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Abstract

We explore the concept of replicability, which ensures algorithmic consistency
despite input data variations, for online pricing problems, specifically prophet
inequalities and delegation. Given the crucial role of replicability in enhancing
transparency in economic decision-making, we present a replicable and nearly
optimal pricing strategy for prophet inequalities, achieving a sample complexity of
poly(log™ |X|), where X’ is the ground set of distributions. Furthermore, we extend
these findings to the delegation problem and establish lower bound that proves
the necessity of the log™ | X'| dependence. En route to obtaining these results, we
develop a number of technical contributions which are of independent interest.
Most notably, we propose a new algorithm for a variant of the heavy hitter problem,
which has a nearly linear dependence on the inverse of the heavy hitter parameter,
significantly improving upon existing results which have a cubic dependence.

1 Introduction

Scientific research fundamentally relies on the ability to repeat experiments and achieve similar results.
This principle, known as “reproducibility” is critical to validating findings and ensuring progress
across fields. However, many researchers [HIB™ 18, THGP17,LKM™ 18] have raised concerns about
a “reproducibility crisis” where studies often fail to replicate reliably. This has highlighted the
pressing need for methods that guarantee reproducibility and transparency in research.

A significant challenge in achieving reproducibility is the inherent variability in data, which often
stems from complex and stochastic processes. Even when researchers meticulously document their
methods, others may struggle to reproduce the results due to this randomness. This variability opens
the door to misleading findings, whether intentional or unintentional. For instance, practices such
as “p-hacking”—where researchers test multiple hypotheses until a significant result is found—can
undermine the validity of scientific conclusions.

To address these challenges from a theoretical perspective, Impagliazzo et al. [ILPS22]] (STOC’22)
introduced the notion of replicable algorithms for statistical problemsﬂ Formally, an algorithm A
that takes as input a set of samples S C X™ and a binary string r representing its internal randomness
is called p-replicable if, for any distribution D over X,

Prs, s,~Dr~r [A(S1;7) = A(S2;7)] > 1 = p, (D

!The original work used the term “reproducible” (to align with common usage), but subsequent works have
adopted “replicable”, the term we use here.
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where R denotes the distribution of the random bits used by the algorithm. Intuitively, Equation (T}
ensures that the algorithm’s output is determined primarily by the input distribution rather than
specific samples or randomness. This safeguards against data manipulation or corruption, as such
actions are easily detectable by re-running the algorithm. Bun et al. [BGH™23|| (STOC’23) further
developed the theory of replicable algorithms by relating it to other notions of stability such as
differential privacy, adaptive generalization. Replicable algorithms have been developed for numerous
problems including high dimensional mean estimation [HIK24b]] (FOCS’24), clustering [EKM™23]]
(NeurIPS’23), bandits [EKK™23|] ICLR’23), and learning halfspaces [KKL™24] (ICML’24).

Replicability is especially critical in settings where decisions have significant real-world consequences,
such as public systems, government policies, or large-scale markets. In these scenarios, fairness and
transparency are paramount. Even when the decision-making process is publicly accessible, decision-
makers could manipulate outcomes by selectively choosing data to support desired conclusions.
Replicability acts as a certificate that the decision-making process is robust and immune to such
manipulations, particularly in cases where the decision space is large or continuous, and no single
“best” choice exists.

Motivated by these considerations, we study replicability in the context of the prophet inequalities
problem, a fundamental model in online decision-making with well-established significance from
both theoretical and economic perspectives [HKPO04, BIKO7, HKSO7, (CHMS10]. In its simplest
form, this problem involves a sequence of random values X1, ..., X arriving online, where each X;
is drawn from a known distribution D;. The goal is to select a single value that is large in expectation.
A classic solution involves using a fixed threshold 7 and accepting the first value that exceeds 7. It is
well-known (e.g., see [KW12]]) that setting 7 = E [max { X7, ..., Xy }|/2 guarantees, in expectation,
a value at least half of the offline optimum E [max { X7, ..., Xx}|, which is tight. Similarly, setting
7 to be the median of E [max { X7, ..., Xy }], with appropriate tie-breaking when the distribution
has atoms, leads to the same 1/2 guarantee [SC84].

While the classical formulation assumes that the distributions Dy, . .., D,, are fully known, this is
often unrealistic in practice. Instead, we consider a sample-based framework, where we only have
access to a finite number of samples from each D;. The key challenge here is to design a replicable
algorithm that uses few samples to set a threshold 7 achieving a competitive performance. We say
a threshold is a-competitive if the corresponding strategy obtains at least o [max {X71,..., Xy }]
in expectation. An algorithm solves the Replicable Online Pricing (ROP) problem with parameters
(a, p, B) if it is p-replicable and outputs an c-competitive threshold with probability at least 1 — (.
In order to avoid issues with tie-breaking, we use an extra “coin” to decide whether an element with
value equal to 7 should be accepted (see Section [2] for further details on this formulation). In this
work, we analyze the sample complexity of the ROP problem, presenting efficient algorithms and
proving impossibility results.

We further study the implication of our results to the delegation problem, which has been widely
studied in economics under various settings and models [[Hol80, [FJ83| ICF98, AV 10, |AB13| |AE17,
BGHO1, [KK18, HMRS24,  BHHS24]. At its core, delegation involves an authority figure, referred
to as the principal, facing a challenge and relying on an expert, referred to as the agent, to solve it,
with the agent being responsible for searching for and proposing a solution based on their expertise.
A practical example of this is the relationship between a public entity and a private contractor or
the intra-organizational workflow between corporate management and a specialized division. Each
possible solution yields specific utilities for the principal and the agent, often leading to utility
misalignment due to differing incentives. To mitigate this misalignment and ensure the consideration
of their interests, the principal may announce a set of acceptable solutions (e.g., by establishing
certain criteria) before the agent begins their search. This preemptive strategy helps enforce alignment
between the principal’s objectives and the agent’s proposals, balancing the trade-off between granting
the agent enough autonomy and maintaining control over outcomes that align with the principal’s
goals.

In particular, we consider a model similar to the model studied by [KK18]] (EC’18). We assume there
is a distribution D defined over an abstract space €2 of possible solutions for the delegated task. Each
solution w € € has an associated quality from the principal’s perspective, denoted by z(w), and a
possibly different quality from the agent’s perspective, denoted by y(w). The agent is supposed to
make N independent and identically distributed (i.i.d.) draws from the distribution D, resulting in a
collection of N candidate solutions w1, ws, . ..,wyn € 2. The agent then examines x(w;) and y(w;)



for each candidate w; and then chooses one to present to the principal. As mentioned, in the absence
of any constraints from the principal, the agent would trivially select the solution w; maximizing
their own objective y(w;), resulting in the principal receiving the corresponding value of 2 (w;). To
enhance this arrangement, the principal imposes a constraint at the outset, specifying that they will
only accept solutions w for which z(w) exceeds a certain threshold 7. As in the ROP problem, we
allow the use an extra coin for tie-breaking. (see Section [2|for more details) This causes the agent to
pick the w; maximizing y(.) subject to the acceptance constraint.

We assume that the principal can learn about D by drawing samples and observing their associated
quality value z and can use its knowledge in devising its price. The principal’s goal is to set a price
such that the obtained solution provides a good approximation to the optimal w; for the principal. In
particular, we say a threshold 7 is a-competitive if the expected utility of the principal using 7 is at
least o [max {z(w),...,z(wn)}]. An algorithm solves the Replicable Delegation (RD) problem
if it is p-replicable and with probability at least 1 — [ outputs an a-competitive threshold.

1.1 Our contribution

Our first result is an algorithm that replicably outputs a (1/2 — €)-competitive threshold with
high probability for finite distributions. A standard approach to prophet inequalities is to set 7 =
E [max {X1,...,Xn}]/2, suggesting that one might attempt to apply this strategy to the ROP
problem using a replicable mean estimation algorithm, such as that of [ILPS22], to approximate this
threshold. However, as we discuss in Section [3] these algorithms have an additive error, preventing
them from yielding competitive prices.

To overcome this limitation, we design an algorithm based on the median approach of [SC84], leading
to the following result.

Theorem 1. Assume that the distributions D; are all supported on a known finite set X. For any
e € (0,1/2) and p,B > 0, there exists an algorithm solving the ROP problem with parameters
(1/2 — €, p, B) using at most poly (log* |X|,p~t, 871, 671) samples from each D;.

To achieve the above result, we show that good prices can be obtained by applying replicable (ap-
proximate) median estimation algorithms to the distribution of max { X1, ..., Xx}. Such algorithms
have previously been obtained by [ILPS22] and [BGH™ 23] ﬂ While both of these algorithms have
an approximation error in estimating the median, unlike the algorithms for mean estimation, the
effect of these errors on the quality of the output price can be bounded. As we show in Lemmafd] a
~-approximate median (see Section for a formal definition) leads to a (1/2 — ~y)-competitive price.
We further generalize our technique and apply it to the delegation problem, obtaining the following
result.

Theorem 2. Assume that the distribution D is supported over a known finite set X. For any
e € (0,1/2) and p, > 0, there exists an algorithm solving the RD problem with parameters
(1/2 — €, p, B) using at most N - poly (log* x|, p~t, 7L, 6*1) samples from D.

For the ROP problem, we establish that the dependence on the size of X" is necessary. Formally,
letting the sample complexity of an algorithm denote the number of samples it requires from each D;
(see Definition[T)), we prove the following theorem.

Theorem 3. There exist constants p, 3,c1,co > 0 and a set X with the following property. Fix
o > ci(log™ | X])7"% and N > 2. Any algorithm that can solve the (o, p, 3)-replicable online

pricing problem has sample complexity ﬁ(a log™ | X|), even if we assume that X1, ..., Xy are i.i.d.

