Replicable Online pricing

Kiarash Banihashem University of Maryland

University of Maryland College Park, MD, USA kiarash@umd.edu MohammadHossein Bateni

Google Research New York City, New York, USA bateni@google.com Hossein Esfandiari

Google Research London, UK esfandiari@google.com

Samira Goudarzi

University of Maryland College Park, MD, USA samirag@umd.edu MohammadTaghi Hajiaghayi

University of Maryland College Park, MD, USA hajiaghayi@gmail.com

Abstract

We explore the concept of replicability, which ensures algorithmic consistency despite input data variations, for online pricing problems, specifically prophet inequalities and delegation. Given the crucial role of replicability in enhancing transparency in economic decision-making, we present a replicable and nearly optimal pricing strategy for prophet inequalities, achieving a sample complexity of $\operatorname{poly}(\log^*|\mathcal{X}|)$, where \mathcal{X} is the ground set of distributions. Furthermore, we extend these findings to the delegation problem and establish lower bound that proves the necessity of the $\log^*|\mathcal{X}|$ dependence. En route to obtaining these results, we develop a number of technical contributions which are of independent interest. Most notably, we propose a new algorithm for a variant of the heavy hitter problem, which has a nearly linear dependence on the inverse of the heavy hitter parameter, significantly improving upon existing results which have a cubic dependence.

1 Introduction

Scientific research fundamentally relies on the ability to repeat experiments and achieve similar results. This principle, known as "reproducibility" is critical to validating findings and ensuring progress across fields. However, many researchers [HIB⁺18, IHGP17, LKM⁺18] have raised concerns about a "reproducibility crisis" where studies often fail to replicate reliably. This has highlighted the pressing need for methods that guarantee reproducibility and transparency in research.

A significant challenge in achieving reproducibility is the inherent variability in data, which often stems from complex and stochastic processes. Even when researchers meticulously document their methods, others may struggle to reproduce the results due to this randomness. This variability opens the door to misleading findings, whether intentional or unintentional. For instance, practices such as "p-hacking"—where researchers test multiple hypotheses until a significant result is found—can undermine the validity of scientific conclusions.

To address these challenges from a theoretical perspective, Impagliazzo et al. [ILPS22] (STOC'22) introduced the notion of *replicable algorithms* for statistical problems. Formally, an algorithm \mathcal{A} that takes as input a set of samples $S \subseteq \mathcal{X}^n$ and a binary string r representing its internal randomness is called ρ -replicable if, for any distribution \mathcal{D} over \mathcal{X} ,

$$\Pr_{S_1, S_2 \sim \mathcal{D}, r \sim R} \left[\mathcal{A}(S_1; r) = \mathcal{A}(S_2; r) \right] \ge 1 - \rho, \tag{1}$$

¹The original work used the term "reproducible" (to align with common usage), but subsequent works have adopted "replicable", the term we use here.

where R denotes the distribution of the random bits used by the algorithm. Intuitively, Equation (1) ensures that the algorithm's output is determined primarily by the input distribution rather than specific samples or randomness. This safeguards against data manipulation or corruption, as such actions are easily detectable by re-running the algorithm. Bun et al. [BGH $^+$ 23] (STOC'23) further developed the theory of replicable algorithms by relating it to other notions of stability such as differential privacy, adaptive generalization. Replicable algorithms have been developed for numerous problems including high dimensional mean estimation [HIK $^+$ 24b] (FOCS'24), clustering [EKM $^+$ 23] (NeurIPS'23), bandits [EKK $^+$ 23] (ICLR'23), and learning halfspaces [KKL $^+$ 24] (ICML'24).

Replicability is especially critical in settings where decisions have significant real-world consequences, such as public systems, government policies, or large-scale markets. In these scenarios, fairness and transparency are paramount. Even when the decision-making process is publicly accessible, decision-makers could manipulate outcomes by selectively choosing data to support desired conclusions. Replicability acts as a certificate that the decision-making process is robust and immune to such manipulations, particularly in cases where the decision space is large or continuous, and no single "best" choice exists.

Motivated by these considerations, we study replicability in the context of the *prophet inequalities* problem, a fundamental model in online decision-making with well-established significance from both theoretical and economic perspectives [HKP04, BIK07, HKS07, CHMS10]. In its simplest form, this problem involves a sequence of random values X_1,\ldots,X_N arriving online, where each X_i is drawn from a known distribution D_i . The goal is to select a single value that is large in expectation. A classic solution involves using a fixed threshold τ and accepting the first value that exceeds τ . It is well-known (e.g., see [KW12]) that setting $\tau = \mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]/2$ guarantees, in expectation, a value at least half of the offline optimum $\mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]$, which is tight. Similarly, setting τ to be the median of $\mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]$, with appropriate tie-breaking when the distribution has atoms, leads to the same 1/2 guarantee [SC84].

While the classical formulation assumes that the distributions D_1,\ldots,D_n are fully known, this is often unrealistic in practice. Instead, we consider a sample-based framework, where we only have access to a finite number of samples from each D_i . The key challenge here is to design a replicable algorithm that uses few samples to set a threshold τ achieving a competitive performance. We say a threshold is α -competitive if the corresponding strategy obtains at least $\alpha \mathbb{E}\left[\max\{X_1,\ldots,X_N\}\right]$ in expectation. An algorithm solves the *Replicable Online Pricing (ROP)* problem with parameters (α,ρ,β) if it is ρ -replicable and outputs an α -competitive threshold with probability at least $1-\beta$. In order to avoid issues with tie-breaking, we use an extra "coin" to decide whether an element with value equal to τ should be accepted (see Section 2 for further details on this formulation). In this work, we analyze the sample complexity of the ROP problem, presenting efficient algorithms and proving impossibility results.

We further study the implication of our results to the *delegation problem*, which has been widely studied in economics under various settings and models [Hol80, FJ83, CF98, AV10, AB13, AE17, BGH01, KK18, HMRS24, BHHS24]. At its core, delegation involves an authority figure, referred to as *the principal*, facing a challenge and relying on an expert, referred to as *the agent*, to solve it, with the agent being responsible for searching for and proposing a solution based on their expertise. A practical example of this is the relationship between a public entity and a private contractor or the intra-organizational workflow between corporate management and a specialized division. Each possible solution yields specific utilities for the principal and the agent, often leading to utility misalignment due to differing incentives. To mitigate this misalignment and ensure the consideration of their interests, the principal may announce a set of acceptable solutions (e.g., by establishing certain criteria) before the agent begins their search. This preemptive strategy helps enforce alignment between the principal's objectives and the agent's proposals, balancing the trade-off between granting the agent enough autonomy and maintaining control over outcomes that align with the principal's goals.

In particular, we consider a model similar to the model studied by [KK18] (EC'18). We assume there is a distribution $\mathcal D$ defined over an abstract space Ω of possible solutions for the delegated task. Each solution $\omega \in \Omega$ has an associated quality from the principal's perspective, denoted by $x(\omega)$, and a possibly different quality from the agent's perspective, denoted by $y(\omega)$. The agent is supposed to make N independent and identically distributed (i.i.d.) draws from the distribution $\mathcal D$, resulting in a collection of N candidate solutions $\omega_1,\omega_2,\ldots,\omega_N\in\Omega$. The agent then examines $x(\omega_i)$ and $y(\omega_i)$

for each candidate ω_i and then chooses one to present to the principal. As mentioned, in the absence of any constraints from the principal, the agent would trivially select the solution ω_i maximizing their own objective $y(\omega_i)$, resulting in the principal receiving the corresponding value of $x(\omega_i)$. To enhance this arrangement, the principal imposes a constraint at the outset, specifying that they will only accept solutions ω for which $x(\omega)$ exceeds a certain threshold τ . As in the ROP problem, we allow the use an extra coin for tie-breaking. (see Section 2 for more details) This causes the agent to pick the ω_i maximizing y(.) subject to the acceptance constraint.

We assume that the principal can learn about \mathcal{D} by drawing samples and observing their associated quality value x and can use its knowledge in devising its price. The principal's goal is to set a price such that the obtained solution provides a good approximation to the optimal ω_i for the principal. In particular, we say a threshold τ is α -competitive if the expected utility of the principal using τ is at least $\alpha \mathbb{E}\left[\max\left\{x(\omega_1),\ldots,x(\omega_N)\right\}\right]$. An algorithm solves the *Replicable Delegation (RD)* problem if it is ρ -replicable and with probability at least $1-\beta$ outputs an α -competitive threshold.

1.1 Our contribution

Our first result is an algorithm that replicably outputs a $(1/2 - \epsilon)$ -competitive threshold with high probability for finite distributions. A standard approach to prophet inequalities is to set $\tau = \mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]/2$, suggesting that one might attempt to apply this strategy to the ROP problem using a replicable mean estimation algorithm, such as that of [ILPS22], to approximate this threshold. However, as we discuss in Section 3, these algorithms have an additive error, preventing them from yielding competitive prices.

To overcome this limitation, we design an algorithm based on the median approach of [SC84], leading to the following result.

Theorem 1. Assume that the distributions D_i are all supported on a known finite set \mathcal{X} . For any $\epsilon \in (0, 1/2)$ and $\rho, \beta > 0$, there exists an algorithm solving the ROP problem with parameters $(1/2 - \epsilon, \rho, \beta)$ using at most poly $(\log^* |\mathcal{X}|, \rho^{-1}, \beta^{-1}, \epsilon^{-1})$ samples from each D_i .

To achieve the above result, we show that good prices can be obtained by applying replicable (approximate) median estimation algorithms to the distribution of $\max{\{X_1,\ldots,X_N\}}$. Such algorithms have previously been obtained by [ILPS22] and [BGH⁺23] ². While both of these algorithms have an approximation error in estimating the median, unlike the algorithms for mean estimation, the effect of these errors on the quality of the output price can be bounded. As we show in Lemma 4, a γ -approximate median (see Section 2 for a formal definition) leads to a $(1/2 - \gamma)$ -competitive price. We further generalize our technique and apply it to the delegation problem, obtaining the following result.

Theorem 2. Assume that the distribution \mathcal{D} is supported over a known finite set \mathcal{X} . For any $\epsilon \in (0,1/2)$ and $\rho,\beta > 0$, there exists an algorithm solving the RD problem with parameters $(1/2 - \epsilon, \rho, \beta)$ using at most $N \cdot \operatorname{poly} \left(\log^* |\mathcal{X}|, \rho^{-1}, \beta^{-1}, \epsilon^{-1} \right)$ samples from \mathcal{D} .

For the ROP problem, we establish that the dependence on the size of \mathcal{X} is necessary. Formally, letting the sample complexity of an algorithm denote the number of samples it requires from each D_i (see Definition 1), we prove the following theorem.

Theorem 3. There exist constants $\rho, \beta, c_1, c_2 > 0$ and a set \mathcal{X} with the following property. Fix $\alpha > c_1(\log^* |\mathcal{X}|)^{-0.99}$ and $N \geq \frac{c_2}{\alpha}$. Any algorithm that can solve the (α, ρ, β) -replicable online pricing problem has sample complexity $\widetilde{\Omega}(\alpha \log^* |\mathcal{X}|)$, even if we assume that X_1, \ldots, X_N are i.i.d.

The constant 0.99 in the theorem above can be replaced with any value strictly less than 1. To prove this theorem, we reduce from the replicable *interior point problem*, where the goal, given a distribution D, is to output a value in the range $[\min(D), \max(D)]$ in a replicable manner (see Section 2). By leveraging the privacy-to-replicability reduction of [BGH⁺23], we establish that this problem requires at least $\widetilde{\Omega}(\log^* |\mathcal{X}|)$ samples (see the Appendix).

²Specifically, we use the algorithm of [12], which has a polynomial sample complexity. However, we note that their algorithm is not computationally efficient due to reliance on correlated sampling. Alternatively, one can use the approach of [31] which is polynomial time but has a sample complexity exponential in $\log^* |\mathcal{X}|$. We note that since our result is obtained via a reduction to replicable median estimation (see Lemma 8), any possible future improvements for that problem would immediately yield improvements to our results as well.

Moreover, we show that the "hard distributions" for the interior point problem exhibit an additional structural property: they contain no "heavy" points. Specifically, for any $\alpha \geq \Omega(\log^* |\mathcal{X}|)^{-0.99}$, no point in the distribution has probability mass exceeding α . We then argue that, in such instances, any competitive price must lie within the interior of the distribution of X_i . This is proved in Lemma 8 and the main intuition behind it is as follows. If the price is set outside this interior, the algorithm will either reject all elements or accept only the first element. Using the fact that the distribution contains no points with probability exceeding α , we can construct instances of the prophet inequalities problem where, for an appropriate range of $N \approx \alpha^{-1}$, the first element is roughly 1/N times the maximum element. Therefore, if the price is outside the interior of the distribution, its competitive ratio is at most $\approx 1/N$. We then extend this result to arbitrary N by modifying these instances to output 0 with a small probability. Further details can be found in Section 4.

We further show that, in the special case of i.i.d. distributions, we can match the dependence on α in theorem below.

Theorem 4. For any $\rho, \beta > 0$ and $\alpha \le 1/4^3$, there is an algorithm that can solve the ROP pricing problem for i.i.d. distributions with parameters (α, ρ, β) and sample complexity

$$O(\alpha \cdot \text{poly}(\log^* |\mathcal{X}|, \rho^{-1}, \beta^{-1}))$$

En route to proving our results, we develop a novel and improved replicable algorithm for outputting a heavy hitter for an input distribution. A value x is called a heavy ν -heavy hitter for a distribution D if its sampling probability under D is at least ν . In the heavy hitter problem, we are given a distribution D over a finite set \mathcal{X} , which is not necessarily ordered, and the goal is to (replicably) output a ν -heavy hitter for D. We focus on an approximate version of the problem which assumes that the underlying distribution is guaranteed to have a $(\gamma \nu)$ -heavy hitter. For this problem, we obtain the following result.

