this work, we propose a framework: Local Augmentation for Graph Neural Networks (LA-GNNs),
to further enhance the locality of node representations based on both the topology-level and feature-
level information in the substructure. The term "local augmentation" refers to the generation of
neighborhood features via a generative model conditioned on local structures and node features.
Specifically, our proposed framework learns the conditional distribution of the connected neighbors’
representations given the representation of the central node, bearing some similarities with the Skip-
gram (Mikolov et al., 2013) and Deepwalk Perozzi et al. (2014), with the difference that our method
does not base on word or graph embedding.

The motivation behind this work concludes three-fold. 1) Existing feature-level augmentation works
primarily pay attention to global augmentation without considering the informative neighborhood. 2)
The distributions of the representations of the neighbors are closely connected to the central node,
making ample room for feature augmentation. 3) Preserving the locality of node representations is
key to avoiding over-smoothing (Xu et al., 2018; Klicpera et al., 2019; Chen et al., 2020). And there
are several benefits in applying local augmentation for the GNN training. First, local augmentation is
essentially a data augmentation technique that can improve the generalization of the GNN models
and prevent over-fitting. Second, we can recover some missing contextual information of the local
neighborhood in an attributed graph via the generative model (Jia & Benson, 2020). Third, our
proposed framework is flexible and can be applied to various popular backbone networks such
as GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GCNII (Chen et al., 2020), and
GRAND (Feng et al., 2020) to enhance their performance. Extensive experimental results demonstrate
that our proposed framework could improve the performance of GNN variants on 7 benchmark
datasets.

2 BACKGROUND

Notations. Let G = (V,E) represent the graph, where V is the set of vertices {v1, · · · , vN}
with |V | = N and E is the set of edges. The adjacency matrix is defined as A ∈ {0, 1}N×N ,
and Aij = 1 if and only if (vi, vj) ∈ E. Let Ni = {vj |Aij = 1} denotes the neighborhood of
node vi and D denote the diagonal degree matrix, where Dii =

∑n
j=1 Aij . The feature matrix

is denoted as X ∈ RN×F where each node v is associated with a F -dimensional feature vector
Xv. Y ∈ {0, 1}N×C denote the one-hot label matrix, where Yi ∈ {0, 1}C is a one-hot vector and∑C

j=1 Yij = 1 for any vi ∈ V .

GNN. Graph Neural Network (GNN) is a type of neural network that directly operates on the graph
structure, such as GCN and GAT (Kipf & Welling, 2017; Veličković et al., 2018), that capture the
dependence of graphs via message passing between the nodes of a graph as

H(`) = f(A,H(`−1)), (1)

where f denotes the specific GNN layer for different models, H(`) are the hidden vectors of the `-th
layer and H(0) = X. For example, f(A,H) = σ(ÂHW) for GCN, where Â = D̃−

1
2 ÃD̃−

1
2 , D̃ is

the degree matrix of Ã, i.e., D̃ii =
∑
j Ãij , and Ã = A+ I.

Topology-level Augmentation. Topology-level augmentation usually perturbs A to generate dif-
ferent graph structures, which can be formulated as A′ = F(A,X), where F(·) is a structure
perturbation function. For example, DropEdge (Rong et al., 2020) considers F(A,X) = A−As

which is independent of X, where As is a sparse matrix consists of a subset of the original edges E.
GAUG-O (Zhao et al., 2021) leverages their proposed neural edge predictors to produce a different
structure A′ where A′ij =

⌊
1

1+e−(log Pij+G)/τ
+ 1

2

⌋
, Pij = αMij + (1 − α)Aij , M = σ

(
ZZT

)
,

Z = f (A, f(A,X)), τ is the temperature of Gumbel-Softmax distribution, G ∼ Gumbel(0, 1) is a
Gumbel random variate, and α is a hyperparameter mediating the influence of edge predictor on the
original graph.

2

Under review as a conference paper at ICLR 2022

Table 1: Comparison of existing graph data augmentation.
Graph Data Augmentation

Method Considered Part Type Perturbed Part
DropEdge A Sampling A
GAUG-O A&X Reconstruction A
FLAG X Noise Injection X
G-GCN A&X Reconstruction X
Local Augmentation A&X Generation X

Feature-level Augmentation.
Besides, feature-level augmenta-
tion function can be defines as
X′ = H(A,X), where H(·) is
a feature perturbation function.
FLAG (Kong et al., 2020) de-
fines the perturbation function
as H(A,X) = X + δ where
perturbation δ is updated iteratively during the adversarial training phase. G-GCN (plain) (Zhu
et al., 2020) obtains the global attribute feature matrix X(a) ∈ RN×da through minimizing the

objective
∏
v∈V

∏
a∈CA(v)

exp(X(a)
v ·Va)∑

k∈U exp
(
X

(a)
v ·Vk

) where U is the set of all attributes, CA(v) is the

sampled context attributes of v, and V ∈ Rda×F denotes the parameters. Obviously, the perturbation
function of G-GCN has no close-form solution. In this work, we propose a novel feature-level
augmentation method, named local augmentation. And the comparison of the details of various graph
data augmentation techniques can be found in Table 1.

