Copresheaf Topological Neural Networks:
A Generalized Deep Learning Framework

Mustafa Hajij!? Lennart Bastian®’ Sarah Osentoski’
Hardik Kabaria' John L. Davenport! Sheik Dawood'
Balaji Cherukuri' Joseph G. Kocheemoolayil' Nastaran Shahmansouri'
Adrian Lew* Theodore Papamarkou’ Tolga Birdal®

'Vinci4D  2University of San Francisco  *Technical University of Munich
“Stanford University ~ PolyShape ®Imperial College London ’MCML

Abstract

We introduce copresheaf topological neural networks (CTNNs), a powerful unify-
ing framework that encapsulates a wide spectrum of deep learning architectures,
designed to operate on structured data, including images, point clouds, graphs,
meshes, and topological manifolds. While deep learning has profoundly impacted
domains ranging from digital assistants to autonomous systems, the principled de-
sign of neural architectures tailored to specific tasks and data types remains one of
the field’s most persistent open challenges. CTNNs address this gap by formulating
model design in the language of copresheaves, a concept from algebraic topology
that generalizes most practical deep learning models in use today. This abstract yet
constructive formulation yields a rich design space from which theoretically sound
and practically effective solutions can be derived to tackle core challenges in repre-
sentation learning, such as long-range dependencies, oversmoothing, heterophily,
and non-Euclidean domains. Our empirical results on structured data benchmarks
demonstrate that CTNNs consistently outperform conventional baselines, particu-
larly in tasks requiring hierarchical or localized sensitivity. These results establish
CTNNSs as a principled multi-scale foundation for the next generation of deep
learning architectures.

1 Introduction

Deep learning has excelled by exploiting structural biases, such as convolutions for im-
ages [Krizhevsky et al., 2012], transformers for sequences [Vaswani et al., [2017]], and message
passing for graphs [Gilmer et al.}2017]]. However, the design of architectures that generalize across
domains with complex, irregular, or multiscale structure remains a notorious challenge [Bronstein
et al.| 2017} Hajij et al.;,|2023b|]. Real-world data, which span physical systems, biomedical signals,
and scientific simulations, rarely adhere to the regularity assumptions embedded in conventional
architectures. These data are inherently heterogeneous, directional, and hierarchical, often involving
relations beyond pairwise connections or symmetric neighborhoods.

Convolutional neural networks (CNNs), designed for uniform grids, do not fully capture local
irregularities; graph neural networks (GNNs) often rely on homophily and tend to oversmooth
feature representations as depth increases; and transformers, while excellent at capturing long-range
dependencies, assume homogeneous embedding spaces, incur quadratic complexity, and lack built-
in notions of anisotropy or variable local structures. These shortcomings highlight the need for
a framework that can natively encode diverse local behaviors, respect directional couplings, and

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



propagate information across scales without sacrificing local variations or imposing unwarranted
homogeneity.

To address this foundational gap, we propose copresheaf topological neural networks (CTNNs), a
unifying framework for deep learning based on copresheaves, a categorical structure that equips
each local region of a domain with its own feature space, along with learnable maps specifying how
information flows between regions. Unlike traditional models that assume a global latent space and
isotropic propagation, our framework respects local variability in representation and directional flow

of information, enabling architectures that are multiscale, anisotropic and expressive.

By constructing CTNNs on combinatorial com-
plexes (CCs) [Hajij et al.| |2023bla], which gener-
alize graphs, simplicial complexes, and cell com-
plexes, we enable a principled message-passing
mechanism over general topological domains
formulated within the theory of copresheaves.
This unified perspective subsumes many deep
learning paradigms, including GNNs, attention
mechanisms, sheaf neural networks [Hansen and
Ghrist, 2019b, | Bodnar et al., 2022]], and topo-
logical neural networks [Papillon et al., 2023|
Hajij et al., |2023b, |Bodnar et al., [2021a, |[Ebli
et al., 2020\ |Giusti et al., [2023]] within a single
formalism. Our approach further departs from
the traditional assumption of a single shared
latent space by modeling task-specific, direc-
tional latent spaces that bridge diverse deep
learning frameworks. Furthermore, CTNNs flex-

h, O\ )
Py—z pz/_:i. h, O
TR

O

Figure 1: A copresheaf topological neural net-
work (CTNN) operates on combinatorial com-
plexes (CCs), which generalize Euclidean grids,
graphs, meshes, and hypergraphs. A CTNN is
characterized by a set of locally indexed copresheaf
maps pg, -, defined between cells x; and z; in
the CC, and directed from z; to ;. The figure illus-
trates how a CTNN updates a local representation
h, of a cell z using neighborhood representations

ibly handle both Euclidean and non-Euclidean
data, supporting expressive architectures such
as copresheaf GNNs, transformers, and CNNss,
which learn structure-aware, directional transport maps. CTNNs offer a promising framework for
developing next-generation, topologically informed, structure-aware machine learning models. See
FigureT|for an illustration.

h, and h,, which are sent to x via the learnable
local copresheaf maps p; .z, py—o and p, .

2 Related Work

Our work here is related to sheaf neural networks (SNNs), which extend traditional GNNs by
employing the mathematical framework of cellular sheaves to capture higher-order or heterogeneous
relationships. Early work by Hansen and Ghrist] [2019alb] introduced methods to learn sheaf
Laplacians from smooth signals and developed a spectral theory that connects sheaf topology with
graph structure. Building on these ideas, Hansen and Gebhart| [2020] proposed the first SNN
architecture, demonstrating that incorporating edge-specific linear maps can improve performance on
tasks involving asymmetric or heterogeneous relations.

Recent advances have focused on mitigating common issues in GNNs, such as oversmoothing and
heterophily. For instance, Bodnar et al.|[2022] introduced neural sheaf diffusion processes that address
these challenges by embedding topological constraints into the learning process. Similarly, Barbero
et al.|[2022alb]] developed connection Laplacian methods and attention-based mechanisms that further
enhance the expressiveness and efficiency of SNNs. The versatility of the sheaf framework has also
been demonstrated through its extension to hypergraphs and heterogeneous graphs [Duta et al., [2023]
Braithwaite et al., 2024]], which enables modeling of higher-order interactions. Moreover, novel
approaches incorporating joint diffusion processes [Hernandez Caralt et al.| [2024]] and Bayesian
formulations [Gillespie et al.,|2024]] have improved the robustness and uncertainty quantification of
SNNs. Finally, the application of SNNs in recommender systems [Purificato et al.,2023|] exemplifies
their practical utility in real-world domains. Together, these contributions demonstrate the potential
of SNNs to enrich graph-based learning by integrating topological and geometric information directly
into neural architectures. Our proposed CTNNs generalize these architectures while avoiding
restrictive co-boundary maps or rank-specific Laplacian operators. Appendix [] provides a more
thorough literature review of related work.



3 Preliminaries

This section presents preliminary concepts needed for developing our theoretical framework. It
revisits CCs and neighborhood structures, reviews sheaves and copresheaves on directed graphs, and
compares cellular sheaves with copresheaves in graph-based modeling.

3.1 Combinatorial Complexes and Neighborhood Structures

To ensure generality, we base our framework on CCs [Hajij et al., |2023blal], which unify set-type and
hierarchical relations over which data are defined. CC-neighborhood functions then formalize local
interactions forming a foundation for defining sheaves and higher-order message passing schemes for
CTNNsS.

Definition 1 (Combinatorial complex [Hajij et al., 2023b]]). A CC is a triple (S, X, rk), where
S is a finite non-empty set of vertices, X C P(S) \ {0}, with P(S) denoting the power set of
S, and tk : X — Z>¢ is a rank function such that if {s} € X, rk({s}) = Oforall s € S, and
x Cy = rk(z) <rk(y)forallz,y € X.

When context permits, we write a CC (S, X', rk) simply as X'. Each x°" 0
x € X has rank rk(z), and dim X = max,ex rk(z). We refer 0=0 ’

to elements of X' by cells. The k-cells 2* of X are defined to be ) Xl -

the cells = with rk(z) = k. We use the notation X* = {z € X : O '
rk(z) = k} =tk ' ({k}). See Figfor an example. 09 42. Q

Definition 2 (Neighborhood function). A neighborhood function on

a CC (8, X,rk) isamap N : X — P(X), which assigns to each Figure 2: A combinatorial
cell z in X a collection of neighbor cells A'(z) C X, referred to as  complex of dimension 2.

the neighborhood of x. In our context, two neighborhood functions

are commonly used, namely the adjacency neighborhood Nygj(z) = {y € X |3z € X : z C
z, y C z} and the incidence neighborhood Ninc(x) = {y € X |z C y}.

In practice, neighborhood functions are stored via matrices called neighborhood matrices.

Definition 3 (Neighborhood matrix). Let A/ be a neighborhood function on a CC X. Let Y =
{y1,.. . yn} C X, Z ={z1,..., 2} C X be two collections of cells such that N'(y;) C Z for all
1 < j < n. An element of the neighborhood matrix G € {0,1}™*"™ is defined as

], = {1 if z; € N(y;),

" 10 otherwise.

The copresheaf structure that we develop on CCs depends on the neighborhood function. To introduce
it, we first review sheaves and copresheaves on graphs, and then extend these notions to CCs.

3.2 Sheaves and Copresheaves on Directed Graphs

The copresheaf formalism assigns each vertex its unique feature space J (), respecting the potentially
heterogeneous nature of the data, and each directed edge a transformation p,._, that tells how data
move between those spaces, F (z) — F(y). This separation between where data reside and how they
travel provides a foundation for learning beyond the single-latent-space assumption of standard deep
learning architectures. Concretely, copresheaves are defined as followsﬂ

Definition 4 (Copresheaf on directed graphs). A copresheaf (F,p,G) on a directed graph G =
(V, E) is given by

* areal vector space F(z) for every vertex x € V;
* alinear map p,, : F(x) — F(y) for every directed edge t —y € E.

Think of a copresheaf as a system for sending messages across a network, where each node has its own
language (stalk), and edges translate messages (linear maps) to match the recipient’s language. More
specifically, on a directed graph G = (V, E), each vertex & € V carries a task-specific latent space

'While we avoid overly complicated jargon, the appendix links our constructs to those of category theory for
a more rigorous exposition.



F(z), and every edge x —y € F applies a learnable, edge-indexed linear map p,_,,, : F(z) = F(y)
that re-embeds z’s features into y’s coordinate frame, thus realizing directional, embedding-level
message passing throughout the network.

While much of the recent literature has focused on sheaf learning [|Ayzenberg et al.l [2025], our
approach is based on a copresheaf perspective. This setup departs from the traditional deep learning
core assumption of a single, shared latent space, enabling the modeling of heterogeneous, task-
specific latent spaces and directional relations. The significance of this approach lies in its ability
to generalize and connect different deep learning paradigms. Copresheaf-type architectures extend
beyond SNNs [[Hansen and Gebhart, 2020, |Bodnar et al., 2022, [Barbero et al., 2022b, Duta et al.,
2023, [Battiloro et al., 2024b] and TNN architectures [Hajij et al.l [2023D], typically designed for
non-Euclidean data, by also accommodating Euclidean data effectively. This versatility allows them
to unify applications across diverse data domains and architectural frameworks, providing a unified
structure that uses directional information flow and adapts to task-specific requirements.

In graph-based modeling, cellular sheaves provide a formal framework to ensure data consistency in
undirected graphs by encoding symmetric local-to-global relations via an incidence structure between
vertices and edges. These structural points, formalized in the following definition, are encoded
through restriction maps, ensuring data consistency between vertices and incident edges.

Definition 5 (Cellular sheaf). Let G = (V, E) be a undirected graph. Let < e indicate that vertex
x € Visincident to edge e € E. A cellular sheaf on G consists of:

* a vector space JF(x) to each vertex x € V;
* a vector space F(e) to each edge ¢ € F;
* alinear restriction map Fy<. : F(x) — F(e) for each incidence = < e.

For any cell ¢ (vertex or edge), the vector space F(c) is typically called the stalk at c. The data on
nodes z and y, denoted by h,, € F(z) and h,, € F(y), “agree” on the edge e if their images under
the restriction maps coincide:

Fla) 2= Fle) &2 Fy). (1)
A global section of a sheaf on a graph G assigns data h, € F(v) to each vertex v and h, €
F(e) to each edge e, such that for every edge e between nodes x and y it holds that 7. (h,) =
Fyae(hy). This consistency condition ensures data consistency across local connections in a network.
Global sections represent equilibrium states, where this local agreement holds across the entire
graph, enabling unified data representations for a complex system. Most sheaf-based architectures
have focused on diffusion-type models [Hansen and Gebhart, 2020, Bodnar et al.| [2022| Barbero
et al.|[2022b}, Duta et al.,[2023] [Battiloro et al.,|2024b]], where the sheaf Laplacian A x minimizes
the Dirichlet energy, ensuring global consistency. Precisely, let C°(G; F) = @,y F(v) and
CYG;F) = @.cp Fle) denote the spaces of vertex-valued and edge-valued cochains of the
sheaf F, respectively. Then for some arbitrary choice of orientation for each edge, define the
coboundary map

§:C%G; F) = CYG; F), (6h), = Frae(hy) — Fyae(hy) fore=(z,y) €E, (2)

which measures local disagreement with respect to the edge e. The sheaf Laplacian Ax = §7§
aggregates all the restriction maps {F, } into a single symmetric, positive semidefinite operator. Its
associated quadratic form, h” Az h, has a trace that defines the sheaf Dirichlet energy.

Unlike sheaves, which ensure data consistency across overlaps, copresheaves model directional data
flow, making them well-suited for processes such as information propagation, causality, and hierarchi-
cal dependencies. Copresheaves assign vector spaces JF (z:) only to vertices and define learnable linear
maps py_sy, : F(x) — F(y) along directed edges, without imposing sheaf consistency constraints.
This vertex-centric, anisotropic framework naturally integrates with message-passing architectures
such as GNNs and TNNs, allowing parameterized maps to adapt during training. See Appendix [B.3]
for further discussion, and Appendix [C|for the definition and properties of the copresheaf Laplacian.

4 Copresheaf Topological Neural Networks

We are now ready to introduce copresheaf topological neural networks (CTNNs), a higher-order
message-passing mechanism that generalizes the modeling of relational structures within TNNS, as



illustrated in Figure[I] We begin by making use of copresheaves induced by neighborhood functions
on CCs, providing a structured way to model general, local-to-global relations.

Let X be a CC and let N : X — P(X) be a neighborhood function. We define the effective support
of AV as the set Xy := {& € X | N(z) # 0}. This set identifies cells that receive input from
neighbors. The neighborhood function A induces a directed graph Gy = (Viv, Enr), where the

vertex set is
Vi =Xy U U N(z),
reX
and the edge setis Ex := {y — = | z € X,y € N (x)}. The vertex set V) includes both cells with
non-empty neighborhoods (targets) and their neighbors (sources). This graph determines how data
propagates across the complex, with each edge encoding a directional relation from neighbor y to
target x.

Definition 6 (Neighborhood-dependent copresheaf). Let X be a CC, N a neighborhood function,
and Gnr = (Viv, Exr) the induced directed graph with Vir = X U, ¢ N (). An N-dependent
copresheaf assigns a vector space F(x) to each « € V), and a linear map py—,, : F(y) = F(x) for
eachedgey — x € Ejr.

See Appendix for concrete examples. When clear from context, we simplify the notation from
FN to F and vz 10 Py—sz.

Copresheaf neighborhood matrices. Having introduced neighborhood matrices as binary encodings
of local interactions, we now generalize this notion to define copresheaf neighborhood matrices
(CNMs). Instead of binary entries, CNMs consist of copresheaf maps between data assigned to
cells in a CC, allowing richer encoding of local dependencies. Subsequently, we define specialized
versions, such as copresheaf adjacency and incidence matrices, that capture specific topological
relations, facilitating structured message-passing in our CTNNS.

In particular, define the k-cochain space to be the direct sum C* (X, FV) = D.ocrr FN(z), and
denote by Hom(FN (i), FN (4)) the space of linear maps from the data at the i-th stalk to that at the

j-th stalk. Here, the maps encode how data is transferred or transformed between neighboring cells.
We next define the CNM.

Definition 7 (Copresheaf neighborhood matrices). For a CC X equipped with a neighborhood
function N, let (X, p, Gxr) be a copresheaf on X. AlsoletY = {y1,...,yn} C X and Z =
{z1,...,2m} C X be two collections of cells such that N'(y;) C Z forall 1 < j < n. The

copresheaf neighborhood matrix of N with respect to Y and Z is the m X n matrix GV:

Ny P zi—y; € Hom(]:(zl)af(yj))v z; € N(yj)v

G = - 3
0, otherwise.

