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Abstract

Large language models (LLMs) have demon-
strated strong effectiveness and robustness
when fine-tuned as dense retrievers. How-
ever, their large parameter size presents sig-
nificant computational challenges at inference
time. While smaller retrievers offer better ef-
ficiency, they often fail to generalize effec-
tively with limited supervised fine-tuning data.
In this work, we introduce DRAMA, a train-
ing framework that leverages LLMs to train
smaller generalizable dense retrievers. In par-
ticular, we adopt pruned LLMs as the backbone
and train on diverse LLM-augmented data in a
single-stage contrastive learning setup. Exper-
iments show that DRAMA offers better multi-
lingual and long-context capabilities than tra-
ditional encoder-based retrievers, and achieves
strong effectiveness across multiple tasks and
languages.!

1 Introduction

Recent advancements in large language models
(LLMs) have demonstrated their effectiveness and
robustness in text retrieval tasks (Muennighoff
et al.,, 2024; Sun et al., 2023; Li et al., 2024;
BehnamGhader et al., 2024; Lee et al., 2025).
Directly fine-tuning advanced billion-parameter
LLMs with available annotated data can generate
significantly higher zero-shot effectiveness than
fine-tuning a pre-LLM-era smaller model with only
a few hundred million parameters (Ma et al., 2024;
Luo et al., 2024). However, the large parameter
size of LLMs brings non-negligible inference-time
compute costs, such as encoding large-scale cor-
pora and increased query latency. For example,
using Llama3.1gg as the backbone increases the
inference cost around 40x compared to a dense
retriever based on BERT.

In this work, we holistically explore how to ef-
fectively leverage large language models to create
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smaller retrievers, in terms of both data and model
backbone, to develop generalizable yet efficient
dense retrievers with fewer than 1B parameters.

Although several works have discussed using
LLMs for retrieval data augmentation, such as
directly generating training triplet (Wang et al.,
2024b) or using LLM to mine positive and negative
documents from a real corpus (Lee et al., 2024),
the effectiveness of these methods has not been
thoroughly compared under standardized condi-
tions. We comprehensively study the effectiveness
of multiple methods of LLM data augmentation
with a controlled setup: using the same models
and corpora across different data creation methods
and only relying on open-sourced models and open-
access data. Specifically, we utilize LLM retrievers
(based on Llama3.1-gg) and Insturct-LLM (based
on Llama3.37¢p-Instruct) to generate augmentation
data. This includes lower computational cost ap-
proaches such as generating cropped sentences as
queries and using an LLM retriever to mine positive
and negative documents over a corpus, as well as
higher computational cost methods that further uti-
lize Instruct-LLM to generate queries and provide
relevance judgment as a listwise reranker. We in-
vestigate the effectiveness of various combinations
of these diverse LLM augmentations, providing
high-quality augmented training data for English
and multilingual retrieval.

Existing work on training smaller dense retriever
models is mostly based on pretrained language
models with encoder-only architecture, either con-
tinuously pretrain pre-LLM-era models like BERT
or XLM-RoBERTa-Large (Wang et al., 2023; Chen
et al., 2024) or more recently using higher quality
corpora to pretrain from scratch with modern model
optimizations (Warner et al., 2024). We instead pro-
pose to leverage LLMs as the backbone for smaller
dense retrievers by pruning the decoder-only LLM
into a small size and serving as initialization for
the text encoder. Specifically, we further prune
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Llama3.2,g (which is pruned from Llama3.1gp)
into 0.1B (BERT-base) and 0.3B (XLM-RoBERTa-
Large), while preserving multilingual and long-
context capability. We demonstrate that pruned
decoder-only models perform well as retrievers, by
simply turning on the bi-directional attention dur-
ing retriever training. This offers a more flexible
pathway to creating smaller dense retrievers with ar-
bitrary sizes while still leveraging pretrained LLM
weights, making smaller retrievers compatible with
current and future LLM advancements.

Combining LLLM-based data augmentation and

backbones, we introduce a single-stage training
framework: DRAMA (smaller Dense Retriever from
diverse LLM AugMentAtion). Our smaller re-
triever models achieve strong effectiveness on
BEIR (Thakur et al., 2021), MIRACL (Zhang et al.,
2023), and multiple multilingual retrieval tasks on
MTEB (Muennighoff et al., 2022). These results
demonstrate that our training framework produces
models that excel in generalization across diverse
English retrieval tasks and exhibit strong multilin-
gual effectiveness, showing the potential for unified
smaller retrievers that perform effectively across
tasks and languages.