The constant 0.99 in the theorem above can be replaced with any value strictly less than 1. To
prove this theorem, we reduce from the replicable interior point problem, where the goal, given
a distribution D, is to output a value in the range [min(D), max(D)] in a replicable manner (see
Section . By leveraging the privacy-to-replicability reduction of [BGHT 23|, we establish that this

problem requires at least Q(log™ |X'|) samples (see the Appendix).

2Specifically, we use the algorithm of [12], which has a polynomial sample complexity. However, we note
that their algorithm is not computationally efficient due to reliance on correlated sampling. Alternatively, one
can use the approach of [31] which is polynomial time but has a sample complexity exponential in log™ |X’|.
We note that since our result is obtained via a reduction to replicable median estimation (see Lemma 8), any
possible future improvements for that problem would immediately yield improvements to our results as well.



Moreover, we show that the “hard distributions” for the interior point problem exhibit an additional
structural property: they contain no “heavy” points. Specifically, for any o > Q(log™ |X])~°%%, no
point in the distribution has probability mass exceeding .. We then argue that, in such instances, any
competitive price must lie within the interior of the distribution of X;. This is proved in Lemmal8]|
and the main intuition behind it is as follows. If the price is set outside this interior, the algorithm will
either reject all elements or accept only the first element. Using the fact that the distribution contains
no points with probability exceeding o, we can construct instances of the prophet inequalities problem
where, for an appropriate range of N a~ a1, the first element is roughly 1/N times the maximum
element. Therefore, if the price is outside the interior of the distribution, its competitive ratio is at
most = 1/N. We then extend this result to arbitrary N by modifying these instances to output 0 with
a small probability. Further details can be found in Section

We further show that, in the special case of i.i.d. distributions, we can match the dependence on « in
theorem below.

Theorem 4. Forany p,3 > 0and o <1/ 4@ there is an algorithm that can solve the ROP pricing
problem for i.i.d. distributions with parameters (., p, 3) and sample complexity

O(a - poly(log™ [ X, p~", 571))

En route to proving our results, we develop a novel and improved replicable algorithm for outputting
a heavy hitter for an input distribution. A value x is called a heavy v-heavy hitter for a distribution
D if its sampling probability under D is at least v. In the heavy hitter problem, we are given a
distribution D over a finite set X, which is not necessarily ordered, and the goal is to (replicably)
output a v-heavy hitter for D. We focus on an approximate version of the problem which assumes
that the underlying distribution is guaranteed to have a (~y/)-heavy hitter. For this problem, we obtain
the following result.

Theorem 5. For any p,3,v > 0 and vy > 4, there exists a p-replicable algorithm with sample
complexity O (v='p~2 log?(v=")(log(p~") + log(B71))) with the following guarantee: Assuming
a (yv)-heavy hitter exists, the algorithm outputs a v-heavy hitter with probability at least 1 — . If
no (yv)-heavy hitter exists, then with probability at least 1 — 3, it outputs either Null or a v-heavy
hitter.

Existing work providing replicable algorithms for the heavy hitter problem consider a variant
where the goal is to return a list that contains all (y~)-heavy hitters and is a subset of v-heavy
hitters. For this variant, Impagliazzo et al. [ILPS22] obtain a p-replicable algorithm with 1 — 3

success probability that has sample complexity 5( . Esfandiari et al. [EKM™23]

improve on this with an algorithm achieving sample complexity O(m log(1/5)). More

1
S AP =T)?)

recently, Hopkins et al. [HIK"24b] developed an algorithm with expected sample complexity
O(W3 (i_l)Q log(min&g p)y)). All of these results have a cubic dependence on v, whereas our

approach achieves a nearly linear dependence. Although, it is worth noting that the variant considered
by the previous works is more general than the one we consider here. We note that, even without
replicability, one requires at least (') samples to find a heavy-hitter and as such our result is
nearly tight. We further note that without the improved dependence, the range of « in Theorem 3]
would be Q((log* |X])~9-33) instead of Q((log™* |X|)~0-99).

To prove the above result, we design a two-stage algorithm. First, we sample a candidate set S(V) of
size approximately v~ !. Then, using a fresh set of samples S(?), we estimate the probability of each
point in (V). The elements in S() are randomly permuted, and we output the first element (in the
order of the permutation) whose estimated probability exceeds a threshold v/, drawn uniformly from

v, .

A key challenge in implementing this strategy is ensuring that the random permutation is defined
replicably. This is nontrivial, since the permutation depends on S(1), which itself depends on the
samples. To address this, we use k-wise independent sampling based on Reed-Solomon codes to
assign a number to each element in X, then sort .S (1) based on these numbers. Crucially, while the
numbers are not fully independent, any subset of size |S(!)| behaves as if chosen independently.

*Note that one can handle a € (1/4,1/2) using Theorem



Although the two-stage approach has been previously explored (e.g., see [EKM™23])), our tailored
analysis significantly reduces the sample complexity from cubic in v~ to nearly linear. This
improvement stems from two key insights. First, our use of random permutation reduces the number
of “important” candidates (from a replicability perspective) from v~! to log(v~!). Second, we
leverage a sharper version of the Chernoff inequality, yielding an additional factor of ! in savings.
Importantly, this sharper version can only be leveraged for our problem, and not the more general
variant studied by Esfandiari et al. [EKM™23]].

Mabp of the paper. The remainder of the paper is organized as follows. Section [2| discusses the
preliminaries of the paper. Section [3|proves the upper bound for ROP. Section 4| proves the lower
bound. Finally, Section 5| provides the heavy-hitter algorithm. Due to space constraints, parts of the
proofs, the proof for RD, as well as the discussion of further related work is deferred to the Appendix.

2 Preliminaries

Notation and setting. Given a positive integer n, we use [n] to denote the set {1,...,n}. The
prophet inequality problem is defined as follows. N random values X7, ..., Xy arrive in an online
manner, where X; is sampled from a distribution D; and the goal is to choose a single item with high
value. The distributions D; are all supported over a set X C RZ° known upfront.

We will focus on threshold based algorithms for this problem; given a fixed price 7 € RZ° we define
1(Xy,...,XN;7,0) = argmin {i : X; > 7} and i(X4,...,Xn;7,1) = argmin{i: X; > 7} to
denote, respectively, the index of the first value greater than or equal to 7 and the index of the first
value strictly greater than 7. If no such value exists, we set i(.) to +00. For simplicity, we will often
write i(7, 0) and (7, 1). Let € [0, 1] and sample B ~ Bernoulli(x). We say a pricing pair (T, k)
is a-competitive for Dy, ..., Dy if E [X;(; )] = oE [max {Xi,..., X }], where the expectation
is over the randomness of X,..., Xy, B. We rely on tie-breaking because our median-based
pricing requires the algorithm’s acceptance probability to be close to 1/2. If max X3, ..., Xy has a
large atom at its median, no single threshold 7 achieves this without tie-breaking. Although one of
E [Xi(770)] or £ [Xi(m)} must match the a-competitiveness of E [Xi(ﬂ B)] , identifying which one
requires full knowledge of the distributions. Intuitively, if X; occasionally takes very large values,
B = 1is preferable; otherwise, B = 0 is better, but such rare events cannot be detected from samples.

One can define a replicable variant of the prophet inequalities problem by requiring that the algorithm
outputs a price in a p-replicable manner while maintaining an a-competitive guarantee. That
is, in expectation over both the randomness of X; and the algorithm itself, the expected output
must be at least oF [max { X7, ..., Xy }]. However, this formulation has a fundamental issue: an
algorithm can effectively bypass the replicability requirement by outputting O with probability 1 — p
and, with probability p, employing a non-replicable 1/2-competitive algorithm (e.g., the single-
sample algorithm from Rubinstein, Wang, and Weinberg [RWW19]]). This approach achieves a
p/2-competitive ratio, which is constant for constant p, while still technically satisfying replicability.
Intuitively, though, such an approach is undesirable because its competitiveness derives entirely from
the non-replicable outputs.

Given the above issue, we opt for the following formulation, which requires the output price itself to
be a-competitive.

Definition 1 (Replicable Online Pricing (ROP)). An algorithm A solves the Replicable Online
Pricing (ROP) problem with parameters (v, p, 3) and sample complexity n if it takes n samples from
each distribution D;, is p-replicable, and outputs an c-competitive price pair (7, k) with probability
at least 1 — 3.

This definition aligns with existing work on replicability in statistical problems, wherein the quality
of an algorithm’s output is assessed by defining an “acceptable set” (in this case, the set of all a-
competitive prices) and requiring that the algorithm’s output falls within this set with high probability.

The Replicable Delegation(RD) problem is defined analogously. In the delegation problem, an agent
samples solutions wy, ... ,wy from a distribution D, where each sample has utility z(w;) and y(w;)
for the principal and the agent respectively. The principal commits to a price 7, which is announced to
the agent beforehand, and only accepts solutions satisfying 2 (w;) > 7 or 2(w;) > 7. The agent then
chooses the acceptable solution maximizing its own utility. Let i(7, B) = arg max;.,(,,,)>, ¥(wi)



for B = 0 and i(7, B) = argmax; (> y(w;) for B = 1. We say the pricing pair (7, &) is
a-competitive if E [w(z;(,,p))] > oF [max {z(w),...,z(wy)}], where B ~ Bernoulli(x). An
algorithm A solves the RD problem with sample complexity n if it is p-replicable, takes nN samples
from D and with probability 1 — 3 outputs an a-competitive price. Note that we allow n/V samples
here, instead of just n, in order to align with the ROP definition.

