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Abstract

Modern machine learning models deployed in
the wild can encounter both covariate and se-
mantic shifts, giving rise to the problems of out-
of-distribution (OOD) generalization and OOD
detection respectively. While both problems
have received significant research attention lately,
they have been pursued independently. This
may not be surprising, since the two tasks have
seemingly conflicting goals. This paper pro-
vides a new unified approach that is capable of
simultaneously generalizing to covariate shifts
while robustly detecting semantic shifts. We pro-
pose a margin-based learning framework that ex-
ploits freely available unlabeled data in the wild
that captures the environmental test-time OOD
distributions under both covariate and seman-
tic shifts. We show both empirically and the-
oretically that the proposed margin constraint
is the key to achieving both OOD generaliza-
tion and detection. Extensive experiments show
the superiority of our framework, outperform-
ing competitive baselines that specialize in either
OOD generalization or OOD detection. Code is
publicly available at https://github.com/
deeplearning-wisc/scone.

1. Introduction

Modern machine learning models deployed in the wild can
encounter different types of distributional shifts. Taking
autonomous driving as an example, a model trained on in-
distribution (ID) data with sunny weather (Figure 1, left)
may experience a covariate shift due to snowy weather
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(Figure 1, middle). Under such a covariate shift, a model
is expected to generalize to the out-of-distribution (OOD)
data—correctly predicting the sample into one of the known
classes (e.g., car), despite the shift. Additionally, the model
may encounter a semantic shift, where samples are from
unknown classes (e.g., deer) that the model has not been
exposed to during training (Figure 1, right). Such seman-
tic OOD data should be rejected instead of being blindly
predicted as a known class.

These distributional shift scenarios give rise to the impor-
tance of two problems: OOD generalization, which focuses
on the covariate shift problem (Gulrajani & Lopez-Paz,
2020; Koh et al., 2021; Ye et al., 2022), and OOD detection,
which targets semantic shift (Hendrycks & Gimpel, 2017;
Liu et al., 2020; Yang et al., 2021). Both problems have re-
ceived increasing research attention lately, albeit have been
pursued independently; as a result, existing methods are
highly specialized in one task, but not capable of handling
both simultaneously. This has largely impeded the wider
adoption of OOD algorithms in real-world environments,
which often present heterogeneous data shifts. A critical yet
underexplored question thus arises:

Can we devise a unified learning framework for both
00D generalization and OOD detection?

In this paper, we bridge the gap between OOD generaliza-
tion and OOD detection, in one coherent framework. Our
driving idea is to exploit unlabeled wild data naturally aris-
ing in the model’s operating environment, turning the OOD
threat into valuable learning resources instead. Wild data
arises naturally for free upon deploying any machine learn-
ing classifier in its respective environment, and has been
largely overlooked for OOD learning purposes. Specifically,
we consider a generalized characterization of the wild data,
which can be modeled as a mixed composition of three data
distributions:

R covariate semantic
]P)Wild = (1 — Mg — 7T(:)I[Din + WC]P)out + ﬂ—s]P)out )

where Py, PEoyriaie apd psemantic denote the marginal distri-
butions of ID, covariate-shifted OOD and semantic-shifted
OOD data respectively. Such wild data is available in abun-
dance, does not require any human annotation, and impor-

tantly, contains the true test time OOD distributions under
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Figure 1. Illustration of three types of data that can organically arise when deploying models in the open world: (1) in-distribution (ID)
data (e.g., car on a sunny day), (2) covariate-shifted OOD data (e.g., car in the snow), and (3) semantic-shifted OOD data (e.g., a deer).
Our framework enables leveraging the wild mixture (containing all three types of data) for OOD generalization and OOD detection.

both covariate and semantic shifts. Thus, our distributional
model above offers strong generality and practicality, com-
pared to previous works that primarily consider the semantic
shift in the wild data (Katz-Samuels et al., 2022). Despite
the promise, learning from such heterogeneous data is tech-
nically challenging due to the lack of clear membership (ID,
Covariate-OOD, Semantic-OOD) for samples drawn from
the wild data distribution Py;4.

To tackle this challenge, we formulate a new learning frame-
work SCONE—Semantic and Covariate Out-of-distribution
LearNing via Energy Margins. SCONE jointly learns a ro-
bust multi-class classifier that generalizes to covariate-OOD
data, and a reliable OOD detector that detects semantic-
OOD data. Our key idea is to explicitly optimize for a
binary classifier based on the energy function, classifying as
many samples as possible from Py;q as OUT (with positive
energy), subject to two constraints (i) the ID data has energy
smaller than a negative margin value, and (ii) the multi-class
classification model must maintain high accuracy. We show
both theoretically (Section 3.3) and empirically (Section 4)
that the margin constraint is the key to the success of our
algorithm. Intuitively, enforcing an energy margin on ID
data has the effect of also lowering the energy of nearby
covariate-OOD points, which are semantically related to
ID points. Since lower energy increases the value of the
classifier logits, the covariate-OOD points then enjoy an
increased logit in their correct classes, leading to stronger
OOD generalization.

Extensive experiments confirm that SCONE can effec-
tively improve both OOD generalization and detection
performance. Compared to the most related baseline
WOODS (Katz-Samuels et al., 2022), our method can sub-
stantially improve the OOD classification accuracy from
52.76% to 84.69% on covariate shifted CIFAR-10 data—a
direct 31.93% improvement. Our key contributions are:

¢ To the best of our knowledge, we are among the first
works that utilize wild data to jointly tackle two tasks of
OOD generalization and OOD detection in one frame-
work. Our problem formulation offers strong generality
and practicality for real-world applications.

* We propose a margin-based learning framework that
exploits freely available, unlabeled data in the wild to
solve our problem. We model wild data as a compre-
hensive mixture of ID samples, covariate OOD, and
semantic OOD data.

* We perform extensive experiments and ablations,
which demonstrate the efficacy of our method. We
show that SCONE demonstrates overall strong perfor-
mance in both OOD generalization and detection, out-
performing baselines that specialize in one or the other.

2. Problem Setup

Labeled in-distribution data. Let X = R? denote
the input space and ) = {1,...,K} denote the label
space. We assume access to a labeled training set DI =
{(x4,¥:)}q, drawn ii.d. from the joint data distribu-
tion Pyy. Let P}, denote the marginal distribution on
X, which is also referred to as the in-distribution. Let
fo : X — RX denote a function for the classification
task, which predicts the label of an input sample x as
Y(fo(x)) = argmax, (gy)(x), where f(gy)(x) denotes the
y-th element of fy(x), corresponding to label y.

Unlabeled wild data. Trained on the ID data, the classifier
fo deployed into the wild can encounter various distribu-
tional shifts (see Figure 1). To model the realistic environ-
ment, we consider the following generalized characteriza-
tion of the wild data:

_ Ws)Pin + 71_c]p::)(l)l\t/ariale 4 ﬂ_Slpusemantic7 (1)

Pwild = (1 — Tle out

where 7., 7, T + 75 € [0,1]. Our mathematical formula-
tion thus fully encapsulates all three possible distributions
that the deployed model may encounter in practice:

¢ In-distribution P}, is the marginal distribution of the
labeled data.