In summary, our contributions are as follows:

* We investigate diverse methods for leveraging
LLMs to generate data augmentation for train-
ing smaller models, analyzing their individual
and combined effectiveness.

* We prune LLMs to derive smaller decoder-
only language models as backbones for re-
trievers, demonstrating their advantages in ef-
fectiveness and length extrapolation compared
to pre-LLM-era models.

e Our training framework produces a series
of multilingual and generalizable smaller re-
trievers, highlighting the benefits of aligning
smaller retriever training with ongoing ad-
vancements in LLMs.

2 Related Work

2.1 Robust Dense Retrieval

Dense Passage Retrieval (Karpukhin et al., 2020)
utilizes a pre-trained language model such as
BERT (Devlin et al., 2019), to encode text into
dense vectors and conduct passage retrieval as a
nearest neighbor search. This approach has shown
strong in-domain effectiveness compared to tra-
ditional lexical retrievers such as BM25 (Robert-
son and Zaragoza, 2009). However, dense re-

trievers have been found to struggle with gener-
alization when applied to out-of-domain retrieval
tasks (Thakur et al., 2021). To address this issue,
various works have aimed to improve the gener-
alization of dense retrievers through continuous
pre-training tailored for retrieval tasks. Works
such as Condenser (Gao and Callan, 2021), Retro-
MAE (Xiao et al., 2022), and SimLM (Wang et al.,
2023) have enhanced the dense representation of
BERT via customized architectures during lan-
guage modeling. Other works, including Con-
triever (Izacard et al., 2022), GTE (Li et al., 2023),
ES5 (Wang et al., 2024a) have further adapted two-
stage contrastive learning. These models are first
trained with unsupervised or weakly supervised
large-scale contrastive learning, followed by super-
vised contrastive learning with available relevance-
judged data (Nussbaum et al., 2024; Yu et al., 2024).
CDE (Morris and Rush, 2024) further proposes a
two-stage model architecture that integrates corpus-
level information into document embeddings.

2.2 LLM for Text Ranking

On the other hand, recent large language models
have shown strong potential in relevance modeling
for text ranking. Finetuning LLM as dense retriever
models have shown significantly stronger effective-
ness across various tasks and languages compared
to smaller ones (Wang et al., 2024b; Muennighoff
et al., 2024; Springer et al., 2024; Li et al., 2024).
For example, RepLlama (Ma et al., 2024), which
uses straightforward supervised fine-tuning based
on the Llama2-7B model, outperforms previous
smaller retriever models that were based on multi-
stage continuous pre-training, with a lower training
cost. This demonstrates the data efficiency and
naturally strong generalization of LLM-based re-
trievers (Luo et al., 2024). Moreover, instruction-
following LL.Ms have also shown strong effective-
ness when directly prompted as rerankers (Ma et al.,
2023; Sun et al., 2023). Reflecting the excel rele-
vance understanding of large language models for
retrieval. In this work, we aim to leverage the char-
acteristics of LLM-based ranking methods that are
data-efficient and generalizable, shifting their high
inference time costs into training time costs as data
augmentation.

2.3 Data Augmentation for Retriever

InPars (Bonifacio et al., 2022) and Promptaga-
tor (Dai et al., 2023) generate synthetic queries
that align with given documents sampled from the



task corpus, creating training data for retrieval cor-
pora with limited human queries and judgments.
DRAGON (Lin et al., 2023) enhances the robust-
ness of dense retrievers by employing sentence
cropping as pseudo-queries and generating aug-
mented data based on retrieval results from multiple
retrievers (e.g., sparse, multi-vector models). With
the emergence of LLMs, Mistral-ES (Wang et al.,
2024b) directly prompts an LLM to generate syn-
thetic query-positive-negative triplets, using them
as augmentation data to train a 7B LLM retriever
across diverse text embedding tasks. Gecko (Lee
et al., 2024) takes a different approach by leverag-
ing real documents: it generates synthetic queries
from sampled real documents, retrieves top candi-
date passages, and uses an LLM to rerank them in
pointwise way. While these methods introduce var-
ious strategies for data augmentation in retrievers,
they have not been systematically compared within
a single framework where LL.Ms and corpora are
controlled for fair comparison. We explore various
types of LLM-based data augmentation and evalu-
ate their individual and combined effectiveness.