Throughout the paper, we will frequently use the following multiplicative form of the standard
Chernoff bound. Let p € [0,1] and sample n i.i.d variables Y7,...,Y,, from the distribution
Bernoulli(p). define p = Z,—LY

Pr | — p| > dp] < 2¢70" "7/ )

Interior point and approximate median. Given a distribution D over an ordered set X, we say
z is in the interior point of D if min(D) < z < max(D) where min(D) and max(D) denote,
respectively, the minimum and maximum elements with strictly positive probability under D. We say
x is a y-approximate median for v < 1/2 if min {Prx~p [X > z|,Prx.p [X <z|} > 1/2 — 4.
The two problems are closely connected; any approximate median is automatically an interior point
and, conversely, an algorithm for (replicable) interior point can be transformed into an algorithm
for (replicable) approximate median with a slight increase in sample complexity. As shown by
[BGH™ 23|, there exists an algorithm for the replicable interior point problem with sample complexity
polynomial in log™ | X|.

Lemma 2. For any p, 3, > 0, there exists a p-replicable algorithm that outputs a ~y-approximate
median with probability at least 1 — 3 and has sample complexity poly(log* | X |, p~1, 71, v~ 1).

We refer to [BGH™ 23] for the proof. Specifically, following the argument in Footnote 18 of the arXiv
version of [BGH™ 23| and keeping track of the relevant parameters, we obtain the sample complexity

O (7p21og” (1/8) (log" |X])° ).

It is clear that if a distribution has a large atom (e.g., if it takes a single value with probability 1), then
Prx~p [X > ] can never be close to 1/2, which is required for median pricing. To address this, we
extend the definition of approximate median to pricing pairs (7, x). We say a pricing pair (7, k) is a
~-approximate median for D if

(1=R)Prx~p[X > 7]+ KkPrxp[X >7]€(1/2—7,1/247).
We further prove the following result in the Appendix.

Proposition 3. For any p,B,v > 0, there is a p-replicable algorithm that outputs a +y-
approximate median pair (,k) with probability at least 1 — 8 and has sample complexity
poly(log” | X, p~1, 871, y71).

3 Replicable Online Pricing Upper Bound

In this section, we prove Theorem [I|and Theorem 4] via a reduction to the replicable (approximate)
median estimation problem. As mentioned earlier, one natural approach to solving the ROP problem
is to use existing replicable mean estimation algorithms to compute E [max { X7, ..., Xy }]/2. This
may initially seem more appealing than our median-based approach, as mean estimation algorithms
do not require a finite ground set X and even work for continuous distributions, whereas median
estimation incurs a dependence on log™ |X'|. However, these approaches introduce additive estimation
error, which can be problematic when E [max { X7, ..., X }] is small, potentially leading to negative
outputs. While one might attempt to mitigate this issue using techniques such as adjusting the error
based on an initial sample set, our lower bound in Theorem 3|establishes that no approach—including
these—can eliminate the dependence on log™ |X|.

We first state the following lemma which follows folklore techniques (e.g., see [KK18])). In the
interest of space, we have moved the proof to the Appendix.

Lemma 4. Let (1, k) be a y-approximate median pair for the distribution of {X1, ..., Xn}. Then
(1,k) is a (1/2 — v)-competitive price pair.

Proof of Theoreml[l} Let s = poly(log* | X|,p~1, 371, e~ !) denote the sample complexity specified
by Proposition |3} For each 1 < ¢ < n, we take s samples from the random variable X; with



distribution D;, denoting these samples by x; 1,...,%;s. Then, foreach 1 < j < s, we define
Yj = Maxi<i<n Z; ;. It follows that y1, ...,y are s samples taken independently from the random
variable Y defined as Y := max(X1,..., Xy).

Using the given p-replicable algorithm for vy-approximate median pair (7, k), we compute a -
approximate median of Y based on the samples 1, . .., ys. We return this as the output of our pricing
algorithm, which we know is (1/2 — ~) competitive by Lemma 4] and therefore satisfies the desired
properties of the (1/2 —~, p, B) online replicable pricing algorithm. Hence, the theorem follows. [

Proof of Theoremd} We first observe that since the elements are i.i.d,
1 1
E[X] = N]E[Xl +...,XN] > ﬁE[max{Xl,... , XN}

We therefore assume that & > 1/N as otherwise, using the price 7 = 0, we obtain a (1/N)-
competitive price.

Setr = LTJ Since o > 1/N, we have r < N. Divide the input variables X7, ..., Xy into groups
of size [ N/r], with the last group possibly having less than [N/r] elements. Let (7, k) be a 1/4-
approximate median pair for max { X1, ..., X[n/,] }. We estimate this replicably as in Proposition
By Lemma using this pair the expectation of the output is at least 1E [max { X1, ..., X[n/ }].
Since we have at most 7 groups however,

E[max{Xi,...,Xn}] <rE [max{Xl, .. ,X(N/T]}].
Therefore, (7, k) is 4—1T—competitive. Since r < ﬁ, this means the price it at least a-competitive.

We next bound the sample complexity of our algorithm. To calculate (7, k), it suffices to have
poly(log™ | X|, p, B) samples from max {X 1y XN/ } Observe however that we always have
at least /2 full groups; if » = 1 then we have exactlg r full groups and if » > 2 we have at least
r—1 > r/2 full groups. Therefore, it suffices to have Zpoly(log™ |X'], p’l, £~1) samples from each

of the input variables. Since r = LﬁJ and o < 1/ 4, we have r > 5a , which means 2 < 16a.
Therefore, the sample complexity bound follows as well. [

4 Replicable Online Pricing Lower bound

In this section we prove Theorem 3} Our proof is obtained via a reduction from the interior point
problem. Specifically, we rely on the following result.

Proposition 5. There exists p, 5 > 0 such that any p-replicable algorithm solving the statistical
interior point problem with failure probability at most (3 for a distribution Z over a finite set F' has

sample complexity ﬁ(log* |F |

The above result follows from the hardness of the differentially private version of the problem; we
refer to Appendix [E.2]for more details.

We note that the nature of the set /' do not play a major role in the problem beyond its size; for any
other ordered set F’ of the same size, an algorithm for the set F' can be turned into an algorithm
for the set F”' and vice versa. Our proof of Theorem is divided into multiple steps. Due to space
constraints, we sketch the steps and state the Lemmas here and refer to the Appendix for the full
proofs.

1. We prove that the lower bound for the interior point problem holds even under the additional
assumption that the underlying distribution contains no “heavy” elements—those with
sampling probability exceeding «., where « falls within the range specified in Theorem 3|
(Lemma[7). To prove this, we show that if the distribution did contain heavy elements,
the statistical interior point problem could be solved using a novel heavy hitter algorithm,
which we introduce in Section [5] This effectively implies that the “hard instances” for the
replicable statistical interior point problem exclude heavy elements.

“This lemma also implies that this problem is unsolvable with any finite sample complexity over infinite
domains since a solution for an infinite set would yield a solution for arbitrarily large finite subsets, which by
this lemma requires arbitrarily large sample complexity.



2. We next show that, for a suitable choice of the set X, if the distribution X does not contain
a heavy element with probability > «, then the maximum of M ~ 1/« i.i.d. draws of X
is, in expectation, at least Q(M )E [X] (Lemma ). We refer to distributions without such
heavy elements as a-light.

3. We then prove that any «a-light instance for the interior point problem can be transformed into
an instance of online pricing with N > Q(1 /) such that improving on O («)-competitive
prices can only be done by solving the interior point problem. In this reduction each
sample from an X; in online pricing corresponds to roughly 1/« samples for interior point
(Lemma ).

We proceed with a formal proof. We first extend the above hardness result to the case where the
distribution does not contain any heavy elements. We call such distributions /ight and formally define
them below.

Definition 6 (light distribution). A distribution Z is a-light if Pr[Z = z] < a for all z.

Lemma 7. There exists constants p, 3,c1 > 0 with the following property. For any « satisfying
a > ¢y (log® |F|)=%9, any p-replicable algorithm solving the statistical interior point problem with

success probability 1 — B on a set F' has sample complexity ﬁ(log* |F
distribution is ensured to be a-light.

), even if the underlying

We next state the following lemma that lower bounds the expectation of the maximum of copies of a
distribution under certain conditions.

Lemma 8. Let X = (1/¢)% where ¢ € (0,1/2) and Z is an a-light distribution over the set
F ={1,...,|F|}. Let X1,...,X be i.id copies of X where M < 1/(2a). Defining Y =
max {X1,..., X} we have

E[X] < O(1/M + e)E[Y].

We can further generalize the above lemma to N > M as follows.

Lemma 9. Let X = (1/¢)? where Z is an a-light distribution and € € (0,1/2). Assume that
M > 1/aand N > M. Let X' be a distribution that is 0 with probability 1 — M /N and is sampled
Sfrom X with probability M/N. Let (a,b) = (min(Z), max(Z)). There exists a constant ¢ such that
ifT ¢ [(1/e)%, (1/€)), then for any k € [0,1] the pair (1, k) is not (c(a + €))-competitive for the
online pricing instance X1,..., X}.

As we show in the Appendix, the above lemma combined with the hardness of interior point implies
Theorem 3

Remark 10. The same argument extends to the RD problem. In the proof of Lemmal[9} if the price lies
outside the range, the algorithm simply accepts the first element X;. Analogously, we may assume
that x(w;) and y(w;) are sampled independently. In this case, when the price is not within range, the
algorithm selects the “first” element according to the order induced by y(w;). Since x(-) and y(-)
are independent, the proof carries over.

5 Replicable Heavy Hitter

In this section, we prove Theorem[5|Let D denote the input distribution. We first present our algorithm
to solve the problem. We then move on to the analysis of the replicability of the algorithm and its
correctness.