+ Covariate QOD P<Vaiate jg the marginal distribution
of Py/y on X', where the joint distribution has the
same label space as the training data, yet the input
space undergoes shifting in style and domain. This is

relevant for OOD generalization.
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Method OOD Accuracy (MNIST-C) ID Accuracy (MNIST) FPR95 AUROC
(OOD generalization) (ID generalization) (OOD detection) (OOD detection)
D) D) \: T
WOODS (Katz-Samuels et al., 2022) 88.10% 97.88% 0.194% 99.88%
Ours 96.51% 97.79% 0.017% 99.99%

Table 1. WOODS (Katz-Samuels et al., 2022) displays limiting OOD generalization performance. For experiments, we use 25,000
samples from the MNIST dataset as ID, and a wild mixture dataset consisting of FashionMNIST as semantic-OOD data (75 = 0.4) and
MNIST-C (Mu & Gilmer, 2019) — a covariate shifted version of MNIST — as covariate-OOD data (7. = 0.3).

* Semantic OOD Pmantic; wild data that does not be-
long to any known categories ) = {1, 2, ..., K'}, and
therefore should not be predicted by the model. This is

relevant for OOD detection.

Learning goal. Our learning framework revolves around
building an OOD detector gp: X — {IN, OUT} and multi-
class classifier fy by leveraging data from both P;, and Pyq.
The OOD detector gg should predict semantic OOD data as
OUT and otherwise predict as IN'. We notate gy and fy as
sharing parameters 6 to indicate the fact that these functions
may share neural network parameters. In evaluating our
model, we are interested in the following measurements:

(1) TID-Acc(fo) = E(xy)nbay (H{Y(fo(x)) = y}),
(2) 1T 00D-Acc(fg) := E (x y)peowine (1{7(fo (X)) = y}),
(3) L FPR(gg) := Eypemmnic (1{gy(x) = IN}),

where 1{-} is the indicator function and the arrows indi-
cate higher/lower is better. ID-Acc, OOD-Acc, and FPR
jointly capture the (1) ID generalization, (2) OOD general-
ization, and (3) OOD detection performance, respectively.
In the context of OOD detection, ID samples are considered
positive, and FPR means false positive rate.

3. Methodology

In this section, we present a unified learning framework that
enables performing both OOD generalization and OOD de-
tection, by way of exploiting unlabeled data in the wild. Our
framework offers substantial advantages over the counter-
part approaches that rely only on the ID data, and naturally
suits many applications where machine learning models are
deployed in the open world. We start with preliminaries
to lay the necessary context (Section 3.1), followed by our
proposed method (Section 3.2) and theory (Section 3.3).

3.1. Preliminaries

Katz-Samuels et al. (2022) proposed WOODS to tackle the
OQOD detection problem via unlabeled wild data, which
consists of the ID and semantically shifted OOD data

'We use OUT to avoid abusing the term OOD. In the context of
OOD detection, OUT refers particularly to “outside the semantic
space ). Hence covariate-OOD falls into the IN category, in the
semantic sense.

Pyiig := (1 — 7)Py, + wP¥mantic - The crucial difference
between our work and WOODS is whether the wild mixture
data contains covariate-shifted data, which introduces new
challenges not considered in prior work. As we show in this
work, our formulation uniquely enables both OOD general-
ization and OOD detection, in one coherent framework.

As preliminaries, WOODS minimizes the error of declaring
data from Py;4 as ID, subject to (i) the error of declaring an
ID point as OOD is at most a fixed threshold «, and (ii) the
multi-class classification model meets some error threshold
7. Mathematically, this can be formalized as a constrained
optimization problem:

argminy EXNPwild(]l{QG (X) = IN}) @)
s.t. Ex~p, (1{go(x) = OUT}) < «

E(xvy)pry(]l{i/\(fG (X)) 7é y}) <.

In particular, the OOD detector gy is defined based on the
level set: gg(x) = OUT if Ey(x) > 0, where the free energy
Eyp(x) := —log Ele ef5” () was shown to be an effective
OOD score (Liu et al., 2020). ID data tends to have negative
energy and vice versa.

In practice, the objective in (2) can be empirically optimized
over i.i.d. samples Xj . ..X;, ~ Pyig and X3 ...%x, ~ Py
via a tractable relaxation by replacing the 0/1 loss with a
surrogate loss as follows:

ol 8
argming — Z Lood(go(Xi), IN) S

i=1

1n
L= Loo i),0UT) <
st =3 Lon(go(x;),0UT) < @

Jj=1

1 n
=" La o)) < 7
j=1

where Lo04(g¢(x;),0UT) = m denotes the
loss of the binary OOD classifier (where w € R is a learn-
able parameter) and Ls(fy(xX),y) is the per-sample cross-

entropy (CE) loss for the classification task.

Limitation in OOD generalization performance of
WOODS: a case study. Although WOODS can simul-
taneously learn an OOD detector and an ID classifier, it can
perform poorly on the task of OOD generalization. To see
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Figure 2. Illustration of the impact of energy margin 7 on the place-
ment of the OOD detection boundary.

this, we investigate the efficacy of using the constrained
optimization in Equation (3) directly for our new problem
setting described in Section 2. To simulate the wild data
Pyilg, we mix a subset of MNIST training data (as Pj,) with
MNIST-C (Mu & Gilmer, 2019) data — a covariate-shifted
version of MNIST — as PS9Y@ridt and the FashionMNIST
dataset (Xiao et al., 2017) as PSmanic  We train a version
of WOODS on this data and summarize our findings in Ta-
ble 1: interestingly, we observe a significant generalization
gap between classifying ID data (97.88% in accuracy) and
covariate-shifted OOD data (88.10% in accuracy). This
suggests that the training objective in (Katz-Samuels et al.,
2022) is indeed insufficient for the purpose of OOD gener-
alization, despite strong OOD detection performance. This
motivates our method which accounts for the task of OOD
generalization on covariate-shifted data.

3.2. Proposed Method

Motivation. Before we present our method, an important
step is to identify the key reason for the limited OOD gen-
eralization performance observed when using WOODS. To
better understand the behavior of WOODS, we use a sim-
ple two-class example (K = 2) to illustrate the decision
boundary of its energy-based OOD detector gy(x) = OUT if
Ep(x) > 0 (black vertical line in Figure 2a). Geometrically,
since Ey(x) is high when él) and f9(2) are both low, the
objective in (2) attempts to minimize fp(x) elementwise on
points in Py;4. Conversely, since fp(x) is simultaneously
being trained to classify ID points (in blue) correctly, it will
be optimized towards being “one-hot” on each point in Py,.

With this perspective, our critical insight is that the objective
in Equation (2) incentivizes the OOD detector to be as close
as possible to the ID data (colored in blue), since it aims to
classify as many samples as possible from Py;q — which
includes covariate-shifted data in this setting — as semantic
OUT. Therefore, the OOD detection boundary undesirably
places the covariate-shifted data (colored in ) on the
wrong side — labeling it as semantic OUT — and drives its

label distribution towards uniform (since neither fg(l) or éQ)
are “one-hot”), resulting in classification errors. Instead, the
OOD detector should ideally place only the semantically
shifted OOD data (colored in gray) on the OUT side of the
detection boundary.

Proposed margin-based learning objective. Leveraging
these insights, we now propose a new learning objective to
mitigate this issue. SCONE is motivated by the observation
in Figure 2a, where the OOD decision boundary lacks the
sufficient margin w.rt. the ID data. Therefore, our key idea
is to enforce a sufficient margin between the OOD detector
and the ID data.

Our key idea is to enforce the ID data to have energy smaller
than the margin n (a negative value), while optimizing for
the level-set estimation based on the energy function. Given
access to samples X1, . . ., X, from Py,4, along with labeled
ID samples (x1,%1), - . -, (Xn, Yn ), our proposed optimiza-
tion is:

argmin, % Z 1{Fy(x;) <0} “
i=1
1 n
st~ > {Ey(xj) =0} < a

Jj=1

UGl # i} < 7

where 7 controls the margin of the OOD decision boundary
w.r.t. the ID data. Note that our learning objective gener-
alizes WOODS (Katz-Samuels et al., 2022), which corre-
sponds to the special case of 7 = 0 (i.e., no margin at all).