Theorem 5. For any $\rho, \beta, \nu > 0$ and $\gamma \geq 4$, there exists a ρ -replicable algorithm with sample complexity $O\left(\nu^{-1}\rho^{-2}\log^3(\nu^{-1})(\log(\rho^{-1}) + \log(\beta^{-1}))\right)$ with the following guarantee: Assuming a $(\gamma\nu)$ -heavy hitter exists, the algorithm outputs a ν -heavy hitter with probability at least $1-\beta$. If no $(\gamma\nu)$ -heavy hitter exists, then with probability at least $1-\beta$, it outputs either Null or a ν -heavy hitter.

Existing work providing replicable algorithms for the heavy hitter problem consider a variant where the goal is to return a list that contains all $(\gamma\nu)$ -heavy hitters and is a subset of ν -heavy hitters. For this variant, Impagliazzo et al. [ILPS22] obtain a ρ -replicable algorithm with $1-\beta$ success probability that has sample complexity $\widetilde{O}(\frac{1}{\min(\rho,\beta)^2\nu^4(\gamma-1)^2})$. Esfandiari et al. [EKM+23] improve on this with an algorithm achieving sample complexity $\widetilde{O}(\frac{1}{\rho^2\nu^3(\gamma-1)^2}\log(1/\beta))$. More recently, Hopkins et al. [HIK+24b] developed an algorithm with expected sample complexity $O(\frac{1}{\rho\nu^3(\gamma-1)^2}\log(\frac{1}{\min(\beta,\rho)\nu}))$. All of these results have a cubic dependence on ν , whereas our approach achieves a nearly linear dependence. Although, it is worth noting that the variant considered by the previous works is more general than the one we consider here. We note that, even without replicability, one requires at least $\Omega(\nu^{-1})$ samples to find a heavy-hitter and as such our result is nearly tight. We further note that without the improved dependence, the range of α in Theorem 3 would be $\Omega((\log^* |\mathcal{X}|)^{-0.33})$ instead of $\Omega((\log^* |\mathcal{X}|)^{-0.99})$.

To prove the above result, we design a two-stage algorithm. First, we sample a candidate set $S^{(1)}$ of size approximately ν^{-1} . Then, using a fresh set of samples $S^{(2)}$, we estimate the probability of each point in $S^{(1)}$. The elements in $S^{(1)}$ are randomly permuted, and we output the first element (in the order of the permutation) whose estimated probability exceeds a threshold ν' , drawn uniformly from $[\nu, \gamma \nu]$.

A key challenge in implementing this strategy is ensuring that the random permutation is defined replicably. This is nontrivial, since the permutation depends on $S^{(1)}$, which itself depends on the samples. To address this, we use k-wise independent sampling based on Reed-Solomon codes to assign a number to each element in \mathcal{X} , then sort $S^{(1)}$ based on these numbers. Crucially, while the numbers are not fully independent, any subset of size $|S^{(1)}|$ behaves as if chosen independently.

³Note that one can handle $\alpha \in (1/4, 1/2)$ using Theorem 1

Although the two-stage approach has been previously explored (e.g., see [EKM⁺23]), our tailored analysis significantly reduces the sample complexity from cubic in ν^{-1} to nearly linear. This improvement stems from two key insights. First, our use of random permutation reduces the number of "important" candidates (from a replicability perspective) from ν^{-1} to $\log(\nu^{-1})$. Second, we leverage a sharper version of the Chernoff inequality, yielding an additional factor of ν^{-1} in savings. Importantly, this sharper version can only be leveraged for our problem, and not the more general variant studied by Esfandiari et al. [EKM⁺23].

Map of the paper. The remainder of the paper is organized as follows. Section 2 discusses the preliminaries of the paper. Section 3 proves the upper bound for ROP. Section 4 proves the lower bound. Finally, Section 5 provides the heavy-hitter algorithm. Due to space constraints, parts of the proofs, the proof for RD, as well as the discussion of further related work is deferred to the Appendix.

2 Preliminaries

Notation and setting. Given a positive integer n, we use [n] to denote the set $\{1,\ldots,n\}$. The prophet inequality problem is defined as follows. N random values X_1,\ldots,X_N arrive in an online manner, where X_i is sampled from a distribution D_i and the goal is to choose a single item with high value. The distributions D_i are all supported over a set $\mathcal{X} \subseteq \mathbb{R}^{\geq 0}$ known upfront.

We will focus on threshold based algorithms for this problem; given a fixed price $\tau \in \mathbb{R}^{\geq 0}$ we define $i(X_1,\ldots,X_N;\tau,0)=\arg\min\left\{i:X_i\geq\tau\right\}$ and $i(X_1,\ldots,X_N;\tau,1)=\arg\min\left\{i:X_i>\tau\right\}$ to denote, respectively, the index of the first value greater than or equal to τ and the index of the first value strictly greater than τ . If no such value exists, we set i(.) to $+\infty$. For simplicity, we will often write $i(\tau,0)$ and $i(\tau,1)$. Let $\kappa\in[0,1]$ and sample $B\sim \text{Bernoulli}(\kappa)$. We say a pricing pair (τ,κ) is α -competitive for D_1,\ldots,D_N if $\mathbb{E}\left[X_{i(\tau,B)}\right]\geq\alpha\mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]$, where the expectation is over the randomness of X_1,\ldots,X_N,B . We rely on tie-breaking because our median-based pricing requires the algorithm's acceptance probability to be close to 1/2. If $\max X_1,\ldots,X_N$ has a large atom at its median, no single threshold τ achieves this without tie-breaking. Although one of $\mathbb{E}\left[X_{i(\tau,0)}\right]$ or $\mathbb{E}\left[X_{i(\tau,1)}\right]$ must match the α -competitiveness of $\mathbb{E}\left[X_{i(\tau,B)}\right]$, identifying which one requires full knowledge of the distributions. Intuitively, if X_i occasionally takes very large values, B=1 is preferable; otherwise, B=0 is better, but such rare events cannot be detected from samples.

One can define a replicable variant of the prophet inequalities problem by requiring that the algorithm outputs a price in a ρ -replicable manner while maintaining an α -competitive guarantee. That is, in expectation over both the randomness of X_i and the algorithm itself, the expected output must be at least $\alpha \mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]$. However, this formulation has a fundamental issue: an algorithm can effectively bypass the replicability requirement by outputting 0 with probability $1-\rho$ and, with probability ρ , employing a non-replicable 1/2-competitive algorithm (e.g., the single-sample algorithm from Rubinstein, Wang, and Weinberg [RWW19]). This approach achieves a $\rho/2$ -competitive ratio, which is constant for constant ρ , while still technically satisfying replicability. Intuitively, though, such an approach is undesirable because its competitiveness derives entirely from the non-replicable outputs.

Given the above issue, we opt for the following formulation, which requires the output price itself to be α -competitive.

Definition 1 (Replicable Online Pricing (ROP)). An algorithm A solves the Replicable Online Pricing (ROP) problem with parameters (α, ρ, β) and sample complexity n if it takes n samples from each distribution D_i , is ρ -replicable, and outputs an α -competitive price pair (τ, κ) with probability at least $1 - \beta$.

This definition aligns with existing work on replicability in statistical problems, wherein the quality of an algorithm's output is assessed by defining an "acceptable set" (in this case, the set of all α -competitive prices) and requiring that the algorithm's output falls within this set with high probability.

The $Replicable\ Delegation(RD)$ problem is defined analogously. In the delegation problem, an agent samples solutions ω_1,\ldots,ω_N from a distribution \mathcal{D} , where each sample has utility $x(\omega_i)$ and $y(\omega_i)$ for the principal and the agent respectively. The principal commits to a price τ , which is announced to the agent beforehand, and only accepts solutions satisfying $x(\omega_i) \geq \tau$ or $x(\omega_i) > \tau$. The agent then chooses the acceptable solution maximizing its own utility. Let $i(\tau,B) = \arg\max_{i:x(\omega_i) \geq \tau} y(\omega_i)$

for B=0 and $i(\tau,B)=\arg\max_{i:x(\omega_i)>\tau}y(\omega_i)$ for B=1. We say the pricing pair (τ,κ) is α -competitive if $\mathbb{E}\left[\omega(x_{i(\tau,B)})\right]\geq \alpha\mathbb{E}\left[\max\left\{x(\omega_1),\ldots,x(\omega_N)\right\}\right]$, where $B\sim \text{Bernoulli}(\kappa)$. An algorithm $\mathcal A$ solves the RD problem with sample complexity n if it is ρ -replicable, takes nN samples from D and with probability $1-\beta$ outputs an α -competitive price. Note that we allow nN samples here, instead of just n, in order to align with the ROP definition.

Throughout the paper, we will frequently use the following multiplicative form of the standard Chernoff bound. Let $p \in [0,1]$ and sample n i.i.d variables Y_1, \ldots, Y_n from the distribution Bernoulli(p), define $\hat{p} = \frac{\sum_i Y_i}{n}$.

$$\Pr\left[|\hat{p} - p| \ge \delta p\right] \le 2e^{-\delta^2 np/3} \tag{2}$$

Interior point and approximate median. Given a distribution D over an ordered set \mathcal{X} , we say x is in the interior point of D if $\min(D) \leq x \leq \max(D)$ where $\min(D)$ and $\max(D)$ denote, respectively, the minimum and maximum elements with strictly positive probability under D. We say x is a γ -approximate median for $\gamma < 1/2$ if $\min\left\{\Pr_{X \sim D}\left[X \geq x\right], \Pr_{X \sim D}\left[X \leq x\right]\right\} \geq 1/2 - \gamma$. The two problems are closely connected; any approximate median is automatically an interior point and, conversely, an algorithm for (replicable) interior point can be transformed into an algorithm for (replicable) approximate median with a slight increase in sample complexity. As shown by $[BGH^+23]$, there exists an algorithm for the replicable interior point problem with sample complexity polynomial in $\log^* |\mathcal{X}|$.

Lemma 2. For any $\rho, \beta, \gamma > 0$, there exists a ρ -replicable algorithm that outputs a γ -approximate median with probability at least $1 - \beta$ and has sample complexity poly $(\log^* |\mathcal{X}|, \rho^{-1}, \beta^{-1}, \gamma^{-1})$.

We refer to [BGH+23] for the proof. Specifically, following the argument in Footnote 18 of the arXiv version of [BGH+23] and keeping track of the relevant parameters, we obtain the sample complexity $\widetilde{O}\left(\varepsilon^{-4}\rho^{-2}\log^2\left(1/\beta\right)\left(\log^*|\mathcal{X}|\right)^3\right)$.

It is clear that if a distribution has a large atom (e.g., if it takes a single value with probability 1), then $\Pr_{X \sim D}[X \geq x]$ can never be close to 1/2, which is required for median pricing. To address this, we extend the definition of approximate median to pricing pairs (τ, κ) . We say a pricing pair (τ, κ) is a γ -approximate median for D if

$$(1-\kappa)\Pr_{X\sim D}\left[X\geq \tau\right]+\kappa\Pr_{X\sim D}\left[X>\tau\right]\in (1/2-\gamma,1/2+\gamma).$$

We further prove the following result in the Appendix.

Proposition 3. For any $\rho, \beta, \gamma > 0$, there is a ρ -replicable algorithm that outputs a γ -approximate median pair (τ, κ) with probability at least $1 - \beta$ and has sample complexity $poly(\log^* |\mathcal{X}|, \rho^{-1}, \beta^{-1}, \gamma^{-1})$.

3 Replicable Online Pricing Upper Bound

In this section, we prove Theorem 1 and Theorem 4 via a reduction to the replicable (approximate) median estimation problem. As mentioned earlier, one natural approach to solving the ROP problem is to use existing replicable mean estimation algorithms to compute $\mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]/2$. This may initially seem more appealing than our median-based approach, as mean estimation algorithms do not require a finite ground set \mathcal{X} and even work for continuous distributions, whereas median estimation incurs a dependence on $\log^* |\mathcal{X}|$. However, these approaches introduce additive estimation error, which can be problematic when $\mathbb{E}\left[\max\left\{X_1,\ldots,X_N\right\}\right]$ is small, potentially leading to negative outputs. While one might attempt to mitigate this issue using techniques such as adjusting the error based on an initial sample set, our lower bound in Theorem 3 establishes that no approach—including these—can eliminate the dependence on $\log^* |\mathcal{X}|$.

We first state the following lemma which follows folklore techniques (e.g., see [KK18]). In the interest of space, we have moved the proof to the Appendix.

Lemma 4. Let (τ, κ) be a γ -approximate median pair for the distribution of $\{X_1, \ldots, X_N\}$. Then (τ, κ) is a $(1/2 - \gamma)$ -competitive price pair.

Proof of Theorem 1. Let $s = \text{poly}(\log^* |\mathcal{X}|, \rho^{-1}, \beta^{-1}, \epsilon^{-1})$ denote the sample complexity specified by Proposition 3. For each $1 \le i \le n$, we take s samples from the random variable X_i with

distribution \mathcal{D}_i , denoting these samples by $x_{i,1},\ldots,x_{i,s}$. Then, for each $1 \leq j \leq s$, we define $y_j := \max_{1 \leq i \leq n} x_{i,j}$. It follows that y_1,\ldots,y_s are s samples taken independently from the random variable Y defined as $Y := \max(X_1,\ldots,X_N)$.

Using the given ρ -replicable algorithm for γ -approximate median pair (τ, κ) , we compute a γ -approximate median of Y based on the samples y_1, \ldots, y_s . We return this as the output of our pricing algorithm, which we know is $(1/2 - \gamma)$ competitive by Lemma 4, and therefore satisfies the desired properties of the $(1/2 - \gamma, \rho, \beta)$ online replicable pricing algorithm. Hence, the theorem follows. \square

Proof of Theorem 4. We first observe that since the elements are i.i.d,

$$\mathbb{E}\left[X_{1}\right] = \frac{1}{N} \mathbb{E}\left[X_{1} + \dots, X_{N}\right] \ge \frac{1}{N} \mathbb{E}\left[\max\left\{X_{1}, \dots, X_{N}\right\}\right].$$

We therefore assume that $\alpha \geq 1/N$ as otherwise, using the price $\tau=0$, we obtain a (1/N)-competitive price.