5.1 Algorithm

We first take a sample S() of size ny = O(v ' log(p~' + B! 4+ v~1)) from the distribution. Next,
we sample a set S(2) with size ny = O(log(Gms V" log?(v=1)/p?) < O(log(v—")?log(p~" +
B~ p~2v~1) samples from the distribution and record, for each element 2z € SV, the number of
times it appears in S(*). Sample v uniformly at random from the range [3/2v, 2v/]. Let Y denote the
set of all elements in S(!) that appear more than v/n times in S(?), where we remove repetitions of
an element so that each element appears at most once in Y. If Y is non-empty, we choose an element
from it uniformly at random and return as output.



The way we choose the uniform element from Y is important for ensuring replicability. If runtime is
not a concern and only sample complexity matters, then one could sort all elements in X’ using the
shared random bits and pick the element in Y that appears first in the permutation. However, since
running time scales linearly with X, this approach is not feasible for large domain sizes. Assuming
r denotes the random bits of the algorithm, we will choose a value 7(r, x) for each x € Y that
depends only on x and r such that, for random r, the values n(r, z) for € Y are all independent
and (essentially) distributed uniformly in [0, 1]. Importantly, n(r, X ) does not depend on the samples
S, We discuss below how this can be achieved using Reed Solomon codes. We then output the
element in Y with the lowest value of n(r,.).

Intuitively, n(r, x) denotes an order of the elements; we emphasize however that this order is unrelated
to any pre-existing order among the elements of A" and is chosen uniformly at random. Indeed, it
is clear from the definition of the heavy hitter problem that the set X does not need to be ordered.
Throughout the proofs, we will often implicitly assume that the elements are ordered (increasingly)
based on 7)(r, .); e.g., we will refer to the element in a set with the smallest value of 7)(.) as its “first”
element. The above procedure ensures that if we fix the random bits r, any fixed subset of elements
will always be in a fixed order as long as the entire set appears in Y. This will be important for
replicability as it allows us to output the same element regardless of the value of S(*). We omit the
dependence of 7)(., .) on r when it is clear from context.

To sample 7(r, z), we proceed as follows. Let X’ denote the ground set of the distribution. Choose
a finite field F such that the size of the field is a power of 2 larger than |X’|. Embed each element
x € X as an element in . We sample ug, ..., un, 1 uniformly at random from F and define
n(z) = Yy Yw;at. Tt is clear that n(z) depends only on the random bits of the algorithm. It
is well-known however that for any fixed values 1, ..., x,,, the values n(z1),...,n(x,—1) are
independent and uniformly random in F. We repeat the process O (log(n; max(5~1, p~1))) and
concatenate the different values of 7)(x) to form a single value 7(x). The concatenation is made to
ensure that, w.h.p, there is no tie among the elements of Y when comparing (see the analysis below).

5.2 Analysis

We next state the proof. Due to space constraints, we defer parts of the proofs to the Appendix.
Let p(x) = Prp [x] denote the probability of sampling = under the distribution D. Let X=¥ =
{z : p(x) > v} denote all elements for which the sampling probability is more than . Note that
X =¥ has size at most % by definition. Let xy ,» = argming,(,y>, n(z) denote the first element
with probability larger than /. If no such element exists, we set x,, ,» to be Null. We will assume
ties are broken in lexicographic order; our analysis will actually condition on the event that ties do
not occur which holds with high probability. We note that the value of x,, ,» does not depend on any
of the samples and only depends on the input distribution and the random values 7(.). We will show
that, with probability at least 1 — p, the algorithm outputs x,, ...

Let X7” C X2¥ denote all of the elements in S that have a higher p(.) value than all elements with
smaller 7 values:

XUZ” ={z € X2 :p(y) < p(z) forall y € X=" such that n(y) < n(z)},

We next define a few events which we later show hold with probability at least 1 — O(p). We say Evy
holds if all elements in X =¥ appear in SW:ie., Evy = {XZV - S(1>}. For an element z € S,
let () denote the estimated probability of 2 based on its repetitions in S(?). Set € = W.
We say Eva(z) holds for an x if either p(z) < 3v and |p(z) — p(z)] < e or p(z) > 3v and

p(x) > 2v. We say Evy holds if Evy () holds for all z € S(1). Let the set U denote the union of the
e-neighborhoods of all z € X 772"; formally,

U= Uzexnzu(:cfe,ere),

We say Evs holds if v/ ¢ U. As we show in our proofs, we can essentially bound the number of
elements inX, ,72”, thereby lower bounding the probability of Evs. For an event Ev, let —Ev denote its
complementary event.

The following lemmas bound the failure probability of the events.



Lemma 11. Pr[—Ev;] < min(p, §)/10.
Lemma 12. Pr[—Ev;] < min(p, 8)/10.
Lemma 13. Pr[-Ev3] < p/2.

We say Evy holds if 7(x) # n(y) for all distinct 2,y € S U X2, Since | X="| < ny, we have
|S(1) U X="| < O(ny). It follows that

Pr[-~Ev,] < O(n?)2~OUoslm+5™+071) < 71111112(6), A) )
where for the second inequality we have assumed that the hidden constant under O(.) in the exponent
is large enough.

Lemma 14. Assume that Evy, Eva, Evz and Evy hold. The output of the algorithm is x,, .

Now, we procceed with the proof of Theorem 5}

Proof of Theorem[5] 1t is clear that the algorithm has the desired sample complexity. For replicability,
Putting together the above lemmas, we conclude that the probability that the algorithm outputs x,, ./
is at least 1 — p. It follows that two independent runs of the algorithm with shared randomness will
have the same output with probability at least 1 — 2p, implying that the algorithm is (2p)-replicable.
It is clear that by replacing p with p/2, the algorithm becomes p-replicable with the same sample
complexity up to constant factors.

We next prove correctness. We show that assuming Evy, Evy, Ev4 hold, the algorithm’s output is
correct; i.e., (a) it is either Null or a v-heavy hitter and (b) if a (4v)-heavy hitter exists, it is not Null.
For proving (a), observe that if the output is not Null then it is some 2 € S() such that plx) > .
By Evy, this implies that p(x) > v/ — € > v, and we are done. For (b), letting z* denote the point
satisfying p(z*) > 4v, we have 2* € S because of Ev; and p(z*) > 2v by Evy. It follows that
the output will not be Null and the proof is complete.

O

6 Conclusion

In this work, we investigated replicability in online decision-making, with a focus on the Replicable
Online Pricing (ROP) problem and its sample complexity. By designing efficient replicable algorithms
and establishing fundamental lower bounds, we highlighted the trade-offs between replicability,
competitiveness, and sample efficiency. We also explored the broader implications of our results for
the delegation problem, a key economic model of principal-agent interactions, analyzing strategies
to align incentives while maintaining decision-making autonomy. As part of our technique, we
obtained a new algorithm for the replicable heavy hitter problem which may be of independent
interest. Our findings enhance the understanding of replicability in both algorithmic and economic
contexts, underscoring its importance in ensuring fairness, transparency, and reliability.

An interesting direction for future work is applying our techniques to study replicability in other
pricing problems. Another promising direction is to extend our methods, particularly the lower
bounds, to study broader notions of robustness—for example, allowing replicable algorithms to
produce approximately equal outputs. Additionally, while we focused on multiplicative guarantees to
align with the standard competitive analysis framework, it would be interesting to explore algorithms
that allow additive error. Improving the dependence of our bounds on any of the relevant parameters
is also an interesting direction for future work. Finally, it would be interesting to analyze the practical
implications of work using empirical evaluations.
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A Further related work

A.1 Replicability

The concept of algorithmic replicability and reproducibility has attracted considerable attention in
recent years, leading to the development of various theoretical frameworks and practical algorithms
across multiple domains. [ILPS22] introduced the notion of reproducible algorithms within the
context of learning, highlighting the balance between randomness, accuracy, and reproducibility.
They developed a theoretical foundation for reproducible algorithms and examined reproducibility in
statistical query (SQ) algorithms, approximate heavy hitters, medians, and learning halfspaces. They
also explored some inherent trade-offs and lower bounds associated with reproducibility.

Building on this foundation, replicability has been examined across several fields. For instance,
[EKK 23] extended the concept to stochastic bandits and developed replicable policies that could
achieve optimal regret bounds comparable to their non-replicable counterparts. [EHKS23|| initiated
the study of replicable RL algorithms, providing provably replicable versions of parallel value iteration
and R-Max in episodic settings. Similarly, [KVYZ23]|] investigated replicability within reinforcement
learning (RL), focusing on discounted tabular Markov Decision Processes (MDPs) with access to a
generative model. They provided replicable algorithms for (e, §)-optimal policy estimation. They
also explored TV indistinguishability as a relaxed form of replicability and introduced the notion of
approximate replicability.

[EKM™23|| proposed replicable algorithms for statistical clustering by applying replicability con-
cepts to problems like k-medians, k-means, and k-centers. The computational and statistical costs
of replicability in high-dimensional tasks, such as multi-hypothesis testing and mean estimation,
were examined by [HIK"24a]. Their study established an equivalence between optimal replicable
algorithms and high-dimensional isoperimetric tilings, resolving open problems related to sample
complexity.

[LY24] addressed replicability in uniformity testing, presenting a replicable uniformity tester using
only O (na_Q p‘l) samples, and providing a nearly matching sample complexity lower bounds for
replicable uniformity testing of symmetric algorithms invariant under domain relabeling. In convex
optimization, [ZYKH23]] demonstrated that optimal reproducibility and near-optimal convergence
could be simultaneously achieved in various optimization settings. Additionally, [KKL ™24 stud-
ied replicable algorithms for learning large-margin halfspaces, presenting dimension-independent
algorithms with improved sample complexity.