We illustrate the intuitive effect of this ID energy margin
constraint in Figure 2b: by requiring lower energy on ID
points with a hard constraint in (4), the OOD detector gy
is forced to move its zero level-set to the right in order to
decrease ID energy. Since decreasing Ey(x) directly corre-

sponds to increasing fél)(x) and/or f9(2)(x), this is achieved
by moving the zero level-sets of fél) (x) and f9(2) (x) to the

right. Since fél) (x) and féQ) (x) are also constrained to
classify ID data correctly, we expect that this level-set shift
will still preserve the classifier boundary between ID points,
resulting in the geometry visualized in Figure 2b. Crucially,
due to the assumed nearness of covariate-shifted points to
ID points, these shifts can have the effect of then general-
izing the ID classification boundary to PS4 Although
(4) is also attempting to maximize the number of points
from PEOVariate detected as OUT (i.e., on the right side of the
Ey(x) = 0 boundary), this is a weaker force than the ID en-
ergy margin, since the latter is a hard constraint. To provide
some theoretical insights, we next formalize these intuitions
for a restricted model architecture.
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3.3. Theoretical Insights: Relationship Between OOD
Generalization and Energy Margin

We now discuss how SCONE can improve the classification
accuracy on the covariate-shifted data under some assump-
tions on the data distribution and model class. Suppose
we are given a fixed feature map ¢: R? — RP to some
feature space in RP, where there exists a constant 6 > 0
such that for each covariate-shifted point x, with ground-
truth label y, there exists a corresponding ID point x, also
with label y, satisfying ||¢(x.) — ¢(x)||, < 6. That is,
we assume that the covariate-shifted data is close to in-
distribution data in the feature space, which is supported
empirically in our experiments (Section 4.3). Suppose a
classifier fo: R? — RX is learned on top of ¢(x), us-
ing the “idealized” version of our method in (4) (replacing
each data point x;,X; in (4) with its corresponding fea-
ture vector ¢(x;), ¢(X;)), and consider the two-class case
(K = 2). Since each classification decision only depends
on the difference fél)(-) - (52)(~), for analytical conve-
nience suppose that we learn this difference directly as

fol-) = f(gl)(;) - f9(2)(-) with f,(-) > 0 corresponding

toy = 1l and fy(-) < O indicating y = 2, which we can
accomplish in our framework by fixing f9(2) = —%?9 and

oomp 1
50 =170

Suppose further that we set & = 0 and 7 = 0, such that ev-
ery ID point is classified correctly and has energy satisfying
Ep(¢(x)) < n. Finally, suppose that f, is L-Lipschitz: this
is the case for many classifier functions, such as two-layer
ReLU networks with bounded variation (Parhi & Nowak,
2022). We then have the following result on the covariate-
shifted points (proved in Appendix A):

Proposition 3.1. Under the above assumptions, if n <
—log2— %L(S then each covariate-shifted point is classified
correctly and is detected as semantic IN.

Implications. This result illustrates that even though our
method does not have access to the ground-truth labels of
covariate-shifted data during training, we expect that as
long as each covariate-shifted data point is “close” to a cor-
responding ID point, then setting the ID energy threshold
appropriately will result in the covariate-shifted data being
classified correctly. Intuitively, requiring the ID data points
to have lower energy while simultaneously being classified
correctly encourages their logit values fy(-) to move further
from the classification decision boundary, on the correct
side. If fy belongs to a regularized function class (e.g., Lips-
chitz functions), then the logits of the covariate-shifted data
will not deviate wildly from their ID counterparts. Com-
bining these two insights, the logits of the covariate-shifted
data should also be bounded away from the decision bound-
ary, on the correct side. Importantly, this distance to the
boundary is explicitly increased by decreasing 1, whereas
WOODS does not necessarily ensure this property.

3.4. Enforcing Margin in Practice

Since the 0/1 loss in (4) is intractable, in a similar manner
to WOODS, we replace it with a smooth approximation
given by the binary sigmoid loss, yielding the following
optimization problem:

. 1 1
argming ., g m ; 1+ exp(w - Fy (5(7,>) o)

1 & 1
5; 1+ exp(—w - (Ep(x;) —n)) =

s.t.

1 n
E Zﬁcls(fé)(xj)ayj) <7,
=1

Solving the constrained optimization. We adopt the Aug-
mented Lagrangian method (Hestenes, 1969) to solve our
constrained optimization problem with modern neural net-
works. In short, the constrained optimization problem above
is converted into a sequence of unconstrained optimization
problems. We refer interested readers to Section 3.2 in Katz-
Samuels et al. (2022) for details. We showcase the efficacy
of our algorithm on the simple MNIST example in Table 1,
where the proposed method improves the OOD generaliza-
tion accuracy from 88.10% (WOODS) to 96.51%. Building
on this encouraging result, we proceed to comprehensively
evaluate our algorithm in the next section.

4. Experiments

In this section, we comprehensively verify the empirical
efficacy of SCONE. We first describe the experimental setup
(Section 4.1). In Section 4.2, we present results for both
0OOD generalization and OOD detection, followed by exten-
sive ablations. We provide qualitative analysis that improves
the understanding of SCONE in Section 4.3.

4.1. Experimental Setup

Datasets and evaluation metrics. Following the common
benchmarks in literature, we use CIFAR-10 (Krizhevsky
et al.,, 2009) as the in-distribution data (P,). For
the covariate-shifted data (PS9/@i4)  we use CIFAR-10-
C (Hendrycks & Dietterich, 2018) with Gaussian additive
noise for our main experiments, and provide ablations in
Appendix F on other types of covariate shifts. For semantic-
shifted OOD data (P$™2¢) | we use natural image datasets:
SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014),
Places365 (Zhou et al., 2017), LSUN-Crop (Yu et al., 2015),
and LSUN-Resize (Yu et al., 2015). Large-scale results on
the ImageNet dataset can be found in Section 4.4. Addi-
tional results on the PACS dataset (Li et al., 2017) from
DomainBed is presented in Appendix E. We provide a de-
tailed description of the datasets in Appendix C.

To simulate the wild data P4, we mix a subset of ID
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data (IP;,) with the covariate shifted dataset (]P’f)ﬂ}’a‘im) under
various . € {0.0,0.1,0.2,0.5,0.9}; we default to 7, =
0.5 for the main experiment. We keep m; = 0.1 to reflect
the fact that we expect semantic OOD shifts (Pmantic) to
be encountered less frequently, which is the same value as
used in (Katz-Samuels et al., 2022). We split ID datasets
into two halves: we use 50% as ID training data and 50%

for creating the mixture data.

In each training iteration, we simulate the mixture data as
follows. For the ID dataset we draw one batch of size 128,
and for the wild dataset Py;q we draw another batch of
size 128 where each example is drawn from P&/ with
probability 7., from Pmanic with probability 7, and from
P;, with probability 1 — 7. — 5. For evaluation, we use
the original test split of the ID data. Details of data split
for OOD datasets are described in Appendix C. To evaluate
each method including baselines, we use the collection of
metrics defined in Section 2. The threshold for an energy-
based OOD detector is selected based on the ID test set

when 95% of ID test data points are declared as ID.