The neighborhood function A determines the directed relationships between the cells, and the CNM
encodes the interactions between cells induced by these relationships, collecting the maps of a cell
from its neighbors. Next, analogous to Definition 2] we define copresheaf adjacency and copresheaf
incidence matrices as specialized forms of the general CNM.
Definition 8 (Copresheaf adjacency/incidence matrices). For fixed r, k, define j\/gfgjk) (z) ={y €

X" |3z € X 1 <2,y < 2} and N(T’k)(m) = {y € X* | 2 < y}. The copresheaf adjacency

mc

matrix (CAM) A, € RIX>IX"T and copresheaf incidence matrix (CIM) B, ;, € RIX*IXIXT] are

. r.k
[A k] _ ) Pyi—a; S Hom(}"(yz),]—"(x])) ify; € Na(dj )(xj)7 (4)
nr 0 otherwise.
. rk
B, = | Py € Hom(F (), Flyy) it 2 € N (55), )
nE 0 otherwise.

These specialized matrices capture distinct topological relations. A CAM encodes relations in which
cells share an upper cell, while a CIM encodes relations in which one cell is incident to another.

Copresheaf-based message passing. We now generalize traditional graph message-passing to
heterogeneous and higher-order interactions involving cells of varying ranks or multi-way relations



going beyond pairwise connections, by explicitly incorporating copresheaf structures defined over
CCs. This leads to copresheaf-based message-passing, a flexible and expressive tool for capturing
complex, multi-scale relations in structured data.

Definition 9 (Copresheaf message-passing neural network). Let G = (V| E) be a directed graph

and (F, p, G) a copresheaf. For each layer [ and vertex € V, let e F (). A copresheaf
message-passing neural network (CMPNN) is a neural network whose meassage passing is defined

by
WD (00, @) a(h,py b)),
(y—z)EE

where p, . : F(y) — F(z) is the linear map associated with edge y — x, o is a learnable message
function, @ a permutation-invariant aggregator, and /3 a learnable update function.

Definition [J] establishes a unifying framework that generalizes graph-based message passing neu-
ral networks (MPNNs) [Gilmer et al 2017] by incorporating learnable, anisotropic linear maps
associated with directed edges. This formulation subsumes many standard GNNSs, such as graph
convolutional networks [Kipf and Welling| [2017]], graph attention networks [[Velickovic et al., [2018]],
and their variants [Velickovic, [2022]], by viewing message passing as copresheaf maps on directed
graphs. Consequently, all architectures derived from these foundational GNN models fit within our
copresheaf message-passing paradigm. Moreover, SNNs, which operate on cellular sheaves over
undirected graphs, can be adapted into this framework by reinterpreting their edge-mediated transport
operator as direct vertex-to-vertex morphisms on a bidirected graph. This adaptation is detailed in the
following theorem.

Theorem 1. (SNNs are CMPNNs) Let G = (V, F) be an undirected graph equipped with a cellular
sheaf F assigning vector spaces to vertices and edges, and linear maps JF,.«. for each vertex = € e.
Then for each edge e = {z, y} € E, the SNN message passing from y to z, given by the composition
Fla. 0 Fyae : F(y) — F(x), can be realized as a single morphism p,_,, : F(y) — F(z)ina
copresheaf on the bidirected graph G’ = (V, E’), E' = {(z,y), (y,z) | {z,y} € E} by setting

_ T
Py—z = ]:zgle O Jyde-

Theorem ] establishes that the message-passing scheme employed by SNNs can be interpreted as
a special case of CMPNNs when restricted to bidirected graphs. This perspective generalizes most
existing SNN architectures found in the literature, including those in|[Hansen and Gebhart [2020]],
Bodnar et al.[[2022], Barbero et al.| [2022b]. The map F, T o y<e arises from composing the

x<e
restriction map Fy <. : F(y) — F(e) with its adjoint F,|__: F(e) — F(z), thereby capturing both

x<e *
vertex-to-edge and edge-to-vertex transformations defined by the cellular sheaf. As a consequence of
this connection between SNNs and CMPNN:Ss, diffusion-style updates (commonly used in sheaf-based
models, such as those based on the sheaf Laplacian) can be succinctly expressed within the CMPNN
framework. This result is formally stated in Proposition (1} with a full proof provided in Appendix
Proposition 1 (Neural-sheaf diffusion [Bodnar et al., [2022]] as copresheaf message-passing). Let
G = (V,E) be an undirected graph endowed with a cellular sheaf . Given vertex features
H = [h,],ev with h, € F(v), and learnable linear maps W7, Wa, define the diffusion update

H"=H- (Ar®1)(I, ® W) HW,, (6)

where A}' = [LF,v,u]v,ueV has blocks LF,?)U = Zvﬁe ]:vTﬁe-Fuﬂe, LF,vu = 7}—;;1@-711,51@7 for u #
v, u < e, v < e. Then, H can be expressed in the copresheaf message-passing form of Deﬁnition@]

The next definition formalizes the notion of general multi-way propagation.
Definition 10 (Copresheaf-based higher-order message passing). Let X’ be a CC, and 0t = {N;.}}'_;
a collection of neighborhood functions. For each k, let (FNx, pNs G 7, ) be a copresheaf in which

the maps p{/\/ fi . FNe(y) — FNk(z) define the transformations associated to the copresheaf. Given

features th), the next layer features are defined as

B 6<h§f>, R @ ox <h;f>,pyzz<h;f>>>),

k=1yeN,(z)

where v, is the message function, @ a permutation-invariant aggregator over neighbors y € N (),
® combines information from different neighborhoods, and j is the update function.



Table 1: A unified view across domains and architectures—CNNs, GNNs, Transformers, SNNs,

and TNNs—as instances of Copresheaf Topological Neural Networks (CTNNs) defined by neigh-

borhood graphs G - and directional transports p,_, .

Classical model CTNN form Domain / N Py—sa | TEfS

CNN Li et al.[[2021] CopresheafConv Grid; adjacency (CAM) Translation-consistent
transport (shared local
filters). App.

MPNN Gilmer et al.|[2017] CMPNN Graph; adjacency Shared / edge-indexed
linear maps; GCN/GAT
special cases. Def.

Euclidean / cellular Copresheaf Transformer Tokens on grid/seq; In-head value transport;
Tr.|Vaswani et al.|[2017], full/masked adj p = I = dot-product
Barsbey et al.|[2023]) attention. Sec. E], App.
SNN Bodnar et al.|[2022], CMPNN on bidirected ~ Graph; incidence (CIM) pu«v = FLEque
Hansen and Gebhart| [2020] graph (vertex—vertex). Prop. m
Thm. [T} App.[E}
TNN (hyper- Higher-order CMPNN  CC; multi-A via Rank-aware maps across
graph/simplicial/cellular/CC)|Ha- CAM/CIM overlaps; multi-way .
jij et al.|[2023b] Def. [T0]
Abbrev: CC = combinatorial complex; CAM/CIM = copresheaf adjacency/incidence; Adj/Inc =
adjacency/incidence.

Definition[T0|lays the foundational framework that unifies a broad class of topological deep learning
architectures, bridging higher-order message passing methods, transformers and SNNs. This synthesis
not only consolidates existing approaches but also opens avenues for novel architectures based on
topological and categorical abstractions. Notably, the formulation in Proposition [I0]encompasses
simplicial message passing [Ebli et al., 2020, Bunch et al., |2020, Bodnar et al., 2021b]], cellular
message passing [Hajij et al., 2020, Bodnar et al., 2021a], stable message passing via Hodge
theory [Hayhoe et al., 2022, and recurrent simplicial architectures for sequence prediction [Mitchell
et al.}[2024]. It also subsumes more recent developments that harness multiple signals and higher-order
operators such as the Dirac operator [Calmon et al., 2022, |[Hajij et al., 2023a] and TNNs [Hajij et al.,
2023bf]. These diverse models are unified under the copresheaf-based formulation by interpreting
neighborhood aggregation, feature transport, and signal interaction within a coherent framework. See
Appendix [E] for derivations showing how several of these architectures emerge as special cases of this
general formulation. See also Table[T|for a summary.

Remark 1 (Graph vs CC copresheaf models). Unlike graph-based models, which propagate in-
formation edge by edge, copresheaf models on a CC aggregate messages across all overlapping
neighborhoods at once. Overlapping neighborhoods have common cells, potentially at different ranks,
allowing simultaneous aggregation of multi-way interactions. Applying each neighborhood function
N in turn, we compute its map-driven messages and then merge them into a single update.

5 Architectures Derived from the Copresheaf Framework

Having established the abstract copresheaf-based framework on a CC X, we now present several
concrete instantiations. Copresheaf transformers (CTs) extend the standard attention mechanism
by dynamically learning linear maps py—, : F(y) — F(z) encoding directional, anisotropic
relationships between tokens, i.e., cells, in X'. Integrating these maps into attention enables CTs to
capture rich, structured interactions. Copresheaf graph neural networks (CGNNG5) generalize message-
passing GNNSs by incorporating copresheaf linear maps to model relational structures. Copresheaf
convolutional networks define convolution-like operations on CCs, modeled as a Euclidean grid,
using these linear maps. We present the CT construction next and leave the exact formulations of
copresheaf networks, CGNNs, and copresheaf convolution layers to the appendices [E] [F]and [G]

Copresheaf transformers. Having established the abstract framework of CTNNs on a CC X, we
now introduce a concrete instantiation: the copresheaf transformer (CT) layer. This layer extends
the standard attention mechanism by dynamically learning linear maps p,_,; : R% — R that
encode both the combinatorial structure and directional, anisotropic relationships within the complex.
By integrating these maps into the attention computation, the CT layer captures rich, structured



Table 2: Mean squared error (mean =+ standard deviation) of classical vs copresheaf architectures for
learning various physics simulations.

Network Heat Advection Unsteady stokes
etwor (Transformer) (Transformer) (Conv-transformer)
Classical 2.64 x 107% £ 3.50 x 1075 3.52 x 107* £ 7.70 x 107° 1.75 x 1072 + 1.32 x 1073
Copresheaf | 9.00 x 1075 + 7.00 x 107¢ 1.20 x10% + 1.20 x 107° 1.48 x 1072 4+ 1.48 x 104

interactions across X. At layer /, each cell z € X is associated with a feature hgf) € R%  where d,
denotes the feature dimension of cell x.

Definition 11 (Copresheaf self-attention). For a fixed rank k and neighborhood N}, (e.g., adjacency
between k-cells), let W, W), € RP xd W, € R4 denote learnable projection matrices, where p
is the dimension of the query and key spaces, and d is the feature dimension (assumed uniform
across cells for simplicity). For each k-cell x € X*, copresheaf self-attention defines the message

aggregation and feature update as hgﬂ) = 5(hff)7 mr), where m, = Zy Nk (z) Qay Py—z(vy) and

v exp (g, ky)/\/P)
Y eni exP((gas By ) /D)

where ¢, = W, hg), ky, = Wy hg), and v, = W, hgf). Here, the softmax normalizes over all
neighbors y' € Ny (z) and p,_,, : F(y) — F(x) is the learned copresheaf map. The update function
[ is chosen to be a neural network.

N

Similarly, we define copresheaf cross-attention among s and ¢ rank cells in &, as well as a general
algorithm for a corpresheaf transformer layer (Appendix [F).

6 Experimental Evaluation

We conduct experiments on synthetic and real data in numerous settings to support the generality of
our framework. These include learning physical dynamics, graph classification in homophillic and
heterophilic cases and classifying higher-order complexes.

6.1 Evaluations on Physics Datasets

To verify the validity of our networks in toy setups of different phenomena, we generate a series of
synthetic datasets. These include:

1. Heat. We generate 600 realisations by solving the heat equation u; = vu,, on [0,1) with v = 0.1
to horizon T" = 0.1; each ug is a 10-mode sine series and u is its Gaussian-kernel convolution,
sampled on N = 100 grid points.

2. Advection. Similar to heat, we generate 600 realisations of u; + cu, = 0 with ¢ = 1; the solution
is a pure phase shift of ug, sampled on N = 130 points. Each pair is normalized to the interval
[0, 1] and the dataset is split into 500:100 train/test samples.

3. Unsteady stokes. Letu(z,y,t) = (u(z,y,t), v(z,y,t)) € R? denote the incompressible velocity
field, p(x,y,t) € R the kinematic pressure, and v > 0 the kinematic viscosity. Throughout,
0, is the time derivative, V = (0, J,) the spatial gradient, and A = 0,, + 0y, the Laplacian
operator. The periodic unsteady Stokes system reads d;u — vAu + Vp = 0, where V - u = 0.
We synthesize 200 samples by drawing an 8-mode Fourier stream-function ), setting ug = V+1),
and evolving to 7' = 0.1 with v = 0.1 via the analytic heat kernel. Each pair is sampled on a
16 x 16 grid, with each channel normalized to the interval [0, 1], and the dataset is split into 160:40
train/test samples.

Model and training. For heat and advection, we use two transformer layers (positional encoding,
four heads, stalk dimension equal to 16), followed by a mean pooling and linear head yielding 64D
token embeddings. We train our networks using AdamW wiht a learning rate of 10~2, cosine LR
scheduling, and batch size of two. We use 50 epochs for the heat dataset and 80 for the advection
dataset, and report the results over three seeds. For the unsteady Stokes data, we test a compact
convolution-transformer U-Net consisting of a convolutional encoder with two input and 32 output
channels, followed by two transformer layers (four heads, hidden dimension equal to 32, and stalk
dimension 8), and a convolutional decoder mapping back to two output channels. We train it for 300



epochs using AdamW with a batch size of four. The classical baselines use dot-product attention,
whereas the copresheaf variants employ learned outer-product maps.

Results. As shown in Table 2] in the heat and advection tests, copresheaf attention significantly
outperforms classical dot-product attention, reducing the test MSE by over 50% and achieving more
stable results across seeds. For unsteady Stokes, the copresheaf attention lowers the test MSE by
~ 15% and reduces variance by an order of magnitude, confirming that pair-specific linear transports
capture viscous diffusion of vorticity more faithfully than standard self-attention under identical
compute budgets.

6.2 Graph Classification

We evaluate whether incorporating copresheaf structure into GNNs improves performance on graph
classification tasks.

Data. MUTAG dataset, a nitroaromatic compound classification benchmark consisting of 188
molecular graphs, where nodes represent atoms and edges represent chemical bonds. Each node is
associated with a 7-dimensional feature vector encoding atom type, and each graph is labeled as
mutagenic or non-mutagenic (two classes). The dataset is split into 80% train and 20% test samples.

Baselines, backbone and training. We compare standard GNN models (GCN, GraphSAGE, GIN)
against their copresheaf-counterparts (CopresheafGCN, CopresheafSage, CopresheafGIN) derived
below. All models are two-layer networks with a hidden dimension of 32 for GCN and GraphSAGE,
and 16 for GIN, followed by global mean pooling and a linear classifier to predict graph labels. The
standard models (GCN [Kipf and Welling, 2017, GraphSAGE [Hamilton et al., 2017, GIN [Xu et al.,
2019]) use conventional GNN convolutions: GCN with symmetric normalization, GraphSAGE with
mean aggregation, and GIN with sum aggregation. The copresheaf-enhanced models augment these
with learned per-edge copresheaf maps, introducing local consistency constraints via transformations.
All models are trained using Adam with a learning rate of 0.01, and a batch size of 16. GCN and
GIN models are trained for 100 epochs, while GraphSAGE for 50. The negative log-likelihood loss
is minimized, and performance is evaluated via test accuracy. For GCN and GraphSAGE, we use five
runs, while GIN uses ten runs.