In another line of work, the relation between replicability and other stability notions was explored
by [BGH™23|]. They provided algorithmic reductions between replicability, perfect generalization,
and approximate differential privacy, while also identifying computational separations that underline
fundamental differences between these stability concepts. [KKMV23|] explored Total Variation (TV)
indistinguishability as a measure of learning rule stability and investigated information-theoretic equiv-
alences between TV indistinguishability, replicability, and differential privacy. Lastly, [KKVZ24]
focused on the computational connections between replicability and learning paradigms like online
learning, private learning, and SQ learning.

Replicable mean and median estimation. Replicable algorithms for mean and median estimation
were first developed by Impagliazzo, Lei, Pitassi, and Sorrell [ILPS22], who introduced general-
purpose techniques for statistical queries under replicability constraints. Their replicable median
algorithm has sample complexity exponential in log™ | X |. Bun, Gaboardi, Hopkins, Impagliazzo, Lei,
Pitassi, Sivakumar, and Sorrell [BGH™23] later improved on this algorithm by drawing connections
to differential privacy, obtaining an algorithm with sample complexity that is polynomial in log™ | X/,
albeit without computational efficiency.

Replicable heavy hitters. Prior work has also studied replicable algorithms for heavy hitter
identification. Impagliazzo et al. [ILPS22] and Esfandiari et al. [EKM™23|| provide algorithms that
return a list of candidate heavy hitters, with sample complexity scaling cubically in 1/v. More recently,
Hopkins et al. [HIK™24al] improved the dependence on the failure and replicability parameters for
expected sample complexity, but still maintained a »~3 dependence. In contrast, we consider a more
specialized variant where only a single heavy hitter needs to be output (assuming one exists), and

15



give a new algorithm with nearly linear »~! dependence, which is necessary for our lower bound
construction in Theorem 3.

A.2 Prophet Inequalities and delegation

The study of prophet inequalities and optimal stopping theory has seen significant growth over the
years, particularly in mechanism design and online optimization. Originally introduced by [KS77],
prophet inequalities provide a framework for comparing the expected outcomes of a prophet, who
knows future events, to those of a decision-maker without such foresight. Kennedy [Ken87] extended
the framework to multi-choice optimal stopping, identifying the best possible universal constants for
scenarios where multiple selections are allowed. [AGSCO2] further refined the prophet inequality
framework by introducing ratio prophet inequalities in settings where several stopping rules are
available to the decision-maker and offering recursively evaluated constants that provide tight bounds
for these scenarios.

The integration of prophet inequalities into mechanism design has also seen significant advancements.
[HKSO7]] applied these concepts to online mechanism design, developing approximately efficient
automated systems through new prophet inequalities motivated by the auction setting. [FGL15]
investigated combinatorial auctions with posted price mechanisms in a Bayesian setting and developed
the first constant-factor DSIC mechanism for Bayesian submodular combinatorial auctions.

[KW12] generalized prophet inequalities to matroid settings, providing tight bounds under matroid
constraints and highlighting applications in Bayesian mechanism design. Further generalizations
include the work of [AHL12], who introduced online prophet-inequality matching in bipartite graphs,
particularly relevant to ad allocation, and [AHL13|], who explored stochastic generalized assignment
problems within this framework.

There is also another line of work studying prophet inequalities on i.i.d. distributions, starting with the
work of [HK82]. Many years later, [AEE™17|| presented a threshold-based algorithm that surpassed
the theoretical bound of 1 — 1/e previously conjectured by [HK82]l. Then, [CFH"17] investigated
the performance of posted price mechanisms when customers arrive in an unknown random order,
considering both adaptive and nonadaptive cases. They established a tight bound of 1 — 1/e for
the nonadaptive case, even when valuations are i.i.d., and proposed a mechanism achieving a better
approximation factor of 0.745 in the adaptive case with i.i.d. valuations. More recently, [CDES19]
studied the i.i.d case of prophet inequality when the underlying distribution is unknown. They showed
that, without distributional knowledge, the best achievable bound is 1 — 1/e, aligning with the classic
secretary problem. However, they further demonstrated that access to a limited number of samples
from the distribution could significantly improve performance.

It is worth noting that many (though not all) works in the prophet inequalities literature use (pos-
sibly dynamic) pricing based algorithms to obtain their results and that any algorithm for prophet
inequalities admits a pricing-based implementation [BHK™24].

Sample-based prophet inequalities. The sample-based study of prophet inequalities—where
the algorithm has access only to samples from the underlying distributions—has become an active
and evolving area of research. This direction was initiated by Azar, Kleinberg, and Weinberg
[AKW14], who drew connections between this setting and the classical secretary problem. In the
case of fixed arrival order, Rubinstein, Wang, and Weinberg [RWW19]] showed that even a single
sample per distribution suffices to achieve the optimal 1/2-approximation. In the i.i.d. variant,
they also proved that a constant number of samples is enough, with later work by Correa et al.
[CCES24] refining the required sample complexity. When the arrival order is random, as in the
prophet secretary model, Correa et al. [CCES22|| established that a single sample still enables a
0.635-approximation. This sampling approach has since been extended to more structured selection
problems, such as those involving matroids and matchings [CDF ™22} [KNR22]|. More recently, Cristi
and Ziliotto [CZ24] developed a unified argument showing that constant sample access suffices to
achieve approximate optimality across both prophet-secretary and free-order settings, despite the
exact optimal approximation ratios for these variants remaining open.

Delegation The concept of delegation, a core topic in economic theory since its introduction by
[Hol80], has been explored in many different ways over the years. However, [KK18]] were the first
to analyze the efficiency loss in delegated search, proposing methodologies to bound this loss and
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demonstrating how simple threshold-based mechanisms can approximate the efficiency of direct
search. Their work established a connection between delegation and prophet inequalities, resulting in
a surge of attention to this problem.

[BD21] introduced the concept of delegated stochastic probing, merging delegation with stochastic
probing problems. [HMRS24] explored the online learning aspects of delegation through a repeated
delegated choice model. Their work extends the delegation framework by incorporating dynamic
learning of solution distributions, focusing on minimizing cumulative regret in various strategic
settings. [STCR23]] address the delegation of classification tasks to rational agents. They propose
incentive-aware frameworks that use performance-based contracts to align agents’ interests with
those of the principal, connecting contract design with statistical hypothesis testing. [SRH23]
investigate mechanisms in multi-agent settings without monetary incentives. [BHHS24] delve into
delegated online search, where agents sequentially inspect options and propose solutions in real time.
[BHKS25]] show that the correspondence between delegated choice and prophet inequalities holds if
and only if the feasibility constraint forms a matroid. They also establish a separation between the
two problems, proving that, unlike prohpet inequalities, delegated choice admits a constant-factor
approximation under downward-closed constraints.

B Proofs in Section

B.1 Proof of Lemmald|

Proof of Lemma} Sample B ~ Bernoulli(x). Define OPT = max; X;. We need to show that,
E [Xi(r,)] > (1/2 —7)E[OPT],
where we set X;(, gy = 0 when i(7, B) = co. We can rewrie the left hand side as

E [Xi(r,5)]

E[X:1{i(r, B) = i}]

|
AMZ

@
Il
-

E{(r+ (Xi = 7)) 1{i(7, B) = i}]

I
KMZ

N N
= S Elr1{i(r, B) = i}] + S E[(X; - 1)L {i(r, B) = i}]
i=1 i=1
The first term can be lower bounded as
N
T Z E[1{i(r, B)} = i] = 7Pr[i(r, B) # ]

As for the second term, define Z; € {0,1} tobe 1if X; > 7and B =0o0r X; > 7and B = 1.
Observe that

1{i(r, B) = i} = Z ][ (1 - 2)).

JFi
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This is because if Z; = 1 and all other Z; are 0, then we must have (7, B) = i. We can therefore
obtain the following lower bound

E[(X; - )1{i(r,B)=i}] >E |(X; —7)Z [[(1 - Z

i
> E[(Xi—T1)Z]E H(l - Zj)
| i#i
[~
>E[(X;—7)ZE [[[1-2)
j=1

=E[(X; — 7)Z;]Pr[i(r, B) = 0]

where for the first inequality we have used the fact that X, ..., X are independent. We note
however that (X; — 7)Z; = [X; — 7| . This follows from a case analysis. When X; < 7, then we
have Z; = 0 and both sides are 0. When X; = 7, then again both sides are 0. When X; > 7, we
have Z; = 1 and both sides are equal to X; — 7. It follows that

ZE =)L {i(r, B) = i} > o] YIX;

=1

Observe however that
Pr[i(r, B) # oc] = (1 — K)Pr [(maxXi) > T] + KPr [(maxXi) > T]

Since (7,7) is a y-approximate median pair for max; X;, the above probability is in the range
(1/2 —~,1/2 4 7). It follows that

Pr[i(7, B) # o], Pr[i(1, B) = c0] > 1/2 — .

()

2E [(Wﬁf{% -1°))

-5 ()]
= (1/2 — v)OPT.

This in turn implies

E [Xirp)] = (1/2 -

B.2 Application to delegation

In this section we prove Theorem 2} which we first restate for completeness:

Theorem 2. Assume that the distribution D is supported over a known finite set X. For any
e € (0,1/2) and p,8 > 0, there exists an algorithm solving the RD problem with parameters
(1/2 — €, p, B) using at most N - poly (log* x|, p~t, 87t ) samples from D.

Proof. We know that for any threshold 7 chosen by the principal, the best strategy for the agent would
be to choose w; with the highest corresponding value y(w;) among all those that meet the threshold
x(w;) > 7 or z(w;) > 7 depending on the value of B. We will denote this as w(™5) henceforth. Note
that w(™5) might not exist, in which case neither the principal nor the agent would gain anything
regardless of the agent’s proposal. However, the existence of w(™5) warrants the principal’s approval
and a gain of 2(w(™5)). As w(™5) can also be seen as the first task with either x(w) > 7 or z(w) > 7
when the tasks are sorted based on their corresponding value y in descending order, the problem of
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choosing an appropriate threshold 7 for the principal is closely related to choosing an appropriate
threshold for the prophet pricing problem.