3 LOCAL AUGMENTATION

In this section, we describe details of the proposed method. The local augmentation framework
consists of three modules: learning the conditional distribution via a generative model, the active
learning trick, and the downstream GNN models, as illustrated in Figure 1. Note that the proposed
algorithm enhances the locality of node representations through augmenting 1-hop neighbors in a
generative way. Specifically, we exploit a generative model to learn the conditional distribution of
the connected neighbors’ representations given the representation of a node. We describe the details
of learning the conditional distribution and the motivation for why local augmentation is able to
improve the performance in a probabilistic view in Sec. 3.1, detail the architecture of downstream
GNN models in Sec. 3.2. We finally elaborate the training procedure of both the generative model
and the downstream GNN models with the active learning trick in Sec. 3.3.

Graph Neural
Network

Generative
model

Local Augmentation

The initial neighborhood as
input for generative model

The augmented neighborhood
obtained by local augmentation

The initial neighborhood

The feature matrix

Figure 1: A schematic depiction of our local augmentation. The purple and yellow circles on the
graph correspond to the central node and its augmented neighbors respectively. After augmenting the
neighborhood, we exploit the initial and the generated feature matrix as input for downstream GNNs.

3.1 LEARNING THE CONDITIONAL DISTRIBUTION

We start by reviewing the semi-supervised learning of GNNs in a probabilistic view. Most existing
GNN models (Kipf & Welling, 2017; Veličković et al., 2018) are viewed as a classification function
to predict the class labels of the graph nodes. In this work, we use a GNN classification estimator
Pθ(Y|A,X) (θ is the parameter) to model the conditional distribution of label Y with respect to the
graph structure A and feature matrix X. Given training samples {A,X,Y}, the parameter θ can be
estimated using Maximum Likelihood Estimation (MLE), by optimizing the following likelihood
function:

max
∏
k∈K

Pθ (Yk|A,X) , (2)

3

Under review as a conference paper at ICLR 2022

where K is the set of node indices of the training dataset whose labels are visible during the
semi-supervised training. To further boost the performance of GNN, we introduce a new model
Pθ(Y,X|A,X), where X is generated features by feature-level augmentation. For this model, the
MLE method needs to optimize a marginalized probability Pθ over the generated feature matrix X:

max
∏
k∈K

∫
X

Pθ
(
Yk,X|A,X

)
. (3)

For Bayesian tractability, we decompose Pθ in Eq.(3) as a product of two posterior probabilities:

Pθ,φ(Yk,X|A,X) := Pθ(Yk|A,X,X)Qφ(X|A,X), (4)

where Pθ(Yk|A,X,X) and Qφ(X|A,X) denote the probabilistic distributions approximated by
the downstream GNN and the (feature-level augmentation) generator respectively, parameterized
by θ and φ. There are two benefits in the decomposition above. First, it allows us to decouple
the training of the downstream predictor Pθ and the generator Qφ, enabling the generator to easily
generalize to other downstream tasks. Moreover, inspired by the successes of data augmentation via
deep-learning-based generative modeling (Antoniou et al., 2017), the representation power of Eq.(4)
is superior than that of a single predictor Pθ (Yk|A,X) without data augmentation.

Consequently, once a generator Qφ is trained very well, our training procedure can optimize
Pθ(Yk|A,X,X) with samples X drawn from the fixed conditional distribution Qφ. Now, we
show how to train the generator as follows.

Generator To learn a feature augmentation generator, a naive solution is to learn one single
distribution for all the neighbors using the MLE method, i.e., solving the following optimization
problem

max
ψ

∑
j∈Ni

log pψ (Xj |Xi) = max
ψ

log
∏
j∈Ni

pψ (Xj |Xi) , (5)

where {Xj|j∈Ni ,Xi}. Then pψ can be used to augment features for all the neighbors. However, this
method ignores the differences between all the neighbors, which may induce severe noise.

To overcome the limitation, we assume that each neighbor satisfies a different conditional distribution.
Specifically, there exists a conditional distribution p(·|Xi, zj) with latent random variable zj , such
that we have Xj ∼ p(X|Xi, zj) for Xj|j∈Ni . Once we obtain p(·|Xi, zj) in some way, we can
generate augmented features X, and then we can train Pθ(Yk|A,X,X) instead of Pθ(Yk|A,X)
to improve the final performance of Pθ. Below, we will present how to find p(·|Xi, zj), which will
produce the generator Qφ.

To achieve our purpose, a suitable method is the conditional variational auto-encoder (CVAE) (Kingma
& Welling, 2013; Sohn et al., 2015), which can help learn the distribution of the latent variable zj ,
and the conditional distribution p(·|Xi, zj). So, a CVAE model Qφ

(
X|A,X

)
is adopted as our

generator, where φ = {ϕ,ψ}, ϕ denotes the variational parameters and ψ represents the generative
parameters. To derive the optimization problem for CVAE, log pψ (Xj |Xi) can be written with latent
variables z as follows, following previous work (Pandey & Dukkipati, 2017; Sohn et al., 2015):

log pψ (Xj |Xi) =

∫
qϕ(z|Xj ,Xi) log

pψ(Xj , z|Xi)

qϕ(z|Xj ,Xi)
dz+KL(qϕ(z|Xj ,Xi)‖pψ(z|Xj ,Xi))

≥
∫
qϕ(z|Xj ,Xi) log

pψ(Xj , z|Xi)

qϕ(z|Xj ,Xi)
dz,

and the evidence lower bound (ELBO) can be written as:

L(Xj ,Xi;ψ,ϕ) = −KL(qϕ(z|Xj ,Xi)‖pψ(z|Xi)) +

∫
qϕ(z|Xj ,Xi) log pψ(Xj |Xi, z)dz, (6)

where the encoder qϕ(z|Xj ,Xi) = N (f(Xj ,Xi), g(Xj ,Xi)) and decoder pψ(Xj |Xi, z) =
N (h(Xi, z), cI). The encoder is a two-layer MLP. f and g share the first layer, and their second
layers employ different parameters. The decoder h is two-layer MLP. For simplicity and tractability,
the implemented generator Q

(
X|A,X

)
uses the same parameters across all nodes vi ∈ V .