Enhancing GNNs via copresheaves. The copresheaf structure enhances each GNN by learning
a transport map p;; = I + A;; for each edge (i, j), where A;; is a learned transformation and 1
is the identity matrix. In what follows D represents the dimension of the input feature in where
we apply the copresheaf maps p;;. Denote by [h;;h;] to the concatenation of the two node fea-
ture vectors h; and h; along their feature dimension. The process for each model is as follows:

Table 3: Mean test accuracy (+
* CopresheafGCN. For node features h;, h;, compute A;; = ).

tanh(Linear([h;; h;])), take its diagonal to get a diagonal D x

D matrix with D = 7. Form p;; = I+ A,;;. Aggregate neighbor Model Accuracy
/o 1 h. . .

features as hj = =\ Vi P h;, where d;,d; are the ~5~y 0.674 + 0.014

degrees of nodes i and j, respectively. Combine with the self- ~ CopresheafGCN ~ 0.721 + 0.035

feature: h;’ _ (1 + E)hz + h: GraphSAGE 0.689 + 0.022

* CopresheafSage. Compute A;; = tanh(Linear([h;, h;])), a gcl)gresheafSage 8;33igggg
diagonal matrix, and form p;; = I 4+ A;;. Aggregate via mean: ‘ :

h; = mean; (s (pijhj)- Combine: h;/ _ (1 T 6)1’17 +h; The CopresheafGIN 0.724 £+ 0.021
map p;; enhances local feature alignment.

* CopresheafGIN. Compute A;; = tanh(Linear([h;, h;])), a full
D x D matrix, and form p;; = I + A;;. Aggregate: hi = 3.\ (pijh;)/d;. Combine:
h? = (1 + ¢)h; + h..

Results. On MUTAG, copresheaf-enhanced GNNs consistently outperform their standard versions
across GCN, GraphSAGE, and GIN. CopresheafSAGE achieves the highest average accuracy (0.732)
and the largest relative gain over the GraphSAGE baseline (0.689). Learned per-edge transport maps
better capture complex structure and enforce local consistency, improving classification. These results
demonstrate the promise of copresheaf structures for molecular graph classification.



6.3 Combinatorial Complex Classification

Finally, we assess whether incorporating copresheaf structure into transformer-based attention mech-
anisms improves performance on classifying higher-order, general data structures, such as CCs.
Specifically, we compare a classical transformer model against two CT variants (CT-FC and CT-
SharedLoc) on a synthetic dataset of CCs.

Data. Our synthetic dataset comprises 200 training and 50 test CCs derived from Erds-Rényi graphs,
each with 10 nodes and a base edge probability of 0.5. Triangles are added to form higher-order
structures with probability ¢ = 0.1 for class 0 (low density) or ¢ = 0.5 for class 1 (high density).
Each node has 2D feature vectors, consisting of its degree and the number of triangles it participates
in, with added Gaussian noise N'(0,0.1).

Backbone and training. All models are transformer-based classifiers with a single block, using
two attention heads, an embedding dimension of 8, and a head dimension of 4. The model embeds
2D node features, applies attention, performs global average pooling, and uses a linear classifier
to predict one of two classes (low or high triangle density). The classical model employs standard
multi-head attention. The CT-FC and CT-SharedLoc models augment attention with learned per-edge
transport maps to enforce local consistency. Models are trained for four epochs using Adam with a
learning rate of 10~2 and a batch size of 8, minimizing cross-entropy loss. Performance is evaluated
via test accuracy. Experiments are over four runs with different random seeds to ensure robustness.

Copresheaf attention. Similar to GNNGs, the copresheaf structure enhances attention by learning a
transport map p;; = I + A;;. The value vector v; is transformed as p;;v; before attention-weighted
aggregation. The process for each model is as follows:

* CT-FC. For node features h;, h;, compute A;; = tanh(Linear([h;, h;])), a full d x d matrix
(d = 4). Form p;; = I + A;;. Apply p;; to value vectors in attention: vy = p;;v;. The map p;;
enables rich feature transformations across nodes.

* CT-SharedLoc. Compute a shared A;; = tanh(MLP([h;, h;])), a full d x d matrix, and a local
scalar Q5 = U(MLP([hZ, hJ])) Form Pij = I+ aiinj~ Apply Pij to value vectors: Vi = PijVj.
The map p;; balances shared transformations with local modulation.

Results. Copresheaf transformer models outperform the standard transformer on the CC classification
task, with CT-SharedLoc achieving the highest average accuracy

(0.970) and competitive stability (std 0.010). The learned per-edge Taple 4: Mean + std test accu-
transport maps p;; enhance the model’s ability to capture higher- racy for CC classification.

order structural patterns, such as triangle density, by aligning node

features effectively. CT-SharedLoc’s combination of shared transport Model Accuracy

maps and local modulation yields the best performance, showcasing ~ Classic 0.940 £ 0.014
the value of copresheaf structures in transformer-based models for ~ CT-FC 0.955 4= 0.009
CC classification. CT-SharedLoc  0.970 4+ 0.010

7 Discussion and Conclusions

We proposed CTNNSs, a unified deep learning framework on (un)structured data. By develping
models on copresheaves over CCs, CTNNs generalize GNNs, SNNs, and TNNs through directional,
heterogeneous message passing. Besides theoretical advances, CTNNs offer empirical benefits across
diverse tasks, laying the principles for multiscale and anisotropic representation learning.

Limitations and future work. CTNNs incur additional overhead from per-edge transformations
and have so far been evaluated in modest-scale settings. We plan to explore well-engineered scalable
parameterizations, extend CTNNs to large-scale and dynamic domains, and further connect categorical
structure with robustness and inductive bias in deep learning.

Acknowledgments and Disclosure of Funding

Professor Adrian J. Lew’s contributions to this publication were as a paid consultant and were not
part of his Stanford University duties or responsibilities. T. Birdal acknowledges support from the
Engineering and Physical Sciences Research Council [grant EP/X011364/1]. T. Birdal was supported
by a UKRI Future Leaders Fellowship [grant number MR/Y(018818/1] as well as a Royal Society

10



Research Grant RG/R1/241402. The authors thank Hans Riess for pointing out the relationship
between the CTNNs and the quiver Laplacian.

References

Samson Abramsky. Notes on presheaf representations of strategies and cohomological refinements of
k-consistency and k-equivalence. arXiv preprint arXiv:2206.12156, 2022.

Ibrahem Al-Jabea and Thomas John Baird. Cohomology of gkm-sheaves. arXiv preprint
arXiv:1806.01761, 2018.

Yash Atri, Karan Rungta, Lili Mou, Kai-Wei Chang, and Nanyun Joshi. Promoting topic coherence
and inter-document consorts in multi-document summarization via simplicial complex and sheaf
graph. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 2154-2166, 2023.

Anton Ayzenberg, Thomas Gebhart, German Magai, and Grigory Solomadin. Sheaf theory: from
deep geometry to deep learning. arXiv preprint arXiv:2502.15476, 2025.

Song Bai, Feihu Zhang, and Philip H. S. Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Rubén Ballester, Pablo Hernandez-Garcia, Mathilde Papillon, Claudio Battiloro, Nina Miolane, Tolga
Birdal, Carles Casacuberta, Sergio Escalera, and Mustafa Hajij. Attending to topological spaces:
The cellular transformer. arXiv preprint arXiv:2405.14094, 2024.

Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael M. Bronstein. Bundle neural
networks for message diffusion on graphs. In ICML 2024 Workshop on Geometry-grounded
Representation Learning and Generative Modeling, 2024.

Federico Barbero, Cristian Bodnar, Haitz S. de Ocariz Borde, Michael M. Bronstein, Petar Velickovic,
and Pietro Lio. Sheaf neural networks with connection laplacians. In Topology, Algebra, and
Geometry in Machine Learning (TAG-ML) Workshop at ICML, pages 28-36, 2022a.

Federico Barbero, Cristian Bodnar, Haitz S. de Ocariz Borde, and Pietro Lio. Sheaf attention networks.
In NeurlPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022b.

Melih Barsbey, Rubén Ballester, Andac Demir, Carles Casacuberta, Pablo Hernandez-Garcia, David
Pujol-Perich, Sarper Yurtseven, Sergio Escalera, Claudio Battiloro, Mustafa Hajij, et al. Higher-
order molecular learning: The cellular transformer. In ICLR 2025 Workshop on Generative and
Experimental Perspectives for Biomolecular Design, 2025.

Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti, Paolo Di Lorenzo, and Sergio
Barbarossa. Generalized simplicial attention neural networks. IEEE Transactions on Signal and
Information Processing over Networks, 2024a.

Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, and Alejandro Ribeiro. Tangent
bundle convolutional learning: from manifolds to cellular sheaves and back. IEEE Transactions on
Signal Processing, 72:1892—-1909, 2024b.

Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: structure and
dynamics. Physics Reports, 874:1-92, 2020.

Christian Bick, Elizabeth Gross, Heather A Harrington, and Michael T Schaub. What are higher-order
networks? SIAM review, 65(3):686-731, 2023.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. Advances in Neural
Information Processing Systems, 34:2625-2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and Lehman go topological: message passing simplicial networks.
pages 1026-1037, 2021b.

11



Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Pietro Lid, Guido Montifar, and
Michael Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and over-
smoothing in gnns. Advances in Neural Information Processing Systems, 35:18527—-18541, 2022.

Luke Braithwaite, [ulia Duta, and Pietro Li0. Heterogeneous sheaf neural networks. arXiv preprint
arXiv:2409.08036, 2024.

Glen E. Bredon. Sheaf Theory, volume 170 of Graduate Texts in Mathematics. Springer, 1997.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18-42,
2017.

Eric Bunch, Qian You, Glenn Fung, and Vikas Singh. Simplicial 2-complex convolutional neural
nets. NeurlPS Workshop on Topological Data Analysis and Beyond, 2020.

Lucille Calmon, Michael T. Schaub, and Ginestra Bianconi. Higher-order signal processing with the
Dirac operator. In 56th Asilomar Conference on Signals, Systems, and Computers, pages 925-929.
IEEE, 2022.

Adam O Conghaile. Cohomology in constraint satisfaction and structure isomorphism. arXiv preprint
arXiv:2206.15253, 2022.

Justin Michael Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania,
2014.

Iulia Duta, Giulia Cassara, Fabrizio Silvestri, and Pietro Lio. Sheaf hypergraph networks. In Advances
in Neural Information Processing Systems 36 (NeurIPS 2023), 2023.

Stefania Ebli, Michaél Defferrard, and Gard Spreemann. Simplicial neural networks. NeurIPS
Workshop on Topological Data Analysis and Beyond, 2020.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3558-3565, 2019.

Michael Fourman, Christopher Mulvey, and Dana Scott, editors. Applications of Sheaves: Proceed-
ings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra and Analysis,
volume 753 of Lecture Notes in Mathematics. Springer, 1977.

Thomas Gebhart, Jakob Hansen, and Paul Schrater. Knowledge sheaves: A sheaf-theoretic framework
for knowledge graph embedding. In International Conference on Artificial Intelligence and
Statistics, pages 9094-9116. PMLR, 2023.

Robert Ghrist and Yasuaki Hiraoka. Applications of sheaf cohomology and exact sequences to
network coding. In NOLTA, 2011.

Patrick Gillespie, Vasileios Maroulas, and Ioannis D. Schizas. Bayesian sheaf neural networks. arXiv
preprint arXiv:2410.09590, 2024.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Int. Conf. Mach. Learn., pages 1263—1272. PMLR,
2017.

Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio
Barbarossa. Cell attention networks. In 2023 International Joint Conference on Neural Networks
(IJCNN), pages 1-8. IEEE, 2023.

Joseph A. Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Structures in
Computer Science, 2(2):159-191, 1992.

Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial attention networks. In ICLR
2022 Workshop on Geometrical and Topological Representation Learning, 2022.

Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. NeurIPS 2020
Workshop TDA and Beyond, 2020.

12



Mustafa Hajij, Karthikeyan Natesan Ramamurthy, Aldo Saenz, and Ghada Zamzmi. High skip net-
works: a higher order generalization of skip connections. In ICLR 2022 Workshop on Geometrical
and Topological Representation Learning, 2022.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Aldo Guzman-Séenz, Tolga Birdal, and
Michael T Schaub. Combinatorial complexes: bridging the gap between cell complexes and
hypergraphs. arXiv preprint arXiv:2312.09504, 2023a.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzman-Saenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K. Dey, Soham Mukherjee, Shreyas N.
Samaga, Neal Livesay, Robin Walters, Paul Rosen, and Michael T. Schaub. Topological deep
learning: going beyond graph data. arXiv, 2023b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Adv. Neural Inform. Process. Syst., 30, 2017.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks. In Workshop on Topological Data
Analysis and Beyond, 2020.

Jakob Hansen and Robert Ghrist. Learning sheaf laplacians from smooth signals. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5446-5450. IEEE, 2019a.

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied
and Computational Topology, 3(4):315-358, 2019b.

Mikhail Hayhoe, Hans Riess, Victor M Preciado, and Alejandro Ribeiro. Stable and transferable
hyper-graph neural networks. arXiv preprint arXiv:2211.06513,2022.

Ferran Hernandez Caralt, Guillermo Bernardez Gil, Iulia Duta, Pietro Li0, and Eduard Alarc6n Cot.
Joint diffusion processes as an inductive bias in sheaf neural networks. In Proceedings of the
Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM), vol-
ume 251 of Proceedings of Machine Learning Research, pages 249-263. PMLR, 29 Jul 2024.

Yiming Huang and Tolga Birdal. Hog-diff: Higher-order guided diffusion for graph generation. arXiv
preprint arXiv:2502.04308, 2025.

Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and Yue Gao. Dynamic hypergraph neural
networks. In IJCAI, pages 2635-2641, 2019.

Eun-Sol Kim, Woo Young Kang, Kyoung-Woon On, Yu-Jung Heo, and Byoung-Tak Zhang. Hyper-
graph attention networks for multimodal learning. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 14581-14590, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, pages 1097-1105,
2012.

Henry Kvinge, Brett Jefferson, Cliff Joslyn, and Emilie Purvine. Sheaves as a framework for
understanding and interpreting model fit. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 42224230, 2021.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems, 33(12):6999-7019, 2021.

Wenfei Liang, Yanan Zhao, Rui She, Yiming Li, and Wee Peng Tay. Fedsheathn: Personalized
federated learning on graph-structured data. CoRR, abs/2405.16056, 2024.

Edward C. Mitchell, Brittany Story, David Boothe, Piotr J. Franaszczuk, and Vasileios Maroulas. A
topological deep learning framework for neural spike decoding. Biophysical Journal, 2024. doi:
https://doi.org/10.1016/j.bpj.2024.01.025.

13



Bao Nguyen, Lorenzo Sani, Xinchi Qiu, Pietro Lio, and Nicholas D. Lane. Sheaf hypernetworks for
personalized federated learning. 2024. arXiv:2405.20882.

Theodore Papamarkou, Tolga Birdal, Michael M Bronstein, Gunnar E Carlsson, Justin Curry, Yue
Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, et al. Position: Topological
deep learning is the new frontier for relational learning. In International Conference on Machine
Learning, pages 39529-39555. PMLR, 2024.

M. Papillon, M. Hajij, A. Myers, F. Frantzen, G. Zamzmi, H. Jenne, J. Mathe, J. Hoppe, M. Schaub,
T. Papamarkou, A. Guzmdan-Séenz, B. Rieck, N. Livesay, T. Dey, A. Rabinowitz, A. Brent,
A. Salatiello, A. Nikitin, A. Zia, C. Battiloro, D. Gavrilev, G. Bokman, G. Magai, G. Bazhenov,
G. Bernardez, I. Spinelli, J. Agerberg, K. Nadimpalli, L. Telyatninkov, L. Scofano, L. Testa,
M. Lecha, M. Yang, M. Hassanin, O. H. Gardaa, O. Zaghen, P. Hausner, P. Snopoff, P. Melnyk,
R. Ballester, S. Barikbin, S. Escalera, S. Fiorellino, H. Kvinge, J. Meissner, K. N. Ramamurthy,
M. Scholkemper, P. Rosen, R. Walters, S. N. Samaga, S. Mukherjee, S. Sanborn, T. Emerson,
T. Doster, T. Birdal, V. Grande, A. Khamis, S. Scardapane, S. Singh, T. Malygina, Y. Yue, and
N. Miolane. ICML 2023 topological deep learning challenge: design and results. In Proceedings
of 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML),
volume 221, pages 3—8. PMLR, 2023.

Robert Peach, Matteo Vinao-Carl, Nir Grossman, Michael David, Emma Mallas, David J Sharp,
Paresh A Malhotra, Pierre Vandergheynst, and Adam Gosztolai. Implicit gaussian process repre-
sentation of vector fields over arbitrary latent manifolds. In The Twelfth International Conference
on Learning Representations.

Antonio Purificato, Giulia Cassara, Federico Siciliano, Pietro Li0, and Fabrizio Silvestri. Sheaf4rec:
Sheaf neural networks for graph-based recommender systems. ACM Transactions on Recommender
Systems, 2023.