Set $r = \left\lfloor \frac{1}{4\alpha} \right\rfloor$. Since $\alpha \geq 1/N$, we have $r \leq N$. Divide the input variables X_1, \ldots, X_N into groups of size $\lceil N/r \rceil$, with the last group possibly having less than $\lceil N/r \rceil$ elements. Let (τ, κ) be a 1/4-approximate median pair for $\max \left\{ X_1, \ldots, X_{\lceil N/r \rceil} \right\}$. We estimate this replicably as in Proposition 3. By Lemma 4, using this pair the expectation of the output is at least $\frac{1}{4}\mathbb{E}\left[\max \left\{ X_1, \ldots, X_{\lceil N/r \rceil} \right\} \right]$. Since we have at most r groups however,

$$\mathbb{E}\left[\max\left\{X_{1},\ldots,X_{N}\right\}\right] \leq r\mathbb{E}\left[\max\left\{X_{1},\ldots,X_{\lceil N/r\rceil}\right\}\right].$$

Therefore, (τ, κ) is $\frac{1}{4r}$ -competitive. Since $r \leq \frac{1}{4r}$, this means the price it at least α -competitive.

We next bound the sample complexity of our algorithm. To calculate (τ,κ) , it suffices to have $\operatorname{poly}(\log^*|\mathcal{X}|,\rho,\beta)$ samples from $\max\big\{X_1,\ldots,X_{\lceil N/r\rceil}\big\}$. Observe however that we always have at least r/2 full groups; if r=1 then we have exactly r full groups and if $r\geq 2$ we have at least $r-1\geq r/2$ full groups. Therefore, it suffices to have $\frac{2}{r}\operatorname{poly}(\log^*|\mathcal{X}|,\rho^{-1},\beta^{-1})$ samples from each of the input variables. Since $r=\lfloor\frac{1}{4\alpha}\rfloor$ and $\alpha\leq 1/4$, we have $r\geq\frac{1}{8\alpha}$, which means $\frac{2}{r}\leq 16\alpha$. Therefore, the sample complexity bound follows as well.

4 Replicable Online Pricing Lower bound

In this section we prove Theorem 3. Our proof is obtained via a reduction from the interior point problem. Specifically, we rely on the following result.

Proposition 5. There exists $\rho, \beta > 0$ such that any ρ -replicable algorithm solving the statistical interior point problem with failure probability at most β for a distribution Z over a finite set F has sample complexity $\widetilde{\Omega}(\log^* |F|)^4$.

The above result follows from the hardness of the differentially private version of the problem; we refer to Appendix E.2 for more details.

We note that the nature of the set F do not play a major role in the problem beyond its size; for any other ordered set F' of the same size, an algorithm for the set F can be turned into an algorithm for the set F' and vice versa. Our proof of Theorem 3 is divided into multiple steps. Due to space constraints, we sketch the steps and state the Lemmas here and refer to the Appendix for the full proofs.

1. We prove that the lower bound for the interior point problem holds even under the additional assumption that the underlying distribution contains no "heavy" elements—those with sampling probability exceeding α , where α falls within the range specified in Theorem 3 (Lemma 7). To prove this, we show that if the distribution did contain heavy elements, the statistical interior point problem could be solved using a novel heavy hitter algorithm, which we introduce in Section 5. This effectively implies that the "hard instances" for the replicable statistical interior point problem exclude heavy elements.

⁴This lemma also implies that this problem is unsolvable with any finite sample complexity over infinite domains since a solution for an infinite set would yield a solution for arbitrarily large finite subsets, which by this lemma requires arbitrarily large sample complexity.

- 2. We next show that, for a suitable choice of the set \mathcal{X} , if the distribution X does not contain a heavy element with probability $\geq \alpha$, then the maximum of $M \approx 1/\alpha$ i.i.d. draws of X is, in expectation, at least $\Omega(M)\mathbb{E}\left[X\right]$ (Lemma 8). We refer to distributions without such heavy elements as α -light.
- 3. We then prove that any α -light instance for the interior point problem can be transformed into an instance of online pricing with $N \geq \Omega(1/\alpha)$ such that improving on $\Theta(\alpha)$ -competitive prices can only be done by solving the interior point problem. In this reduction each sample from an X_i in online pricing corresponds to roughly $1/\alpha$ samples for interior point (Lemma 9).

We proceed with a formal proof. We first extend the above hardness result to the case where the distribution does not contain any heavy elements. We call such distributions *light* and formally define them below.

Definition 6 (light distribution). A distribution Z is α -light if $\Pr[Z=z] \leq \alpha$ for all z.

Lemma 7. There exists constants $\rho, \beta, c_1 > 0$ with the following property. For any α satisfying $\alpha \geq c_1(\log^*|F|)^{-0.99}$, any ρ -replicable algorithm solving the statistical interior point problem with success probability $1 - \beta$ on a set F has sample complexity $\widetilde{\Omega}(\log^*|F|)$, even if the underlying distribution is ensured to be α -light.

We next state the following lemma that lower bounds the expectation of the maximum of copies of a distribution under certain conditions.

Lemma 8. Let $X:=(1/\varepsilon)^Z$ where $\varepsilon\in(0,1/2)$ and Z is an α -light distribution over the set $F=\{1,\ldots,|F|\}$. Let X_1,\ldots,X_M be i.i.d copies of X where $M\leq 1/(2\alpha)$. Defining $Y=\max\{X_1,\ldots,X_M\}$ we have

$$\mathbb{E}\left[X\right] \le O(1/M + \varepsilon)\mathbb{E}\left[Y\right].$$

We can further generalize the above lemma to $N \geq M$ as follows.

Lemma 9. Let $X=(1/\varepsilon)^Z$ where Z is an α -light distribution and $\varepsilon \in (0,1/2)$. Assume that $M \geq 1/\alpha$ and $N \geq M$. Let X' be a distribution that is 0 with probability 1-M/N and is sampled from X with probability M/N. Let $(a,b)=(\min(Z),\max(Z))$. There exists a constant c such that if $\tau \notin [(1/\varepsilon)^a,(1/\varepsilon)^b]$, then for any $\kappa \in [0,1]$ the pair (τ,κ) is not $(c(\alpha+\varepsilon))$ -competitive for the online pricing instance X_1',\ldots,X_N' .

As we show in the Appendix, the above lemma combined with the hardness of interior point implies Theorem 3.

Remark 10. The same argument extends to the RD problem. In the proof of Lemma 9, if the price lies outside the range, the algorithm simply accepts the first element X_i . Analogously, we may assume that $x(\omega_i)$ and $y(\omega_i)$ are sampled independently. In this case, when the price is not within range, the algorithm selects the "first" element according to the order induced by $y(\omega_i)$. Since $x(\cdot)$ and $y(\cdot)$ are independent, the proof carries over.

5 Replicable Heavy Hitter

In this section, we prove Theorem 5 Let D denote the input distribution. We first present our algorithm to solve the problem. We then move on to the analysis of the replicability of the algorithm and its correctness.

5.1 Algorithm

We first take a sample $S^{(1)}$ of size $n_1 = \Theta(\nu^{-1}\log(\rho^{-1}+\beta^{-1}+\nu^{-1}))$ from the distribution. Next, we sample a set $S^{(2)}$ with size $n_2 = \Theta(\log(\frac{n_1}{\min(\rho,\beta)})\nu^{-1}\log^2(\nu^{-1})/\rho^2) \leq \Theta(\log(\nu^{-1})^3\log(\rho^{-1}+\beta^{-1})\rho^{-2}\nu^{-1})$ samples from the distribution and record, for each element $x \in S^{(1)}$, the number of times it appears in $S^{(2)}$. Sample ν' uniformly at random from the range $[3/2\nu, 2\nu]$. Let Y denote the set of all elements in $S^{(1)}$ that appear more than $\nu' n_2$ times in $S^{(2)}$, where we remove repetitions of an element so that each element appears at most once in Y. If Y is non-empty, we choose an element from it uniformly at random and return as output.

The way we choose the uniform element from Y is important for ensuring replicability. If runtime is not a concern and only sample complexity matters, then one could sort all elements in $\mathcal X$ using the shared random bits and pick the element in Y that appears first in the permutation. However, since running time scales linearly with $\mathcal X$, this approach is not feasible for large domain sizes. Assuming r denotes the random bits of the algorithm, we will choose a value $\eta(r,x)$ for each $x\in Y$ that depends only on x and x such that, for random x, the values y for y for y are all independent and (essentially) distributed uniformly in y in y. Importantly, y does not depend on the samples y. We discuss below how this can be achieved using Reed Solomon codes. We then output the element in y with the lowest value of y y.

Intuitively, $\eta(r,x)$ denotes an order of the elements; we emphasize however that this order is unrelated to any pre-existing order among the elements of $\mathcal X$ and is chosen uniformly at random. Indeed, it is clear from the definition of the heavy hitter problem that the set $\mathcal X$ does not need to be ordered. Throughout the proofs, we will often implicitly assume that the elements are ordered (increasingly) based on $\eta(r,.)$; e.g., we will refer to the element in a set with the smallest value of $\eta(.)$ as its "first" element. The above procedure ensures that if we fix the random bits r, any fixed subset of elements will always be in a fixed order as long as the entire set appears in Y. This will be important for replicability as it allows us to output the same element regardless of the value of $S^{(1)}$. We omit the dependence of $\eta(.,.)$ on r when it is clear from context.

To sample $\eta(r,x)$, we proceed as follows. Let $\mathcal X$ denote the ground set of the distribution. Choose a finite field $\mathbb F$ such that the size of the field is a power of 2 larger than $|\mathcal X|$. Embed each element $x\in\mathcal X$ as an element in $\mathbb F$. We sample u_0,\dots,u_{n_1-1} uniformly at random from $\mathbb F$ and define $\eta(x)=\sum_{i=0}^{n_1-1}u_ix^i$. It is clear that $\eta(x)$ depends only on the random bits of the algorithm. It is well-known however that for any fixed values x_1,\dots,x_{n_1} , the values $\eta(x_1),\dots,\eta(x_{n-1})$ are independent and uniformly random in $\mathbb F$. We repeat the process $\Theta(\log(n_1\max(\beta^{-1},\rho^{-1})))$ and concatenate the different values of $\eta(x)$ to form a single value $\eta(x)$. The concatenation is made to ensure that, w.h.p, there is no tie among the elements of Y when comparing (see the analysis below).

5.2 Analysis

We next state the proof. Due to space constraints, we defer parts of the proofs to the Appendix. Let $p(x) = \Pr_D[x]$ denote the probability of sampling x under the distribution D. Let $X^{\geq \nu} = \{x: p(x) \geq \nu\}$ denote all elements for which the sampling probability is more than ν . Note that $X^{\geq \nu}$ has size at most $\frac{1}{\nu}$ by definition. Let $x_{\eta,\nu'} = \arg\min_{x:p(x) \geq \nu'} \eta(x)$ denote the first element with probability larger than ν' . If no such element exists, we set $x_{\eta,\nu'}$ to be Null. We will assume ties are broken in lexicographic order; our analysis will actually condition on the event that ties do not occur which holds with high probability. We note that the value of $x_{\eta,\nu'}$ does not depend on any of the samples and only depends on the input distribution and the random values $\eta(.)$. We will show that, with probability at least $1-\rho$, the algorithm outputs $x_{\eta,\nu'}$.

Let $X_{\eta}^{\geq \nu} \subseteq X^{\geq \nu}$ denote all of the elements in S that have a higher p(.) value than all elements with smaller η values:

$$X_{\eta}^{\geq \nu} = \left\{x \in X^{\geq \nu} : p(y) < p(x) \text{ for all } y \in X^{\geq \nu} \text{ such that } \eta(y) < \eta(x)\right\},$$

We next define a few events which we later show hold with probability at least $1-O(\rho)$. We say Ev_1 holds if all elements in $X^{\geq \nu}$ appear in $S^{(1)}$; i.e., $\operatorname{Ev}_1 = \left\{ X^{\geq \nu} \subseteq S^{(1)} \right\}$. For an element $x \in S^{(1)}$, let $\hat{p}(x)$ denote the estimated probability of x based on its repetitions in $S^{(2)}$. Set $\epsilon = \frac{\rho \nu}{10(\ln(\nu^{-1})+1)}$. We say $\operatorname{Ev}_2(x)$ holds for an x if either $p(x) < 3\nu$ and $|p(x) - \hat{p}(x)| \leq \epsilon$ or $p(x) \geq 3\nu$ and $\hat{p}(x) \geq 2\nu$. We say Ev_2 holds if $\operatorname{Ev}_2(x)$ holds for all $x \in S^{(1)}$. Let the set U denote the union of the ϵ -neighborhoods of all $x \in X_\eta^{\geq \nu}$; formally,

$$U = \bigcup_{x \in X_{\eta}^{\geq \nu}} (x - \epsilon, x + \epsilon),$$

We say Ev₃ holds if $\nu' \notin U$. As we show in our proofs, we can essentially bound the number of elements in $X_{\eta}^{\geq \nu}$, thereby lower bounding the probability of Ev₃. For an event Ev, let \neg Ev denote its complementary event.

The following lemmas bound the failure probability of the events.

Lemma 11. $\Pr[\neg Ev_1] \leq \min(\rho, \beta)/10.$

Lemma 12. Pr $[\neg Ev_2] \leq \min(\rho, \beta)/10$.

Lemma 13. Pr $[\neg Ev_3] \leq \rho/2$.

We say Ev_4 holds if $\eta(x) \neq \eta(y)$ for all distinct $x, y \in S^{(1)} \cup X^{\geq \nu}$. Since $|X^{\geq \nu}| \leq n_1$, we have $|S^{(1)} \cup X^{\geq \nu}| \leq O(n_1)$. It follows that

$$\Pr\left[\neg \mathsf{Ev}_4\right] \leq O(n_1^2) 2^{-\Theta(\log(n_1+\beta^{-1}+\rho^{-1}))} \leq \frac{\min(\rho,\beta)}{20},$$

where for the second inequality we have assumed that the hidden constant under $\Theta(.)$ in the exponent is large enough.