4

Under review as a conference paper at ICLR 2022

Optimization of the MLE Now, we present how to optimize the MLE Eq.(4) using the feature
matrix produced from the generator. Once the augmented feature matrix can be sampled from the
generator, we can optimize the parameters of Eq.(4) in the following way. Firstly, the parameter
φ = {ψ,ϕ} can be optimized by maximizing the ELBO of the generator (6), i.e., we train the
generator. Secondly, the parameter θ is optimized by maximizing the MLE Eq.(4) with φ fixed, which
is the conditional distribution of Yk given A, X, and X, i.e., we train the downstream GNN model.

In this paper, the MLE is formulated by a downstream GNN model as follows:

Pθ
(
Yk | A,X,X

)
∝ −L(θ|A,X,X, φ), (7)

where L(θ|A,X,X, φ) = −
∑
k∈T

∑C
f=1 Ykf ln

(
softmax

(
GNN(A,X,X)

)
kf

)
.

3.2 THE ARCHITECTURE OF LA-GNN

We discuss the details of downstream GNN models. And we use GCN, GAT, GCNII, and GRAND as
the backbones and test them on semi-supervised node classification tasks. We name the modified
GNN architecture as LA-GNN, where LA means local augmentation.

LA-GCN A 2-layer LA-GCN is defined as follows:

H(2) = σ

(
Â

(
σ
(
ÂXW

(1)
1

)∥∥∥∥σ (ÂX1W
(1)
2

)∥∥∥∥ · · · ∥∥∥∥σ (ÂXnW
(1)
n+1

))
W(2)

)
, (8)

where Xi (i = 1, 2, · · · , n) is the augmented feature matrix produced by the generator, ‖ denotes an
operator of column-wise concatenation, W(1)

i (i = 1, 2, · · · , n) denotes the parameters of the first
LA-GCN layer, and W(2) denotes the parameters of the second LA-GCN layer.

LA-GCNII Since GCNII (Chen et al., 2020) applies a fully-connected neural network on X to
obtain a lower-dimensional initial representation H(0) before the forward propagation, we apply a
fully-connected neural network on X and X to obtain H(0) for LA-GCNII as follows:

H(0) = σ
(
XW

(0)
1

)∥∥σ (X1W
(0)
2

)∥∥ · · · ∥∥σ (XnW
(0)
n+1

)
. (9)

H(0) is fed into the next forward propagation layer. Besides, we do not modify the architecture of
GAT and GRAND, and just add our generated feature matrix to the input.

3.3 ACTIVE LEARNING

In this section, we introduce a trick for the overall training framework. After the training of the
generator finishes, it contains an issue of using Qφ(X|A,X) of Eq.(4) for inference because Q
may generate some samples from the side part of the distribution. This critical question makes the
inferences inefficient. Inspired by Nielsen & Okoniewski (2019), we introduce active learning to
capture the suitable generated feature matrix and the corresponding generator, which improves the
inference efficiency and helps the optimization of the MLE. During active learning, the probability
of each feature is proportional to its uncertainty evaluated by an acquisition function. We adopt the
Bayesian Active Learning by Disagreement (BALD) acquisition function (Houlsby et al., 2011) to
sample the most important inferences with the approximation from the Monte Carlo (MC) dropout
samples as

U(X) ≈ H

[
1

N

N∑
n=1

P
(
Yk|X,ωn

)]
− 1

N

N∑
n=1

H
[
P
(
Yk|X,ωn

)]
, (10)

where N is the number of MC samples and ωn are the parameters of the network sampled for the
n-th MC dropout sample. A high BLAD score indicates a network with high uncertainty about the
generated feature matrix. So it tends to be selected to improve the GNN model. Finally, the overall
algorithm framework is summarized in Algorithm 1, which shows the optimization of Eq.(4).

5

Under review as a conference paper at ICLR 2022

Algorithm 1 The framework to train the Generator Qφ and the downstream GNN Pθ using the initial
feature matrix X and the generated feature matrix X selected by the acquisition function
Input: Adjacency matrix A, feature matrix X

1: Initialize U=-inf, X, Qφ, X
′
, and Q′

φ

2: for i = 1 to the number of generator iterations do
3: Train the generator Qφ using A and X

4: Generate feature matrix X using Qφ

5: Compute U(X) using Eq.(10).
6: if U(X) > U then
7: U = U(X)
8: if i > Nwarmup then
9: Train GNN Pθ using A and X for the number of continued GNN training iterations

10: X
′

= X, Q′
φ = Qφ

11: X = X
′
, Qφ = Q′

φ

12: Train the downstream GNN Pθ with the generated feature matrix X, and generator Qφ

4 DISCUSSION

In this section, we discuss the motivation of this work and provide some analysis.