Michael Robinson. Topological signal processing, volume 81. Springer, 2014.

Amit Singer and H-T Wu. Vector diffusion maps and the connection laplacian. Communications on
pure and applied mathematics, 65(8):1067-1144, 2012.

Yellamraju V. Srinivas. A sheaf-theoretic approach to pattern matching and related problems.
Theoretical Computer Science, 112(1):53-97, 1993.

Otto Sumray, Heather A Harrington, and Vidit Nanda. Quiver laplacians and feature selection. arXiv
preprint arXiv:2404.06993, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Velickovi¢. Message passing all the way up. ICLR 2022 Workshop on Geometrical and
Topological Representation Learning, 2022.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Arne Wolf and Anthea Monod. Topological community detection: A sheaf-theoretic approach. In
International Conference on Complex Networks and Their Applications, pages 29-42. Springer,
2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

14



Copresheaf Topological Neural Networks:
A Generalized Deep Learning Framework
—Supplementary Material—-

Table of Contents

A Notation

[B~ Sheaves and Copresheaves on Graphs: A Category Theorefical Look]

[C Copresheaf Laplacian, Energy, and CTNN Transport—diffusion|

[D Expressive Power of CINNg|

Sheaf Neural Networks Are Copresheat Message-Passing Neural Networks|

[FA General Copresheal-Based Transformer Layer]

|G Copresheaf Learning on Euclidean Data|

H _Experiments

[[__Extended Related Work on Topological and Sheaf Neural Networks|

15

16

16

21

22

23

25

26

27

37



A Notation

We provide a reference summary of the notation and acronyms used throughout the main text. Table[3]
details key mathematical symbols, while Table [6]lists abbreviations and their expansions.

Table 5: Summary of key notation used throughout the paper.

Notation Description

S Underlying vertex set of a combinatorial complex (Def. 1)

X Set of nonempty cells C P(S) (Def. 1)

P(S) Power set of S (Def. 1)

rk: X = Z>g Rank function on cells, mapping to non-negative integers (Def. 1)
Z>g Non-negative integers

XF {x € X : tk(z) = k}, the k-cells (Def. 1)

dim X Dimension of the complex, max,e x rk(z) (Sec. 2.1)

N:X - PX) Neighborhood function, mapping cells to sets of neighbor cells (Def. 2)
Naugi Adjacency neighborhood function (Def. 2)

Nine Incidence neighborhood function (Def. 2)

X Effective support of N, {z € X | N'(z) # 0} (Sec. 3)

G e {0,1}mxn Binary neighborhood matrix (Def. 3)

GV Copresheaf neighborhood matrix, entries p.,,,; or 0 (Def. 7)
Py—a Copresheaf morphism F(y) — F(x) for edge y — x (Def. 4)
A, Copresheaf adjacency matrix between r-cells (Def. 8)

B, Copresheaf incidence matrix between ranks r and k (Def. 8)
Ck(x, F) k-cochain space, @, ¢ y» F(x) (Sec. 3)

Hom(F(4), F(5)) Space of linear maps from F (i) to F(j) (Def. 7)

h&“ Feature vector at cell z in layer ¢ (Prop. 1)

«a Learnable message function (Prop. 1)

8 Learnable update function (Prop. 1)

&) Permutation-invariant aggregator (Prop. 1, Prop. 3)

G=(V,E) Directed or undirected graph (Sec. 2.2)

Gy = (X, Ex) Directed graph induced by NV, edges y — z if y € N (z) (Def. 6)
F(x), F(e) Stalks: vector spaces at vertex « or edge e (Def. 4, Def. 5)

Fu<e : F(x) = F(e) Restriction map in a cellular sheaf for x < e (Def. 5)
Coboundary map, measures local disagreement in cellular sheaf (Sec. 2.2)

Ar Sheaf Laplacian, Az = 67§ (Sec. 2.2)

V, Z Collections of cells, used in neighborhood matrices (Def. 3, Def. 7)

Wy, Wi, W, Learnable projection matrices for queries, keys, values in copresheaf self-attention (Prop. 4)
Qus ks Vg Query, key, and value vectors for cell x in copresheaf self-attention (Prop. 4)

Gy Attention coefficient for cells x and y in copresheaf self-attention (Prop. 4)

B Sheaves and Copresheaves on Graphs: A Category Theoretical Look

This appendix provides a category-theoretic exposition of sheaves and copresheaves, emphasizing
their definitions within the language of category theory. Additionally, we illustrate the construction
of copresheaf neighborhood matrices through explicit combinatorial examples, instantiating the
concepts developed in the main text.

B.1 Copresheaves

Before diving into the technical definition, it is helpful to think of a copresheaf as a way of assigning
data that flows along the structure of a graph, like signals along neurons, or resources in a network.
In categorical terms, this structure formalizes the idea of consistently associating elements of some
category C.

Definition 12 (Copresheaf on a directed graph). Let G = (V, E) be a directed graph, and let C be a
category. A copresheaf on G is a functor F : G — C, where the graph G is regarded as a category
whose objects are the vertices 1/, and whose morphisms are the directed edges (x — y) € E. When
C = Vectp, this structure corresponds to a quiver representation.

16



Table 6: List of acronyms used throughout the paper.

Acronym Expansion

CcC Combinatorial Complex

CTNN Copresheaf Topological Neural Network
CMPNN Copresheaf Message-Passing Neural Network
SNN Sheaf Neural Network

GNN Graph Neural Network

CNN Convolutional Neural Network

CT Copresheaf Transformer

CGNN Copresheaf Graph Neural Network

GCN Graph Convolutional Network
GraphSAGE Graph Sample and Aggregate

GIN Graph Isomorphism Network
CopresheaftGCN  Copresheaf Graph Convolutional Network
CopresheafSage  Copresheaf Graph Sample and Aggregate
CopresheafGIN  Copresheaf Graph Isomorphism Network
NSD Neural Sheaf Diffusion

SAN Sheaf Attention Network

MLP Multi-Layer Perceptron

GAT Graph Attention Network

CAM Copresheaf Adjacency Matrix

CIM Copresheaf Incidence Matrix

CNM Copresheaf Neighborhood Matrix

B.2 Cellular Sheaves

Definition 13 (Cellular sheaf on an undirected graph). Let G = (V, E) be an undirected graph.
Define the incidence poset (P, <), where P = V U E, and the order relation is given by z < e
whenever vertex x € V is incident to edge e € E. A cellular sheaf on G with values in a category C
is a functor F : P — C, which assigns:

* to each vertex = € V, an object F(x) € C;
* to each edge e € F, an object F(e) € C;
* to each incidence relation z < e, a morphism F,<. : F(x) — F(e), called a restriction map,

such that the functoriality condition is satisfied on composable chains in the poset.

B.3 Comparison Between Copresheaves and Cellular Sheaves

Copresheaves provide a versatile and powerful framework for machine learning applications across
diverse domains, particularly excelling in scenarios where directional data flow and hierarchical
dependencies are paramount. Unlike cellular sheaves, which are defined over undirected graphs
and enforce consistency through restriction maps F,<. : F(x) — F(e), copresheaves operate on
directed graphs, assigning learnable linear maps p,_,,, : F(z) — F(y) along edges. This enables
anisotropic information propagation, making them ideal for tasks such as physical simulations, where
data flows asymmetrically, as in fluid dynamics or heat transfer, or natural language processing, where
sequential word dependencies dominate. More importantly, the vertex-centric design, assigning
vector spaces F(x) solely to vertices, aligns seamlessly with message-passing architectures like
Graph Neural Networks (GNNs) and Topological Neural Networks (TNNs), allowing these maps to
be parameterized and optimized during training. Empirical evidence from our experiments highlights
that copresheaf-based models outperform traditional architectures in capturing complex dynamics,
demonstrating their superior ability to model spatially varying patterns and long-range dependencies
in general applications. See Table[7|for a summary of the comparison between copresheaves and
cellular sheaves.

Furthermore, copresheaves enhance machine learning models with a principled approach to regu-
larization and expressiveness, broadening their suitability across heterogeneous domains. Standard
neural network regularizers, such as /5 decay or dropout, can be readily applied to copresheaf maps,

17



with optional structural losses like path-consistency ensuring morphism compositionality. This
adaptability stands in stark contrast to the rigid cohomological constraints of cellular sheaves, which
enforce local-to-global agreement through terms like || F, <. (h,) — h.||?, limiting their flexibility in
domains with asymmetric relationships. Copresheaves, by learning edge-wise maps, offer greater
expressiveness for tasks involving non-Euclidean or multi-scale data, as evidenced by the superior
performance of CopresheafConv layers on grid-based tasks. This makes them particularly effective
for applications such as image segmentation, 3D mesh processing, or token-relation learning, where
traditional methods like Convolutional Neural Networks (CNNs) struggle with directional or hierar-
chical structures. Our experiments further corroborate that copresheaf-augmented models consistently
improve accuracy and detail recovery across diverse tasks, positioning them as a more suitable and
generalizable tool for machine learning applications spanning Euclidean and non-Euclidean domains

alike.

Table 7: Comparison between copresheaves and cellular sheaves.

Aspect

Copresheaf

Cellular sheaf [Hansen and Ghrist}[2019b]

Graph type
Assigned to vertices
Assigned to edges

Associated maps
Map direction
Interpretation

Goal / Objective
Typical Regularization

Use in learning

Directed graph G = (V, E)

Vector space F(x) foreachz € V

Linear map pz—, : F(x) — F(y) for each di-
rectededgex -y € B

Pushforward: moves data forward along edges
F(x) — F(y) (source to target)

Nodes have local features; edges transform and
transmit them

Learn and compose edge-wise feature-space maps
Standard NN regularizers (¢2 decay, spectral-
norm, dropout, norm); optional structure losses
(path-consistency, holonomy)

Embedding-level message passing, directional in-
fluence, anisotropic information flow

Undirected graph G = (V, E)
Vector space F(x) foreachz € V
Vector space F(e) for each edge e € E

Restriction: pulls data back from vertices to edges
F(x) — F(e) (vertex to incident edge)

Edges represent shared contexts; vertex features
are restricted into them

Enforce coherence across by gluing local data
Agreement between restricted vertex features and
the edge-stalk, e.g., || Fo<e(hs) — heH2

Compatibility across shared structures, enforcing
local consistency, cohomological constraints

B.4 Copresheaf Neighborhood Matrix Example

Example 1. Setup. Let the combinatorial complex X = (S, X, rk) have symbols S = {a, b, ¢, d}

and cells
X0 = {{a},{b},{c},{d}},
Xt = {{a,b},{b,c},{c,a},{d, b}, {c,d}},
X% = {{a,b,c},{d,b,c}}.

Ranks satisfy rk(X?) = 0, tk(X?1) = 1, rk(X?) = 2. Geometrically, this is the union of two

triangles (a, b, ¢) and (d, b, ¢) sharing the edge {b, c}.

Let £ = [eq, ea, €3, €4, e5] with
elz{aab}7 62:{b7 C}a 64:{d7 b}7

es={c,a}, es={c,d}.

Edge-via—face neighborhood. Define Nx : X! — P(X!) by
Na(e) = {e’e)(l: Jfex?witheC f, ¢ C f, e’;ée}.

Thus, two edges are neighbors iff they both bound the same 2-cell. Concretely,

Naler) = {ez,e3}, Nale2) = {e1,e3,€4,e5},
NA(63) = {61762}a NA(eﬁl) = {62765}a NA(SE}) = {62764}-
The effective support is Xnr = X! (edges only).

Induced directed graph. The induced directed graph G-, = (V)v, Exr) has vertices Vi = X! and
directed edges
Eny={e —elecx! ¢ ecNale)}

Messages flow from an edge ¢’ to an adjacent edge ¢ whenever both bound a common triangle.

Copresheaf on the edge-adjacency poset. Assign to every edge a feature space F(e) = R2. For
each directed adjacency ¢/ — e, attach a linear map p./_,. : R? — R2. To keep notation compact,

18



we write diagonal maps as diag(c, ) and Ids for the 2 x 2 identity:
Pes—e; = diag(1,0.8),  pes—e, = diag(1,0.6);
Pei—e, = diag(1,0.8),  pey—e, = diag(1,0.8),  pe,—e, =Id2,  pes—e, = diag(1,0.6);
Pey—es = diag(1,0.6),  pe,—e, = diag(1,0.8);
Pey—ses = Ida,  pes—e, = diag(1,0.7);
Pes—es = diag(l, 0.6)7 Pes—es = diag(l, 0.7).
(Any consistent choice works; the point is a map per directed adjacency ¢’ — e.)

Copresheaf Neighborhood Matrix (CNM). For the ordering £ = [e1, €2, €3, €4, €5], the CNM
GN2 ¢ (R2X2)5X5 has block entries

[GNA] _ {pej*)ei7 lfej GNA(ei)7

i 0540, otherwise.
Displayed explicity as:
02x2  Pes—ser  Pes—er  0O2x2 022
N Pei—es 02><2 Pes—es Peys—es Pes—es
G2 = | peyses  Pes—es  0axa 022 022
O2x2  Pes—ses  O2x2 O2x2  Pes—ses
O2x2  Peyses  O2x2  peyses  O2x2
See Figure 3]

’ o AN

0252 Pes—ser Pes—er O2xz2 O2xe2
Pei—eq 0252 Pes—ses Pesj—es Pes—es
Per—es Pes—es  02x2 O2x2 O2x2

€3 @0 022 peyses O2x2 O2x2  Pesey
a c €5 €4 02x2  Peyses 02x2  Peyses O2x2
(@) () (©)
Figure 3: (a) A combinatorial complex X = (§,X,rk) with § = {a,b,c,d}, edges

Xt = {{a,b},{b,c},{c,a},{d,b},{c,d}}, and faces X? = {{a,b,c},{d,b,c}}. (b) Induced
edge—adjacency digraph: nodes represent the edges of X" and the edges represent the face adjacencies.
(c) Copresheaf neighborhood matrix GV=.

This CNM performs edge-to-edge directional message passing along face-adjacency: each edge e;
aggregates transformed features from its face-adjacent neighbors e; via the maps pe; ¢,. The shared
edge naturally becomes a high-degree conduit between the two triangles.

Example 2. We define a copresheaf neighborhood matrix (CNM) for a combinatorial complex with
an incidence neighborhood, guiding the reader through the setup, neighborhood, graph, copresheaf,
and matrix.

Setup. Consider a combinatorial complex X = (S, X,rk) with § = {a,b,c}, cells X =

{{a},{b},{c} {a,b},{b,c}}, and ranks rk({a}) = rk({b}) = rk({c}) = 0, rk({a,b}) =
tk({b,c}) = 1. Thus, X0 = {{a}, {b}, {c}}, X' = {{a, b}, {b,c}}. See Flgure

Incidence neighborhood. The incidence neighborhood Ny : X — P(X) is:
MnC(x) ={yeX|zCy}

For O-cells: Miyc({a}) = {{a, b}},Mnc({b}) = {{a, b}, {b,c}}, Nine({c}) = {{b, c}}. For 1-cells:
Nine({a, b}) = Nine({b, c}) = 0. The effective support is Xpr = {{a}, {b}, {c}}.

Induced graph. We induce a directed graph Gar = (Vinr, Er), with:
Vv =Xn U U Mnc(m) = {{a}v {b}’ {C}’ {a” b}’ {b’ C}} =X,

Env={y—z|x€Xn,y€ Nn()}
= {{a,b} = {a},{a,b} = {b},{b,c} — {b},{b,c} = {c}}.

19



Plab}—{a} Plbe}—{v} Plab}—{a} Pib.c}—{b} {a,b} {b,c}

0

Prosi-r) O B Lo e O
aOJ L,Oc GNine—b | Pra by —{b} Plb,c}—{b}
a ¢ c 0 Pib,cy—{c}

Plaby={b}  P{bc}—{c}

@ (b) ©

Figure 4: (a) A combinatorial complex X = (§,X,rk) with & = {a,b,c}, cells X =
{{a},{b},{c},{a,b},{b,c}}. The figure also indicates the induced directed graph G,
(Vwr, Enr) from the incidence neighborhood structure on the combinatorial complex X. Each arrow
z — y represents a directed edge from a 1-cell to a O-cell where y C z, and is associated with a
linear map p,_,,, as part of the copresheaf. (b) The induced directed graph G, = (V, Enr) from
the incidence neighborhood structure Ai,. (c) The copresheaf neighborhood matrix (CNM) GN‘"C,
where rows are indexed by 0-cells {a}, {b}, {c} and columns by 1-cells {a, b}, {b, c}. The matrix
entries are linear maps p,_,, when z € N (y), and O otherwise. This matrix supports directional
feature propagation from 1-cells to 0-cells.