Lemma 14. Assume that Ev_1, Ev_2, Ev_3 and Ev_4 hold. The output of the algorithm is $x_{\eta,\nu'}$.

Now, we proceed with the proof of Theorem 5.

Proof of Theorem 5. It is clear that the algorithm has the desired sample complexity. For replicability, Putting together the above lemmas, we conclude that the probability that the algorithm outputs $x_{\eta,\nu'}$ is at least $1-\rho$. It follows that two independent runs of the algorithm with shared randomness will have the same output with probability at least $1-2\rho$, implying that the algorithm is (2ρ) -replicable. It is clear that by replacing ρ with $\rho/2$, the algorithm becomes ρ -replicable with the same sample complexity up to constant factors.

We next prove correctness. We show that assuming $\mathrm{Ev}_1, \mathrm{Ev}_2, \mathrm{Ev}_4$ hold, the algorithm's output is correct; i.e., (a) it is either Null or a ν -heavy hitter and (b) if a (4ν) -heavy hitter exists, it is not Null. For proving (a), observe that if the output is not Null then it is some $x \in S^{(1)}$ such that $\hat{p}(x) > \nu'$. By Ev_2 , this implies that $p(x) \geq \nu' - \epsilon \geq \nu$, and we are done. For (b), letting x^* denote the point satisfying $p(x^*) \geq 4\nu$, we have $x^* \in S^{(1)}$ because of Ev_1 and $\hat{p}(x^*) \geq 2\nu$ by Ev_2 . It follows that the output will not be Null and the proof is complete.

6 Conclusion

In this work, we investigated replicability in online decision-making, with a focus on the Replicable Online Pricing (ROP) problem and its sample complexity. By designing efficient replicable algorithms and establishing fundamental lower bounds, we highlighted the trade-offs between replicability, competitiveness, and sample efficiency. We also explored the broader implications of our results for the delegation problem, a key economic model of principal-agent interactions, analyzing strategies to align incentives while maintaining decision-making autonomy. As part of our technique, we obtained a new algorithm for the replicable heavy hitter problem which may be of independent interest. Our findings enhance the understanding of replicability in both algorithmic and economic contexts, underscoring its importance in ensuring fairness, transparency, and reliability.

An interesting direction for future work is applying our techniques to study replicability in other pricing problems. Another promising direction is to extend our methods, particularly the lower bounds, to study broader notions of robustness—for example, allowing replicable algorithms to produce approximately equal outputs. Additionally, while we focused on multiplicative guarantees to align with the standard competitive analysis framework, it would be interesting to explore algorithms that allow additive error. Improving the dependence of our bounds on any of the relevant parameters is also an interesting direction for future work. Finally, it would be interesting to analyze the practical implications of work using empirical evaluations.

7 Acknowledgements

The work is partially supported by DARPA QuICC, ONR MURI 2024 award on Algorithms, Learning, and Game Theory, Army-Research Laboratory (ARL) grant W911NF2410052, NSF AF:Small grants 2218678, 2114269, 2347322, and Royal Society grant IES\R2\222170.

References

- [AB13] Manuel Amador and Kyle Bagwell. The theory of optimal delegation with an application to tariff caps. *Econometrica*, 81(4):1541–1599, 2013.
- [AE17] Attila Ambrus and Georgy Egorov. Delegation and nonmonetary incentives. *Journal of Economic Theory*, 171:101–135, 2017.
- [AEE⁺17] Melika Abolhassani, Soheil Ehsani, Hossein Esfandiari, MohammadTaghi HajiAghayi, Robert Kleinberg, and Brendan Lucier. Beating 1-1/e for ordered prophets. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2017, page 61–71, New York, NY, USA, 2017. Association for Computing Machinery.
- [AGSC02] David Assaf, Larry Goldstein, and Ester Samuel-Cahn. Ratio prophet inequalities when the mortal has several choices. *The Annals of Applied Probability*, 12(3):972 – 984, 2002.
 - [AHL12] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online prophet-inequality matching with applications to ad allocation. In *Proceedings of the 13th ACM Conference on Electronic Commerce*, EC '12, page 18–35, New York, NY, USA, 2012. Association for Computing Machinery.
- [AHL13] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The online stochastic generalized assignment problem. *Lecture Notes in Computer Science*, 01 2013.
- [AKW14] Pablo D Azar, Robert Kleinberg, and S Matthew Weinberg. Prophet inequalities with limited information. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pages 1358–1377. SIAM, 2014.
 - [AV10] Mark Armstrong and John Vickers. A model of delegated project choice. *Econometrica*, 78(1):213–244, 2010.
 - [BD21] Curtis Bechtel and Shaddin Dughmi. Delegated Stochastic Probing. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pages 37:1–37:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl Leibniz-Zentrum für Informatik.
- [BGH01] J. Bendor, A. Glazer, and T. Hammond. Theories of delegation. *Annual Review of Political Science*, 4(Volume 4, 2001):235–269, 2001.
- [BGH⁺23] Mark Bun, Marco Gaboardi, Max Hopkins, Russell Impagliazzo, Rex Lei, Toniann Pitassi, Satchit Sivakumar, and Jessica Sorrell. Stability is stable: Connections between replicability, privacy, and adaptive generalization. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, pages 520–527, 2023.
- [BHHS24] Pirmin Braun, Niklas Hahn, Martin Hoefer, and Conrad Schecker. Delegated online search. *Artificial Intelligence*, 334:104171, 06 2024.
- [BHK⁺24] Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R Kowalski, Piotr Krysta, and Jan Olkowski. Power of posted-price mechanisms for prophet inequalities. In *Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 4580–4604. SIAM, 2024.
- [BHKS25] Kiarash Banihashem, Mohammad Taghi Hajiaghayi, Piotr Krysta, and Suho Shin. Delegated choice with combinatorial constraints. In *Proceedings of the 26th ACM Conference on Economics and Computation*, pages 275–303, 2025.
- [BHSS23] Kiarash Banihashem, MohammadTaghi Hajiaghayi, Suho Shin, and Aleksandrs Slivkins. Bandit social learning: Exploration under myopic behavior. *arXiv preprint arXiv:2302.07425*, 2023.
 - [BIK07] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and online mechanisms. SODA '07, USA, 2007. Society for Industrial and Applied Mathematics.

- [BNSV15] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially private release and learning of threshold functions. In Venkatesan Guruswami, editor, *IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015*, pages 634–649. IEEE Computer Society, 2015.
- [CCES22] José Correa, Andrés Cristi, Boris Epstein, and José Soto. The two-sided game of googol. Journal of Machine Learning Research, 23(113):1–37, 2022.
- [CCES24] José Correa, Andrés Cristi, Boris Epstein, and José A Soto. Sample-driven optimal stopping: From the secretary problem to the iid prophet inequality. *Mathematics of Operations Research*, 49(1):441–475, 2024.
- [CDF⁺22] Constantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca Reiffenhäuser. Single-sample prophet inequalities via greedy-ordered selection. In *Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 1298–1325. SIAM, 2022.
- [CDFS19] José Correa, Paul Dütting, Felix Fischer, and Kevin Schewior. Prophet inequalities for i.i.d. random variables from an unknown distribution. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, EC '19, page 3–17, New York, NY, USA, 2019. Association for Computing Machinery.
 - [CF98] Cristiano Castelfranchi and Rino Falcone. Towards a theory of delegation for agent-based systems. *Robotics and Autonomous Systems*, 24(3):141–157, 1998. Multi-Agent Rationality.
- [CFH⁺17] José Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vredeveld. Posted price mechanisms for a random stream of customers. In *Proceedings of the 2017 ACM Conference on Economics and Computation*, EC '17, page 169–186, New York, NY, USA, 2017. Association for Computing Machinery.
- [CHMS10] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-parameter mechanism design and sequential posted pricing. In *Proceedings of the Forty-Second ACM Symposium on Theory of Computing*, STOC '10, page 311–320, New York, NY, USA, 2010. Association for Computing Machinery.
 - [CZ24] Andrés Cristi and Bruno Ziliotto. Prophet inequalities require only a constant number of samples. In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pages 491–502, 2024.
- [EHKS23] ERIC EATON, Marcel Hussing, Michael Kearns, and Jessica Sorrell. Replicable reinforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [EKK⁺23] Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, and Grigoris Velegkas. Replicable bandits. In *The Eleventh International Conference on Learning Representations*, 2023.
- [EKM⁺23] Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris Velegkas, and Felix Zhou. Replicable clustering. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023*, 2023.
 - [FGL15] Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '15, page 123–135, USA, 2015. Society for Industrial and Applied Mathematics.
 - [FJ83] Eugene F. Fama and Michael C. Jensen. Separation of ownership and control. *The Journal of Law and Economics*, 26:301 325, 1983.

- [HIB+18] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep reinforcement learning that matters. AAAI'18/IAAI'18/EAAI'18. AAAI Press, 2018.
- [HIK⁺24a] Max Hopkins, Russell Impagliazzo, Daniel Kane, Sihan Liu, and Christopher Ye. Replicability in High Dimensional Statistics. In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS), pages 1–8, Los Alamitos, CA, USA, October 2024. IEEE Computer Society.
- [HIK⁺24b] Max Hopkins, Russell Impagliazzo, Daniel Kane, Sihan Liu, and Christopher Ye. Replicability in high dimensional statistics. *CoRR*, abs/2406.02628, 2024.
 - [HK82] T. P. Hill and Robert P. Kertz. Comparisons of Stop Rule and Supremum Expectations of I.I.D. Random Variables. *The Annals of Probability*, 10(2):336 345, 1982.
 - [HKP04] Mohammad Taghi Hajiaghayi, Robert Kleinberg, and David C. Parkes. Adaptive limited-supply online auctions. In *Proceedings of the 5th ACM Conference on Electronic Commerce*, EC '04, page 71–80, New York, NY, USA, 2004. Association for Computing Machinery.
 - [HKS07] Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated online mechanism design and prophet inequalities. In *Proceedings of the 22nd National Conference on Artificial Intelligence - Volume 1*, AAAI'07, page 58–65. AAAI Press, 2007.
- [HMRS24] Mohammad Hajiaghayi, Mohammad Mahdavi, Keivan Rezaei, and Suho Shin. Regret analysis of repeated delegated choice. Proceedings of the AAAI Conference on Artificial Intelligence, 38:9757–9764, 03 2024.
 - [Hol80] Bengt Holmstrom. On the theory of delegation. Discussion Paper 438, Evanston, IL, 1980.
- [IHGP17] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of benchmarked deep reinforcement learning tasks for continuous control. *ArXiv*, abs/1708.04133, 2017.
- [ILPS22] Russell Impagliazzo, Rex Lei, Toniann Pitassi, and Jessica Sorrell. Reproducibility in learning. In *Proceedings of the 54th annual ACM SIGACT symposium on theory of computing*, pages 818–831, 2022.
- [Ken87] D.P. Kennedy. Prophet-type inequalities for multi-choice optimal stopping. *Stochastic Processes and their Applications*, 24(1):77–88, 1987.
- [KK18] Jon Kleinberg and Robert Kleinberg. Delegated search approximates efficient search. In *Proceedings of the 2018 ACM Conference on Economics and Computation*, EC '18, page 287–302, New York, NY, USA, 2018. Association for Computing Machinery.
- [KKL⁺24] Alkis Kalavasis, Amin Karbasi, Kasper Green Larsen, Grigoris Velegkas, and Felix Zhou. Replicable learning of large-margin halfspaces. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024.
- [KKMV23] Alkis Kalavasis, Amin Karbasi, Shay Moran, and Grigoris Velegkas. Statistical indistinguishability of learning algorithms. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- [KKVZ24] Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas, and Felix Zhou. On the computational landscape of replicable learning. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [KNR22] Haim Kaplan, David Naori, and Danny Raz. Online weighted matching with a sample. In *Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms* (SODA), pages 1247–1272. SIAM, 2022.

- [KS77] Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. *Bulletin of the American Mathematical Society*, 83(4):745 747, 1977.
- [KVYZ23] Amin Karbasi, Grigoris Velegkas, Lin Yang, and Felix Zhou. Replicability in reinforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 - [KW12] Robert Kleinberg and Seth Matthew Weinberg. Matroid prophet inequalities. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC '12, page 123–136, New York, NY, USA, 2012. Association for Computing Machinery.
- [LKM⁺18] Mario Lucic, Karol Kurach, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly. Are gans created equal? a large-scale study. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems*, NIPS'18, page 698–707, Red Hook, NY, USA, 2018. Curran Associates Inc.
 - [LY24] Sihan Liu and Christopher Ye. Replicable uniformity testing. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [RWW19] Aviad Rubinstein, Jack Z Wang, and S Matthew Weinberg. Optimal single-choice prophet inequalities from samples. *arXiv preprint arXiv:1911.07945*, 2019.
 - [SC84] Ester Samuel-Cahn. Comparison of threshold stop rules and maximum for independent nonnegative random variables. *Ann. Probab.*, 12(4):1213–1216, 1984.
- [SRH23] Suho Shin, Keivan Rezaei, and Mohammadtaghi Hajiaghayi. Delegating to multiple agents. In *Proceedings of the 24th ACM Conference on Economics and Computation*, EC '23, page 1081–1126, New York, NY, USA, 2023. Association for Computing Machinery.
- [STCR23] Eden Saig, Inbal Talgam-Cohen, and Nir Rosenfeld. Delegated classification. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [ZYKH23] Liang Zhang, Junchi Yang, Amin Karbasi, and Niao He. Optimal guarantees for algorithmic reproducibility and gradient complexity in convex optimization. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

A Further related work

A.1 Replicability

The concept of algorithmic replicability and reproducibility has attracted considerable attention in recent years, leading to the development of various theoretical frameworks and practical algorithms across multiple domains. [ILPS22] introduced the notion of reproducible algorithms within the context of learning, highlighting the balance between randomness, accuracy, and reproducibility. They developed a theoretical foundation for reproducible algorithms and examined reproducibility in statistical query (SQ) algorithms, approximate heavy hitters, medians, and learning halfspaces. They also explored some inherent trade-offs and lower bounds associated with reproducibility.