Connection to EP-B and GraphSAGE We discuss how our proposed model distinguishes from
the classical representation learning models on graphs. Previous methods such as EP-B (García-
Durán & Niepert, 2017) and GraphSAGE (Hamilton et al., 2017) rely on reconstruction loss function
between the central node and its neighbors’ embeddings. EP-B aims to minimize the reconstruction
error by optimizing the objective min

∑
u∈V \{v}

[
γ + d(X̃v,Xv)− d(X̃v,Xu)

]
where Xv repre-

sents the target node; Xu denotes the neighbor nodes; X̃v = AGG(Xl|l ∈ N (v)) indicates the
reconstruction from neighbors; and γ refers to the bias. Besides, GraphSAGE exploits the negative
sampling to differentiate the representations of remote node-pairs. GraphSAGE enforce nearby
nodes to have similar representations and to enforce disparate nodes to be distinct by minimizing the
objective min−Eu∼N (v) log

(
(σ(XT

uXv))
)
−λEvn∼Pn(v) log

(
(σ(−XT

vnXv))
)

where Xv denotes
target node; Xu represents the neighbor node; Xvn is disparate node; and Pn(v) is the negative
sampling. These approaches build upon the assumption that adjacent nodes share similar attributes.
In contrast, our model does not rely on such assumption and instead generates the neighboring node
features from the conditional distribution of central node representations. Given the target node, Xv ,
our aim is to learn the conditional distribution of the neighbor nodes, Xu. A comparison between the
reconstruction-based representation learning on graphs and our proposed framework is illustrated
in Figure 2. And our local augmentation method is the third paradigm to exploit neighbors in a
generative way.

X!" X!#

X$X!%

(a) The Original Graph

X!" X!#

X$X!%

reconstuct recon
stuct

X*$loss

(b) EP-B

X!" X!#

X$X!%

similar sim
ila
r

dissimilar

(c) GraphSAGE

X!" X!#

X$X!%

infer inf
er

(d) Local Augmentation

Figure 2: (a) The original graph. (b) EP-B exploits the neighbors to reconstruct the central node’s
embedding. (c) GraphSAGE encourages nearby nodes to have similar embeddings. (d) Given the
representation of the central node, our aim is to infer the representations of the connected distribution
of neighbors.

Local Augmentation vs. General Augmentation General image augmentation algorithms in-
clude geometric transformations, feature space augmentation, adversarial training, and generative
adversarial networks (Shorten & Khoshgoftaar, 2019). It is impossible to apply geometric transfor-
mations directly to graph data augmentation since graphs are sensitive to node permutation. General

6

Under review as a conference paper at ICLR 2022

adversarial training, feature space augmentation, and generative adversarial networks don’t take the
graph structure into account. Graphs consist of a set of identities with certain pairs of these identities
connected by edges. We need to consider node features and the graph structure when designing the
graph data augmentation framework. Our proposed method of local augmentation fully considers
these two points. By extracting the neighbors’ feature vectors, we have enough data points to learn the
distribution. There are two benefits to designing local augmentation. First, by taking the sub-graph
structure and feature representation associated with this sub-graph structure as input for the generative
model, we can learn the information of the sub-graph structure. Second, the number of data points
to learn the distribution depends on the node degree. This assures that we have enough data points
compared with the general feature augmentation and we can learn a better distribution.

Complementing missing information Jia & Benson (2020) points out that some attribute informa-
tion might be missing on a subset of vertices. By learning the distribution of node representations from
the observed data, we can utilize the produced node representations from the generative model to com-
plement the information missing in the nodes’ attributes, which boosts the robustness of downstream
tasks. And we show that our model still works in the scenario that nodes lose a certain percentage of
attributes. In other words, we can exploit the well-learned distribution to complement the contextual
information of the local neighborhood to enhance the locality of the node representations.

5 EXPERIMENTS

Table 2: Classification results on fixed split (%)

Method Cora Citeseer Pubmed

Chebyshev (Defferrard et al., 2016) 81.2 69.8 74.4
APPNP (Klicpera et al., 2019) 83.8 71.6 79.7
MixHop (Abu-El-Haija et al., 2019) 81.9 71.4 80.8
Graph U-net (Gao & Ji, 2019) 84.4 73.2 79.6
GSNN-M (Wang et al., 2020a) 83.9 72.2 79.1
S2GC (Zhu & Koniusz, 2021) 83.5 73.6 80.2

GCN (Kipf & Welling, 2017) 81.6 70.3 78.9
G-GCN (Zhu et al., 2020) 83.7 71.3 80.9
DropEdge-GCN (Rong et al., 2020) 82.8 72.3 79.6
GAUG-O-GCN (Zhao et al., 2021) 83.6 73.3 79.3
LA-GCN 84.1 72.5 81.3

GAT (Veličković et al., 2018) 83.0 70.4 OOM
LA-GAT 83.9 72.3 OOM

GCNII (Chen et al., 2020) 85.2 73.1 80.0
LA-GCNII 85.2 73.7 81.6

GRAND (Feng et al., 2020) 85.4 75.4 82.7
LA-GRAND 85.8 75.8 83.3

In this section, we evaluate the perfor-
mance of our proposed model on semi-
supervised node classification tasks on a
variety of public graph datasets and com-
pare our model with the state-of-the-art
graph neural networks. We also carry out
additional experiments to showcase the ne-
cessity of our design and its robustness to
missing information.

5.1 DATASETS

We utilize seven public graph datasets
(Cora, Citeseer, Pubmed, Squirrel, Ac-
tor, Chameleon, and Cornell) for semi-
supervised node classification tasks. The
details of these datasets can be found in the
appendix.