Training details. For CIFAR experiments and methods,
we use the Wide ResNet (Zagoruyko & Komodakis, 2016)
architecture with 40 layers and widen factor of 2. The model
is optimized using stochastic gradient descent with Nesterov
momentum (Duchi et al., 2011). We set the weight decay
as 0.0005, and momentum as 0.09. We initialize the model
with a pre-trained network on CIFAR-10, and then trained
for 100 epochs using our method. The initial learning rate
is 0.0001 and decays by a factor of 2 at epochs 50, 75, and
90. Following the previous literature (Katz-Samuels et al.,
2022), we set o« = 0.05, and set 7 to be twice the loss of the
pre-trained model. For all the experiments, we use a batch
size of 128 and a dropout rate of 0.3. Our framework was
implemented with PyTorch 1.8.1. All training is performed
using NVIDIA GeForce RTX 2080 Ti. See Appendix B
for additional experimental details, including our validation
strategy for selecting 7.

4.2. Results and Discussion

Effect of margin 7. Since the energy margin is cen-
tral to our learning framework, we first aim to un-
derstand how 7 impacts performance. In Table 2,
we perform an ablation by varying the margin n €
{0,-0.1,—-0.5,—1,—-2,—10,—20,—50}. Since energy
should be negative for ID data, more negative values of
7 translate to a stronger margin constraint on ID points. As
the margin changes from = 0 to n = —10, a salient ob-
servation is that our method can substantially improve the
OOD accuracy from 52.76% to 84.69%—a direct 31.93%
improvement in accuracy. At the same time, the ID accuracy
remains comparable across different 1, suggesting that one
can indeed leverage the wild data to gain an improvement

Table 2. Experimental results on CIFAR with different margin 7.
We train on CIFAR-10 as ID, using wild data with 7. = 0.5
(CIFAR-10-C) and 75 = 0.1 (SVHN).

margin ‘OOD Acc.t ID Ace.t FPR| AUROCT

No margin 52.76 94.86 2.11 99.52
n=-0.1 53.24 94.87 2.16 99.52
n=-—0.5 54.22 94.85 2.31 99.49
n=-1 55.55 94.88 2.56 99.45
n=-2 58.47 95.00 3.19 99.35
n=—10 84.69 94.65 10.86 97.84
n=-20 84.57 94.81 19.04 96.29
n=-50 84.56 94.83 19.24 96.25

in OOD generalization without sacrificing ID classification
accuracy. Furthermore, we observe that a tradeoff may exist
between OOD generalization and OOD detection perfor-
mance: the optimal OOD accuracy is achieved under a large
margin, which can slightly degrade the OOD detection per-
formance when compared to n = 0. Despite the tradeoff,
we will show that SCONE still outperforms competing OOD
detection methods (c.f. Table 3).

SCONE achieves strong performance. We present the
main results in Table 3, where SCONE establishes overall
strong performance in both OOD generalization and OOD
detection. In particular, we consider two broad categories
of methods that are developed for either OOD detection or
OOD generalization, and thus are expected to excel in only
one of these two tasks. In contrast, our method targets both
tasks simultaneously. Details of baseline implementation
are in Appendix B.

We highlight a few observations: (1) SCONE outperforms
competitive post hoc OOD detection methods, including
MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al.,
2018), Energy (Liu et al., 2020), Mahalanobis (Lee
et al., 2018), VviM (Wang et al., 2022a), and the latest
baseline KNN (Sun et al., 2022) — all of which use the
same model trained with the CE loss on Py, (and hence they
display the same OOD accuracy on CIFAR-10-C). As an ex-
ample of our method’s improved performance, when using
SVHN as Psemantic oyr method yields an FPR9S of 10.86%
(lower is better), which outperforms the best baseline per-
formance of 12.89%. At the same time, the OOD general-
ization performance is significantly improved from 75.05%
(baseline CE model) to 84.69% (ours). (2) Our method also
outperforms common OOD generalization baselines, includ-
ing IRM (Arjovsky etal., 2019), Mi xup (Zhang et al., 2018),
and VREx (Krueger et al., 2021). While these methods dis-
play stronger OOD generalization performance than the
ERM (or CE) baseline, they underperform ours both in terms
of OOD generalization and OOD detection.2 (3) Lastly,
we also compare to OOD detection methods utilizing P4,

2Same as ours, we use the energy score in test time to perform
OOD detection.
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Table 3. Main results: comparison with competitive OOD generalization and OOD detection methods on CIFAR-10. We run our method
3 times and report the average and std. For experiments using Pyi1a, we set ms = 0.5, m. = 0.1. For each semantic OOD dataset, we
create corresponding wild mixture distribution Pyig := (1 — 75 — 7 )Pin + m Ipemantic | o peovariale £ training and evaluating on the
corresponding test dataset. ==z denotes the standard error, rounded to the first decimal point. Results for LSUN-R and Texture datasets are
in Appendix D. (*Since all the OOD detection methods use the same model trained with the CE loss on Pj,, they display the same ID and

OOD accuracy on CIFAR-10-C.)

SVHN Pigmantic, CIFAR-10-C Pegiariae

LSUN-C Psemantic . C[FAR-10-C Pegyariaee

Places365 Pemantic C[FAR-10-C Pegyariae

Method OOD Ace.t ID Ace.t FPR| AUROC?T ‘ OOD Acc.t  ID Ace.t FPR| AUROCT ‘ OOD Ace.t ID Ace.t FPR| AUROC?T
00D detection

MSP 75.05 94.84 48.49 91.89 75.05 94.84 30.80 95.65 75.05 94.84 57.40 84.49
ODIN 75.05 94.84 3335 91.96 75.05 94.84 15.52 97.04 75.05 94.84 57.40 84.49
Energy 75.05 94.84 35.59 90.96 75.05 94.84 8.26 98.35 75.05 94.84 40.14 89.89
Mahalanobis 75.05 94.84 12.89 97.62 75.05 94.84 39.22 94.15 75.05 94.84 68.57 84.61
ViM 75.05 94.84 21.95 95.48 75.05 94.84 5.90 98.82 75.05 94.84 21.95 95.48
KNN 75.05 94.84 28.92 95.71 75.05 94.84 28.08 95.33 75.05 94.84 42.67 91.07
OOD generalization

ERM 75.05 94.84 35.59 90.96 75.05 94.84 8.26 98.35 75.05 94.84 40.14 89.89
Mixup 79.17 93.30 97.33 18.78 79.17 93.30 52.10 76.66 79.17 93.30 58.24 75.70
IRM 77.92 90.85 63.65 90.70 77.92 90.85 36.67 94.22 77.92 90.85 53.79 88.15
VREx 76.90 91.35 55.92 91.22 76.90 91.35 51.50 91.56 76.90 91.35 56.13 87.45
Learning w. P4

OE 37.61 94.68 0.84 99.80 41.37 93.99 3.07 99.26 35.98 94.75 27.02 94.57
Energy (w. outlier) 20.74 90.22 0.86 99.81 32.55 92.97 2.33 99.93 19.86 90.55 23.89 93.60
Woods 52.76 94.86 2.11 99.52 76.90 95.02 1.80 99.56 54.58 94.88 30.48 93.28
Scone (ours) 84.69.101 9465100 10.86107 97.84101 84584107 9373104 1023411 98.02102 | 8521:01 9459100 3756102 90.9040.1

Table 4. Ablations on mixing ratios m.. We train on CIFAR-10 as
ID, using CIFAR-10-C for P and SVHN for P (with
fixed ms = 0.1). For our method, = —10, which is chosen based
on the validation procedure in Appendix B.

flects the practical scenario that the majority of test data may
remain in the known classes. We primarily focus on eval-
uations where 7. # 0, since our problem setting uniquely
introduces the covariate shift in the wild distribution. How-
ever, for completeness, we also include results when 7. = 0.