Copresheaf. The N\,.-dependent copresheaf assigns F(x) = R? to each z € V), and linear maps
Py—sz R?2 5 R%fory — = € Ep:

|1 0 . 110 |10
Plapy—={a} = | 05| Plady={b} = Plbe}={b} = |g 1]° Pload={r= |o 075"

Neighborhood matrix. The CNM GV for Y = X0, Z = X1 is:

[GN),; = Pzy—y,  if 2j € Nine(i),
d 0 otherwise.

For Y = {{a},{b},{c}}, 2 = {{a, b}, {b, ¢} }:

v P{a,b}—{a) 0
G = | plap)={py  Plber—{b}
p{b,c}%{c}

This matrix facilitates message passing from 1-cells to O-cells, e.g., bond-to-atom feature propagation.

More generally, Figure[5|shows an illustrative example of the general setup of copresheaf higher-order
message passing on a CC with multiple neighborhood functions.

Dg® .
Ni(z) ] Na(z)

N3()
Figure 5: Illustration of copresheaf higher-order message passing. Left-hand side: Shows a central
cell z (as a circle) with arrows pointing to boxes labeled N (z), Na(z), . .., Nk (z), representing

the collection of neighborhood functions 9t = {N};}7_,. Right-hand side: Depicts the message-
passing process for the same cell z. Each neighborhood N () produces an aggregated message

using @, v, (2) N (Py—a (h@(f))). These messages are then combined using the inter-neighborhood
function (3, shown as a box, with an arrow updating x.

20



C Copresheaf Laplacian, Energy, and CTNN Transport-diffusion

In this section we introduce a linear transport-discrepancy operator B, that maps node fields to edge

discrepancies, define the quadratic energy F, and the associated Laplacian L, = B; W B, derive

its block form and kernel, and show that a CTNN residual layer implements an explicit gradient
step that monotonically decreases I, for suitable step sizes. This energy perspective provides an
interpretable and theoretical foundation for the CTNN architecture, framing it as a diffusion process
that minimizes a specific energy function. Our copresheaf Laplacian also coincides with the quiver
Laplacian [Sumray et al.,[2024] when viewing the transport maps as arrow representations, connecting
our framework to established spectral methods while enabling directional, anisotropic information
flow distinct from the symmetric diffusion in sheaf-based models Bodnar et al.|[2022].

Spaces and operator. Let (F, p, G) be a copresheaf defined on a directed graph G = (V, E). To each
node x € V attach a finite-dimensional real inner-product space F'(z). For every edgey — x € E
fix a linear transport p,—,, : F'(y) — F(x). Define the node and edge product spaces

Hy = @F(m), He = EB F(z),

zeV (y—z)eE
equipped with canonical (blockwise) inner products (h,h)y = erv<hmvl~1m> and (£,€)p =
Z(yax)eE@yﬁmgl/Hw)
Definition 14 (Transport-discrepancy operator). The linear operator
B,: Hy — HE
is defined componentwise by
(Boh)(y—gy = hy — py_ohy € F(x), V(y—zx)€E. (8)

Let B; : Hrp — Hy denote the Euclidean adjoint. A direct calculation yields

(By&o = > &z — D Pisibons  Vz eV, E€Hp. ©)

y—x Tz

Definition 15 (Energy and copresheaf Laplacian). Let w,_,, > 0 be edge weights and define the
diagonal operator W : Hg — Hg by (WE&)y—e = wy—q §y—a. The weighted transport energy and
the copresheaf Laplacian are

Eﬂ(h) = HB/)hH%/V = Z Wy —a (e *Py—mhy”Za L, = BpTWBp' (10)
(y—z)EE

Remark 2 (Relation to quiver Laplacian). Interpreting the transports p,,_,, as arrow maps of a quiver

representation, the copresheaf Laplacian L, in Equation[T0|coincides with the standard (weighted)

quiver Laplacian BT W B of that representation. See Sumray et al.| [2024] for more about the quiver
Laplacian.

It is sometimes useful to have the copresheaf Laplacian in its exact nodewise form. Namely, for
every outgoing edge x — z with map p,_,, and weight w,_, ,, include the reverse edge z — x
with p, ., = p;'— _,, and w,_,, = wg_,,. With this convention one has the nodewise form of the
copresheaf Laplacian:

(Loh)e = > wya(ha — pyszhy). (11)
yEN(z)
Theorem 2. With wy_,, >0, L, = B; W B, : Hy — Hy is symmetric positive semidefinite and
h'L,h = | B,h||, > 0. Its block action at node z is
(Lph)x = Z Wy —x (hx - py—mhy) + Z Wy —z pI—)z (p:c—mhw - hz)
y—x Tz
Moreover,
ker L, = ker B, = {h €Hy : hy =pyhyforally =z € E}

Proof. P.s.d. and the quadratic identity follow from L, = B; W B, with W = 0. The block formula
follows by expanding B (W B,h) Via Finally, | B,h|%, =0 < B,h=0. O

21



C.1 CTNN/CMPNN residual as copresheaf diffusion.

From the copresheaf message passing equation in Definition [9] choose the edge message
a(hy, py—zhy) = hy — p, . hy,, sum aggregation, and residual update 8(h,, m) = h, — nm.
Then a CTNN/CMPNN layer updates

R =h® — 1 3w, (h;@ - py_mhée)) — (I-nL,)h®. (14)
yEN (z)

We have the following theorem.

Theorem 3. For F, in (13),

VE,() = 2L, B =h® —yV(1E,)n®).

Hence (14) is an explicit gradient step on 3 E,,. If 0 < i < || L,||3 ", then E,(h“+Y) < E,(h®),
with strict inequality whenever h(*) ¢ ker L,. Moreover, I — 1L, is non-expansive in || - ||> and
strictly contractive on ker Lﬁ, so h(®) converges to the orthogonal projection of h(®) onto ker L o

Proof. Since E,(h) = (B,h) "W (B,h), the chain rule gives VE,(h) = 2B W B,h = 2L,h, so
(14) is gradient descenton 3 E,. Let L, = UAU " with A = diag(\; > 0) and write h(*) = Uc(.
Then cl(-“_l) =(1- n)\i)c,ge) and E,(h®) = 3", )\i(c,ge))z. If 0 < nA; < 1 for all 4, then
Ai(1 —n);)? < \;, giving monotone decay, strict if some \; > 0 has cz@ # 0. Non-expansiveness
and convergence follow from |1 — n)\;| < 1 (and < 1 for A; > 0). O

Remark 3. p,_., may be (i) direct per-edge linear maps, (ii) factored as p,_,, = Fa:T F, to reduce

parameters, or (iii) constrained (e.g. softly orthogonal via || p; —wPy—z — I||%) to regularize the
spectrum of L,. A learnable (possibly per-layer/head) stepsize 7, normalized by a running estimate

of || L,||5 ", enforces the energy-decay guarantee in Theorem When py—,» = I, (13) reduces to the
(vector-valued) graph Laplacian; orthogonal p recovers a connection Laplacian.

D Expressive Power of CTNNs

D.1 Universal Approximation of \/-Dependent Copresheaves

Here, we demonstrate that multilayer perceptrons (MLPs) can approximate arbitrary copresheaf
morphisms induced by neighborhood functions. This result ensures that the proposed sheaf-based
model is sufficiently expressive to capture complex data interactions.

Proposition 2 (Universal approximation of \-dependent copresheaves). Let X be a finite combina-
torial complex and N\ a neighborhood function on X'. Suppose Gpr — Vectg is an N -dependent
copresheaf with stalks 7V () = R? and morphisms y—az- Let a feature map

h: X > RY 2—h,

be given so that the 2d-dimensional vectors (h,, h,) are pairwise distinct for every directed edge
y — x. Define

A={(hy,h,) |y—2} C R g:A—-R>™  g(hy,h,)=p),,.

Then for any ¢ > 0 there exists a multilayer perceptron ®: R2? — R?¥9 with sufficiently many
hidden units such that ||®(hy, h,) — pﬁf_mH <eforally — x.

Proof. Since A is finite and its elements are distinct, the assignment g: A — R?*? is well-defined.

Enumerate A = {a; };c1, choose disjoint open neighborhoods U; > a;, and pick smooth “bump”
functions
@it R* = [0,1], ¢i(a;) =1, supp(p;) C Us.
Then the sum
fla) =Y glai) ila)

i€l

22



is a smooth map f: R?? — R4*? satisfying f|4 = g.

Since A is finite, choose a compact set X C R?¢ containing A, ensuring the applicability of the
Universal Approximation Theorem. By that theorem, for any € > 0 there is an MLP ® such that

Sup||<I)(a) — f(a)” <e.
aeK
In particular, for each a; € A we have

[®(ai) — gla)|| = |@(hy, he) = o[ <,

for every y — x. This completes the proof. O

E Sheaf Neural Networks Are Copresheaf Message-Passing Neural Networks

The computational use of a cellular sheaf on a graph rests on the incidence poset. Let G = (V, E)
and consider the poset on VUE with x < e whenever z € e. A cellular sheaf F assigns a vector
space to each cell and a linear structure map to each incidence. In our convention, the “restriction”
along x < e is implemented as a vertex-to-edge lift F, <. : F(x) — F(e). Equipping F(e) with an
inner product yields the adjoint F,|;_ : F(e) — F(z), a canonical edge-to-vertex back-projection.
Message passing between adjacent vertices then arises by composing incidence maps: for e = {z, y},
the message from y to x is
]:r;rgle O Jyde * F(y) = F(x).

This composition induces a direction of information flow on an undirected graph while remaining
faithful to the sheaf poset structure. Diffusion-style updates and sheaf-Laplacian operators are
recovered by aggregating such edge-mediated messages over ' (z). See Figure E] for an illustration.

]:z<]e -Fy<]e
}'(x)/\ . /\ Fly)
O——0

(a) (b)

Figure 6: Sheaf-induced message passing on an edge e = {z,y}. (a) Local spaces
F(zx), F(y), F(e) with vertex-to-edge lifts F <. and Fy, <. along the incidences z < e, y < e.
(b) Incidence-poset view: arrows encode the sheaf’s linear maps attached to x < eand y <X e. (¢)
Edge-mediated message passing: the inner product on F (e) yields adjoints ]—';4 .- The message from
y to x is the composition F, 0 F, <., i.., a direct vertex-to-vertex morphism py, . : F(y) — F(z),
compatible with the bidirected expansion G’. This realizes SNN message passing as CMPNN mor-
phisms assembled from sheaf structure maps.

In this appendix, we prove Theorem [I] and Proposition [T} which demonstrate that existing sheaf
neural networks (SNNs), including sheaf diffusion networks, are special cases of the copresheaf
message-passing neural network (CMPNN) framework (Definition [9). Moreover, we summarize
how other sheaf-based neural architectures align with our unifying message-passing framework (see

Table [g).

Proof of Theorem[I] We construct the bidirected graph G’ and define the copresheaf G on it, then
demonstrate the equivalence of the message-passing operations.

First, construct the bidirected graph G’ = (V, E’) from G = (V| E) by replacing each undirected
edge {z,y} € E with two directed edges (z,y), (y,z) € E’. This ensures that G’ retains the
connectivity of G while introducing explicit directionality.

Next, define the copresheaf G : G’ — Vecty as follows:

* For each vertex € V, assign G(x) = F(x), where F(x) is the vector space associated with x by
the cellular sheaf F.

* For each directed edge (y, ) € E’, corresponding to the undirected edge e = {x,y} € F, define
the linear morphism p, . : G(y) = G(@) by py—sz = Foae © Fyae» Where Fyae : F(y) — F(e)

23



and F,.. : F(z) — F(e) are the restriction maps of F, and F,.

e F(€) = F(x) is the adjoint
with respect to an inner product on F(e).

Now, consider the SNN message-passing mechanism along the edge e = {x, y}. For a feature vector
h, € F(y) at vertex y, the message transmitted to vertex  is given by F,. 0 Fy«e(hy).

In the copresheaf G on G’, the morphism associated with the directed edge (y, ) is py—z = Foqe ©

Fy<e- Applying this morphism, the message-passing operation in the CMPNN yields py_,5(h,) =
Fe © Fyae(hy), which is identical to the SNN message.

x<e

To ensure that G is a well-defined copresheaf, observe that it assigns vector spaces to vertices and
linear maps to directed edges in a functorial manner. Specifically, for each directed edge (y, z) € E’,
the map p,_, is a composition of linear maps and thus linear. The identity and composition properties
are satisfied implicitly through the consistency of the sheaf restriction maps.

Therefore, the SNN message passing, which operates via intermediate edge spaces in JF, is equiv-
alently represented as direct vertex-to-vertex message passing in the copresheaf G on G’. This
completes the proof. O

Proof of Proposition[l] Compute:
(In & W1>H = [Wlhr]m€V7

(Ar@I)(I, @ W) HW, = | Y L, Wih, Wa|

yev eV

hi=h,— > WyLp,,Wihy,
yeN (z)U{z}
since Lp 4, = 0 fory ¢ N(z) U {z}.
Interpret G as a directed graph with edges y — « for y € N'(z) and x — z. Define:

* Message function: a(hg, py—,hy) =W Lp, , Wih,,
* Morphisms: p,_,, implicitly encoded via L,z 5,

» Aggregator: & = >,

* Update: 8(h;, m) =h, —m.

Thus:

h;,r =p (hm, Z O‘(hzapy—mhy)> s

Yy—x

matching Definition 0] O

Table 8] provides a summary of sheaf neural networks realized in terms of Definition 0]

We finally prove the following theorem to show the relationship more precisely between CTNNS,
MPNNSs and SNNs.

Theorem 4 (CTNNSs strictly subsume SNNs and contain MPNNs). Let Fornn, FsnN, and FypNN
denote the function classes realized by Copresheaf Topological Neural Networks (CTNNs), Sheaf
Neural Networks (SNNs), and Message-Passing Neural Networks (MPNNs), respectively. Then

FsnN C FoTNN and Fupnn € FoTNN.

Proof. (1) Fsnn C Fornn. First from Theoremwe know Fsnn € Fernn- To prove the strict
containment, fix {u,v} € F and let F(u) = F(v) = R%. Define a CTNN on G’ by
Pov—u = I27 Pu—v = 0.
No SNN can realize this, since SNN transports necessarily reciprocate across an undirected edge:
Po—su = FLEFUQe = Pu—sv = FLeFuQS = P;rﬁu

Thus p,—,, = 0 would force p,_,,, = 0, contradicting p,_,,, = I». Therefore Fgnny C FornN 18
strict.

24



Table 8: Unified message passing formulations of various sheaf neural networks using our copresheaf
topological neural network (CTNN) notation given in Proposition @ The restriction maps py—,
may be linear, data-driven, or attentional depending on the model.

Method (Paper) Message Passing Equation Notable Features Restriction Map p, .
Linear restriction maps py— assigned  py—yz = FyaeFyae, fixed linear

Sheaf Neural Network per edge; enables high-dimensional, map, e = {z,y}

(SNN) direction-aware message passing via

Hansen & Gebhart (2020)

Neural Sheaf Diffusion
(NSD)
Bodnar et al. (2022)

Sheaf Attention Network
(SAN)
Barbero et al. (2022)

Connection Laplacian SNN
Barbero et al. (2022)

Heterogeneous Sheaf Neural
Network (HetSheaf)
Braithwaite et al. (2024)

Adaptive Sheaf Diffusion
Zaghen et al. (2024)

YEN (z)

h§’+1>:a<hFJJ+ 3 pyﬂhE/“)

xde YEN (x)

B+ :v< S any(hehy)py »Ihﬁ/”>

YEN (x)

Bt = o (hgw s Ox_,,h(y”>

yeN (x)

h¥+1>:g<h§’>+ > ﬂg,ﬂy;(hm,hq/)hg))

YEN ()

YEN ()

B S0 o (z pech® = S pmhsp)

sheaf structure.

Diffusion over learned sheaf Laplacian;
restriction maps py—, are learnable, re-
flecting edge-mediated interactions.

Attentional sheaf: attention weights v,y
modulate the restricted neighbor feature;
mitigates oversmoothing in GAT-style
setups.

Edge maps O, are orthonormal, de-
rived from feature space alignment; re-
duces learnable parameters and reflects
local geometric priors.