5.2 SEMI-SUPERVISED NODE CLASSIFICATION

Table 3: Classification results on random split (%)

Method Squirrel Actor Chameleon Cornell

APPNP 21.6 32.1 33.0 58.7
S2GC 21.3 27.8 30.2 57.2

GCN 22.5 26.2 25.1 55.7
DropEdge-GCN 21.9 26.5 25.0 53.6
LA-GCN 23.2 27.0 28.9 56.1

GAT 24.2 27.2 34.8 55.8
LA-GAT 28.2 27.4 38.6 56.5

GCNII 25.3 31.9 30.2 57.3
LA-GCNII 28.6 32.7 32.5 56.6

Baselines and Experimental Setup. We
apply the standard fixed splits (Yang et al.,
2016) on three datasets Cora, Citeseer, and
Pubmed, with 20 nodes per class for train-
ing, 500 nodes for validation, and 1,000
nodes for testing. And we consider four
backbones: GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GCNII (Chen
et al., 2020), and GRAND (Feng et al., 2020)
to evaluate our proposed framework and com-
pare our model against state-of-the-art mod-
els including 1) backbone models: Cheby-
shev (Defferrard et al., 2016), GCN, GAT,
APPNP (Klicpera et al., 2019), Graph U-net (Gao & Ji, 2019), MixHop (Abu-El-Haija et al., 2019),
GCNII, GSNN-M (Wang et al., 2020a), S2GC (Zhu & Koniusz, 2021), and GRAND and 2) feature-
level and topology-level augmentation models: G-GNNs (Zhu et al., 2020), DropEdge (Rong et al.,

7

Under review as a conference paper at ICLR 2022

2020) and GAUG-O (Zhao et al., 2021). For four datasets Squirrel, Actor, Chameleon, and Cornell,
we take 10 random splits (Shchur et al., 2018) where 10%, 30%, and 60% of the date for training,
validation, testing; measure the performance of GCN, GAT, GCNII, and corresponding modified
models.

0 5 10 15 20
Feature Attribute Bin

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
ty

The distribution of the attributes of the neighbors

Original Neighbors
Inference Neighbors

Figure 3: The distribution of the attribute bin of
the inference neighbors vs. the distribution of the
attribute bin of the original neighbors, with KL
divergence = 0.0026. The value of each feature
bin is the sum of the attribute values of multiple di-
mensions of the feature vector. We split the feature
vector into multiple feature bins.

Results For three datasets Cora, Citeseer, and
Pubmed, we report the mean classification accu-
racy on the test nodes of all our models after 100
runs and report the values after running the ex-
periments of their models with our server under
their setting hyperparameters in their original pa-
pers. The results of the evaluation experiments
are summarized in Tables 2, 3, and in the ap-
pendix, which demonstrate that the backbone
models equipped with our method achieve the
best performance across all the datasets except
the Cornell dataset. More specifically, we can
improve upon GCN by a margin of 2.5%, 2.2%,
and 2.4% on Cora, Citeseer, and Pubmed respec-
tively. Moreover, LA-GNN outperforms other
backbone models including GAT and GCNII as
well as data augmentation models (Zhu et al.,
2020; Rong et al., 2020; Zhao et al., 2021) on
these citation network datasets. Besids, we also
provide the analysis of the distribution of our
generated feature matrix. And Figure 3 shows
the distribution of the attributes of the original
and inference neighbors, which can demonstrate our inference feature matrix follow the distribution
of the initial feature matrix.

5.3 ABLATION STUDY

Table 4: Effects of different components of our
framework evaluated on the standard split of the
Cora, Citeseer and Pubmed dataset.

Method Cora Citeseer Pubmed

GCN 81.6 70.3 78.9
GCNII 85.2 73.1 80.0

GCN + width 82.0 71.4 79.5
GCN + concatenation 81.8 71.6 78.8
GCN + plain neighborhood 80.9 68.8 75.0

GCNII + width 85.1 73.1 80.2
GCNII + concatenation 85.2 73.3 80.2
GCNII + plain neighborhood 83.3 71.9 78.1

LA-GCN 84.1 72.5 81.3
LA-GCNII 85.2 73.7 81.6

In this section, to demonstrate the effectiveness
of our proposed generative framework, we con-
duct experiments that compare LA-GNN to sev-
eral of its ablated variants without generative
modeling. The results are shown in Table 4.
"GCN + width" only increases the first network
layer width for GCN and GCNII to match LA-
GNN without giving generated samples as input.
"+ concatenation" only replaces the generated
feature matrix of LA-GNN with the original fea-
ture matrix of the central node. "+ plain neigh-
borhood" replaces the generated feature matrix
of LA-GNN with a neighborhood feature ma-
trix where each row corresponds to the feature
vector of the randomly sampled neighbor. The
results show that the first two variants provide no notable improvement for the backbone models, and
the third variant even results in degradation. By eliminating the possibility that these confounding
factors irrelevant to our core approach may contribute to the final performance, it’s evident that the
performance gain in Table 2 and 3 are due to our proposed generative local augmentation framework.