Building on this foundation, replicability has been examined across several fields. For instance, $[EKK^+23]$ extended the concept to stochastic bandits and developed replicable policies that could achieve optimal regret bounds comparable to their non-replicable counterparts. [EHKS23] initiated the study of replicable RL algorithms, providing provably replicable versions of parallel value iteration and R-Max in episodic settings. Similarly, [KVYZ23] investigated replicability within reinforcement learning (RL), focusing on discounted tabular Markov Decision Processes (MDPs) with access to a generative model. They provided replicable algorithms for (ϵ, δ) -optimal policy estimation. They also explored TV indistinguishability as a relaxed form of replicability and introduced the notion of approximate replicability.

[EKM $^+$ 23] proposed replicable algorithms for statistical clustering by applying replicability concepts to problems like k-medians, k-means, and k-centers. The computational and statistical costs of replicability in high-dimensional tasks, such as multi-hypothesis testing and mean estimation, were examined by [HIK $^+$ 24a]. Their study established an equivalence between optimal replicable algorithms and high-dimensional isoperimetric tilings, resolving open problems related to sample complexity.

[LY24] addressed replicability in uniformity testing, presenting a replicable uniformity tester using only $O\left(n\varepsilon^{-2}\rho^{-1}\right)$ samples, and providing a nearly matching sample complexity lower bounds for replicable uniformity testing of symmetric algorithms invariant under domain relabeling. In convex optimization, [ZYKH23] demonstrated that optimal reproducibility and near-optimal convergence could be simultaneously achieved in various optimization settings. Additionally, [KKL+24] studied replicable algorithms for learning large-margin halfspaces, presenting dimension-independent algorithms with improved sample complexity.

In another line of work, the relation between replicability and other stability notions was explored by [BGH+23]. They provided algorithmic reductions between replicability, perfect generalization, and approximate differential privacy, while also identifying computational separations that underline fundamental differences between these stability concepts. [KKMV23] explored Total Variation (TV) indistinguishability as a measure of learning rule stability and investigated information-theoretic equivalences between TV indistinguishability, replicability, and differential privacy. Lastly, [KKVZ24] focused on the computational connections between replicability and learning paradigms like online learning, private learning, and SQ learning.

Replicable mean and median estimation. Replicable algorithms for mean and median estimation were first developed by Impagliazzo, Lei, Pitassi, and Sorrell [ILPS22], who introduced general-purpose techniques for statistical queries under replicability constraints. Their replicable median algorithm has sample complexity exponential in $\log^* |X|$. Bun, Gaboardi, Hopkins, Impagliazzo, Lei, Pitassi, Sivakumar, and Sorrell [BGH+23] later improved on this algorithm by drawing connections to differential privacy, obtaining an algorithm with sample complexity that is polynomial in $\log^* |X|$, albeit without computational efficiency.

Replicable heavy hitters. Prior work has also studied replicable algorithms for heavy hitter identification. Impagliazzo et al. [ILPS22] and Esfandiari et al. [EKM $^+$ 23] provide algorithms that return a list of candidate heavy hitters, with sample complexity scaling cubically in $1/\nu$. More recently, Hopkins et al. [HIK $^+$ 24a] improved the dependence on the failure and replicability parameters for expected sample complexity, but still maintained a ν^{-3} dependence. In contrast, we consider a more specialized variant where only a single heavy hitter needs to be output (assuming one exists), and

give a new algorithm with nearly linear ν^{-1} dependence, which is necessary for our lower bound construction in Theorem 3.

A.2 Prophet Inequalities and delegation

The study of prophet inequalities and optimal stopping theory has seen significant growth over the years, particularly in mechanism design and online optimization. Originally introduced by [KS77], prophet inequalities provide a framework for comparing the expected outcomes of a prophet, who knows future events, to those of a decision-maker without such foresight. Kennedy [Ken87] extended the framework to multi-choice optimal stopping, identifying the best possible universal constants for scenarios where multiple selections are allowed. [AGSC02] further refined the prophet inequality framework by introducing ratio prophet inequalities in settings where several stopping rules are available to the decision-maker and offering recursively evaluated constants that provide tight bounds for these scenarios.

The integration of prophet inequalities into mechanism design has also seen significant advancements. [HKS07] applied these concepts to online mechanism design, developing approximately efficient automated systems through new prophet inequalities motivated by the auction setting. [FGL15] investigated combinatorial auctions with posted price mechanisms in a Bayesian setting and developed the first constant-factor DSIC mechanism for Bayesian submodular combinatorial auctions.

[KW12] generalized prophet inequalities to matroid settings, providing tight bounds under matroid constraints and highlighting applications in Bayesian mechanism design. Further generalizations include the work of [AHL12], who introduced online prophet-inequality matching in bipartite graphs, particularly relevant to ad allocation, and [AHL13], who explored stochastic generalized assignment problems within this framework.

There is also another line of work studying prophet inequalities on i.i.d. distributions, starting with the work of [HK82]. Many years later, [AEE+17] presented a threshold-based algorithm that surpassed the theoretical bound of 1-1/e previously conjectured by [HK82]. Then, [CFH+17] investigated the performance of posted price mechanisms when customers arrive in an unknown random order, considering both adaptive and nonadaptive cases. They established a tight bound of 1-1/e for the nonadaptive case, even when valuations are i.i.d., and proposed a mechanism achieving a better approximation factor of 0.745 in the adaptive case with i.i.d. valuations. More recently, [CDFS19] studied the i.i.d case of prophet inequality when the underlying distribution is unknown. They showed that, without distributional knowledge, the best achievable bound is 1-1/e, aligning with the classic secretary problem. However, they further demonstrated that access to a limited number of samples from the distribution could significantly improve performance.

It is worth noting that many (though not all) works in the prophet inequalities literature use (possibly dynamic) pricing based algorithms to obtain their results and that any algorithm for prophet inequalities admits a pricing-based implementation [BHK⁺24].

Sample-based prophet inequalities. The sample-based study of prophet inequalities—where the algorithm has access only to samples from the underlying distributions—has become an active and evolving area of research. This direction was initiated by Azar, Kleinberg, and Weinberg [AKW14], who drew connections between this setting and the classical secretary problem. In the case of fixed arrival order, Rubinstein, Wang, and Weinberg [RWW19] showed that even a single sample per distribution suffices to achieve the optimal 1/2-approximation. In the i.i.d. variant, they also proved that a constant number of samples is enough, with later work by Correa et al. [CCES24] refining the required sample complexity. When the arrival order is random, as in the prophet secretary model, Correa et al. [CCES22] established that a single sample still enables a 0.635-approximation. This sampling approach has since been extended to more structured selection problems, such as those involving matroids and matchings [CDF+22, KNR22]. More recently, Cristi and Ziliotto [CZ24] developed a unified argument showing that constant sample access suffices to achieve approximate optimality across both prophet-secretary and free-order settings, despite the exact optimal approximation ratios for these variants remaining open.

Delegation The concept of delegation, a core topic in economic theory since its introduction by [Hol80], has been explored in many different ways over the years. However, [KK18] were the first to analyze the efficiency loss in delegated search, proposing methodologies to bound this loss and

demonstrating how simple threshold-based mechanisms can approximate the efficiency of direct search. Their work established a connection between delegation and prophet inequalities, resulting in a surge of attention to this problem.

[BD21] introduced the concept of delegated stochastic probing, merging delegation with stochastic probing problems. [HMRS24] explored the online learning aspects of delegation through a repeated delegated choice model. Their work extends the delegation framework by incorporating dynamic learning of solution distributions, focusing on minimizing cumulative regret in various strategic settings. [STCR23] address the delegation of classification tasks to rational agents. They propose incentive-aware frameworks that use performance-based contracts to align agents' interests with those of the principal, connecting contract design with statistical hypothesis testing. [SRH23] investigate mechanisms in multi-agent settings without monetary incentives. [BHHS24] delve into delegated online search, where agents sequentially inspect options and propose solutions in real time. [BHKS25] show that the correspondence between delegated choice and prophet inequalities holds if and only if the feasibility constraint forms a matroid. They also establish a separation between the two problems, proving that, unlike prohpet inequalities, delegated choice admits a constant-factor approximation under downward-closed constraints.

B Proofs in Section 3

B.1 Proof of Lemma 4

Proof of Lemma 4. Sample $B \sim \text{Bernoulli}(\kappa)$. Define $\text{OPT} = \max_i X_i$. We need to show that,

$$\mathbb{E}\left[X_{i(\tau,B)}\right] \geq (1/2 - \gamma) \mathbb{E}\left[\text{OPT}\right],$$

where we set $X_{i(\tau,B)} = 0$ when $i(\tau,B) = \infty$. We can rewrite the left hand side as

$$\begin{split} & \mathbb{E}\left[X_{i(\tau,B)}\right] \\ &= \sum_{i=1}^{N} \mathbb{E}\left[X_{i}\mathbb{1}\left\{i(\tau,B) = i\right\}\right] \\ &= \sum_{i=1}^{N} \mathbb{E}\left[\left(\tau + \left(X_{i} - \tau\right)\right)\mathbb{1}\left\{i(\tau,B) = i\right\}\right] \\ &= \sum_{i=1}^{N} \mathbb{E}\left[\tau\mathbb{1}\left\{i(\tau,B) = i\right\}\right] + \sum_{i=1}^{N} \mathbb{E}\left[\left(X_{i} - \tau\right)\mathbb{1}\left\{i(\tau,B) = i\right\}\right] \end{split}$$

The first term can be lower bounded as

$$\tau \sum_{i=1}^{N} \mathbb{E}\left[\mathbb{1}\left\{i(\tau, B)\right\} = i\right] = \tau \Pr\left[i(\tau, B) \neq \infty\right]$$

As for the second term, define $Z_i \in \{0,1\}$ to be 1 if $X_i \ge \tau$ and B=0 or $X_i > \tau$ and B=1. Observe that

$$\mathbb{1}\left\{i(\tau,B)=i\right\} \geq Z_i \prod_{j \neq i} (1-Z_j).$$

This is because if $Z_i = 1$ and all other Z_j are 0, then we must have $i(\tau, B) = i$. We can therefore obtain the following lower bound

$$\mathbb{E}\left[(X_i - \tau)\mathbb{1}\left\{i(\tau, B) = i\right\}\right] \ge \mathbb{E}\left[(X_i - \tau)Z_i \prod_{j \ne i} (1 - Z_j)\right]$$

$$\ge \mathbb{E}\left[(X_i - \tau)Z_i\right] \mathbb{E}\left[\prod_{j \ne i} (1 - Z_j)\right]$$

$$\ge \mathbb{E}\left[(X_i - \tau)Z_i\right] \mathbb{E}\left[\prod_{j = 1}^{N} (1 - Z_j)\right]$$

$$= \mathbb{E}\left[(X_i - \tau)Z_i\right] \Pr\left[i(\tau, B) = \infty\right]$$

where for the first inequality we have used the fact that X_1,\ldots,X_N are independent. We note however that $(X_i-\tau)Z_i=[X_i-\tau]^+$. This follows from a case analysis. When $X_i<\tau$, then we have $Z_i=0$ and both sides are 0. When $X_i=\tau$, then again both sides are 0. When $X_i>\tau$, we have $Z_i=1$ and both sides are equal to $X_i-\tau$. It follows that

$$\sum_{i=1}^N \mathbb{E}\left[(X_i - \tau)\mathbb{1}\left\{i(\tau, B) = i\right\}\right] \geq \Pr\left[i(\tau, B) = \infty\right] \sum_{i=1}^N [X_i - \tau]^+$$

Observe however that

$$\Pr\left[i(\tau,B) \neq \infty\right] = (1-\kappa) \Pr\left[(\max_i X_i) \geq \tau\right] + \kappa \Pr\left[(\max_i X_i) > \tau\right].$$

Since (τ, γ) is a γ -approximate median pair for $\max_i X_i$, the above probability is in the range $(1/2 - \gamma, 1/2 + \gamma)$. It follows that

$$\Pr[i(\tau, B) \neq \infty], \Pr[i(\tau, B) = \infty] \geq 1/2 - \gamma.$$

This in turn implies

$$\mathbb{E}\left[X_{i(\tau,B)}\right] \ge (1/2 - \gamma)\mathbb{E}\left[\left(\tau + \sum_{i=1}^{N} [X_i - \tau]^+\right)\right]$$

$$\ge \mathbb{E}\left[\left(\tau + \max_{i=1}^{N} [X_i - \tau]^+\right)\right]$$

$$\ge \mathbb{E}\left[\left(\max_{i=1}^{N} X_i\right)\right]$$

$$= (1/2 - \gamma)\mathsf{OPT}.$$

B.2 Application to delegation

In this section we prove Theorem 2, which we first restate for completeness:

Theorem 2. Assume that the distribution \mathcal{D} is supported over a known finite set \mathcal{X} . For any $\epsilon \in (0,1/2)$ and $\rho,\beta > 0$, there exists an algorithm solving the RD problem with parameters $(1/2 - \epsilon, \rho, \beta)$ using at most $N \cdot \text{poly}\left(\log^* |\mathcal{X}|, \rho^{-1}, \beta^{-1}, \epsilon^{-1}\right)$ samples from \mathcal{D} .

Proof. We know that for any threshold τ chosen by the principal, the best strategy for the agent would be to choose ω_i with the highest corresponding value $y(\omega_i)$ among all those that meet the threshold $x(\omega_i) \geq \tau$ or $x(\omega_i) > \tau$ depending on the value of B. We will denote this as $\omega^{(\tau,B)}$ henceforth. Note that $\omega^{(\tau,B)}$ might not exist, in which case neither the principal nor the agent would gain anything regardless of the agent's proposal. However, the existence of $\omega^{(\tau,B)}$ warrants the principal's approval and a gain of $x(\omega^{(\tau,B)})$. As $\omega^{(\tau,B)}$ can also be seen as the first task with either $x(\omega) \geq \tau$ or $x(\omega) > \tau$ when the tasks are sorted based on their corresponding value y in descending order, the problem of

choosing an appropriate threshold τ for the principal is closely related to choosing an appropriate threshold for the prophet pricing problem.