‘We propose that the principal draw N - s samples from D, denoted by wéy jforeachl <4 < N and
1 < j < s, where s denotes the sample complexity of PropositionE} Foreach1 < j < s, we then
define z; := maxi<j<n x(w; j). This construction yields x1, ..., z, as s independent samples from

the random variable X, where X := maxi<;<n (w;).

Applying the given p-replicable algorithm for computing a y-approximate median pair (7, <) on the

samples z1, . .., Z, we obtain a p-replicable y-approximate median pair (v, ) for D. We report this
as the principal’s mechanism, and by Lemma 7 would be (1/2 — +) competitive, which hence
completes the proof. O

Lemma 15. Let (7, k) be a y-approximate median for the distribution of max;<;<n x(w;). Then,
(1, k) would yield a (1/2 — ~)-competitive utility for the principal.

Proof. The proof follows the same structure as Lemma Specifically, define X; = z(w;). Sample
B ~ Bernoulli(k). Define OPT = max; X;. As before, we need to show that
E [Xirm)] > (1/2 —7)E [OPT],

where we set X;(; gy = 0 when i(7, B) = oco. Note that the definition of (7, B) is different from
that of Lemma[z_fi instead of picking the first element in the order of time, we are picking the first
element in the order specified by y(w;). Just as before however, the algorithms obtains 7 with
probability Pr[i(7, B) # oo] and Y, E [[X; — 7]T] with probability Pr [i(, B) = cc]. As before,
the probabilities can be lower bounded with 1/2 — -~ and the proof goes through. O

C Proofs in Section

We first state the following standard tools from probability theory that will be used in the analysis.

Lemma 16. Let X be a distribution over the set X = {:cl, o ,a:|X|} C R2% where x; < Tiy1 for
1 € |X| — 1. Let xg = 0. The expectation of X satisfies the following equality:
|X]
E[X] =) (2 — 2i1) Pr[X > ).
i=1

Lemma 17 (Lemma A.5. in [BHSS23l)). Let X1, ..., X, be i.i.d random variables and let T be an
arbitrary value. Let p denote the probability Pr [X; > 7). Then Pr[max; X; > 7] > 1 (min {np, 1}).

We note that the lower bound in the above lemma can be written as 2(np) when p < 1/n.

Proof of Lemmal[]] Let p, 3 be half of the corresponding constants from Proposition[5] Let A be a
p-replicable algorithm with sample complexity n that can solve the problem with failure probability
at most S for a-light distributions. We transform this into an algorithm A’ for all (not necessarily
light) distributions as follows. First, we invoke the p-replicable v-heavy hitter algorithm with failure
probability 3 from Theoremfor v = «/4 and v = 4 If the algorithm’s output is not Null, we return
this as the output. Otherwise, we invoke algorithm A and return its output. We show below that A’ is
(2p)-replicable and has failure probability at most 2/3. By Proposition 5| this implies a lower bound
on the sample complexity of A’, which in turn implies a lower bound on the sample complexity of A.

We next analyze the algorithm A’.

Correctness. Assume that the distribution is not a-light. Then the heavy hitter algorithm will return
some value z # Null such that Pr[Z = z] > v > 0 with probability 1 — /3. Therefore, the output
will be correct. If the distribution is a-light, the heavy hitter algorithm will output either a value
z # Null such that Pr[Z = z] > 0, or it will output Null. If the output is Null, then algorithm A
will output a correct answer with probability at least 1 — /3. A union bound implies that the answer is
correct with probability at least 1 — 23 in this case as well.
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Replicability. Consider two runs with samples 57 and S5 and the same random bits. With probabil-
ity at least 1 — p, the heavy hitter algorithm will produce the same output for the two runs. If the
output is not Null, then we will obtain the same answers. Otherwise, we will invoke algorithm A in
both cases, which will produce the same answer with probability 1 — p. Taking union bound implies
that the algorithm is (2p)-replicable.

Sample complexity. The algorithm requires n samples for the potential run of algorithm A’ by
assumption and requires at most O(a~! log®(1/a)) samples for the single heavy hitter algorithm

by Theoreml 5| This means that the overall sample complexity is n + O(a~'log®(1/a)). Since the
algorithm is (2p)-replicable and has failure probability at most 20, Proposmonllmplles that

n+O0(a " log?(1/a)) > Q(log* |F|).

Given the assumption on «, if ¢; is small enough, this means that n > Q(log* |F'|) as claimed,
finishing the proof.

Proof of Lemma Evaluating the right hand side,

|x| | X
Z(x xi—)Pr[X >z = ZZ —x—1) Pr[X = z;]
i=1 i=1 j>1
|X|
= Z Z — ;1) Pr{X = ;] (Double counting)
Jj=11i<j
| X
= Z —x0) Pr{X = z;] (Telescoping sum)

= IEI [X ] (Definition of expectation)

Proof of Lemma[8] Set z; = (1/¢)" for i € [|F|]. Choose smallest i such that Pr[X > ;] < I-. By
definition of ¢ we have Pr[X > x;_1] > 1/M. Since the distribution Z (and therefore X) is a-light,
we must have Pr[X = z;_1] < a < 1/(2M), which in turn implies Pr[X > ;] > 1/(2M). Since
Pr[X > z;] is decreasing in j, this means that Pr[X > z,] < 1/M for j > i. We can lower bound
the expectation of Y in two ways. Firstly,

E[Y] = Z(:z:] —xj_1)Pr[Y > )] (Lemmal[l6)
> Z i Ti—1 PI'[Y>IZZJ] (Since Z; >(Z?j_1)
j>t
> Q(M) Z(xj —xj_1)Pr[X > ] (Lemmal[l7jand Pr[X > x;] < 1/(M)),
Jj=i
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Secondly, since x; — x;_1 > x;/2 (because ¢ < 1/2) and Z (@ —xj_1) <xjrgq forall j, 7/,
we obtain

E[Y] = Z(x] —xj_1)Pr[Y > ;] (Lemmal[l6)
J

> (l’z — ﬂ?i_l)PI' [Y > Zl} (Since T > $j_1)
>0(1)(x; —xi—1) (Lemmaand Pr[X > ;] > 1/(2M))
>0(1)x; (Since e < 1/2)
>0(e Y (zi_1 — o) (Since x; = ¢ x; and xo = 0)

i—1
=0 Z(x] —Zj_1) (Telescoping sum)

j=1

> 0(=) Yy — 2 )P [X > )

Combining the above inequalities we obtain

E[X] = Z(mj —xj_1)Pr[X > ;] (Lemmall6)

< Z i~ Tj-1 PI‘[X > l‘j —|—Z a:j,l)Pr [X > ,CCJ}
j<t j>i

<O(1/M +¢)E[Y],
finishing the proof. O

Proof of Lemmal[9] Let C1,...,Cyx beii.d Bernoulli variables such that Pr [C; = 1] = M /N. Sam-
pling X1, ..., Xy i.i.d from the distribution of X, we can assume that X = C; X;. If the price 7 is
not in the range [(1/€)%, (1/¢)"], there are two possibilities. The first is that it is > (1/¢)°. In this
case, accepting the first element above T is equivalent to not accepting anything, which means 7 is
only 0-competitive. We therefore focus on the case 7 < (1/¢)®. We further assume 7 > 0 since
clearly a non-zero price is better than 0. If 7 € (0, (1/£)%), then accepting the first element above or
equal to 7 or accepting the first element strictly greater than 7 are both equivalent to accepting the first
element X/ such that C; = 1, assuming such an element exists. Since C; and X; are independent,
this means that the expected value of the algorithm is at most E [ X ], where we note that we have
an inequality because with positive probability all C; are 0. Define Y = max {X{,..., X}, }. We
need to show that E [Y] > Q(aiE)E [X1]. Since each C; is 1 with probability M /N, we have

E[SX, €] = M. By Chemoff, tis implies

172 \ M
< | — <1-Q(1).
< () W
Therefore, with probability (1), we will have sz\; C; > M /2. Conditioned on this event, since
X1,...,Xn arei.i.d and independent of C;, Y is a maximum of at least 1/(2a/) copies of X;. We

can assume, without loss of generality, that o« < 1/8. If o > 4, then setting ¢ > 8 the lemma holds
trivially as one cannot have a price that is c-compettive for ¢ > 1. It follows that i > 4 which in

turn implies | 5= | > Q(1/a). Therefore, (| |)~* < O(a).

Let Y’ denote the maximum of the first |1/(2«) | copies of X. It is clear that Y > Y. By Lemma|g]
however,

N
> Ci<M)2

=1

Pr

E[X)] < 0<Q21QD_1 +e) < O(a+eEY]

Therefore, conditioned on the event Zivzl Ci > M/2 wehave E[Y] > Q(2 +E) [X1]. Since the
event happens with constant probability, this holds without the conditioning as well, finishing the
proof. O
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Proof of Theorem B3} Let p', ', ¢} denote the values of the constants from Lemmal[7} Let ¢’ denote
the value of c in Lemma@ We assume without loss of generality that ¢’ > 1 since increasing ¢’ doe
not violate the lemma. Set p = p'/2, 5 = '/2 and ¢; = 4c'c}. Set o/ = a/(4c’), M = [1/a/] and
set co = 8¢,

Note that this implies
N>cy/a=2/d > M.

For the final inequality, we have used the fact that 2/a’ > [1/a/]. This follows from the fact that
1/a" > % > 4; note that o < 1 as otherwise the lemma holds trivially.