Type-aware sheaf morphisms: py—.
depend on node and edge types, en-
abling structured heterogeneity across
the graph.

Nonlinear Laplacian-like dynamics with
adaptive, feature-aware restriction maps
Py enhances expressiveness and lo-

py—sz = FraeFyae, learned lin-
ear map, e = {z,y}

py—a: learned linear map, pa-
rameterized to capture feature
space relationships

Ogy: orthonormal ~ matrix,
learned to align feature spaces
across edges

py—a: type-aware learned lin-
ear map, parameterized by node
and edge types

py—a: feature-aware learned
linear map, parameterized by
node features

e ( > pyoa(hahy) () — h;”))

cality.

(2) Fupnn € Fornn. Let an MPNN layer on a directed graph have the form

hq(f+1) = ¢1(1gp)d(h7(f)7 DvEN(u) qﬁfﬁgg(hy), h7(f)7 evu)) ’

for a permutation-invariant aggregator [J. The results follows immediately from Definition [T} O

F A General Copresheaf-Based Transformer Layer

The main idea to introduce a copresheaf structure to the transformer is the following. For every
ordered pair y — = (within an attention head) we define a parametrized copresheaf map

d d
Py—z R* —R ) Vy = Py Vy,

which transports the value vector from the stalk at y to the stalk at . Given attention weights
gy = softmax, e n(z) ((qLky)//d), the head message is m, = D yeN (z) Qay Py—a Vy-

In Definition [TT] we introduced the notion of copresheaf self-attention. A natural extension of this
definition is the copresheaf cross-attention.

Definition 16 (Copresheaf cross-attention). For source rank k, and target rank k;, with neighborhood
NS¢, define learnable projection matrices Wit € RP*d W=t e RPXde st ¢ Rb«xde
where d, and d; are the feature dimensions of source and target cells, respectively. We then propose
the copresheaf cross-attention as the aggregation and update hgﬂ) =0 (h,(f)7 mm) where m, =

D oyeN . () QaoyPy—a(Vy) With py_ + F(y) — F(x) being a learned map and

. exp((¢z, ky)/v/P)
Y en o) XD ((@us Ky ) //D)

where k, = W,fﬁthg(f), vy = Wjﬁthg(f) and for each target cell z € X%, ¢, = W;ﬁthg).

(12)

Figure[7illustrates the cross attention in the copresheaf transformer.

In Algorithm[T] we provide the pseudocode for our generic copresheaf-based transformer layer. This
algorithm outlines the layer-wise update rule combining self-attention within cells of equal rank and
cross-attention between different ranks, using learned copresheaf morphisms to transfer features
between stalks. It generalizes standard transformer mechanisms by introducing neighborhood-
dependent transformations.

25



My

I Py5—>a: Iazys

Uy, I —"pyﬁx I =
[0 Uy, ! M—»! Gay,
A—0 Uy I MH Qays
‘i vy L g
N(z)
(b)

(@) (©

Figure 7: Copresheaf cross-attention. (a) A target cell x (yellow) in a combinatorial complex with
its neighborhood NV () (red). Sources may be at a different rank than z (e.g., faces — vertex). (b)
Cross-attention schematic: each neighbor y € N (x) contributes a value v, that is first transported
into the target’s local feature space via a learned map p,_,, : F(y) — F(z); attention weights a,,
are computed from ¢, and k,,. (¢) Implementation view: for every y, apply py—s to vy, scale by a,,,
and sum to form the message m, = Zye N (z) Gay Py—z(vy), which updates h,. Transporting values
with p enables directional, cross-rank, and anisotropic information flow beyond standard attention.

General copresheaf-based transformer layer

1: procedure COPRESHEAFTRANSFORMERLAYER(X, N, {h") € F(z)}ucx)
2 for z € X* do > Self-attention on k-cells
3 @s — Wb, by —« Wih$), v, « Wb
4: mg < 0
5: for y € Ni(z) do
6: Azy < SOftmaXNk(z)(<qu ky)/\/f))
7. Vzy < py—a(vy)
8: My < Mg + QgyUgy
9: end for
10: R B(RSY, ma)
11: end for
12: for z € X*t do > Cross-attention from k; to k
13: gz — WthY
14: Mg < 0
15: for y € N, (z) do
16: ky <« W thiP | v, « WethP
17: Ay + softmaxy, ., (z)((qzs ky)//P)
18: Vzy = py—z(vy)
19: My < Mg + QgyUay
20: end for
21: R B(RYY, ma)
22: end for
23: return {hgf*'”}mex

24: end procedure

Algorithm 1: Copresheaf transformer layer integrating standard attention with learned co-
presheaf morphisms.

G Copresheaf Learning on Euclidean Data

The CopresheafConv layer leverages copresheaf structures to process data on a D-dimensional grid
X czZP, offering distinct advantages over traditional convolutional neural networks (CNNs). By
defining a copresheaf on a combinatorial complex (CC) constructed from the grid, where cells
represent grid points (0-cells) and their pairwise connections (1-cells), the layer employs learnable
morphisms p, 4 : F(y) — F(x) that dynamically adapt to directional relationships between points.
Unlike static convolutional filters, these morphisms capture anisotropic, directionally dependent
interactions, preserving topological nuances of the grid’s geometry. In contrast, regular convolutional
kernels enforce translation invariance, limiting their ability to model spatially varying or directional

26



patterns. The copresheaf is defined over an adjacency neighborhood function Nygj(z) = {y € X' |

{z,y} € X'}, restricting computation to local, grid-adjacent neighbors, thus ensuring efficiency
comparable to CNNs. The morphisms, potentially nonlinear, are conditioned on input features

hg), hl(f) and grid positions, enabling the layer to model complex, multi-scale dependencies. This
makes CopresheafConv ideal for tasks like image segmentation, 3D mesh processing, or geometric
deep learning, where local and hierarchical relationships are critical. Empirical results demonstrate
superior performance in capturing physical dynamics, showcasing the ability of CopresheafConv to
handle spatially varying patterns. Algorithm [2]shows the pseudocode for the CopresheafConv used
in our experiments.

CopresheafConv on a D-dimensional grid

1: procedure CoPrRESHEAFCONV(X C Z°, {th) € F(x) =R%},cx)

2 for z € X do

3: me + 0 € RO

4 for y € N(z) do

5: pPy—z  CopresheafMorphism(y, ) > map conditioned on hg), héa (and thus on

(z,9))

6: Mg < Mg + Py—a (hy))

7: end for

8: R my

O3 end for

10: return { h(f“)}zex

11: end procedure

12: procedure COPRESHEAFMORPHISM(y, ) > Return the learned copresheaf morphism py—; .,
potentially nonlinear, > conditioned on both source and target features (hgf)7 hy)).

13: return p,

14: end procedure

Algorithm 2: CopresheafConv on a D-dimensional grid.

H Experiments

H.1 Mechanistic Notes for Physics Experiments

Scope. The empirical results for advection and unsteady Stokes appear in the main text (Sec. [6.1} Tab.
(). This appendix augments those experiments with architectural rationale and ablations-informed
design choices, without introducing any new datasets, training budgets, or evaluation metrics.

Advection (pure transport). The advection equation
Oiu+c-Vu =0, u(x,t) = up(x — ct)

is a rigid translation. Classical self-attention aggregates values in a single global latent space, so
x <>y interactions are effectively symmetric and only weakly directional (positional encodings help
but cannot enforce upwind behavior). The copresheaf transformer (CT) replaces value mixing

classical __ CT __
My - E Qgy Uy by my, = E Qgy Py—z Vy,
yEN (z) yEN (z)

with a learnable edge map p, . : F(y) — F(x) before aggregation. This yields: (i) Directionality
(py—z 7 Pz—sy) for upwind-like asymmetry, (ii) Phase-faithful shifts (identity-near, head-wise
maps accumulate small signed translations coherently), (iii) Path compositionality: products of p
along y — x chains bias the model toward consistent transports.

Unsteady Stokes (incompressible viscous flow). For
du—rvAu+ Vp =0, V-u=0,

accuracy depends on encoding (i) anisotropic diffusion and (ii) rotational structure (vorticity), un-
der a divergence-free constraint. Standard attention lacks built-in diffusion geometry or frame

27



alignment. CT’s edge maps p,_., act as local linear operators that: (i) Align with diffusion ten-
sors: SPD/orthonormal variants (Table mimic smoothing/rotation along principal directions.
(ii) Support structured coupling: With cross-rank paths, CT allows vertex—edge/value transports
akin to discrete parallel transport and pressure—velocity interactions, without imposing global sheaf
consistency.

Take-away . Across both tasks, CT’s gains come from a geometric factorization of attention into
(weights) x (directional transport) with py_,, : F(y) = F(x),

not merely extra parameters. This aligns with the CTNN principle that heterogeneous stalks +
edge-specific morphisms provide natural inductive biases for transport-dominated and anisotropic
dynamics.

H.2 Synthetic Control Tasks

Six canonical univariate time—series patterns (normal, cyclic, increasing trend, decreasing trend,
upward shift, downward shift) are procedurally generated. We obtain 600 sequences of length 60
(100 per class), normalised to the interval [—1, 1], with an 80:20 split for training and test.

Models and set-up. A lightweight vanilla Transformer (32-d model, 4 heads, 2 layers)
is compared with an identically sized Copresheaf

. T Table 9: Synthetic control: mean-+std over 3
Transformer, where multi-head attention is replaced y

. : runs.
by a gated outer-product tensor-attention layer with
orthogqnahty (A = 0.01) and sparsity ()\.: 10._4) Model Max acc. (%)
regularisers. Both models share sinusoidal-with-
linear-decay positional encodings, use Adam (103 Standard Transformer 98.61 £ 0.40

learning rate), batch 32, train for 15 epochs, and each Copresheaf Transformer 99.44 + 0.39

experiment is repeated with three random seeds.

Results. As seen in Table[9] the Copresheaf Transformer yields a consistent improvement of +0.8-1.0
percentage points (pp) over the vanilla Transformer while remaining lightweight and training in
comparable wall-clock time (under one minute per run on a single GPU), highlighting the benefit of
richer token-pair transformations for recognition tasks.

H.2.1 Structure Recognition Datasets

In this experiment we consider two synthetic image datasets containing oriented ellipses or hierarchi-
cal triangles.

Dataset (oriented ellipses). Each 32x32 RGB image contains a single black ellipse on a white back-
ground. The horizontal and vertical semi-axes a, b are drawn uniformly from {4, 5, ..., 12} pixels,
and the ellipse is rotated by a random angle in [0, 180°). The task is to predict the coarse orientation
bin (4 bins of 45° each). We synthesise 6,000 images, keep 5,000:1,000 for train/validation, and
rescale pixels to [—1, 1].

Dataset (hierarchical triangles). Each 32x32 RGB image contains six coloured circles—red, green,
blue, yellow, cyan, magenta—placed on two nested equilateral triangles (inner radius 8 px, outer
12 px). Colours are randomly permuted. A hand-crafted hierarchy of linear maps (inner-triangle,
outer-triangle, cross-level) is applied to the circles’ one-hot colour vectors; the image is labelled
1 when the resulting scalar exceeds a fixed threshold, else 0. We generate 6,000 images and keep
5,000:1,000 for train/validation.

Models and set-up. Both tasks use the same compact Vision-Transformer backbone: 32-
dim patch embeddings (patch size 8), 4 heads, 2 layers, learnable positional embeddings,
AdamW (3 x 10~* learning rate). The
baseline is a Regular ViT; its counterpart
is an identically sized Copresheaf ViT in
which multi-head attention is replaceq bY  Dataset Regular ViT  Copresheaf ViT
an outer-product copresheaf mechanism . -
(stalk-dim = 8). Oriented Ellipses is O.rlented'ElllpS.eS 84.13 £4.12 96.23 £0.33
trained with batch 128: Hierarchical Tri- Hierarchical Triang.  95.47 +1.31 96.87 £+ 0.26
angles with batch 64. All runs use 30 epochs and three independent seeds.

Table 10: Validation accuracy on both synthetic vision
tasks (mean-=std over three seeds).

28



Results. Across both synthetic vision tasks the Copresheaf ViT consistently surpasses the Regular
ViT: a dramatic +12.1 pp gain on Oriented Ellipses and a subtler yet statistically tighter +1.4 pp
on Hierarchical Triangles, while also cutting variance by an order of magnitude in the latter case
(see Table[I0). These outcomes underscore that replacing standard attention with copresheaf-guided
outer-product maps yields robust improvements for both low-level geometric orientation recognition
and higher-level nested-structure reasoning, all without a significant increase of model size or training
budget.

H.2.2 Classifying Hierarchical Polygons

Similar to the previous section, we now synthesize a hierarchy of nested regular polygons. In
particular, each 32x32 RGB image contains a variable number n € {6, 8, 10} of coloured circles
arranged on two nested regular polygons (inner radius 8 px, outer 12 px). The first n/2 circles form
the inner polygon, the remainder the outer; colours are drawn from a palette of n distinct hues and
randomised per sample. A hierarchy of hand-crafted linear maps is applied to one-hot colour vectors:
pairwise maps on the inner polygon (Fiye), on the outer polygon (Goyer), and a cross-level map
H. The image is labelled 1 when the resulting scalar exceeds a threshold, else 0. For each n we
synthesise 6,000 images, keep 5,000:1,000 for train/validation, and normalise pixels to [—1, 1].

Models and training. We reuse the compact ViT backbone (32-dim patch embeddings, patch
size 8, 4 heads, 2 layers, learnable positional embeddings). The Regular ViT is compared with an
identically sized Copresheaf ViT, which replaces multi-head attention with rank-restricted copresheaf
outer-product maps (stalk-dim = 8). Both networks are trained for 10 epochs with AdamW (3 x 10~*
learning rate), batch 64; each configuration is run three times.

Results. Figure |§] shows that the Copresheaf ViT consistently exceeds the Regular ViT
at n=>6 ( 0.72 vs 0.66) and regains a clear lead at n=10 ( 0.63
vs 0.57) despite both models dipping at n=8. The Copresheaf
curve displays narrower uncertainty bands at the hardest setting,
indicating greater run-to-run stability. Overall, copresheaf-guided
attention scales more gracefully with combinatorial complexity,
capturing cross-level dependencies that standard self-attention
struggles to model.

Performance vs. Task Difficulty

—&~ Copresheaf Transformer
Regular Transformer

©
\4

o
o

Validation Accuracy

H.2.3 Airfoil Self-Noise Regression 6 ’/ 8 9 10

Number of Circles

The UCT airfoil dataset (1503 rows) maps five continuous de- Fjgyre 8: Validation accuracy
scriptors—frequency, angle of attack, chord length, free-stream (mean + 1 s.d., 3 runs) as task
velocity, Reynolds number—to the sound-pressure level (dB). gifficulty increases.

Inputs and target are min—max scaled to [0, 1]; we keep only

400:100 train/test samples for a low-data setting.

Models. Both regressors share a minimalist backbone consisting sequentially of the following: 64-d
token embedding 2-layer, 4-head transformer, mean pooling, scalar head. The copresheaf variant
swaps dot-product attention for learned outer-product maps p;; that depend on each token pair,
whereas the Regular baseline keeps standard self-attention. Training uses Adam (10~ learning rate),
1000 epochs, batch 32.

Results. On the small 100-sample test set the copresheaf regressor lowers MSE by 7.2% relative
to the regular transformer and maintains sub-

Table 11: Test MSE (mean=std over two runs).
10~ run-to-run variance (see Table [L1)), con- > ( std over two runs)
firming that pair-specific linear transports help Model MSE
model heterogeneous feature interactions even
in data-scarce regimes.

Regular Transformer  0.0223 £ 0.0001
Copresheaf Transf. 0.0208 £ 0.0002

H.3 Pixelwise Regression Tasks: Evaluating CopresheafConv2D Layers

We evaluate neural network models incorporating CopresheafConv2D layers, custom convolutional
layers with patch-wise trainable linear morphisms, against standard convolutional models across four
synthetic pixelwise regression tasks: PDE regression (Bratu and convection-diffusion equations),
image denoising, distance transform regression, and edge enhancement. In all tasks, Copresheaf-based

29



models consistently achieve lower Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)
compared to standard convolutional models, suggesting improved modeling of spatial structures and
relationships.

Task Definitions.