Te ‘ Method OOD Acc.t IDAce.f FPR| AUROCYT o - X . ;
We highlight a few interesting observations: (1) without any
88 VSVCO(?I\?S ;ggg gigg iég gg;? enforced margin, the OOD generalization performance for
WOODS (Katz-Samuels et al., 2022) generally degrades
8} \;‘]COOOI\?; ;;g; gjzé 110467 | g?;? with increasing 7. This is likely due to the fact that a larger
7. translates into more severe covariate shifts. For example,
83 \g/COoO]\?ES 2(5) ;8 3451 (9)3 g ;z 23(5)471 when 7, = 0.9, the OOD classification accuracy decreases
: ’ ’ ’ ’ to 52.84%. (2) Our method is overall more robust under
05 | Woops 52.76 94.86 2.1 99.52 large 7. settings than the WOODS baseline. For instance,
05 | Scone 84.69 94.65 1086 o784 in a challenging case with m. = 0.9, SCONE outperforms
0.9 | Woobs 52.84 94.81 1.80 99.57 WOODS by 33.34%. Overall, these results demonstrate
0.9 | Scone 86.18 94.64 13.68 9741 the benefits of SCONE for both OOD generalization and

including OE (Hendrycks et al., 2018), energy-regularized
learning (Liu et al., 2020), and WOODS (Katz-Samuels
et al., 2022), which is the latest such method to be devel-
oped. These methods are among the strongest OOD detec-
tion methods, yet display a significantly worsened OOD
generalization performance. The main reason is that they
make assumptions on Py;y without considering covariate
OOD data.

Effect of different mixing ratios. In Table 4, we ablate
the effect of 7., which modulates the fraction of covariate
0OOD data in the mixture distribution Py,4. For all settings,
we contrast the performance without vs. with margin. The
margin in each 7, setting is validated using the strategy in
Appendix B. Here we consistently use ms = 0.1, which re-

detection.

4.3. Qualitative Insights

Visualization of OOD score distributions. We visualize
the energy score distribution in Figure 3 (a) and (b), for
WOODS vs. our method, respectively. There are two salient
observations: first, the energy scores for ID data indeed
shift from -5 (without margin) towards more negative values
(e.g., -16), suggesting the efficacy of our margin-based opti-
mization. Moreover, the energy score distributions between
P;, and P3¢ hecomes more aligned than in WOODS.
This can be attributed to the aligned feature representation,
which we verify next.

Visualization of feature embeddings. Figure 3 shows t-
SNE visualizations (Van der Maaten & Hinton, 2008) of the
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Figure 3. (a)-(b) Energy score distributions for WOODS vs. our method. Different colors represent the different types of test data:

CIFAR-10 as P;, (blue), CIFAR-10-C as Py
embeddings using WOODS vs. our method.

), and SVHN as PE™0 (oray). (c)-(d): T-SNE visualization of the image

Table 5. Results on ImageNet-100. We use ImageNet-100 as ID, ImageNet-100-C for PS04 and iNaturalist for Pemantc,

Method OOD Accuracy (ImageNet-100-C) ID Accuracy (ImageNet-100) FPRY95 AUROC
(OOD generalization) (ID generalization) (OOD detection)  (OOD detection)
t ) 1 T
WOODS (Katz-Samuels et al., 2022) 44.46 86.49 10.50 98.22
SCONE (ours) 65.34 87.64 27.13 95.66

penultimate-layer feature embedding, for WOODS (c) vs.
our method (d). The embeddings are extracted from the test
split. The blue points denote the test ID set (CIFAR-10), the
points are the test samples from CIFAR-10-C, and the
gray points are from SVHN. This visualization suggests that
embeddings of CIFAR and CIFAR-C become more aligned
with our margin-based optimization, which arguably leads
to improved OOD generalization performance. This obser-
vation corroborates our theoretical insight in Section 3.3.

4.4. Experiments on ImageNet

In this section, we provide additional large-scale results
on the ImageNet benchmark. We use ImageNet-100 as
the in-distribution data (Py,), with labels provided in Ap-
pendix C. For the covariate-shifted OOD data (PSyae),
we use ImageNet-100-C with Gaussian noise in the experi-
ment. For the semantic-shifted OOD data, we use the high-
resolution natural images from iNaturalist (Van Horn et al.,
2018), with the same subset as MOS (Huang & Li, 2021).
The wild data Py, is a mixture of ID data, covariate-shifted
data (7. = 0.5), and semantic shifted data (w;, = 0.1). We
fine-tune ResNet-34 (He et al., 2016) (pre-trained on Ima-
geNet) for 100 epochs, with an initial learning rate of 0.01
and a batch size of 64. Results in Table 5 suggest that our
method can improve both ID and OOD accuracy compared
to WOODS (the most competitive baseline).

5. Related Works

Out-of-distribution detection is of vital importance for
machine learning models deployed in the open world. Re-

cent advances in OOD detection can be broadly categorized
into post hoc and regularization-based methods. In particu-
lar, post hoc methods (Hendrycks & Gimpel, 2017; Liang
etal., 2018; Lee et al., 2018; Liu et al., 2020; Huang et al.,
2021; Sun et al., 2021; 2022) focus on deriving test-time
OQOD scoring functions for a pre-trained classifier. Our
proposed work is closer to another line of work (Bevandié
et al., 2018; Hendrycks et al., 2018; Malinin & Gales, 2018;
Liu et al., 2020; Du et al., 2021; Ming et al., 2022), which
addresses the OOD detection problem by training-time reg-
ularization. For example, models are encouraged to give
predictions with lower confidence (Hendrycks et al., 2018)
or higher energies (Liu et al., 2020). These methods require
access to a clean OOD dataset for training, which can be re-
strictive. To circumvent this, a recent work WOODS (Katz-
Samuels et al., 2022) first explored using wild mixture data
consisting of the ID and semantically shifted OOD data
Pyiig := (1 — 7)Py, + wP¥mantic - The crucial difference
between our work and WOODS is whether the wild mixture
data contains covariate-shifted data, which introduces new
challenges not considered in prior work. As we show in this
work, our formulation uniquely enables both OOD general-
ization and OOD detection, in one coherent framework.

Out-of-distribution generalization is a fundamental
problem in machine learning, which aims to generalize to
covariate-shifted data without any sample from the target
domain (Muandet et al., 2013; Arjovsky et al., 2019; Bahng
et al., 2020; Wang et al., 2022b; Xie et al., 2021). OOD
generalization is more challenging compared to the classic
domain adaptation problem (Daume III & Marcu, 2006;
Blitzer et al., 2007; Ben-David et al., 2010; Ganin & Lem-
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pitsky, 2015; Tzeng et al., 2017; Redko et al., 2019; Kang
et al., 2019; Kumar et al., 2020; Wang et al., 2022c), which
assumes access to labeled samples from the target domain.

To highlight a few works, IRM (Arjovsky et al., 2019) and
its variants (Krueger et al., 2021; Ahuja et al., 2020) aim to
find invariant representation from different training environ-
ments via an invariant risk regularizer. GroupDRO (Sagawa
et al., 2019) and Probabilistic Group DRO (Ghosal & Li,
2023) minimize the worst-case training loss over a set
of groups. Zhou et al. (2020) propose generating outlier
samples of a novel domain, which are then used for im-
proving the generalization of the classifier. Besides algo-
rithm innovation, benchmark efforts have also been pursued
by DomainBed (Gulrajani & Lopez-Paz, 2020) and OoD-
Bench (Ye et al., 2022), which facilitates evaluation on OOD
generalization. OS-SDG (Zhu & Li) relies on one source
domain with labels to train the model, while our framework
can exploit unlabeled wild data naturally arising in the wild,
which is a mixed composition of three data distributions.
Different from previous literature, we focus on improving
OoD robustness in classifiers by learning from the wild mix-
ture data and building an OOD detector at the same time.
To the best of our knowledge, we are the first work that
leverages wild data for both OOD generalization and OOD
detection purposes. Our framework also uniquely allows
leveraging covariate-shifted data freely arising in the wild,
without requiring any labeling.