We propose that the principal draw $N\cdot s$ samples from \mathcal{D} , denoted by $\omega'_{i,j}$ for each $1\leq i\leq N$ and $1\leq j\leq s$, where s denotes the sample complexity of Proposition 3. For each $1\leq j\leq s$, we then define $x_j:=\max_{1\leq i\leq N}x(\omega'_{i,j})$. This construction yields x_1,\ldots,x_s as s independent samples from the random variable X, where $X:=\max_{1\leq i\leq N}x(\omega_i)$.

Applying the given ρ -replicable algorithm for computing a γ -approximate median pair (τ, κ) on the samples x_1, \ldots, x_s , we obtain a ρ -replicable γ -approximate median pair (γ, κ) for D. We report this as the principal's mechanism, and by Lemma 15 τ would be $(1/2-\gamma)$ competitive, which hence completes the proof.

Lemma 15. Let (τ, κ) be a γ -approximate median for the distribution of $\max_{1 \le i \le N} x(\omega_i)$. Then, (τ, κ) would yield a $(1/2 - \gamma)$ -competitive utility for the principal.

Proof. The proof follows the same structure as Lemma 4. Specifically, define $X_i = x(\omega_i)$. Sample $B \sim \text{Bernoulli}(\kappa)$. Define $\text{OPT} = \max_i X_i$. As before, we need to show that

$$\mathbb{E}\left[X_{i(\tau,B)}\right] \geq (1/2 - \gamma)\mathbb{E}\left[\text{OPT}\right],$$

where we set $X_{i(\tau,B)}=0$ when $i(\tau,B)=\infty$. Note that the definition of $i(\tau,B)$ is different from that of Lemma 4; instead of picking the first element in the order of time, we are picking the first element in the order specified by $y(\omega_i)$. Just as before however, the algorithms obtains τ with probability $\Pr[i(\tau,B)\neq\infty]$ and $\sum_i \mathbb{E}\left[[X_i-\tau]^+\right]$ with probability $\Pr[i(\tau,B)=\infty]$. As before, the probabilities can be lower bounded with $1/2-\gamma$ and the proof goes through.

C Proofs in Section 4

We first state the following standard tools from probability theory that will be used in the analysis.

Lemma 16. Let X be a distribution over the set $\mathcal{X} = \{x_1, \dots, x_{|\mathcal{X}|}\} \subseteq \mathbb{R}^{\geq 0}$ where $x_i < x_{i+1}$ for $i \in |\mathcal{X}| - 1$. Let $x_0 = 0$. The expectation of X satisfies the following equality:

$$\mathbb{E}\left[X\right] = \sum_{i=1}^{|\mathcal{X}|} (x_i - x_{i-1}) \Pr\left[X \ge x_i\right].$$

Lemma 17 (Lemma A.5. in [BHSS23]). Let X_1, \ldots, X_n be i.i.d random variables and let τ be an arbitrary value. Let p denote the probability $\Pr[X_i \geq \tau]$. Then $\Pr[\max_i X_i \geq \tau] \geq \frac{1}{2}(\min\{np, 1\})$.

We note that the lower bound in the above lemma can be written as $\Omega(np)$ when $p \leq 1/n$.

Proof of Lemma 7. Let ρ , β be half of the corresponding constants from Proposition 5. Let A be a ρ -replicable algorithm with sample complexity n that can solve the problem with failure probability at most β for α -light distributions. We transform this into an algorithm A' for all (not necessarily light) distributions as follows. First, we invoke the ρ -replicable ν -heavy hitter algorithm with failure probability β from Theorem 5 for $\nu = \alpha/4$ and $\gamma = 4$ If the algorithm's output is not Null, we return this as the output. Otherwise, we invoke algorithm A and return its output. We show below that A' is (2ρ) -replicable and has failure probability at most 2β . By Proposition 5, this implies a lower bound on the sample complexity of A', which in turn implies a lower bound on the sample complexity of A.

We next analyze the algorithm A'.

Correctness. Assume that the distribution is not α -light. Then the heavy hitter algorithm will return some value $z \neq \text{Null}$ such that $\Pr[Z = z] > \nu > 0$ with probability $1 - \beta$. Therefore, the output will be correct. If the distribution is α -light, the heavy hitter algorithm will output either a value $z \neq \text{Null}$ such that $\Pr[Z = z] > 0$, or it will output Null. If the output is Null, then algorithm A will output a correct answer with probability at least $1 - \beta$. A union bound implies that the answer is correct with probability at least $1 - 2\beta$ in this case as well.

Replicability. Consider two runs with samples S_1 and S_2 and the same random bits. With probability at least $1-\rho$, the heavy hitter algorithm will produce the same output for the two runs. If the output is not Null, then we will obtain the same answers. Otherwise, we will invoke algorithm A in both cases, which will produce the same answer with probability $1-\rho$. Taking union bound implies that the algorithm is (2ρ) -replicable.

Sample complexity. The algorithm requires n samples for the potential run of algorithm A' by assumption and requires at most $O(\alpha^{-1}\log^3(1/\alpha))$ samples for the single heavy hitter algorithm by Theorem 5. This means that the overall sample complexity is $n + O(\alpha^{-1}\log^3(1/\alpha))$. Since the algorithm is (2ρ) -replicable and has failure probability at most 2β , Proposition 5 implies that

$$n + O(\alpha^{-1} \log^3(1/\alpha)) \ge \tilde{\Omega}(\log^* |F|).$$

Given the assumption on α , if c_1 is small enough, this means that $n \geq \tilde{\Omega}(\log^* |F|)$ as claimed, finishing the proof.

Proof of Lemma 16. Evaluating the right hand side,

$$\begin{split} \sum_{i=1}^{|\mathcal{X}|} \left(x_i - x_{i-1}\right) \Pr\left[X \geq x_i\right] &= \sum_{i=1}^{|\mathcal{X}|} \sum_{j \geq i} \left(x_i - x_{i-1}\right) \Pr\left[X = x_j\right] \\ &= \sum_{j=1}^{|\mathcal{X}|} \sum_{i \leq j} \left(x_i - x_{i-1}\right) \Pr\left[X = x_j\right] \\ &= \sum_{j=1}^{|\mathcal{X}|} \left(x_j - x_0\right) \Pr\left[X = x_j\right] \\ &= \mathbb{E}\left[X\right] \end{split} \qquad \textit{(Double counting)}$$

Proof of Lemma 8. Set $x_i=(1/\varepsilon)^i$ for $i\in[|F|]$. Choose smallest i such that $\Pr[X\geq x_i]\leq \frac{1}{M}$. By definition of i we have $\Pr[X\geq x_{i-1}]\geq 1/M$. Since the distribution Z (and therefore X) is α -light, we must have $\Pr[X=x_{i-1}]\leq \alpha\leq 1/(2M)$, which in turn implies $\Pr[X\geq x_i]\geq 1/(2M)$. Since $\Pr[X\geq x_j]$ is decreasing in j, this means that $\Pr[X\geq x_j]\leq 1/M$ for $j\geq i$. We can lower bound the expectation of Y in two ways. Firstly,

$$\begin{split} \mathbb{E}\left[Y\right] &= \sum_{j} (x_j - x_{j-1}) \Pr\left[Y \geq x_j\right] & \text{(Lemma 16)} \\ &\geq \sum_{j \geq i} (x_j - x_{j-1}) \Pr\left[Y \geq x_j\right] & \text{(Since } x_j > x_{j-1}) \\ &\geq \Omega(M) \sum_{j \geq i} (x_j - x_{j-1}) \Pr\left[X \geq x_j\right] & \text{(Lemma 17 and } \Pr\left[X \geq x_j\right] \leq 1/(M)), \end{split}$$

Secondly, since $x_j - x_{j-1} \ge x_j/2$ (because $\varepsilon < 1/2$) and $\sum_{j=1}^{j'} (x_j - x_{j-1}) \le x_{j'+1}$ for all j, j', we obtain

$$\begin{split} \mathbb{E}\left[Y\right] &= \sum_{j} (x_{j} - x_{j-1}) \Pr\left[Y \geq x_{j}\right] & (Lemma~16) \\ &\geq (x_{i} - x_{i-1}) \Pr\left[Y \geq x_{i}\right] & (Since~x_{j} > x_{j-1}) \\ &\geq \Theta(1)(x_{i} - x_{i-1}) & (Lemma~17~and~\Pr\left[X \geq x_{i}\right] \geq 1/(2M)) \\ &\geq \Theta(1)x_{i} & (Since~\varepsilon < 1/2) \\ &\geq \Theta(\varepsilon^{-1})(x_{i-1} - x_{0}) & (Since~x_{i} = \varepsilon^{-1}x_{i}~and~x_{0} = 0) \\ &= \Theta(\varepsilon^{-1}) \sum_{j=1}^{i-1} (x_{j} - x_{j-1}) & (Telescoping~sum) \\ &\geq \Theta(\varepsilon^{-1}) \sum_{j=1}^{i-1} (x_{j} - x_{j-1}) \Pr\left[X \geq x_{j}\right]. \end{split}$$

Combining the above inequalities we obtain

$$\begin{split} \mathbb{E}\left[X\right] &= \sum_{j} (x_{j} - x_{j-1}) \text{Pr}\left[X \geq x_{j}\right] \\ &\leq \sum_{j < i} (x_{j} - x_{j-1}) \text{Pr}\left[X \geq x_{j}\right] + \sum_{j \geq i} (x_{j} - x_{j-1}) \text{Pr}\left[X \geq x_{j}\right] \\ &\leq O(1/M + \varepsilon) \mathbb{E}\left[Y\right], \end{split} \tag{Lemma 16}$$

finishing the proof.

Proof of Lemma 9. Let C_1,\ldots,C_N be i.i.d Bernoulli variables such that $\Pr[C_i=1]=M/N$. Sampling X_1,\ldots,X_N i.i.d from the distribution of X, we can assume that $X_i'=C_iX_i$. If the price τ is not in the range $[(1/\varepsilon)^a,(1/\varepsilon)^b]$, there are two possibilities. The first is that it is $>(1/\varepsilon)^b$. In this case, accepting the first element above τ is equivalent to not accepting anything, which means τ is only 0-competitive. We therefore focus on the case $\tau<(1/\varepsilon)^a$. We further assume $\tau>0$ since clearly a non-zero price is better than 0. If $\tau\in(0,(1/\varepsilon)^a)$, then accepting the first element above or equal to τ or accepting the first element strictly greater than τ are both equivalent to accepting the first element X_i' such that $C_i=1$, assuming such an element exists. Since C_i and X_i are independent, this means that the expected value of the algorithm is at most $\mathbb{E}\left[X_1\right]$, where we note that we have an inequality because with positive probability all C_i are 0. Define $Y=\max\{X_1',\ldots,X_M'\}$. We need to show that $\mathbb{E}\left[Y\right] \geq \Omega(\frac{1}{\alpha+\varepsilon})\mathbb{E}\left[X_1\right]$. Since each C_i is 1 with probability M/N, we have $\mathbb{E}\left[\sum_{i=1}^N C_i\right]=M$. By Chernoff, this implies

$$\Pr\left[\sum_{i=1}^{N} C_i \le M/2\right] \le \left(\frac{e^{-1/2}}{(1/2)^{1/2}}\right)^M < 1 - \Omega(1).$$

Therefore, with probability $\Omega(1)$, we will have $\sum_{i=1}^N C_i \geq M/2$. Conditioned on this event, since X_1,\ldots,X_N are i.i.d and independent of C_i , Y is a maximum of at least $1/(2\alpha)$ copies of X_i . We can assume, without loss of generality, that $\alpha \leq 1/8$. If $\alpha \geq 4$, then setting c > 8 the lemma holds trivially as one cannot have a price that is c-competitive for c > 1. It follows that $\frac{1}{2\alpha} > 4$ which in turn implies $\left|\frac{1}{2\alpha}\right| \geq \Omega(1/\alpha)$. Therefore, $\left(\left|\frac{1}{2\alpha}\right|\right)^{-1} \leq O(\alpha)$.

Let Y' denote the maximum of the first $\lfloor 1/(2\alpha) \rfloor$ copies of X. It is clear that $Y \geq Y'$. By Lemma 8 however,

$$\mathbb{E}[X_1] \le O(\left(\left\lfloor \frac{1}{2\alpha} \right\rfloor\right)^{-1} + \varepsilon) \le O(\alpha + \varepsilon)\mathbb{E}[Y'].$$

Therefore, conditioned on the event $\sum_{i=1}^{N} C_i \ge M/2$ we have $\mathbb{E}[Y] \ge \Omega(\frac{1}{\alpha+\varepsilon})\mathbb{E}[X_1]$. Since the event happens with constant probability, this holds without the conditioning as well, finishing the proof.

Proof of Theorem 3. Let ρ', β', c_1' denote the values of the constants from Lemma 7. Let c' denote the value of c in Lemma 9. We assume without loss of generality that $c' \geq 1$ since increasing c' doe not violate the lemma. Set $\rho = \rho'/2, \beta = \beta'/2$ and $c_1 = 4c'c_1'$. Set $\alpha' = \alpha/(4c'), M = \lceil 1/\alpha' \rceil$ and set $c_2 = 8c'$.

Note that this implies

$$N > c_2/\alpha = 2/\alpha' > M$$
.

For the final inequality, we have used the fact that $2/\alpha' \ge \lceil 1/\alpha' \rceil$. This follows from the fact that $1/\alpha' \ge \frac{4c'}{\alpha} \ge 4$; note that $\alpha \le 1$ as otherwise the lemma holds trivially.