* PDE regression.
— Bratu equation. A nonlinear reaction—diffusion PDE:

fAu:g(:E,y) eu’ U|QQ: 0,
where g(z, y) is a source intensity.
— Convection-diffusion equation. A transport PDE:
—vAu+ ¢z Oyu+ ¢y Oyu = g(x,y), u|aQ: 0,

with diffusion v and velocities c,, c,.

* Image denoising. Recovering clean structured images (sinusoidal patterns with a Gaussian bump,
normalized to [0,1]) from Gaussian noise (¢ = 0.3).

* Distance transform regression. Predicting the normalized Euclidean distance transform of a binary
segmentation (thresholded at 0.5) of structured images.

» Edge enhancement. Predicting edge maps from structured images using a difference-of-anisotropic-
Gaussians (DoG) transformation.

Model and training setup. For PDE regression and distance transform tasks, we use U-Net
variants: CopresheafUNet (with CopresheafConv2D layers) and ConvUNet (with standard Conv2d
layers), both with a four-level backbone (64— 128—256—512 channels). For image denoising
and edge enhancement, we use four-layer convolutional networks: CopresheafNet and ConvNet
(1—-+8—16—8—1 channels). All models are trained on 64 x 64 inputs using the Adam optimizer
and MSE loss, with task-specific settings (learning rates 1073 or 10~%, batch sizes 8 or 16, 80300
epochs). Results are averaged over 3 random seeds.

Table 12: Mean (£ std over 3 seeds) of MSE and RMSE across all tasks.

MSE

RMSE

Task Model

Bratu Equation CopresheafUNet
ConvUNet

Convection—Diffusion ~ CopresheafUNet
ConvUNet

Image Denoising CopresheafNet
ConvNet

Distance Transform CopresheafUNet
ConvUNet

Edge Enhancement CopresheafNet
ConvNet

0.0001 £ 0.00020
0.0003 £ 0.00020
0.0004 + 0.00010
0.0006 + 0.00020
0.0010 £ 0.00010
0.0011 £ 0.00020
0.0001 £ 0.00002
0.0002 + 0.00003
0.0008 = 0.00010
0.0009 + 0.00020

0.0108 £ 0.0003
0.0183 £ 0.0007
0.0205 + 0.0010
0.0232 £ 0.0012
0.0310 £ 0.0010
0.0336 £ 0.0015
0.0105 + 0.0003
0.0156 + 0.0005
0.0283 £ 0.0010
0.0300 £ 0.0015

Take-away. Across all tasks, replacing standard convolutional layers with CopresheafConv2D layers
results in lower MSE and RMSE (see Table[2). This consistent improvement suggests that patch-wise
linear maps enhance the models’ ability to capture complex spatial patterns. These findings highlight
the potential of Copresheaf-based architectures for pixelwise regression problems. Subsequently,
we address two challenges related to token classification: real/fake token sequence detection and
segment-wise token classification. Finally, we conduct a preliminary study on shape classification
using copresheaf-augmented attention and graph classification a molecular benchmark, MUTAG.
These are followed by applications in graph connectivity classification and text classification on
TREC coarse label benchmark.

H.3.1 Learning Token-Relations with Copresheaf Attention

We study five problems that differ only in the (non)linear operator unknown applied to the first half of
a random token sequence (or to a second related sequence). The classifier must decide whether the
tail is just a noisy copy (label 0) or a transformed version of the head (label 1).

* Orthogonal block. Eight 16-d “head” tokens are either copied (+0.05 noise) or rotated by a
sample-specific orthogonal matrix before adding the same noise.

30



Input g(x,y)

Target u CopresheafUNet Prediction ConvUNet Prediction
25 -10
-08
2.0 -08 -08
15 -0.6 - 0.6 - oe
1.0 -04 -04 0.4
05 0.2 -0.2 0.2
0.0 00 00 00
Input g(x,y) Target u CopresheafUNet Prediction ConvUNet Prediction
= -40 -1.0
“Lo -10
-35 .
08
-3.0 08 - 08
2.5 I
06 o6 oo
2.0
15 \ 04 - 0.4 04
- 10
0.2 02 02
o5
- 0.0 - 0.0 -0.0 0.0
Input Structured Image o Target Distance Transform o CopresheafUNet Prediction ConvUNet Prediction
-0.8 -0.8 - 08 - 08
0.6 06 - 0.6 - 0.6
0.0 [ 0.4 - 0.4 - 0.4
0. 0.2 - 02 - 0.2
- 0.0 - 0.0 - 00 oo
Noisy Input 1o Clean Target 1o CopresheafUNet Prediction ConvNet Prediction
0.8 - 0.8
-0.8 -0.8
0.6 - 0.6
- 0.6 - 0.6
0.4 0.4 - 0.4 - 0.4
o5 oo - 0.2 - 0.2
0.0 oo 0.0 - 0.0

Target Edge Map CopresheafUNet Prediction ConvNet Prediction

-1 -1.0 -y
-08 -0.8 0.
0.6 0.6 - 0.
0.4 0.4 - o.
-0.2 -0.2 - 0.
-0.0 - -0

0.0

Figure 9: Model outputs across tasks. A: Bratu equation: input g, target u, CopresheafUNet vs.
ConvUNet predictions. B: Convection-diffusion: input g, target u, CopresheafUNet vs. ConvUNet
predictions. C: Distance transform: input image, target transform, CopresheafUNet vs. ConvUNet
predictions. D: Image denoising: noisy input, clean target, CopresheafNet vs. ConvNet predictions.
E: Edge enhancement: input image, target edge map, CopresheafNet vs. ConvNet predictions.
Copresheaf-based models show subtle improvements in detail recovery.

* Per-token scaling. As above, but the tail is «; x; +noise with «; ~ U[0.4, 1.6].

* Rotated copy (embedded 2-D). Six 2-D points are mapped to 16 d by a fixed linear embed,
duplicated to a 12-token sequence; the tail is either a noisy copy or the points after a random planar
rotation.

* Query and context linearity. Two parallel sequences (50 x 16 “query”, 50 x 24 “context”). Class O:
context is a global affine transform of the query with partly correlated semantics. Class 1: context
comes from a quadratic warp and weak semantic correlation.

» Affine vs. quadratic token relations. Two parallel sequences (length-6, query dim 16, context
dim 24) are considered. For class 0, the context is a linear spatial transformation (rotation and
translation) of the query plus correlated semantic noise. For class 1, the context is generated via a
spatial quadratic (nonlinear) transformation with weaker semantic correlation.

31



Table 13: Mean accuracy (= std, 3 seeds).

Task Classic Copresheaf
Orthogonal block 0.732 +£0.009 0.928 £ 0.007
Per-token scaling 0.521 £0.005 0.707 £ 0.004
Rotated copy (2-D) 0.739 £0.010 0.896 £0.033
Query to context 0.608 0.046  0.992 4+ 0.012

Affine vs. Quadratic Relations  0.588 + 0.047  0.900 + 0.027

Data. Tasks 1-2 use 16 tokens, task 3 uses 12, task 4 uses two length-50 sequences, task 5 uses
two length-6 sequences. For each of three seeds we draw 4,096:1,024 train/test sequences (task 4-5:
320:80).

Backbone and training. A tiny Transformer encoder (4 heads, token dim 16, stalk-dim 4) —
mean-pool — 2-way classifier. Classic uses vanilla dot-product attention; copresheaf augments it
with learned token-pair copresheaf maps (we chose General Copresheaf for the first two tasks, and
Non-linear MLP for tasks 3—5). We train for 8 / 12/ 10/ 10 / 10 epochs respectively with Adam
(1072 learning rate), batch 64.

Take-away. Across in-sequence, element-wise, embedded-geometric, and cross-sequence set-
tings—including varying degrees of spatial and semantic correlation—injecting copresheaf transports
into self-attention consistently lifts accuracy significantly (up to +38 pp, as seen in Table[I3). This
highlights a general principle: tasks whose signals reside in relations between tokens rather than in
absolute token content strongly benefit from explicitly modeling these relations through learnable
copresheaf-induced attention.

Limited attention capacity. We study the impact of attention capacity on relational reasoning,
by varying the number of heads in a small transformer and test-
ing its ability to classify the query to context dataset provided
in Section m 094 —e— Regular Transformer

Regular Transformer + Positional Encoding
Copresheaf Transformer (2 heads)

Accuracy vs Number of Heads (incl. Copresheaf)

We evaluate three setups: a baseline transformer, the same
model augmented with positional encoding (PE), and a
copresheaf-augmented transformer with 2 heads. Figure [I0]
shows accuracy as a function of attention capacity.

While positional encoding improves baseline accuracy slightly,
the copresheaf-augmented attention with just two heads out- o34

2 4 6 8 10 12 14 16

performs all classic models, even those with eight times more Number of Heads
heads. This highlights the value of inductive relational structure .
over brute-force capacity scaling. Figure 10: Accuracy as a function

of number of attention heads. Even
with low capacity, the copresheaf-
augmented model perfect general-

H.3.2 Segment-wise Token Classification ization of the Query to Context
task.

We test whether copresheaf attention improves token-level clas-

sification in a sequence partitioned into contiguous segments

with distinct patterns. The classifier must assign a segment label (0, 1, or 2) to each token based on
its local context.

Data. Each input is a sequence of 100 tokens, where each token is a 16-dimensional feature vector.
The sequence is divided into three contiguous segments, each following a different pattern: (i) a
cosine oscillation, (ii) a linearly increasing ramp, or (iii) an exponentially decreasing signal, with
additive noise. The task is to predict the correct segment label for each token. We generate 300
training sequences and evaluate on three random seeds.

Backbone and training. We use a 2-layer encoder with 4 heads, token dim 16, and stalk-dim 4. A
linear classifier maps each token to one of 3 segment labels. Classic is standard attention; copresheaf
augments each attention head with learned per-token transport maps. We train for 10 epochs using
Adam (1072 learning rate), with batch size 32.

Take-away. Injecting copresheaf structure into attention substantially improves token-wise

32



segmentation accuracy, especially with expressive Table 14: Mean segmentation accuracy (+
MLP kernels (see Table . This demonstrates that std, 3 seeds).

local consistency constraints enforced by per-token
transport maps help resolve semantic boundaries even Model Accuracy
in noisy, positionally ambiguous settings.

Classic 0.705 £ 0.010
. . . Copresheaf-FC 0.833 £0.015
H.3.3 Topological Shape Classification Copresheaf-MLP  0.831 % 0.007

: C heaf-SPD  0.743 £ 0.017
We evaluate copresheaf-augmented attention on a opreshea

synthetic 3D point cloud classification task. Each
input is a set of 128 points in R® sampled from one of four classes: cube, sphere, torus, and twisted
torus. Rotations are applied to remove alignment bias.

Data. The dataset consists of 480:160 train/test samples, balanced across the four classes. Each point
cloud is processed as a sequence of 128 points with 3D coordinates.

Backbone and training. Both models use a 4-layer point transformer with 4 heads and head
dimension 32. The Classic model uses standard self-attention. The Copresheaf model augments
attention with diagonal copresheaf morphisms. We train each model for 50 epochs using AdamW
and cosine learning rate decay across 3 random seeds.

Take-away. Copresheaf-augmented attention improves accuracy on 3D shape classification by

enhancing sensitivity to latent geometric structure Table 15: Mean accuracy (+ std. 3 seeds
(see Table[T3). ' y( ’ )

Model Accuracy

Classic 0.708 £ 0.031
Copresheaf  0.746 £ 0.034

H.4 TREC Text Classification Task

We evaluate two transformer-based models on the
TREC coarse-label question classification task, which
involves categorizing questions into 6 classes (e.g.,
abbreviation, entity, description). The models are:
Classic, a standard transformer with multi-head self-attention; and Copresheaf-FC, which incorpo-
rates a GeneralSheaflearner to model stalk transformations.

Task definition. The TREC dataset consists of questions labeled with one of 6 coarse categories.
Inputs are tokenized questions truncated to 16 tokens, mapped to a vocabulary of size |V|, and
embedded into an 8-dimensional space. The task is to predict the correct class label for each question.

Model and training setup. Both models use a single transformer block with 2 attention heads,
an embedding dimension of 8, and a stalk dimension of 4 for the Copresheaf-based model.
The architecture includes an embedding layer, a transformer Table 16: Mean (+ std over 4 seeds)
block with attention and feed-forward components, adap-
tive average pooling, and a linear classifier. Compared to
state-of-the-art (SOTA) models, which often employ multi-

of test accuracy for the TREC classifi-
cation task.

ple t.ransformer layers and high-dimensiopal embeddings for Model Test Accuracy
maximal performance, our networks are intentionally small, -
using a single block and low embedding dimension to priori- ~ Classic 0.7320 £ 0.0080

tize computational efficiency and controlled experimentation, _ Copresheaf-FC  0.7500 + 0.0150

We train on the TREC training set (5452 samples) over 30

epochs with a batch size of 32, using the Adam optimizer with a learning rate of 10~2 and cross-
entropy loss. The test set (500 samples) is used for evaluation. Each experiment is repeated over 4
random seeds. As seen in Table[I6] the copresheaf models outperform their SOTA counterparts.

H.5 Mixed Dirichlet-Robin Reaction—Anisotropic Diffusion on Cellular Complexes

Problem.. Let Q C R? be a Lipschitz domain with a hole (nonconvex), and let 9Q = 0Qp U 9Qr

with 0Qp N 0Qr = @. We consider the steady reaction—anisotropic diffusion equation
—V-(K(z) Vu(z)) + M=z)u(z) + o(z)u(z) = g(z) inQ\H, (13)
with mixed boundary conditions
up(x on 9)p, (14)
n(z)-K(z) Vu(z) + r(z)u(z) = a(z) ug(z) on 9.

33



Here K (z) € R?*? is a symmetric positive definite anisotropy tensor (we store its local components
as (K, Ky, Kyy)), A, 0> 0 are reaction weights, g is a source, «, r are Robin coefficients, up a
boundary signal, and n the outward unit normal. All spatial fields are discretized and provided as
vertex/edge attributes on the mesh.

Discretization on simplicial complexes.. Let £ = (.5, X, rk) be a 2D simplicial complex (trian-
gulation) of Q\ H with 0-, 1-, and 2-cells X°, X1, X2, We employ the neighborhood functions
(Def. 2)

NOYwy={eeaxt|vce}, NOWw ={wex|Itex?:vct wct}

inc ad]j

and the induced directed graphs G . Edgewise anisotropy enters through per-edge tensors
(Kya, Ky, Kyy) and yields a stiffness-like coupling consistent with equation Vertex features
carry (up, g, A, 0, «, 1); edge features carry (K5, Ky, Iy ). Masks on 0€)p and 0§ enforce the
boundary conditions in the loss.

Higher-order copresheaf structure.. We equip Gy with an N/-dependent copresheaf (F, p, G )
over multiple neighborhoods:

stalks:  F(v) =R%, Fle) =R, F(t) =R% (ve &% ec X! t e &?),

morphisms:  p{*%) : F(w)— F(v) forwEN,aEgjO)(v)7 PN Fe) = F(v) foree N0 (v),

inc
%2 Ft)» F(v) forte{re X2 |vCr}
Thus information flows across ranks (edges/triangles — vertices) in addition to within rank (vertex
< vertex). This realizes a higher-order CMPNN and may be viewed as a principled generalization
of topological neural networks (TNNs), where transport maps are learned as copresheaf morphisms
instead of being tied to fixed co(boundary) operators.

Copresheaf Cellular Transformer layer.. For features hg) € F(z) at cell z in layer ¢, we use
copresheaf self- and cross-attention :

B = BLRO YT awdlSN ) @ Y awepl% (0) ® D aw i) () |

weN3:” (v) eeNP (v) v
050 1550 270
_ (€) _ () _ (0) : _
where ¢, = Wyhy', ky = Wihy', v, = Wyhy', the coefficients a,y, =

softmaxy e n(z) ({(¢z, ky)/+/P), and 3 is a residual MLP with normalization. We instantiate p with
sheaf-style transport maps SheafFC py,_,, = Id + tanh(W [g,; ky]) (zero-initialized), optionally
constrained to SPD via p = Id + QQ . All morphisms act per head and per rank; weights are shared
across complexes but conditioned on (h,, k), enabling directionality and anisotropy. Observe that

when the copresheaf structure is the identity, we retain the Cellular Transfomer introduced in |Barsbey:
et al|[2025]].