Universal domain adaptation aims to leverage labeled
data from a related domain (source domain) and improve
the model performance for the target domain, where there
exists category gap for label sets between the source and
target domains (You et al., 2019). Several works have been
proposed to address this problem (Saito et al., 2020; Fu
et al., 2020; Li et al., 2021; Chen et al., 2022; Kundu et al.,
2022; Chang et al., 2022; Garg et al., 2022). UAN (You
et al., 2019) presents a universal adaptation network that
exploits both the domain similarity and prediction uncer-
tainty of each sample for promoting common-class adap-
tation. DANCE (Saito et al., 2020) proposes a domain
adaptative neighborhood clustering technique for category
shift-agnostic adaptation via entropy optimization. The
work in Chang et al. (2022) proposes a unified optimal
transport-based framework to encourage both global cluster
discrimination and local consistency of samples. Different
from prior works, we leverage both labeled in-distribution
data and unlabeled wild data when training our model. Such
unlabeled wild data naturally arise in real-world environ-
ments and have not been considered in prior literature.

Positive-Unlabeled (PU) learning is a classic machine
learning problem, which aims to learn classifiers from pos-
itive and unlabeled data (Letouzey et al., 2000). Multi-

ple prior works have been proposed for discussing PU
learning (Hsieh et al., 2015; Zhao et al., 2022; Acharya
et al., 2022; Chapel et al., 2020; Xu & Denil, 2021). The
work in (Niu et al., 2016) proposes a theoretical compari-
son of positive-unlabeled learning against positive-negative
learning based on the upper bounds of estimation errors.
Du Plessis et al. (2015) presents a convex formulation for
PU learning by using different loss functions for positive
and unlabeled samples. Margin-based PU learning (Gong
et al., 2018) introduces a provable positive margin-based
PU learning algorithm for classification under the truncated
linear distributions. There are two key differences between
ours and PU learning: (1) PU learning only considers the
task of distinguishing Py, (anomalous) and P, (normal),
not the task of doing classification simultaneously. We con-
sider OOD detection which additionally requires learning a
classifier for the distribution Pxy. (2) PU learning does not
consider the generalization aspect under covariate-shifted
OOD data, whereas our framework handles it in addition to
semantic-shifted OOD data.

6. Conclusion

In this study, we propose a novel framework SCONE to
jointly tackle the OOD generalization and OOD detection
problems by leveraging wild data—a mixture of ID, covari-
ate OOD, and semantic OOD data. Our framework offers
practical advantages since the wild data is freely collectible
in abundance, does not require any human annotation, and
importantly, captures the environmental test-time OOD dis-
tributions under both covariate and semantic shifts. We
make use of such unlabeled wild data to train a binary OOD
detector, and at the same time, enhance the generalization
ability of the ID classifier. We provide new theoretical and
empirical insights on the importance of enforcing a suffi-
cient margin between the OOD decision boundary and ID
data. Extensive experiments show that our framework can
effectively improve both OOD generalization and detection
performance. We hope our framework will inspire both
OOD generalization and OOD detection communities to
tackle data shift problems synergistically.
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A. Proof of Proposition 3.1

In this setting, the energy function becomes Fy(4(x)) = —log[ez/0(#09) e~ 370(60N] 1 Ep(¢(x)) < 7, then due to
the symmetry of ¢ + e~" we have |?9(¢(X))‘ > —2n — 2log 2. Therefore, setting nn < 0 effectively lower bounds the
distance of ID points from the classification decision boundary in this setting.

Consider the value of f,(¢(x.)) for a covariate shifted point x,. with label y = 1. By assumption, there exists an ID point x,
also with label y = 1, satisfying ||¢(x.) — ¢#(x)||, < 6. We have

Fo(6(x) = (f4(d(x)) = Fo(d(xc))) + fole(xc))
| Fo(6(x)) = fole(xc))| + Fo(d(xc))

< Ll¢(x) = ¢(xe)lly + fo(d(xc))

< Lo+ fo(d(xc))-

Sinceaw = 0,7 = 0andy = 1, f(¢ ’ flo | —2n — 2log 2, which combined with the above implies
f(p(x.)) > —2n—2log?2 — LS. A snmlar argument shows thatif y = 2, f(¢(x.)) < —(—2n — 2log 2 — L§). Therefore,
one can set 1) < — log 2 — 1 L& and ensure that x,. is classified correctly, with f(¢(x.)) > 0 wheny = 1 and f(¢(x.)) <0
when y = 2. We also immediately have an upper bound on Ey(x.), since

1 .—
Eg(x.) < —5 ’fg(xc)‘ <n+log2.
Under the setting < —log2 — 3 L8, Ep(x.) < —3 L& < 0, and so gg(x.) = IN.

B. Experimental Details

Validation strategy for selecting 7. Here we discuss how to choose the optimal margin parameter n from
{0,-0.1,-0.5,—1, —2,—10, —20, —50}. A major challenge is that one may not have access to a clean validation set
of either Peoymiate or Psemantic - More realistically, one may have a separate unlabeled set sampled from the wild mixed
distribution Py 4. We thus leverage this mixed dataset Dy, for validation, and propose the following heuristic measurement
that can help reliably select a good 7:

> x,ep.y 1H90(X;) = out}
|Dval‘ ’

out% =

This heuristic measures the fraction of samples in the validation set predicted as OUT by the OOD detector. We select 7 based
on a “phase transition” under this measurement. We exemplify this in Table 6, based on our main experimental setting with
CIFAR-10 as ID, CIFAR-10-C as Covariate-OOD, and SVHN as Semantic-OOD. The first phase (e.g.,» = 0,0.1,0.5, 1, 2)
corresponds to an OOD detector that classifies ID on one side and remainder samples (including covariate shifted ones) to
be on the other side. As the margin enlarges further (e.g., 7 = —10), the OOD detector primarily identifies P53 a5 oUT,
which matches more closely with the desired behavior of OOD detector. This behavior translates into a drop in out%. We
use the 1) value corresponding to the drop as the selected margin parameter.

Table 6. Experimental results on CIFAR with different margin settings 7. We train on CIFAR-10 as ID, using the same wild data with
m. = 0.5 (CIFAR-10-C) and w; = 0.1 (SVHN).

margin ‘OOD Acc.t IDAce.t FPR| AUROCT out%

No margin 52.77 94.87 2.11 99.52 58.49
n=-0.1 53.24 94.87 2.16 99.52 58.32
n=-05 54.22 94.85 2.31 99.49 58.16

n=-1 55.55 94.88 2.56 99.45 57.53

n=-2 58.47 95.00 3.19 99.35 55.54
n=—10 84.69 94.65 10.86 97.84 17.30
n=-20 84.57 94.81 19.04 96.29 16.23
n = —30 84.56 94.83 19.24 96.25 16.20
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Implementation details of baselines for OOD detection. We use Wide ResNet (Zagoruyko & Komodakis, 2016) with 40
layers and widen factor of 2. For evaluating the post hoc OOD detection baselines, we use the model trained with the CE
loss on IPy,,. We employ the same pre-trained model from the github: https://github.com/wetliu/energy_ood,
which was trained on the complete CIFAR-10 dataset. Specifically, the model is trained using cross-entropy loss for 200
epochs. The learning rate is started at 0.1 and then decays by multiplier 0.1 at 100, 150, and 175 epochs. To facilitate easy
comparison, the pre-trained model and baseline results are consistent with (Katz-Samuels et al., 2022) (courtesy of Table 4).