Let A be an algorithm that is ρ -replicable and with probability $1-\beta$, outputs a price pair that is α -competitive for N i.i.d variables X_1',\ldots,X_N' and has sample complexity n. We need to show that $n \geq \widetilde{\Omega}(\alpha \log^* |\mathcal{X}|)$.

We will build an algorithm A' for the replicable interior point problem on α' -light distributions. Let Z be an α' -light distribution and set $\varepsilon=\alpha'$. Create the distribution X' as in Lemma 9. Give this as input to the algorithm A and denote its output price pair with (τ,κ) . Note that the algorithm will attempt to sample from the distributions of X_i' , which in turn requires us to potentially sample from Z. The number of samples the algorithm will require from Z is random. If the algorithm A ends up requiring more than $n'=C(\log(\beta^{-1})+\log(\rho^{-1}))Mn$ samples from Z, (where C will be specified later), we halt the algorithm and output Null. Otherwise, we round the value $\log_{1/\varepsilon}(\tau)$ to the nearest integer and output it.

Correctness. We will show that the algorithm's output is correct with probability at least $1-\beta$. Assume for simplicity that instead of halting the algorithm if we require more than n' samples, we allow the algorithm to continue and calculate the price τ , but output Null in the end. It is clear that this does not change the algorithm's output.

The expected number of samples the algorithm takes from Z is $\frac{M}{N} \cdot N \cdot n = Mn \leq \frac{2}{\alpha'}n$. Therefore, by Chernoff, the probability that the number of samples we require exceeds n' is at most $e^{-\Theta(n')}$, which is $\leq \beta/8$ if we set C to be large enough. Furthermore, with probability at least $1-\beta$, the output of the algorithm A will be a price pair (τ,κ) that is α -competitive. Invoking Lemma 9, we conclude that such a τ must be in range $[(1/\varepsilon)^a, (1/\varepsilon)^b]$ since otherwise it would be at most $(c(\alpha'+\varepsilon))$ -competitive and $c(\alpha'+\varepsilon)=\alpha/2$. Note that the preconditions of the lemma hold. We have $\varepsilon=\alpha'=\alpha/(4c')<1/2$. We also have $M=\lceil 1/\alpha'\rceil \geq 1/\alpha'$ and $N\geq M$.

If τ is in the range $[(1/\varepsilon)^a, (1/\varepsilon)^b]$, then the output of A' will be an interior point of Z. Note that if τ does not correspond to a value ε^z for an integer z, it does not matter how we round $\log_{\varepsilon^{-1}}(\tau)$; since τ is in the range $[\varepsilon^a, \varepsilon^b]$, both options for rounding are acceptable. Therefore, the algorithm A' is correct with probability at least $1 - \beta(1 + 1/8) \ge 1 - \beta'$.

Replicability. As before, we assume for simplicity that instead of halting the algorithm if we require more than n' samples, we allow the algorithm to continue and calculate the price pair (τ, κ) , but output Null in the end. If we run the algorithm A' with two separate samples S_1, S_2 and the same random bits, with probability $1-\rho/4$, neither of the two runs return Null. This follows from the fact that the probability of returning Null is at most $e^{-\Theta(n')}$ which is $\leq \rho/4$ given a large enough C. Additionally, with probability at least $1-\rho$, both runs of A return the same output. It follows that with probability at least $1-\rho'$, the output is the same.

Sample complexity. By definition of c', we have $\alpha' = \alpha/(4c') \ge c_1'((\log^*|F|)^{-0.99})$. The algorithm A' produces an interior point of Z with probability at least $1-\beta'$ and is ρ' -replicable. It follows from Lemma 7 that its sample complexity n' must be at least $\widetilde{\Omega}(\log^*|F|)$. Since ρ, β were constants, we have $n' = O(Mn) = O(n/\alpha)$, where the second inequality follows from the fact that, since $2/\alpha' \ge M$. Therefore, $n/\alpha \ge \widetilde{\Omega}(\log^*|F|)$ and the proof is complete.

D Proofs in Section 5

Proof of Lemma 11. For any $x \in X^{\geq \nu}$, $\Pr\left[x \notin S^{(1)}\right] \leq (1-p(x))^{n_1} \leq e^{-np_1(x)} \leq e^{-n_1 \nu}$ Since $n_1 = \Theta(v^{-1}\log(v^{-1}+\rho^{-1}+\beta^{-1}))$, with the correct constants under $\Theta(.)$ we have $e^{-n_1 \nu} \leq \nu \min(\rho,\beta)$. Since $\left|X^{\geq \nu}\right| \leq \nu^{-1}$, taking a union bound the claim follows.

Proof of Lemma 12. We will show that for any $x \in S^{(1)}$ we have $\Pr\left[\neg \text{Ev}_2(x)\right] \leq \frac{\min(\rho,\beta)}{10n_1}$. Taking a union bound completes the proof. Recall that $\hat{p}(.)$ is an estimate of p(.) using n_2 samples. Therefore, by Chernoff (Equation (2)),

$$\Pr\left[|\hat{p}-p| \geq \epsilon\right] \leq 2e^{-\frac{n_2\epsilon^2}{3p}}.$$

If $p \leq 3\nu$, then since by definition of n_2 and ϵ , this is $2e^{-\Theta(\frac{n_2\rho^2\nu}{\log 2(\nu-1)})} \leq \frac{\min(\rho,\beta)}{10n_1}$. If $p < 3\nu$, this completes the proof. Otherwise, it is clear that the probability of $\mathrm{Ev}_2(x)$ is maximized when $p(x) = 3\nu$, in which case since $\epsilon \leq \nu$, the above bound gives us $\Pr[\hat{p} \leq 2\nu] \leq \Pr[|p - \hat{p} \geq \epsilon|] \leq \frac{\rho}{10n_1}$. \square

We next prove the following Lemma which will be used in our proofs.

Lemma 18. Conditioned on the event that $\eta(x) \neq \eta(y)$ for all distinct $x, y \in X^{\geq \nu}$, the expected size of $X_{\eta}^{\geq \nu}$ is at most $1 + \ln(\nu^{-1})$.

Proof of Lemma 18. Let x_i denote the value of $x \in X^{\geq \nu}$ with the i-the largest value for p(x), where we assume that ties are broken arbitrarily. In order for x_i to be in $X_\eta^{\geq \nu}$, we need to have $\eta(y) > \eta(x_i)$ for all y such that $p(y) \geq p(x_i)$, which in turn means that $\eta(x_i) < \eta(x_j)$ for all j < i. The probability that this happens is at most 1/i however since $\eta(.)$ is chosen uniformly at random and is independent across x_i . Formally,

$$\Pr\left[x_{i} \in X_{\eta}^{\geq \nu}\right] = \Pr\left[\eta(y) > \eta(x) \ \forall y : p(y) \geq p(x_{i})\right]$$
 (Definition of $X_{\eta}^{\geq \nu}$)
$$\leq \Pr\left[\eta(x_{i}) < \eta(x_{j}) \ \forall j < i\right]$$
 (Since $p(x_{j}) \geq p(x_{i})$ for $j \leq i$)
$$\leq 1/i$$
 (Since $\eta(x)$ is chosen uniformly random).

Since $X_{\eta}^{\geq \nu} \subseteq X^{\geq \nu}$, summing over i we obtain

$$\mathbb{E}\left[|X_{\eta}^{\geq \nu}|\right] = \sum_{i=1}^{|X^{\geq \nu}|} \Pr\left[x_i \in X_{\eta}^{\geq \nu}\right]$$
 (Linearity of expectation)
$$\leq \sum_{i=1}^{|X^{\geq \nu}|} 1/i \leq 1 + \ln(|X^{\geq \nu}|).$$

Since $|X^{\geq \nu}| \leq \nu^{-1}$, the lemma follows.

Proof of Lemma 13. For any distinct x, y, we have

$$\Pr\left[\eta(x) = \eta(y)\right] \le 2^{-\Theta(\log(n_1 + \beta^{-1} + \rho^{-1}))} \le \frac{\min(\rho, \beta)}{20n_1^2}.$$

Since $n_1 \geq |X^{\geq \nu}|$, It follows that with probability at least $1 - \min(\rho, \beta)/20$, the values of $\eta(.)$ are distinct across $X^{\geq \nu}$. Condition on this event. For any fixed value of η , since ν' is chosen uniformly at random from $[3/2\nu, 2\nu']$, we have $\Pr[\nu' \in U] \leq \frac{2\epsilon |X_{\eta}^{\geq \nu}|}{\nu/2}$. Taking expectation over η , by Lemma 18 we have $\Pr[\nu' \in U] \leq \frac{2\rho\nu(\ln(\nu^{-1})+1)}{10\nu(\ln(\nu^{-1})+1)/2} \leq 2\rho/5$. Since We conditioned on an event with probability $1 - \min(\rho, \beta)/20$, we conclude that $\Pr[\text{Ev}_3] \geq (1 - \rho/20)(1 - 2\rho/5) \geq 1 - \rho/2$, finishing the proof.

Proof of Lemma 14. For simplicity, we write x^* instead of $x_{\eta,\nu'}$ for the rest of the proof. We first handle the case where $x^* \neq \text{Null}$. In this case, since $x^* \in X^{\geq \nu}$, we have $x^* \in S^{(1)}$ by Ev_1 . We additionally claim that $x^* \in X_\eta^{\geq \nu}$. If this is not the case, then there must be some $y \in X^{\geq \nu}$ such that $\eta(y) < \eta(x^*)$ and $p(y) \geq p(x^*)$. This implies however that $p(y) \geq \nu'$, which contradicts the definition of x^* as the first elements (in order of $\eta(.)$) with probability at least ν' . Since $x^* \in X_\eta^{\geq \nu}$, we conclude that $p(x^*) \geq \nu' + \epsilon$ by Ev_3 , which in turn implies $\hat{p}(x^*) \geq \nu'$ by Ev_2 . It therefore suffices to show that $\hat{p}(x') \leq \nu'$ for all $x' \in S^{(1)}$ such that $\eta(x') < \eta(x^*)$.

By definition of x^* , we must have $p(x') \leq \nu'$, which further implies that $|p(x') - \hat{p}(x')| \leq \epsilon$ by Ev₂. We further assume that $p(x') \geq \nu$; if not, we have $\hat{p}(x') \leq \nu + \epsilon \leq \nu'$, finishing the proof. Therefore $x' \in X^{\geq \nu}$. Define \widetilde{x} as the largest element before or equal to x' in $X_{\eta}^{\geq \nu}$; i.e., $\widetilde{x} = \arg\max_{x \in X_{\eta}^{\geq \nu}: \eta(x) \leq \eta(x')} \eta(x)$. Note that $\widetilde{x} = x'$ if $x' \in X_{\eta}^{\geq \nu}$.

We claim that $p(\widetilde{x}) \geq p(x')$. Assume this is not the case. Set y to be the first element in $X^{\geq \nu}$ satisfying $p(y) > p(\widetilde{x})$. Formally, $y = \arg\min_{x \in X^{\geq \nu}: p(x) > p(\widetilde{x})} \eta(x)$. Since $p(x') > p(\widetilde{x})$ and $\eta(x') > \eta(\widetilde{x})$, we have $\eta(y) \leq \eta(x')$. We also have $\eta(y) > \eta(\widetilde{x})$; if not, then since $p(y) > p(\widetilde{x})$ we conclude that $\widetilde{x} \notin X_{\eta}^{\geq \nu}$ which is a contradiction because $y \in X^{\geq \nu}$. It is easy to see however that $y \in X_{\eta}^{\geq \nu}$, contradicting the definition of \widetilde{x} . Specifically, $p(y) > p(\widetilde{x})$ and $p(\widetilde{x}) \geq p(x)$ if $\eta(x) < \eta(y)$ by definition of y. It follows that the initial assumption was wrong and $p(\widetilde{x}) \geq p(x')$.

Given the above claim, we have $\eta(\widetilde{x}) \leq \eta(x') \leq \eta(x^*)$. Since $\widetilde{x} \in X^{\geq \nu}$, by definition of x^* , we have $p(\widetilde{x}) \leq \nu'$. Since $\widetilde{x} \in X_{\eta}^{\geq \nu}$, by Ev₃ we conclude that $p(\widetilde{x}) \leq \nu' - \epsilon$, which further implies $p(x') \leq \nu' - \epsilon$. Therefore, by Ev₂ we have $\hat{p}(x') \leq \nu'$, finishing the proof.

If $x^* = \text{Null}$, then the same proof shows that $\hat{p}(x') \leq \nu'$ for all $x' \in S^{(1)}$; the only place where we used x^* is for proving that $p(x') \leq \nu'$ and $p(\widetilde{x}) \leq \nu'$, both of which would hold trivially if $x^* = \text{Null}$. Therefore, output is x^* in this case as well.

E Omitted proofs

E.1 Approximate median pair

In this section, we prove Proposition 3.

Proof of Proposition 3. We first invoke Lemma 2 to find a $(1/2 - \gamma/2)$ -approximate median τ with the same sample complexity and parameters $\rho/4$, $\beta/4$. Let τ be the value obtained from the algorithm. Note that, if the output of the algorithm is correct, we have

$$\Pr[X \ge \tau], \Pr[X \le \tau] > 1/2 - \gamma/2.$$

We then replicably estimate, with error $\gamma/8$, the value of $\Pr[X \geq \tau]$ and $\Pr[X > \tau]$. This can be done using, e.g., the SQ algorithm of [ILPS22]. Let p_1, p_2 denote the true probabilities and let \hat{p}_1, \hat{p}_2 denote our estimates. Assuming τ was chosen correctly, we have $p_1 \geq 1/2 - \gamma/2$ and $p_2 \leq 1/2 + \gamma/2$. This in turn implies that, if our estimates are correct, we must have $\hat{p}_1 \geq 1/2 - 3\gamma/4$ and $\hat{p}_2 \leq 1/2 + 3\gamma/4$. Now, if $\hat{p}_1 \leq 1/2 + 3\gamma/4$, then we output (τ, κ) for $\kappa = 0$. Otherwise, we set κ such that $(1 - \kappa)\hat{p}_1 + \kappa\hat{p}_2 = 1/2 + 3\gamma/4$. It is clear that

$$(1-\kappa)p_1 + \kappa p_2 = (1-\kappa)\hat{p}_1 + \kappa \hat{p}_2 + (1-\kappa)(p_1 - \hat{p}_1) + \kappa(p_2 - \hat{p}_2).$$

If our estimates are correct, it follows that $(1 - \kappa)p_1 + \kappa p_2$ is in the range $(1/2 - \gamma, 1/2 + \gamma)$, finishing the proof.