Dataset and training. We synthesize simplicial complexes by jittered grids with warped holes
to emulate nontrivial 9. Per-sample scalar fields (up,g, A, 0, «,r) are sampled on vertices;
(K32, Kzy, Kyy) on edges. Ground-truth u is obtained by a finite-element solve of equation
equation We train to regress u at vertices with MSE, enforcing Dirichlet via clamped targets
and Robin via boundary-weighted residuals. Optimization uses AdamW (10~ learning rate), cosine
schedule, grad clip 0.8, layer norm, and vertex/edge feature normalization computed per split.

Baselines and size control. We compare the Cellular Transformer on vertices (same depth/width,
no copresheaf maps) to our Copresheaf Cellular Transformer on IC using identical token dimensions
and heads; differences arise solely from the learnable morphisms and cross-rank attention paths.

Results. Quantitative test MSE averaged across n=4 seeds is summarized below (lower is better).

Error maps highlight that copresheaf cross-rank transport (1—0 and 2—0) attenuates bias along
anisotropy directions of K and reduces leakage across d€)g. Despite identical model size, higher-
order morphisms recover boundary layers and interior ridges more faithfully. See Figure [IT|for a
sample of the results.

34



Table 17: Mixed Dirichlet-Robin reaction—anisotropic diffusion on simplicial complexes. Test MSE
(mean =+ std over n=4 seeds). Lower is better.

Model Test MSE | Runs (n)
Cellular Transformer Barsbey et al.[[2025]  0.3277 & 0.0408 4
Copresheaf Cellular Transformer 0.3172 £ 0.0365 4

Take-away. Endowing the simplicial complex with a higher-order copresheaf, learning p,,_,, across
adjacency and incidence neighborhoods and across ranks, yields a CMPNN that generalizes TNNs
while remaining faithful to the PDE structure in equation [T3] Observe that such a network is a
generalization of the cellular transformer introduced inBarsbey et al.| [2025]]. The learned, directional
transport improves anisotropic coupling and mixed-boundary handling without increasing parameter
count, offering a principled and practical route to physics-aware attention on combinatorial domains.

Target (GT) Cellular Transformer Copresheaf Cellular

Target (GT)
0N NNSSNEEN
VAN ‘w‘::‘\ss
NNV
§‘.‘.“ SR

uB g A Target (GT)

44
7

V444
VAVAYAY

VaYa,
I/

(4%

/1

\/1717]
VAYAVVAYAYaYd

VavaY,

N
NN

ANANANNY

|
%

71
I

Figure 11: Mixed Dirichlet—-Robin reaction—anisotropic diffusion on triangulated complexes. For
each example (rows), the left block shows a 3x3 tile of normalized inputs: Dirichlet values up,
source g, reaction )\, spatial reaction field o, Robin coefficients « and r, and per-vertex edge-averaged
conductivity features (K ., ny, Fyy) The remaining panels show the ground-truth solution u, the
Cellular Transformer prediction, and the Copresheaf Cellular Transformer prediction, respectively.
Rows illustrate diverse geometries and boundary layouts. Copresheaf transport produces slightly
crisper fields and cleaner boundary behavior.

H.6 Catalogue of Copresheaf Maps
We also provide the table of copresheaf maps that we used throughout our experiments in Table [T8]
Computational Complexity

This section analyzes the computational complexity of the Copresheaf Message-Passing Neural
Network (CMPNN) and the Copresheaf Transformer (CT), as defined in the framework of Copresheaf

35



Table 18: Catalogue of copresheaf maps p, ., used in our training our copresheaf transformer model.
All maps act stalk-wise and are evaluated independently for each attention head; o is the logistic
function.

Map family Copresheaf map p,,, (per head) Learnable params
General Copresheaf Pysz = tanh(W [Z’C} ) W e R2dx 4
Y

Pre-Linear Map Py—z = Qo k; none

Diagonal MLP Map Pysa = diag(a(MLP[qm, ky])) 2-layer MLP

Graph Attention Map Py—z = 0(MLP|qs, ky]) 1a 2-layer MLP

Vision Spatial Map Py—az = 0(MLP(ps — py)) 2-layer MLP

(pz, py € [0,1]? pixel coords)

Outer-Product Map Py = Waqe (Wik,)" Wy, Wy € R**4

Non-linear MLP Map py—a = reshape(MLP|ga, ky]) 2-layer MLP (2d —
2d— d?)

Gaussian RBF Map Pysa = e Nz —kyll?/20% [, o (scalar)

Dynamic Map Py—a = reshape(Wyq.) Wy € Réx 4

Bilinear Map Pyse = (b (qu, ky)) I b e Rx?

SheafFC Map pyse = Lo+ tanh(W Zz ) W e R2*% (zero init)

Y

SheafMLP Map py—se = Ia + tanh(MLP[q., ky)) 2-layer MLP (last layer
zero init)

SheafSPD Map P =Ia+QQ", Q=W [l‘f”] W € R (10 bias)

Yy

Topological Neural Networks (CTNNs). We consider a directed graph G = (Viv, En ), induced by
a combinatorial complex X with neighborhood function A, where |Vy| = n, |Ex| = m, and the
average degree is ¢ = m/n. Each vertex x € Vly is assigned a feature space F(x) = R¢, and each
edge y — = € Ey has alinear map p,_,, : R? — R%, computed at runtime using a map family from
Table 16 (e.g., General Copresheaf, Low-rank). The complexity of computing a single morphism
Py—a 18 denoted C(p).

Unless otherwise stated, we assume sparse graphs (i.e., m = O(n)). We derive the following
propositions for per-layer complexities, followed by a comparison with standard architectures.

Proposition (Copresheaf Message-Passing Complexity).. Consider a directed graph Gy =
(Viv, En) induced by a combinatorial complex X with neighborhood function NV, where |V | = n,
|En| = m, dim F(z) = d, and let @ be any permutation-invariant aggregator. Leteachy — = € Ey
have a linear map p,_,, € R¥*4 computed at runtime via a map family with complexity C(p). The
per-layer computational complexity of the CMPNN, as defined in Definition[9)] is

Tevpenn = O(nC(p) + md® + nd?).

Proof: The CMPNN message-passing operation involves computing morphisms, applying them to
features, aggregating messages, and updating vertex states:

1. Morphism Computation: For each edge y — = € Ex, compute p,_,, € R?*? based on
source and target features (h@, hgf)) € R?9, using a map family from Tablem This costs
O(m C(p)).

2. Morphism Application: Apply p,_,, to the feature vector hl(f) € R?. This matrix—vector
multiplication requires O(d?) operations per edge, totaling O (m d?).

3. Aggregation: For each vertex = € Vi, aggregate messages from neighbors y € N (x) via
Sy py%zh?(f). Each addition involves a R? vector, costing O(d) per neighbor. With
|V ()| neighbors, this step is O(|\ (x)|-d). Summing over all vertices: O( 3", ¢y, [N ()[-
d) =O0(m-d).

36



4. Update: Assign hg(fﬂ) = (3(-) with negligible cost. If an optional single-layer MLP with d
hidden units is applied (common in GNNs), the cost per vertex is O(d?), yielding O(n - d?).

Total: O(nC(p) + md?* + md + nd?). Since md? dominates and m = ©(n), this simplifies to
O(nC(p) + (m + n) d?). O

Proposition (Copresheaf Transformer Complexity).. Consider a directed graph G = (Vy, En)
induced by a combinatorial complex X with neighborhood function A/, where |Vy| = n, |Ex| = m,
and the average degree is ¢ = m/n. Each vertex z € Vi has a feature space F(z) = R, and each
of H attention heads computes a morphism p{"}, € R(¢/H)x(d/H) yig a map family (Table 16) with
complexity C(p). The per-layer computational complexity of the Copresheaf Transformer, as defined
in Algorithm [I] with sparse cross-attention based on N, is

Ter = O(HmC(p) + md*> + nd®> + ndH).

Proof. The Copresheaf Transformer integrates self-attention within cells of equal rank and sparse
cross-attention between neighbors, using learned copresheaf morphisms. Each head attends on
features (queries/keys) of dimension p = d/H:

1. Morphism Construction: For each edge y — = € FEx and each head, compute

P, € REHX@/H) paged on (b, h{). The complexity per morphism is C/(p),
totaling O(H m C(p)).

2. Self- and Cross-Attention: Compute query (@), key (K), and value (V') matrices per head
(d/H dimensions), costing O(n d?/H) across all heads. For sparse cross-attention, each
vertex attends to |N(z)| neighbors, with attention scores QK " and aggregation costing
O(|N (x)|-d/H) per vertex per head. Summing over vertices and heads: O(H - >~ |N(z)]-
d/H) = O(md).

3. Morphism Application: Apply p?(fgz to value vectors (d/H per head) on each edge, costing

O(d*/H) per head, or O(d?) across H heads. For m edges this contributes O(m d?).

4. Output and Feed-Forward: Combine head outputs and apply a per-token feed-forward
network (FFN) with d hidden units, costing O(n d?).

Total: O(Hm C(p) + md*> + nd? + nd H). O

Comparison to Standard Architectures.. Compared to standard GNNs (e.g., GCN) and dense
Transformers, CMPNN and CT incur higher costs due to morphism computation (the C(p) terms) and
morphism application (m d?). On sparse graphs with small H, CMPNN’s complexity is O(n C(p) +
md? + nd?), and CT’s is O(Hm C(p) + md? + nd? + nd H). These costs enable superior
expressiveness, as shown empirically.

Model Per-layer complexity (sparse graph)
GCN O(md + nd?)

CMPNN O(nC(p) + md® + nd?)
Transformer (Dense) O(n*d + nd?)

Copresheaf Transformer (CT)  O(HmC(p) + md? + nd® + ndH)

Table 19: Per-layer computational complexity on sparse graphs. If p is diagonal (or rank-r), replace
d? by d (or r d) in the morphism-application terms.

I Extended Related Work on Topological and Sheaf Neural Networks

Foundations of sheaf theory. Sheaf theory offers a unifying categorical framework across algebraic
geometry, topology, and algebra [Bredon, [1997]. Early computer-science applications exploited its
logical structure [Fourman et al.| [1977,|Goguenl |1992], and Srinivas generalized pattern matching via
sheaves on Grothendieck topologies [Srinivas} 1993, later extended to NP-hard problems [Conghaile}
2022} |Abramsky, [2022]. Cellular sheaves, formalized in [[Curry} 2014, underpin discrete topological
data analysis and signal processing [Ghrist and Hiraokal 2011} Robinson, 2014]]. Hansen & Ghrist

37



introduced the sheaf Laplacian [Hansen and Ghristl |2019b], learnable by convex optimization [Hansen
and Ghrist, |2019a]]. Connection sheaves model discrete vector bundles [[Singer and Wu, 2012]] and
support manifold learning and Gaussian processes [Peach et al.]. GKM-sheaves further connect
equivariant cohomology and sheaf cohomology, enriching this framework with applications to torus
actions on CW complexes [[Al-Jabea and Baird, 2018]].

Higher-order representations in deep learning. The growing interest in higher-order network
models [Papamarkou et al.,[2024} Battiston et al., 2020, Bick et al.l[2023] has catalyzed geometric
and topological deep learning. Techniques include simplicial, hypergraph, and cellular message-
passing schemes [Gilmer et al.| 2017, [Ebli et al., 2020} Hayhoe et al., 2022| [Hajij et al., 2020\ [Bunch
et al.,|2020], skip connections [Hajij et al., [2022]], and convolutional operators [Jiang et al., 2019,
Feng et al., 2019]. Recent years also witnessed a leap in higher-order diffusion models for graph
generation [Huang and Birdal| [2025] as well as higher-order (cellular) transformers [Ballester et al.,
2024].

Sheaf neural networks. In recent years, sheaf-based generalizations of graph neural networks
(GNNss) have demonstrated notable improvements on tasks involving heterogeneous or non-Euclidean
data. Hansen and Gebhart |[Hansen and Gebhart, 2020] first introduced sheaf neural networks
(SNNs), which generalize graph neural networks (GNN5s) by replacing neighborhood aggregation
with learnable linear “restriction maps”, thereby customizing information flow between nodes. By
allowing each edge to carry its own linear transformation, SNNs capture relationships in heterophilic
graphs more effectively than degree-normalized convolutions. Building on this idea, Bodnar et al.
[Bodnar et al., 2022] proposed Neural Sheaf Diffusion (NSD), which jointly learns the underlying
sheaf structure and the diffusion dynamics. NSD layers adaptively infer the sheaf Laplacian from data,
mitigating the oversmoothing problem common in deep GNNs and achieving superior performance
on a range of heterophilic benchmark datasets. Barbero et al. [Barbero et al.,[2022b]] then combined
NSD’s principled diffusion with attention mechanisms to formulate Sheaf Attention Networks (SANs).
SANs modulate self-attention weights by the learned sheaf maps, preserving long-range dependencies
while respecting local sheaf geometry.

Alternative formulations include Bundle Neural Networks (BNNs) by Bamberger et al. [Bamberger|
et al.,[2024]], which reinterpret propagation as parallel transport in a flat vector bundle rather than
discrete message passing. Duta et al. [Duta et al. [2023]] extended sheaf methods to hypergraphs,
defining linear and nonlinear hypergraph Laplacians that capture higher-order interactions among
groups of nodes. On manifold-structured data, Tangent Bundle Neural Networks (TBNNs) proposed
by Battiloro et al. [Battiloro et al.,[2024b] treat features as elements of tangent spaces and propagate
them along estimated geodesics, bridging continuous and discrete models.

Attention mechanisms in higher-order structures. Attention mechanisms have been generalized to
hypergraphs [Kim et al.| 2020, Bai et al.,|2021]] and simplicial complexes [Goh et al.,2022| Battiloro
et al., [2024al|, among else via Hodge or Dirac operators. On combinatorial complexes, feature-lifting
attention facilitates hierarchical information propagation [|Giusti et al., [2023} Hajij et al., [2023b].

Applications and extensions. These sheaf-theoretic architectures have found diverse applications,
from multi-document summarization [Atri et al.| |2023]] and recommendation systems [Purificato
et al., 2023]] to community detection via sheaf cohomology [Wolf and Monod, |2023]] and person-
alized federated learning with Sheaf HyperNetworks [Nguyen et al.| 2024, |[Liang et al., 2024]. In
representation learning, many knowledge-graph embedding techniques have been reinterpreted as
sheaf global-section problems [Gebhart et al., [2023| [Kvinge et al., [2021]]. Collectively, these ad-
vances highlight the expressive power and flexibility of sheaf-based models in handling complex,
heterogeneous, and higher-order data domains.

38



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Paper is about Copresheaf Neural Networks and the paper presents the frame-
work as well as a set of experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We briefly discuss them at the end of conclusion and provide an extended
version in our appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

39



Answer: [Yes]
Justification: Our main theorem and propositions are proven in the appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings in the appendix. We will also release
our code and data publicly upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

40



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will also release our code and data publicly upon publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For each experiment, we separately mention the hyperparameters, optimizer,
data splits and the curation of data.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Paper report error bars over experiments and describes the number of runs
these error bars are over.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

41


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute is not explicitly discussed; however, timings are not presented as part
of the argument about the proposed approach and are not needed for a to replicate the results.
Compute resources are modest (single GPU runs); details are not essential to reproducing
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The paper focuses on a generalized framework for neural networks, and does
not address areas or applications of ethical concern as defined by the Ethics Guidelines.
Data sets in the paper do not contain any personally identifiable information/ data about real
people.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is primarily theoretical and is not expected to have immediate
societal impacts.

42


https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Paper presents a theoretical framework and does not release models or present
results on data scraped from the internet etc.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite datasets used in the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

43



13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will also release our code and data publicly upon publication. The
repository has a license. We do not have assets of others within our data/code base.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subject research was done
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

44


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: LLMs were only used for wording help.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy for what should or should not be described.

45



	Introduction
	Related Work
	Preliminaries
	Combinatorial Complexes and Neighborhood Structures
	Sheaves and Copresheaves on Directed Graphs 

	Copresheaf Topological Neural Networks
	Architectures Derived from the Copresheaf Framework 
	Experimental Evaluation
	Evaluations on Physics Datasets
	Graph Classification
	Combinatorial Complex Classification

	Discussion and Conclusions
	Notation
	Sheaves and Copresheaves on Graphs: A Category Theoretical Look
	Copresheaf Laplacian, Energy, and CTNN Transport–diffusion
	Expressive Power of CTNNs
	Sheaf Neural Networks Are Copresheaf Message-Passing Neural Networks
	A General Copresheaf-Based Transformer Layer
	Copresheaf Learning on Euclidean Data
	Experiments
	Extended Related Work on Topological and Sheaf Neural Networks