Let A be an algorithm that is p-replicable and with probability 1 — (3, outputs a price pair that is
a-competitive for N i.i.d variables X1, ..., X} and has sample complexity n. We need to show that

n > Qalog” |X|).

We will build an algorithm A’ for the replicable interior point problem on «’'-light distributions. Let
Z be an o/-light distribution and set ¢ = «’. Create the distribution X’ as in Lemma[9} Give this
as input to the algorithm A and denote its output price pair with (7, ). Note that the algorithm will
attempt to sample from the distributions of X/, which in turn requires us to potentially sample from
Z. The number of samples the algorithm will require from Z is random. If the algorithm A ends up
requiring more than n’ = C(log(8~ 1) + log(p~!)) Mn samples from Z, (where C' will be specified
later), we halt the algorithm and output Null. Otherwise, we round the value log; /. (7) to the nearest
integer and output it.

Correctness. We will show that the algorithm’s output is correct with probability at least 1 — f3.
Assume for simplicity that instead of halting the algorithm if we require more than n’ samples, we
allow the algorithm to continue and calculate the price 7, but output Null in the end. It is clear that
this does not change the algorithm’s output.

The expected number of samples the algorithm takes from Z is % N -n=Mn< %n Therefore,
by Chernoff, the probability that the number of samples we require exceeds n’ is at most =90,
which is < (/8 if we set C to be large enough. Furthermore, with probability at least 1 — (3, the
output of the algorithm A will be a price pair (7, k) that is a-competitive. Invoking Lemma @
we conclude that such a 7 must be in range [(1/€)%, (1/¢)"] since otherwise it would be at most
(c(a’ + €))-competitive and ¢(a’ + ) = a/2. Note that the preconditions of the lemma hold. We
have e = o = a/(4c’) < 1/2. We alsohave M = [1/a/] > 1/a’ and N > M.

If 7 is in the range [(1/€)%, (1/£)"], then the output of A’ will be an interior point of Z. Note that
if 7 does not correspond to a value €7 for an integer z, it does not matter how we round log, 1 (7);
since 7 is in the range [¢%, €], both options for rounding are acceptable. Therefore, the algorithm A’
is correct with probability at least 1 — (1 +1/8) > 1 — f'.

Replicability. As before, we assume for simplicity that instead of halting the algorithm if we
require more than n’ samples, we allow the algorithm to continue and calculate the price pair (7, %),
but output Null in the end. If we run the algorithm A’ with two separate samples S, S5 and the
same random bits, with probability 1 — p/4, neither of the two runs return Null. This follows from
the fact that the probability of returning Null is at most e=9(") which is < p/4 given a large enough
C'. Additionally, with probability at least 1 — p, both runs of A return the same output. It follows that
with probability at least 1 — p’, the output is the same.

Sample complexity. By definition of ¢/, we have o/ = «/(4c’) > ¢ ((log™ |F|)~%99). The
algorithm A’ produces an interior point of Z with probability at least 1 — 3" and is p’-replicable. It
follows from Lemmathat its sample complexity n’ must be at least Q(log” | F'|). Since p, 8 were
constants, we have n’ = O(Mn) = O(n/«), where the second inequality follows from the fact that,

since 2/a’ > M. Therefore, n/a > Q(log™ | F|) and the proof is complete.
O
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D Proofs in Section 3

Proof of Lemmal[I1] For any x € X=", Pr [z ¢ S(l)} < (1 —p(x))™ < e 1) < =™V Since
n1 = (v~ tlog(v=t + p~! + B71)), with the correct constants under ©(.) we have e~ "1 <
vmin(p, 8). Since | X="| < v~!, taking a union bound the claim follows. O

Proof of Lemmal[I2} We will show that for any = € S(!) we have Pr [-Evy(z)] < min(e-8) Taking a

10n,
union bound completes the proof. Recall that p(.) is an estimate of p(.) using no samples. Therefore,
by Chernoff (Equation (2)),

n2€2

Pr{|p—p|>€ <2 3r .

_ nop?v .
If p < 3v, then since by definition of 1, and e, this is 2e ot < %f:;ﬁ). If p < 3v, this
completes the proof. Otherwise, it is clear that the probability of Eva(z) is maximized when p(x) =

3v, in which case since € < v, the above bound gives us Pr[p < 2] < Pr[jp—p > €¢|] < 10’;1 . O

‘We next prove the following Lemma which will be used in our proofs.

Lemma 18. Conditioned on the event that n(x) # n(y) for all distinct x,y € X=V, the expected
size of X7V is at most 1 + In(v~1).

Proof of Lemma Let ; denote the value of x € X =¥ with the i-the largest value for p(x), where
we assume that ties are broken arbitrarily. In order for z; to be in X7, we need to have n(y) > n(x;)
for all y such that p(y) > p(x;), which in turn means that (z;) < n(z;) forall j < ¢. The probability
that this happens is at most 1/7 however since 7)(.) is chosen uniformly at random and is independent
across x;. Formally,

Pr[z; € anl’] =Prn(y) > n(x) Yy : p(y) > p(x;)] (Definition OanZV)
< Prin(zi) <nlz;) Vi <i] (Since p(x;) = p(xi) for j < 1)
<1/i (Since 1)(z) is chosen uniformly random).

Since an” C X2¥, summing over i we obtain

[x=
E [|X772”|] = Z Pr [a:l € an”] (Linearity of expectation)
i=1
[x=¥
< ) 1/i <14 In(IX=).

i=1

Since | X=¥| < v~!, the lemma follows. O

Proof of LemmalI3] For any distinct x, y, we have

P — < 27@(10g(n1+ﬂ71+p’1)) < min(p, 5) )
r[n(z) = n(y)] < S o2

Since ny > | X=¥|, It follows that with probability at least 1 — min(p, 3)/20, the values of 7(.) are

distinct across X =¥, Condition on this event. For any fixed value of 7, since v is chosen uniformly at
2e| X2V . .
random from [3/2v, 21/'], we have Pr [/ € U] < E|V 73 | . Taking expectation over 7, by Lemma

we have Pr[v/ € U] < % < 2p/5. Since We conditioned on an event with probability
1 — min(p, 3)/20, we conclude that Pr[Evs] > (1 — p/20)(1 — 2p/5) > 1 — p/2, finishing the
O

proof.
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Proof of LemmalI4] For simplicity, we write 2* instead of x,, , for the rest of the proof. We first
handle the case where z* # Null. In this case, since z* € X%, we have 2* € S by Evy. We
additionally claim that * € X,]Z". If this is not the case, then there must be some y € X 2V such
that n(y) < n(z*) and p(y) > p(z*). This implies however that p(y) > v/, which contradicts the
definition of z* as the first elements (in order of 7)(.)) with probability at least /. Since 2* € X,]Z”,
we conclude that p(z*) > v/ + € by Evs, which in turn implies p(z*) > v’ by Evg. It therefore
suffices to show that p(z’) < v/ for all 2 € SV such that n(z') < n(z*).

By definition of z*, we must have p(z’) < v/, which further implies that |p(z’) — p(z’)| < €
by Evy. We further assume that p(z’) > v; if not, we have p(z’) < v 4+ ¢ < v/, finishing the
proof. Therefore 2/ € X=V. Define Z as the largest element before or equal to 2’ in an”; ie.,
I = arg MAX, C\ >0 0 <) n(z). Note that T = o’ if 2’ € X",

We claim that p(7) > p(2’). Assume this is not the case. Set y to be the first element in X="
satisfying p(y) > p(z). Formally, y = argmin,c x>v.p(s)>p(@) 7(®)- Since p(z’) > p(z) and
n(x’) > n(x), we have n(y) < n(z’). We also have n(y) > n(Z); if not, then since p(y) > p(z)
we conclude that = ¢ X,IZV which is a contradiction because y € X=”. It is easy to see however
that y € Xz, contradicting the definition of Z. Specifically, p(y) > p(¥) and p(Z) > p(x) if
n(x) < n(y) by definition of y. It follows that the initial assumption was wrong and p(z) > p(z’).
Given the above claim, we have 1(Z) < n(z') < n(x*). Since T € X =", by definition of z*, we
have p(Z) < /. Since T € X2, by Evs we conclude that p() < v/ — ¢, which further implies
p(z") < v/ — e. Therefore, by Eve we have p(z’) < v/, finishing the proof.

If 2* = Null, then the same proof shows that p(a’) < v/ for all 2’ € S(1); the only place where

we used z* is for proving that p(z') < v/ and p(Z) < v/, both of which would hold trivially if
z* = Null. Therefore, output is z* in this case as well. O

E Omitted proofs

E.1 Approximate median pair

In this section, we prove Proposition 3]

Proof of Proposition[3] We first invoke Lemma[2to find a (1/2 — ~/2)-approximate median 7 with
the same sample complexity and parameters p/4, 3/4. Let T be the value obtained from the algorithm.
Note that, if the output of the algorithm is correct, we have

PriX >7],Pr[X <7]>1/2—~/2.