E.2 Replicable interior point hardness

In this section, we prove the hardness of the replicable interior point problem, as formalized in Proposition 5. We begin with some definitions. Recall that a randomized algorithm $A: \mathcal{X}^n \to \mathcal{Y}$ is called (ε, δ) -DP (i.e., differentially private) if for any two multisets S_1, S_2 differing in exactly one coordinate, and any event $O \subseteq \mathcal{Y}$, we have

$$\Pr[A(S_1) \in O] \le e^{\varepsilon} \Pr[A(S_2) \in O] + \delta,$$

where the probability is over the randomness of A. The following result from [BGH $^+$ 23] shows that one can transform a replicable algorithm for a statistical problem to a differentially private algorithm for the same problem.

Lemma 19 (Theorem 3.1 in [BGH⁺23]). Let $\rho < 0.01$. If there is a ρ -replicable algorithm solving a statistical problem with failure probability β and sample complexity n, then there is an (ε, δ) -DP algorithm solving the same statistical problem with failure probability at most $O(\beta \log 1/\beta)$ and sample complexity $n \cdot O(1/\varepsilon \log 1/\delta \log 1/\beta)$.

Existing works on differential privacy show that, for a closely related problem, any differentially private algorithm requires at least $\Omega(\log^*|\mathcal{X}|)$ samples. We will refer to this problem as the *non-statistical interior point problem* and define it as follows. Given a set of samples $S \subseteq \mathcal{X}$, define its interior as the set $\operatorname{Interior}(S) = [\min(S), \max(S)]$. In the *non-statistical* interior point problem, we are given a set S and the goal is to output some point x in its interior. To avoid confusion, throughout the section we will refer to our main problem, in which the goal is to find a point in the interior of a distribution using samples, as the *statistical* interior point problem.

We say an algorithm A has sample complexity n for the non-statistical interior point problem with error probability β if, for any $S \subseteq \mathcal{X}$ of size n, we have $\Pr[\mathcal{A}(S) \in \mathtt{Interior}(S)] \geq 1 - \beta$, where the probability is over the randomness of the algorithm. The following result by Bun et al. [BNSV15] provides a lower bound for the sample complexity of differentially private algorithms on this problem.

Lemma 20 ([BNSV15]). Fix $\varepsilon \in (0, 1/4)$. Assume that $\delta(n) \leq 1/(50n^2)$. For any n, solving the non-statistical interior point problem with $(\varepsilon, \delta(n))$ differential privacy requires sample complexity $n \geq \Omega(\log^* |\mathcal{X}|)$.

We next show how to transform an algorithm for statistical interior point to an algorithm for non-statistical interior point with a similar guarantee on differential privacy.

Lemma 21. Let $\varepsilon < 1/2$. If there is an (ε, δ) -DP algorithm for the statistical interior point problem with error probability β , there is an (ε', δ') -DP algorithm for non-statistical interior point with sample complexity and error probability β where $\varepsilon' = O(\varepsilon \log 1/\delta)$ and $\delta' = O(\delta)$.

Proof. Let A be the mentioned statistical algorithm. Consider the following algorithm A'. Given the set X of size n, we let S be a set of n i.i.d. samples from the distribution $\hat{D} = X$, and output A(S). We show that A' satisfies the required guarantees.

Correctness analysis. With probability $1 - \beta$, the algorithm outputs a value in the interior of D, i.e., the range $[\min \hat{D}, \max \hat{D}]$, which is the same as $[\min(X), \max(X)]$.

Privacy analysis. Let $X_1, X_2 \in \mathcal{X}^n$ be two vectors that differ in one entry. Let \mathcal{Y} denote the output space of A. We need to show that for any $O \subseteq \mathcal{Y}$, we have

$$\Pr[A'(X_1) \in O] \le e^{\varepsilon'} \Pr[A'(X_2) \in O] + \delta',$$

where the probability is over the randomness of A'. Let \hat{D}_1 and \hat{D}_2 be the corresponding empirical distributions for X_1 and X_2 . By definition of A', the above inequality is equivalent to

$$\operatorname{Pr}_{S \sim \hat{D}_{1}}\left[A(S) \in O\right] \leq e^{\varepsilon'} \operatorname{Pr}_{S \sim \hat{D}_{2}}\left[A(S) \in O\right] + \delta', \tag{3}$$

where the randomness is now over both the sampling of S and the internal randomness of A.

We may assume that the set S is sampled as follows. We first sample a multiset of indices $U\subseteq [n]$ with size n by uniformly sampling n values i.i.d. from [n]. Note that this means an index may appear multiple times in U. We then obtain the i-th entry of S by taking the j-th entry of either X_1 or X_2 , depending on the input, where j is the i-th entry in U. It is clear that this does not change the sampling procedure. Using this view, however, we can now couple the two probabilities corresponding to X_1 and X_2 in order to compare them. Formally, let A(U;X) denote the value of A(S) when S is obtained from the above procedure. We need to compare the values $\Pr\left[A(U;X)\right]$ for $X=X_1$ and $X=X_2$, where the randomness is over the draw of U and the internal randomness of A.

Assume without loss of generality that X_1, X_2 differ on their first coordinate. Let I denote the number of times the value 1 appears in U. Set $t = 10 + \ln 1/\delta$. By iterated expectation,

$$\begin{split} \Pr\left[A(U;X) \in O\right] &= \sum_{i=1}^n \Pr\left[I = i\right] \Pr\left[A(U;X) \in O \mid I = i\right] \\ &\leq \sum_{i=1}^t \Pr\left[I = i\right] \Pr\left[A(U;X) \in O \mid I = i\right] + \Pr\left[I \geq 1 + t\right]. \end{split}$$

Since $\mathbb{E}[I] = 1$, Chernoff's inequality gives

$$\Pr\left[I \geq 1 + t\right] \leq \frac{e^t}{(1 + t)^{1 + t}} \qquad \qquad \text{(Chernoff's bound)}$$

$$\leq e^{-t} \qquad \qquad \text{(Since } t \geq 10)$$

$$\leq \delta \qquad \qquad \text{(Since } t \geq \ln^{1}/\delta).$$

It follows that

$$\Pr[A(U; X_1) \in O] \le \sum_{i=1}^{t} \Pr[I = i] \Pr[A(U; X_1) \in O \mid I = i] + \delta. \tag{4}$$

We next claim that

$$\Pr\left[A(U; X_1) \in O \mid I = i\right] \le e^{i\varepsilon} \Pr\left[A(U; X_2) \in O \mid I = i\right] + \delta_i,\tag{5}$$

where $\delta_i = \delta \frac{e^{i\varepsilon}-1}{e^{\varepsilon}-1}$. Formally, let $\mathcal{U}_i \subseteq [n]^n$ denote the set of all ordered vectors of length n from [n] that have exactly i entries of 1. By total probability,

$$\Pr\left[A(U;X) \in O \mid I=i\right] = \sum_{u \in U_i} \Pr\left[U=u \mid I=i\right] \Pr\left[A(u;X) \in O\right],$$

where the randomness in the probability in the right hand side is now only the randomness of the algorithm A. We now note that for all $u \in \mathcal{U}_i$,

$$\Pr\left[A(u;X_1) \in O\right] \le e^{i\varepsilon} \Pr\left[A(u;X_2) \in O\right] + \frac{e^{i\varepsilon} - 1}{e^{\varepsilon} - 1} \delta.$$

This holds because A is (ε, δ) -DP and the set S given as input to A in $A(u; X_1)$ and $A(u; X_2)$ differ in exactly i coordinates. Summing over all u, we obtain Equation (5).

Plugging this in Equation (4), we obtain

$$\begin{split} &\Pr\left[A(U;X_1)\in O\right] - \delta \\ &\leq \sum_{i=1}^t \Pr\left[I=i\right] \left(e^{i\varepsilon} \Pr\left[A(U;X_2)\in O\mid I=i\right] + \delta_i\right) \\ &\leq \sum_{i=1}^t e^{i\varepsilon} \Pr\left[I=i\right] \Pr\left[A(U;X_2)\in O\mid I=i\right] + \sum_{i=1}^t \Pr\left[I=i\right] \delta_i \\ &\leq \left(e^{\varepsilon t} \sum_{i=1}^t \Pr\left[I=i\right] \Pr\left[A(U;X_2)\in O\mid I=i\right]\right) + \left(\sum_{i=0}^n \Pr\left[I=i\right] \delta_i\right) - \delta_0, \end{split}$$

where in the last inequality we have used the fact that $i \leq t$ to bound the first expression and the non-negativity of δ_i for i>1 to bound the second expression. By total probability, the first expression is at most $e^{\varepsilon t} \Pr\left[A(U;X_2) \in O\right]$. As for the second expression, it is equal to $\mathbb{E}\left[\delta_I\right] = \frac{\delta}{e^{\varepsilon}-1}\mathbb{E}\left[e^{\varepsilon I}-1\right]$. Observe however that I follows a binomial distribution with parameters n and 1/n. Therefore,

$$\begin{split} \mathbb{E}\left[e^{\varepsilon I}\right] &= \left(1 - \frac{1}{n} + \frac{e^{\varepsilon}}{n}\right)^n \\ &\leq \left(1 + \frac{2\varepsilon}{n}\right)^n \\ &\leq e^{2\varepsilon}. \end{split} \tag{Since } e^x - 1 \leq 2x \text{ for } x < 1/2 \text{ and } \varepsilon < 1/2) \end{split}$$

It follows that

$$\mathbb{E}\left[\delta_{I}\right] \leq \frac{\delta}{e^{\varepsilon} - 1} \left(e^{2\varepsilon} - 1\right)$$

$$\leq \delta(e^{\varepsilon} + 1)$$

$$\leq (e^{1/2} + 1)\delta \qquad (Since \ \varepsilon < 1/2)$$

$$< 3\delta.$$

Finally, we have $\delta_0 = 0$. Plugging this back in we obtain Equation (3) with $\delta' = 4\delta$ and $\varepsilon' = (\ln(1/\delta) + 10)\varepsilon$, finishing the proof.

We now prove Proposition 5.

Proof of Proposition 5. Assume that an algorithm with these properties exists. Let n denote its sample complexity. For any ε, β , by Lemma 19 we have an (ε, δ) -DP algorithm for statistical interior point with failure probability $O(\beta \log^{1/\beta})$ and sample complexity

$$n \cdot O\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\log\frac{1}{\beta} + \log^2\frac{1}{\beta}\right).$$

By Lemma 21, this means that there is an (ε', δ') -DP algorithm for non-statistical interior point with failure probability β' and the same sample complexity where

$$\varepsilon' = O\left(\varepsilon \log \frac{1}{\delta}\right), \quad \delta' = O(\delta), \quad \beta' = O\left(\beta \log \frac{1}{\beta}\right).$$

Set β such that $\beta'=0.05$. Note that this can be achieved for some constant value $\beta>0$. We can obtain any desired value for ε',δ' by setting $\delta'=\Theta(\delta)$ and $\varepsilon=\Theta(\varepsilon'/\log 1/\delta'))$. It follows that, for any ε',δ' , there exists an (ε',δ') -DP algorithm with failure probability 0.05 and sample complexity $N=O\left(n(1+1/\varepsilon'\log^2 1/\delta')\right)$ for some constant c. Set $\varepsilon'=0.05$. If $\delta'=\frac{1}{c'n^3}$, then this gives us the sample complexity $N=cn(1+\log^2(c'n^3))$. We claim that if we choose c' to be large enough, we can ensure that $\delta'\leq 1/50N^2$. By definition of δ' , this means we need to show that

$$c'n^3 \ge 50c^2n^2(1 + \log^2(c'n^3))^2.$$

Given the inequalities $(x+y+z)^2 \le 3(x^2+y^2+z^2)$ and $(x+y)^2 \le 2(x^2+y^2)$ we have

$$\begin{split} \frac{1}{3}(1 + \log^2(c'n^3))^2 &= \frac{1}{3}(1 + (\log(c') + \log(n^3))^2)^2 \\ &\leq \frac{1}{3}(1 + 2\log^2(c') + 2\log^2(n^3))^2 \\ &\leq 1 + 4\log^4(c') + 9\log^4(n) \end{split}$$

It is sufficient to show that

$$c'n \ge 150c^2 (1 + 4\log^4 c' + 9\log^4 n)$$
.

Setting c' to be large enough in terms of c, the above inequality holds as each term on the right hand side is asymptotically smaller than the left hand side.

Therefore, we have obtained an (ε', δ') -DP algorithm with sample complexity N and failure probability β' where $\delta' \leq 1/50N^2$, and $\varepsilon', \beta' \leq 0.05$. Invoking Lemma 20, we conclude that $N \geq \Omega(\log^*|\mathcal{X}|)$. Since $\delta' = \Theta(1/n^3)$, this implies that $n \log^2 n \geq \Omega(\log^*|\mathcal{X}|)$, which in turn implies $n \geq \tilde{\Omega}(\log^*|\mathcal{X}|)$ as claimed.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and intro clearly and accurately reflect our paper's contribution. Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Claims are supported with formal proofs and the assumptions are clearly stated. As such, the limitations are clear.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides a full proof for all of the stated results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conforms to the code of ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. **Broader impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The paper is theoretical and we do not believe it has any societal impact worth highlighting.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper is theoretical and does not contain any experiments.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is theoretical.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper is theoretical.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use LLMs beyond the standard usage for writing and editing.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.