Implementation details of baselines for OOD generalization. For OOD generalization baselines, we use the same
network architecture, Wide ResNet-40-2 (Zagoruyko & Komodakis, 2016), and train from scratch using respective losses.
The baselines in Table 3 are trained on CIFAR-10 (Krizhevsky et al., 2009) 50, 000 labeled training examples. We follow
the default hyperparameter setting as in original papers whenever applicable. For Mixup (Zhang et al., 2018), we follow the
original paper and set hyperparameter ov = 1 to control the strength of interpolation between feature-target pairs. The A for
IRM (Arjovsky et al., 2019) baseline is set to 100 and the A for VREx (Krueger et al., 2021) is set to 10 for the penalty
weights. Following the original training configuration in WRN (Zagoruyko & Komodakis, 2016), all the baselines are
trained for 200 epochs with batch size 128. We use the SGD optimizer with an initial learning rate of 0.1. The learning rate
decays by a factor of 10 after 60, 120, and 180 epochs. Weight decay is set to 10~%. All models are implemented in PyTorch
1.8.1. We evaluate the trained model on the CIFAR-10 test set (ID accuracy) and CIFAR-10-C (OOD accuracy).

C. Details of Datasets

We provide a detailed description of the datasets used in this work below:

MNIST (LeCun, 1998) is a large database of handwritten digits with 10 categories and is widely used in the field of machine
learning. The MNIST contains 60, 000 training images and 10, 000 test images.

CIFAR-10 (Krizhevsky et al., 2009) contains 60, 000 color images with 10 classes. The training set has 50, 000 images and
the test set has 10, 000 images.

ImageNet-100 is composed by randomly sampled 100 categories from ImageNet-1K (Deng et al., 2009). This dataset
contains the following classes: n01498041, n01514859, n01582220, n01608432, n01616318, n01687978, n01776313, n01806567,
n01833805, n01882714, n01910747, n01944390, n01985128, n02007558, n02071294, n02085620, n02114855, n02123045, n02128385,
n02129165, n02129604, n02165456, n02190166, n02219486, 102226429, n02279972, n02317335, n02326432, n02342885, n02363005,
102391049, n02395406, n02403003, n02422699, n02442845, n02444819, n02480855, n02510455, n02640242, n02672831, n02687172,
n02701002, n02730930, n02769748, n02782093, n02787622, n02793495, n02799071, n02802426, n02814860, n02840245, n02906734,
n02948072, n02980441, n02999410, n03014705, n03028079, n03032252, n03125729, n03160309, n03179701, n03220513, n03249569,
n03291819, n03384352, n03388043, n03450230, n03481172, n03594734, n03594945, n03627232, n03642806, n03649909, n03661043,
n03676483, n03724870, n03733281, n03759954, n03761084, n03773504, n03804744, n03916031, n03938244, n04004767, n04026417,
104090263, n04133789, n04153751, n04296562, n04330267, n04371774, n04404412, n04465501, n04485082, n04507155, n04536866,
n04579432, n04606251, n07714990, n07745940.

MNIST-C (Mu & Gilmer, 2019) is a corrupted version of MNIST data with different corruption types for benchmarking
out-of-distribution robustness in computer vision.

CIFAR-10-C is algorithmically generated, following the previous leterature (Hendrycks & Dietterich, 2018), from different
corruptions for CIFAR-10 data including gaussian noise, defocus blur, glass blur, impulse noise, shot noise, snow, and zoom
blur.

ImageNet-100-C is algorithmically generated with Gaussian noise based on (Hendrycks & Dietterich, 2018) for the
ImageNet-100 dataset (Deng et al., 2009).

FashionMNIST (Xiao et al., 2017) consists of 70, 000 fashion products images from 10 categories, with 7, 000 images per
category. There are 60, 000 training images and 10, 000 test images. The 10 categories include T-Shirt, Trouser, Pullover,
Dress, Coat, Sandals, Shirt, Sneaker, Bad, and Ankle boots.

SVHN (Netzer et al., 2011) is a real-world image dataset obtained from house numbers in Google Street View images. This
dataset 73, 257 samples for training, and 26, 032 samples for testing with 10 classes.

Places365 (Zhou et al., 2017) contains scene photographs and diverse types of environments encountered in the world. The
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Table 7. Additional results. Comparison with competitive OOD detection and OOD generalization methods on CIFAR-10. For experiments

using Pyi1q, we use s = 0.5, m = 0.1. For each semantic OOD dataset, we create corresponding wild mixture distribution
Pyita := (1 — 75 — 7e)Pin + mPEmaMe | r PENATE for training,
Texture szl’l"‘m‘ic, CIFAR-10-C IP’gﬂ‘[’a‘i"“e LSUN-R Pf)fl‘l“ami“, CIFAR-10-C Pgﬁfm‘“e
Model OOD Acc.t IDAce.t FPR| AUROCT | OOD Ace.t ID Ace.t FPR| AUROCT
OOD detection
MSP 75.05 94.84 59.28 88.50 75.05 94.84 52.15 91.37
ODIN 75.05 94.84 49.12 84.97 75.05 94.84 26.62 94.57
Energy 75.05 94.84 52.79 85.22 75.05 94.84 27.58 94.24
Mahalanobis 75.05 94.84 15.00 97.33 75.05 94.84 42.62 93.23
ViM 75.05 94.84 29.35 93.70 75.05 94.84 36.80 93.37
KNN 75.05 94.84 39.50 92.73 75.05 94.84 29.75 94.60
00D generalization
ERM 75.05 94.84 52.79 85.22 75.05 94.84 27.58 94.24
Mixup 79.17 93.30 58.24 75.70 79.17 93.30 32.73 88.86
IRM 77.92 90.85 59.42 87.81 77.92 90.85 34.50 94.54
VREXx 76.90 91.35 65.45 85.46 76.90 91.35 44.20 92.55
Learning w. Pyiq
OE 44,71 92.84 29.36 93.93 46.89 94.07 0.7 99.78
Energy (w/ outlier) 49.34 94.68 16.42 96.46 3291 93.01 0.27 99.94
Woods 83.14 94.49 39.10 90.45 78.75 95.01 0.60 99.87
Scone (ours) 85.56 93.97 37.15 90.91 80.31 94.97 0.87 99.79

scene semantic categories consist of three macro-classes: Indoor, Nature, and Urban.

LSUN-C (Yu et al., 2015) and LSUN-R (Yu et al., 2015) are large-scale image datasets that are annotated using deep
learning with humans in the loop. LSUN-C is a cropped version of LSUN and LSUN-R is a resized version of the LSUN
dataset, which has no overlap categories with the CIFAR dataset (Krizhevsky et al., 2009).

Textures (Cimpoi et al., 2014) refers to the Describable Textures Dataset, which contains a large dataset of visual attributes
including patterns and textures. The subset we used has no overlap categories with the CIFAR dataset (Krizhevsky et al.,
2009).

iNaturalist (Van Horn et al., 2018) is a challenging real-world dataset with iNaturalist species, captured in a wide variety of
situations. It has 13 super-categories and 5,089 sub-categories. We use the subset from (Huang & Li, 2021) that contains
110 plant classes that no category overlaps with IMAGENET-1K (Deng et al., 2009).

Details of data split for OOD datasets. For datasets with standard train-test split (e.g., SVHN), we use the original
test split for evaluation. For other OOD datasets (e.g., LSUN-C), we use 70% of the data for creating the wild mixture
training data as well as the mixture validation dataset. We use the remaining examples for test-time evaluation. For splitting
training/validation, we use 30% for validation and the remaining for training.