We then replicably estimate, with error /8, the value of Pr[X > 7] and Pr[X > 7]. This can
be done using, e.g., the SQ algorithm of [ILPS22]]. Let p;,p, denote the true probabilities and
let 1, P2 denote our estimates. Assuming 7 was chosen correctly, we have p; > 1/2 — /2 and
p2 < 1/24-/2. This in turn implies that, if our estimates are correct, we must have p; > 1/2—3~/4
and po < 1/2 + 3v/4. Now, if p1 < 1/2 4 3v/4, then we output (7, k) for k = 0. Otherwise, we
set s such that (1 — k)py + kpo = 1/2 + 37/4. It is clear that

(1= &)p1 + kp2 = (1 = K)p1 + £P2 + (1 — K)(p1 — P1) + K(p2 — P2)-
If our estimates are correct, it follows that (1 — x)p; + kps is in the range (1/2 — ~v,1/2 + ~),
finishing the proof. O

E.2 Replicable interior point hardness

In this section, we prove the hardness of the replicable interior point problem, as formalized in
Proposition[5] We begin with some definitions. Recall that a randomized algorithm A : X" — ) is
called (e, 9)-DP (i.e., differentially private) if for any two multisets Sy, S differing in exactly one
coordinate, and any event O C )/, we have

Pr [A(Sl) S O] < e°Pr [A(SQ) S O] + 4,
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where the probability is over the randomness of A. The following result from [BGH™ 23] shows that
one can transform a replicable algorithm for a statistical problem to a differentially private algorithm
for the same problem.

Lemma 19 (Theorem 3.1 in [BGHT23])). Let p < 0.01. If there is a p-replicable algorithm solving
a statistical problem with failure probability 3 and sample complexity n, then there is an (¢, 6)-DP
algorithm solving the same statistical problem with failure probability at most O(3log'/s) and

sample complexity n. - O(1/clog 1/slog 1/ + log® 1/s).

Existing works on differential privacy show that, for a closely related problem, any differentially
private algorithm requires at least Q(log™|X'|) samples. We will refer to this problem as the non-
statistical interior point problem and define it as follows. Given a set of samples S C X, define its
interior as the set Interior(S) = [min(S), max(S)]. In the non-statistical interior point problem,
we are given a set .S and the goal is to output some point z in its interior. To avoid confusion,
throughout the section we will refer to our main problem, in which the goal is to find a point in the
interior of a distribution using samples, as the statistical interior point problem.

We say an algorithm A has sample complexity n for the non-statistical interior point problem with
error probability § if, for any S C X of size n, we have Pr[A(S) € Interior(S)] > 1 — f3, where
the probability is over the randomness of the algorithm. The following result by Bun et al. [BNSV135]
provides a lower bound for the sample complexity of differentially private algorithms on this problem.

Lemma 20 ([BNSVI3)). Fixe € (0,1/4). Assume that §(n) < 1/(50n2). For any n, solving the
non-statistical interior point problem with (¢, §(n)) differential privacy requires sample complexity
n > Q(log™|X)|).

We next show how to transform an algorithm for statistical interior point to an algorithm for non-
statistical interior point with a similar guarantee on differential privacy.

Lemma 21. Lete < 1/2. If there is an (g, 0)-DP algorithm for the statistical interior point problem
with error probability 3, there is an (¢',6')-DP algorithm for non-statistical interior point with
sample complexity and error probability  where ¢’ = O(glog 1/s) and §' = O(9).

Proof. Let A be the mentioned statistical algorithm. Consider the following algorithm A’. Given the

set X of size n, we let S be a set of n i.i.d. samples from the distribution D = X, and output A(S).
We show that A’ satisfies the required guarantees.

Correctness analysis. With probability 1 — f3, the algorithm outputs a value in the interior of D,
i.e., the range [min D, max D], which is the same as [min(X ), max(X)].

Privacy analysis. Let X, Xy € X be two vectors that differ in one entry. Let ) denote the output
space of A. We need to show that for any O C ), we have

Pr[A'(X,) € O] < ¥ Pr[A'(X,) € O] + &,

where the probability is over the randomness of A’. Let Dy and D, be the corresponding empirical
distributions for X; and X5. By definition of A’, the above inequality is equivalent to

Prg._p, [A(S) € O] < e“'Prg_p [A(S) € O] + ¢, (3)

where the randomness is now over both the sampling of S and the internal randomness of A.

We may assume that the set .S is sampled as follows. We first sample a multiset of indices U C [n]
with size n by uniformly sampling n values i.i.d. from [n]. Note that this means an index may appear
multiple times in U. We then obtain the i-th entry of .S by taking the j-th entry of either X; or Xo,
depending on the input, where j is the ¢-th entry in U. It is clear that this does not change the sampling
procedure. Using this view, however, we can now couple the two probabilities corresponding to
X1 and X5 in order to compare them. Formally, let A(U; X) denote the value of A(S) when S is
obtained from the above procedure. We need to compare the values Pr[A(U; X)] for X = X and
X = X, where the randomness is over the draw of U and the internal randomness of A.
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Assume without loss of generality that X, X5 differ on their first coordinate. Let I denote the
number of times the value 1 appears inU. Sett = 10 + In /5. By iterated expectation,

Pr[A(U; ZPr [AU;X) €O | T =1

<ZPr [AU; X) €O | I =14 +Pr[I>1+1].

Since E [I] = 1, Chernoff’s mequahty gives
t

e E
PriI>1+1t < W (Chernoff’s bound)
<et (Since t > 10)
<é (Since t > In1/s).
It follows that
t
Pr[A(U; X1) Z [A(U; X1) €O | I =] +34. @)
We next claim that
PriA(U; X,) €O | I =i] <e®Pr[A(U; X)) € O | I =i + 6;, 5)

where §; = 56;5—:1. Formally, let ; C [n]™ denote the set of all ordered vectors of length n from [n]
that have exactly ¢ entries of 1. By total probability,

PrlA(U;X) €O [I=i]= Y Pr[U=ul|l=iPr[A(u;X) € O],

ucU;

where the randomness in the probability in the right hand side is now only the randomness of the
algorithm A. We now note that for all v € Uf;,
e —1
ef —1
This holds because A is (¢, §)-DP and the set S given as input to A in A(u; X;) and A(u; X3) differ
in exactly ¢ coordinates. Summing over all u, we obtain Equation (3).

Pr[A(u; X1) € O] < €Pr[A(u; X5) € O] + d.

Plugging this in Equation (@), we obtain
Pr[A(U; X,) € 0] —§

<Y Pr[l =] (“Pr[A(U; Xa) € O | I =i] + &;)

<> e PrI =ilPr[A(U; X2) € O | I =i+ Y Pr[l =i]§;

i=1

< <e€t S Prll = iPr[A(U; X2) €O | I = i]) + <§:Pr I = z’}éi) — do,
i=1 1=0

where in the last inequality we have used the fact that ¢ < ¢ to bound the first expression and the non-
negativity of §; for 7 > 1 to bound the second expression. By total probability, the first expression is
at most e=‘Pr[A(U; X») € O]. As for the second expression, it is equal to E [§;] = >~ E [e*! — 1].
Observe however that I follows a binomial distribution with parameters n and 1/n. Therefore,

E [e] = <11+€€>n

n o n
2 n

< (1—1—6) (Since e — 1 < 2z forx < 1/2ande < 1/2)
n

<e2s
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It follows that

5 13
66_1(62 —1)

<68 +1)
< (e?+1)8 (Since e < 1/2)
< 36.

E[o7] <

Finally, we have 6, = 0. Plugging this back in we obtain Equation (3)) with 6’ = 4§ and ¢/ =
(In(1/6) 4+ 10)e, finishing the proof. O

We now prove Proposition 3]

Proof of Proposition[5] Assume that an algorithm with these properties exists. Let n denote its
sample complexity. For any ¢, 3, by Lemma we have an (g, ¢)-DP algorithm for statistical interior
point with failure probability O(/ log 1/8) and sample complexity

n.O(ilog(lslog;+log2 é)

By Lemma this means that there is an (&, §’)-DP algorithm for non-statistical interior point with
failure probability 3’ and the same sample complexity where

1 1

=0 (alog 5) , =0, p=0 (Blog 6) .
Set 3 such that 8’ = 0.05. Note that this can be achieved for some constant value 3 > 0. We can
obtain any desired value for €', §’ by setting &' = ©() and € = ©(¢’/log 1/s')). It follows that, for
any €', ¢’, there exists an (&', §')-DP algorithm with failure probability 0.05 and sample complexity
N = O (n(1+1/'log® 1/5')) for some constant c. Set &’ = 0.05. If &' = —, then this gives us
the sample complexity N = cn(1 + log?(¢'n?)). We claim that if we choose ¢’ to be large enough,
we can ensure that ¢’ < 1/50N 2, By definition of ¢’, this means we need to show that

n® > 50202 (1 + log?(¢'n))2.

Given the inequalities (z + y + 2)? < 3(2? 4+ y? + 2?) and (z + y)? < 2(z? + y?) we have

Wl —~

(1+ log2(c’n3))2 = %(1 + (log(c') + log(n?))?)?

IN

1
S+ 2log?(¢’) 4 21log?(n?))?
14 4log*(¢) + 9log*(n)

IA

It is sufficient to show that

dn > 150¢® (1 + 41og* ¢ + 9log? n).
Setting ¢’ to be large enough in terms of ¢, the above inequality holds as each term on the right hand
side is asymptotically smaller than the left hand side.

Therefore, we have obtained an (¢’,4’)-DP algorithm with sample complexity N and failure
probability 3 where &' < 1/50N?, and €', 3 < 0.05. Invoking Lemma [20} we conclude that
N > Q(log*|X|). Since &' = ©(1/n?), this implies that nlog?n > Q(log*|X|), which in turn
implies n > Q(log*|X|) as claimed. O

27



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
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Answer: [Yes]
Justification: The abstract and intro clearly and accurately reflect our paper’s contribution.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Claims are supported with formal proofs and the assumptions are clearly stated.
As such, the limitations are clear.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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is low or images are taken in low lighting. Or a speech-to-text system might not be
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and how they scale with dataset size.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provides a full proof for all of the stated results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
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* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Research conforms to the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is theoretical and we do not believe it has any societal impact worth
highlighting.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper is theoretical and does not contain any experiments.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper is theoretical.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper is theoretical.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use LLMs beyond the standard usage for writing and
editing.
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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