5.4 ROBUSTNESS TO MISSING INFORMATION

In this section, we conduct experiments to verify that our proposed framework can robustify down-
stream tasks against missing information in the feature attributes. Specifically, we mask a certain
percentage of the attributes of each feature vector and use the same pipeline to do augmentation
for the masked feature matrix. As shown in Table 5, we can see that as the mask ratio increases,

8

Under review as a conference paper at ICLR 2022

the gap of the performance between the GCN and LA-GCN enlarges in most cases in Cora and
Citeseer, which corroborates our insight discussed in Section 4. Since there exists large redundancy
in the features of the Pubmed dataset, the performance of GCN and LA-GCN decreases little as the
mask ratio increases and the gap of the performance does not enlarge. To conclude, our model can
complement the contextual information of the local neighborhood to enhance the locality of the node
representations.

Table 5: Summary of results on recovering study in terms of classification accuracy (%). ↓ means a
decrease compared with the accuracy if features are not masked.

Dataset Cora Citeseer Pubmed

Mask Ratio 0.1 0.2 0.4 0.8 0.1 0.2 0.4 0.8 0.1 0.2 0.4 0.8

GCN 81.0 (↓0.6) 80.6 (↓1.0) 80.1 (↓1.5) 76.0 (↓5.6) 70.1 (↓0.2) 69.3 (↓1.0) 67.2 (↓3.1) 61.0 (↓9.3) 78.5 (↓0.4) 78.5 (↓0.4) 77.5 (↓1.4) 76.9 (↓2.0)
LA-GCN 83.5 (↓0.6) 83.1 (↓1.0) 81.6 (↓2.5) 81.1 (↓3.0) 72.2 (↓0.3) 71.7 (↓0.8) 69.3 (↓3.2) 65.9 (↓6.6) 81.4 (↓0.1) 80.9 (↓0.6) 80.5 (↓1.0) 79.4 (↓2.1)

6 RELATED WORK

Graph Neural Networks In general, convolution in the graph domain involves non-spectral (spa-
tial) and spectral approaches. Non-spectral methods generalize convolutions operating on spatially
close neighbors to the graph domain, such as Duvenaud et al. (2015); Atwood & Towsley (2016);
Niepert et al. (2016); Monti et al. (2017). Spectral approaches define the convolution operations based
on the spectral formulation, such as Bruna et al. (2014); Defferrard et al. (2016); Kipf & Welling
(2017). Recently, several methods (Abu-El-Haija et al., 2019; Liao et al., 2019) based on GCN
have been proposed to obtain the higher-order filters. Besides, GAT (Veličković et al., 2018), Graph
U-Nets (Gao & Ji, 2019) combine attention networks and pooling operation with GNN separately,
which achieve state-of-the-art performance on node and link classification tasks. In this work, local
augmentation can be applied on various backbone models to improve performance.

Graph Generative Models Generative models (Goodfellow et al., 2014; Kingma & Welling, 2013)
are powerful tools of learning data distribution through unsupervised learning, and they have achieved
tremendous success in various applications. Recently, researchers have proposed several interesting
generative models for graph data generation. Variational graph auto-encoder (VGAE) (Kipf &
Welling, 2016) makes use of latent variables and learns interpretable latent representations for
undirected graphs. Salha et al. (2019) replace the GCN encoder in VGAE with a simple linear model
and emphasize the effectiveness of a simple node encoding scheme. Xu et al. (2019) propose a
generative model framework to learn node representations, by sampling graph generation sequences
constructed from observed graph data. ConDgen (Yang et al., 2019) exploits the GCN encoder to
handle the inherent challenges of flexible context-structure conditioning and permutation-invariant
generation. Besides, some methods have been proposed to apply the graph generative models in
various applications such as graph matching (Simonovsky & Komodakis, 2018), molecule design (Liu
et al., 2018), retrosynthesis prediction (Shi et al., 2020) and chemical design (Samanta et al., 2018).
Compared with these approaches mainly focusing on structure generation, our model takes full use
of the power of the generative model for feature representation generation, which can serve as an
enhanced technique for the downstream backbone models.

7 CONCLUSION

We propose local augmentation, a brand-new technique that exploits the generative model to learn
the conditional distribution of the central node’s neighbors’ feature representations given its represen-
tation. We can augment more 1-hop neighbors from a well-trained generative model to enhance the
performance of backbone GNN models. Experiments show that our model can improve performance
across various GNN architectures and benchmark datasets by enriching local information. Besides,
our model achieves new state-of-the-art results on various semi-supervised node classification tasks.
One limitation of our proposed framework is that we do not exploit the 2-hop neighbors or use the
random walk to find more related neighbors for the central node. And one future work is that we
can extract more 2/3-hop neighbors if the central node’s degree is small and learn the conditional
distribution for random sampling nodes if the graph is large.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16), pp. 265–283, 2016.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pp. 21–29. PMLR, 2019.

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in neural
information processing systems, pp. 1993–2001, 2016.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In International Conference on Learning Representations, 2014.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
2016.

Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolutional
networks. arXiv preprint arXiv:1902.09192, 2019.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timo-
thy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems, 2015.

Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically
regularizing based on graph structure. IEEE Transactions on Knowledge and Data Engineering,
2019.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural network for semi-supervised learning on graphs.
In NeurIPS’20, 2020.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

Alberto García-Durán and Mathias Niepert. Learning graph representations with embedding propaga-
tion. In Advances in Neural Information Processing Systems, 2017.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In Advances in Neural
Information Processing Systems, 2014.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 922–929, 2019.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, 2017.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

10

Under review as a conference paper at ICLR 2022

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Junteng Jia and Austion R Benson. Residual correlation in graph neural network regression. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 588–598, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Workshop on Bayesian
Deep Learning, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representation, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representation, 2019.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. In International Conference on Learning Representations, 2019.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt. Constrained graph
variational autoencoders for molecule design. In Advances in Neural Information Processing
Systems, 2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems, 2013.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124,
2017.