D. Results on Additional OOD Datasets

In this section, we provide the main results on more OOD datasets including Textures (Cimpoi et al., 2014) and LSUN_Resize
(Yu et al., 2015) in Table 7. We observe that our proposed approach achieves overall strong performance in OOD
generalization and OOD detection on these additional OOD datasets. Particularly, we compare our method with post hoc
OOD detection methods such as MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Energy (Liu et al., 2020),
Mahalanobis (Lee et al., 2018), ViM (Wang et al., 2022a), and KNN (Sun et al., 2022). These methods are all based
on a model trained with cross-entropy loss, which suffers from limiting OOD generalization performance (75.05%). In
contrast, our method achieves an improved OOD generalization performance (e.g., 85.56% when the wild data is a mixture
of CIFAR-10, CIFAR-10-C, and Texture).

We also compare our method with common OOD generalization baseline methods including IRM (Arjovsky et al., 2019),
Mixup (Zhang et al., 2018), and VREx (Krueger et al., 2021). Our method consistently achieves better results compared to
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Algorithm Art painting Cartoon Photo Sketch Average Acc. (%)
ERM (Vapnik, 1999) 88.1 77.9 97.8 79.1 85.7
IRM (Arjovsky et al., 2019) 85.0 77.6 96.7 78.5 84.4
GroupDRO (Sagawa et al., 2019) 86.4 79.9 98.0 72.1 84.1
I-Mixup (Wang et al., 2020; Xu et al., 2020) 86.5 76.6 97.7 76.5 84.3
VREX (Krueger et al., 2021) 86.0 79.1 96.9 77.7 84.9
MLDG (Li et al., 2018a) 89.1 78.8 97.0 74.4 84.8
CORAL (Sun & Saenko, 2016) 87.7 79.2 97.6 79.4 86.0
MMD (Li et al., 2018b) 84.5 79.7 97.5 78.1 85.0
DANN (Ganin et al., 2016) 85.9 79.9 97.6 75.2 84.6
CDANN (Li et al., 2018c) 84.0 78.5 97.0 71.8 82.8
MTL (Blanchard et al., 2021) 87.5 77.1 96.4 773 84.6
SagNet (Nam et al., 2021) 87.4 80.7 97.1 80.0 86.3
ARM (Zhang et al., 2021) 86.8 76.8 97.4 79.3 85.1
RSC (Huang et al., 2020) 85.4 79.7 97.6 78.2 85.2
Ours 88.5 83.8 96.2 77.3 86.4

Table 8. Comparison with OOD generalization algorithms on the PACS dataset from DomainBed benchmark. All methods are trained on
ResNet-50. The model selection is based on a training domain validation set.

these OOD generalization baselines. Lastly, we compare our method with strong OOD detection methods using Py;jq such
as OE (Hendrycks et al., 2018), energy-regularized learning (Liu et al., 2020), and WOODS (Katz-Samuels et al., 2022). Our
method demonstrates strong performance on OOD generalization accuracy, which shows the effectiveness of our method for
making use of the covariate OOD data.

E. Results on PACS

In this section, we report results on the PACS dataset (Li et al., 2017) and present the comparisons with other baseline methods
from the DomainBed. As shown in Table 8, we compare our method with a collection of common OOD generalization
baselines, including ERM (Vapnik, 1999), IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2019), I-Mixup (Zhang
etal., 2018), VREx (Krueger et al., 2021), MLDG (Li et al., 2018a), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018b),
DANN (Ganin et al., 2016), CDANN (Li et al., 2018c), MTL (Blanchard et al., 2021), SagNet (Nam et al., 2021), ARM (Zhang
et al., 2021), RSC (Huang et al., 2020). Our approach SCONE (86.4%) outperforms all of these OOD generalization
baselines on the DomainBed benchmark.

As shown in Table 9, we summarize not only the OOD generalization performance but also the OOD detection performance
on the PACS dataset. The results indicate that SCONE displays strong performance on both OOD generalization and
detection tasks.

Table 9. Results for both OOD generalization and detection tasks on the PACS dataset.
Method OOD Accuracy IDaccuracy FPR95 AUROC

Photo 96.23 99.68 2.57 99.38
Art painting 88.46 99.63 1.70 99.43
Cartoon 83.75 99.52 0.63 99.68
Sketch 77.25 99.01 17.80 96.34
Average 86.42 99.46 5.68 98.71

F. Results on Different Corruption Types

In this section, we provide additional ablation studies of the different covariate shifts. In Table 10, we evaluate our method
under 19 different common corruptions such as gaussian noise, defocus blur, glass blur, impulse noise, shot noise, snow,
zoom blur, brightness, etc. We follow the default design and parameter setting as in the original paper (Hendrycks &
Dietterich, 2018) for generating the corruptions. For our method with margin, 7 is chosen based on the validation strategy in
Appendix B. Our method is overall more robust under different covariate shifts than the WOODS baseline.
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Table 10. Ablations on the different covariate shifts. We train on CIFAR-10 as ID, using CIFAR-10-C as P<%*®¢ and SVHN as Pemantic
(with 7. = 0.5 and 75 = 0.1).

Covariate shift type \ Method OOD Acc.t ID Ace.f FPR| AUROC?T

Gaussian noise WooDSs 52.76 94.86 2.11 99.52
Gaussian noise SCONE 84.69 94.65 10.86 97.84
Defocus blur WooDSs 94.76 94.99 0.88 99.83
Defocus blur SCONE 94.86 94.92 11.19 97.81
Frosted glass blur Woobs 38.22 94.90 1.63 99.71
Frosted glass blur SCONE 69.32 94.49 12.80 97.51
Impulse noise WooDS 70.24 94.87 2.47 99.47
Impulse noise SCONE 87.97 94.82 9.70 97.98
Shot noise WooDSs 70.09 94.93 3.73 99.26
Shot noise SCONE 88.62 94.68 10.74 97.85
Snow WooDSs 88.10 95.00 2.42 99.54
Snow SCONE 90.85 94.83 13.22 97.32
Zoom blur WoO0DS 69.15 94.86 0.38 99.91
Zoom blur SCONE 90.87 94.89 7.72 98.54
Brightness WooDSs 94.86 94.98 1.24 99.77
Brightness SCONE 94.93 94.97 1.41 99.74
Elastic transform WooDSs 87.89 95.04 0.37 99.92
Elastic transform SCONE 91.01 94.88 8.77 98.32
Contrast WooDSs 94.37 94.94 1.06 99.80
Contrast SCONE 94.40 94.98 1.30 99.77
Fog WooDS 94.69 95.01 1.06 99.80

Fog SCONE 94.71 95.00 1.35 99.76

Frost WooDSs 87.25 94.97 2.35 99.55

Frost SCONE 91.94 94.85 10.08 98.03
Gaussian blur WooDSs 94.78 94.98 0.87 99.83
Gaussian blur SCONE 94.76 94.86 3.14 99.39
Jpeg WooDSs 84.35 94.96 1.73 99.68

Jpeg SCONE 87.87 94.90 8.14 98.49
Motion blur WooDSs 82.54 94.79 0.47 99.88
Motion blur SCONE 91.95 94.90 9.15 98.18
Pixelate WOoO0DS 91.56 9491 1.82 99.66
Pixelate SCONE 92.08 94.96 1.97 99.64
Saturate WooDSs 92.45 95.03 1.26 99.77
Saturate SCONE 93.38 94.92 10.27 97.88
Spatter WooDS 92.38 94.98 1.94 99.64
Spatter SCONE 92.78 94.98 1.94 99.64
Speckle noise WooDSs 72.31 94.94 3.51 99.30
Speckle noise SCONE 88.51 94.83 11.05 97.82

18