Christopher Nielsen and Michal M Okoniewski. Gan data augmentation through active learning
inspired sample acquisition. In CVPR Workshops, pp. 109–112, 2019.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International conference on machine learning, pp. 2014–2023. PMLR, 2016.

Gaurav Pandey and Ambedkar Dukkipati. Variational methods for conditional multimodal deep
learning. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 308–315. IEEE,
2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, 2014.

11

Under review as a conference paper at ICLR 2022

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representation,
2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Keep it simple: Graph autoen-
coders without graph convolutional networks. Workshop on Graph Representation Learning, 33rd
Conference on Neural Information Processing Systems (NeurIPS), 2019.

Bidisha Samanta, Abir De, Niloy Ganguly, and Manuel Gomez-Rodriguez. Designing random
graph models using variational autoencoders with applications to chemical design. arXiv preprint
arXiv:1802.05283, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework
for retrosynthesis prediction. In International Conference on Machine Learning, pp. 8818–8827.
PMLR, 2020.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48, 2019.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, pp. 412–422.
Springer, 2018.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28:3483–3491,
2015.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 807–816, 2009.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Haibo Wang, Chuan Zhou, Xin Chen, Jia Wu, Shirui Pan, and Jilong Wang. Graph stochastic neural
networks for semi-supervised learning. In Advances in Neural Information Processing Systems,
2020a.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi. Nodeaug:
Semi-supervised node classification with data augmentation. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 207–217, 2020b.

Yu Wang and Tyler Derr. Tree decomposed graph neural network. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 2040–2049, 2021.

Da Xu, Chuanwei Ruan, Kamiya Motwani, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
Generative graph convolutional network for growing graphs. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3167–3171. IEEE,
2019.

12

Under review as a conference paper at ICLR 2022

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation
through graph variational generative adversarial nets. In NeurIPS, pp. 1338–1349, 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International Conference on Machine Learning, pp. 40–48, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
974–983, 2018.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In The Thirty-Fifth AAAI Conference on Artificial
Intelligence, 2021.

Danhao Zhu, Xin-Yu Dai, and Jiajun Chen. Pre-train and learn: Preserve global information for
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International Conference on
Learning Representations, 2021.

13

Under review as a conference paper at ICLR 2022

A PROOF OF EQ.(6)

We give more details of the derivation of the generator ELBO as follows:

log pψ(Xj |Xi) =

∫
qϕ(z|Xj ,Xi) log pψ(Xi|Xi)dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj ,Xi)

pψ(Xi)
dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj ,Xi)pψ(Xi,Xi, z)

pψ(Xi)pψ(Xi,Xi, z)
dz

=

∫
qϕ(z|Xi,Xi) log

pψ(Xj ,Xi, z)

pψ(Xi)

1
pψ(Xj ,Xi,z)
pψ(Xj ,Xi)

dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj , z|Xi)

pψ(z|Xj ,Xi)
dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj , z|Xi)

pψ(z|Xj ,Xi)

qϕ(z|Xj ,Xi)

qϕ(z|Xj ,Xi)
dz

=

∫
qϕ(z|Xj ,Xi)

(
log

pψ(Xj , z|Xi)

qϕ(z|Xj ,Xi)
+ log

qϕ(z|Xj ,Xi)

pψ(z|Xj ,Xi)

)
dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj , z|Xi)

qϕ(z|Xj ,Xi)
dz+KL(qϕ(z|Xj ,Xi)||pψ(z|Xj ,Xi))

≥
∫
qϕ(z|Xj ,Xi) log

pψ(Xj , z|Xi)

qϕ(z|Xj ,Xi)
dz

LELBO =

∫
qϕ(z|Xj ,Xi) log

pψ(Xj , z|Xi)

qϕ(z|Xj ,Xi)
dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj ,Xi, z)

qϕ(z|Xj ,Xi)pψ(Xi)
dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj |Xi, z)pψ(Xi, z)

qϕ(z|Xj ,Xi)pψ(Xi)
dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(Xj |Xi, z)pψ(z|Xi)

qϕ(z|Xj ,Xi)
dz

=

∫
qϕ(z|Xj ,Xi) log

pψ(z|Xi)

qϕ(z|Xj ,Xi)
dz+

∫
qϕ(z|Xj ,Xi) log pψ(Xj |Xi, z)dz

= −KL(qϕ(z|Xj ,Xi)||pψ(z|Xi)) +

∫
qϕ(z|Xj ,Xi) log pψ(Xj |Xi, z)dz

14

Under review as a conference paper at ICLR 2022

B REPRODUCIBILITY

B.1 DATASETS DETAILS

Cora, Citeseer, and Pubmed are standard citation network benchmark datasets Sen et al. (2008). In
these datasets, nodes represent documents, and edges denote citations; node feature corresponds to
elements of a bag-of-words representation of a document, and node label corresponds to one of the
academic topics. Besides, we utilize four datasets used in Pei et al. (2020) for evaluation. Chameleon
and squirrel are two page-page networks on specific topics in Wikipedia Rozemberczki et al. (2021).
In these datasets, nodes represent web pages, and edges denote mutual links between pages; node
features correspond to several informative nouns in the Wikipedia pages and labels correspond to
the number of the average monthly traffic of the web page. WebKB1 is a webpage dataset collected
from various universities. We use the one subdataset of it, Cornell. In this dataset, nodes represent
web pages, and edges are hyperlinks between them; node features correspond to the bag-of-words
representation of web pages and labels correspond to five categories, student, project, course, staff, and
faculty. Film dataset is the actor-only induced subgraph of the film-directoractor-writer network Tang
et al. (2009). In this dataset, Nodes represent actors, and edges denote co-occurrence on the same
Wikipedia page; node features correspond to some keywords in the Wikipedia pages and labels
correspond to five categories in terms of words of actor’s Wikipedia. All the dataset statistics are
summarized in Table 6.

Table 6: Datasets statistics

Dataset Cora Cite. Pubm. Cham. Squi. Actor Corn.

Nodes 2708 3327 19717 2277 5201 7600 183
Edges 5429 4732 44338 36101 217073 33544 295
Features 1433 3703 500 2325 2089 931 1703
Classes 7 6 3 5 5 5 5

B.2 IMPLEMENTATION DETAILS

We use Pytorch (Paszke et al., 2019) to implement LA-GNNs. The codes of S2GC (Zhu & Koniusz,
2021), LA-GCN, LA-GAT, LA-GCNII, LA-GRAND, and DropEdge-GCN are implemented referring
to Pytorch implementation of S2GC2, GCN3 (Kipf & Welling, 2017), GAT4 (Veličković et al., 2018),
GCNII5 (Chen et al., 2020) GRAND6 (Feng et al., 2020), and DropEdge-GCN7 (Rong et al., 2020).
Besides, we implement APPNP (Klicpera et al., 2019) with DGL (Wang et al., 2019) version of
APPNP8. The datasets Cora, Citeseer, Pubmed are downloaded from TensorFlow (Abadi et al., 2016)
implementation of GCN9, and the datasets Chameleon, Squirrel, Actor, and Cornell are downloaded
from the implementation of Geom-GCN10(Pei et al., 2020). All the experiments in this work are
conducted on a single NVIDIA Tesla V100 with 32GB memory size. The operating system behind
the Docker where the experiments are running is Red Hat 4.8.2-16. And the software that we use for
experiments are Python 3.6.8, numpy 1.19.2, sklearn 0.0, scipy 1.5.4, networkx 2.5.1, torch 1.6.0,
torchvision 0.7.0, CUDA 10.2.89, and CUDNN 8.0.2.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
2https://github.com/allenhaozhu/SSGC
3https://github.com/tkipf/pygcn
4https://github.com/Diego999/pyGAT
5https://github.com/chennnM/GCNII
6https://github.com/THUDM/GRAND
7https://github.com/DropEdge/DropEdge
8https://github.com/dmlc/dgl/tree/master/examples/pytorch/appnp
9https://github.com/tkipf/gcn/tree/master/gcn/data

10https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/new_data

15

Under review as a conference paper at ICLR 2022

B.3 HYPERPARAMETER DETAILS

LA-GNNs introduce an additional parameter, that is the hidden layer for generated feature matrix X
before concatenation. The difference of architectures between GCN and LA-GCN can be found in
Figure 4, and the LA-GCNII architecture can be found in Figure 5.

X

H(") H($)

	GCN	Layer GCN	Layer

(a) GCN

X H(")

H($)

	GCN	Layer

GCN	Layer

X, 	GCN	Layer

(b) LA-GCN

Figure 4: GCN and LA-GCN architectures. The difference between GCN and LA-GCN architectures
is that the LA-GCN has an additional convolutional layer for X and it uses a concatenation operation
to mix the hidden representations.

X

X"

	×

	×

	
N

N

F

F

F

F

nhid1

N

N

nhid1+nhid2 	×

D"!
"
#A"D"!

"
#

nhid2

W!
(#)

W%
(#) H(")

	×⊕𝛼!
1 − 𝛼!

	×

	

W(!)

nhid1+nhid2

nhid1+nhid2

⊕𝛽!

1 −	𝛽!

N

nhid1+nhid2

H($)

⋯⋯

N

nhid1+nhid2

H(%&$)

	× 	×⊕
𝛼&

1 − 𝛼&
	×

	

W(!)

nhid1+nhid2

nhid1+nhid2

⊕𝛽&

1 −	𝛽&

N

nhid1+nhid2

H(%)
D"!

"
#A"D"!

"
#

Figure 5: LA-GCNII architecture. The difference between GCNII and LA-GCNII is that the LA-
GCNII has an additional MLP layer for X and it uses a concatenation operation to mix the hidden
representations.

The difference of hyperparameters between the GCN and LA-GCN is only the hidden layer size
before concatenation. For the LA-GCNII, LA-GAT, LA-GRAND, we tune the hyperparameters in
the same way as described in their original papers with validation set.

16

	Introduction
	Background
	Local Augmentation
	Learning The Conditional Distribution
	The Architecture of LA-GNN
	Active Learning

	Discussion
	Experiments
	Datasets
	Semi-supervised Node Classification
	Ablation Study
	Robustness to Missing Information

	Related Work
	Conclusion
	Proof of Eq.(6)
	Reproducibility
	Datasets Details
	Implementation Details
	Hyperparameter Details