2.4 Multilingual Retriever

Multilingual capabilities are crucial for effective
retrieval systems. While numerous multilingual re-
trievers have been developed (Izacard et al., 2022;
Wang et al., 2024c; Zhang et al., 2024; Chen et al.,
2024), they often face a trade-off between achiev-
ing strong performance in multilingual retrieval
across various languages and preserves good En-
glish generalization performance on English re-
trieval. While concurrent work ArcticEmbV2 (Yu
et al., 2024) also aims to have strong effectiveness
in both English and multilingual, they follow the
previous training paradigm that firstly pretrain the
model with contrastive learning over weakly super-
vised data pairs and then followed by supervised
fine-tuning. In our work, we address this challenge
from a different view, by conducting data augmen-
tation from LLM and using pruned LLM as the
backbone of smaller retriever.

3 Method

3.1 Data Augmentation for Contrastive Dense
Retriever Training

Given a query ¢, a positive document D™ rele-
vant to the query, and a set of hard negative docu-
ments { Dyn} that are similar to the positive doc-
ument but are not highly relevant to the query, a

dense retriever model is trained using the InfoNCE
loss (van den Oord et al., 2019) as follows:

L(g,D*,{Dn}) = —logp(D = D™ | q)
exp(Sim(q, D") /1)

> exp(Sim(q, D;)/7)’
D;e{D+}u{Dn}

= —log

where { Dy } is the union of the hard negative docu-
ments { Dyn } for each query and in-batch negative
documents, which are positive or hard negatives
from other queries in the same training batch. The
similarity Sim(Q, D) is commonly computed as
the cosine similarity between the embedding vec-
tors of the query and document.

Data augmentation for dense retrieval focuses on
creating triplets of queries ¢, positive documents
Dp, and hard negative documents { Dy }. In this
work, we make the following assumptions regard-
ing available resources for data augmentation:

* Initial Supervised Data (Dgg): A commonly
accessible general-domain retrieval dataset.

* Large Retrieval Model (LLMg¢(): An LLM-
based retrieval model, fine-tuned on Dgg;.

¢ Instruction-following LLM (LLM,): An
LLM with strong instruction-following capa-
bility that can generate synthetic data reflect-
ing its relevance preferences.

» Large Corpus (C): A diverse or multilingual
document corpus that serves as the basis for
synthetic query generation and relevance as-
sessment.

With the above assumption, we explored various
ways of utilizing LL.M to conduct data augmenta-
tion for smaller retrievers, ranging from lower to
higher computational costs for data creation.

3.1.1 Data Augmentation via Llama-3.1gg
Retriever

Given an LLM-based retriever model, one of the
simplest approaches to data augmentation, with-
out relying on even larger LLMs, is to enable the
smaller retriever to learn from the relevance pref-
erences of the 8B embedding model LLM_y,. In-
spired by methods such as SPAR (Chen et al., 2022)
and DRAGON (Lin et al., 2023), we begin with the
corpus C'. For each document in C, we perform
random sentence cropping to extract a smaller seg-
ment, which is treated as pseudo-query g. These
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Figure 1: Methods to create data augmentation for smaller retriever with LLMs: (a) Using cropped sentences as
queries, selecting the top-ranked documents from top-k retrieval as positives and the remaining as hard negatives.
(b) Replacing cropped sentences with synthetic queries generated by prompting instruction-following LLM. (c)
Refining retrieval results from the LLM retriever using an instruction-following LLM as a listwise reranker.

pseudo-queries, along with the full corpus, are en-
coded using the 8B retriever model. Retrieval is
then conducted for each pseudo-query ¢ to identify
the top-k candidate documents. Among these can-
didates, the top [1, m] documents are regarded as
positive D, while the top [k — n, k] documents
are designated as hard negatives Dyn. The process
is illustrated in Figure 1.a. In this work, we set
k =50,m = 10,n = 20.

3.1.2 Synthetic Queries from
Llama-3.37¢g-Instruct

The availability of instruction-following LLMs,
such as Llama-3.37¢g-Instruct, enables the gener-
ation of synthetic queries that are more similar to
real queries compared to those from random sen-
tence cropping. For each document in the corpus
C, we prompt the LLM to generate a synthetic
query ¢. Similar to the above process, these LLM-
generated queries are fed into the 8B LLMg¢ to
perform retrieval. Based on the retrieval results, we
can identify positive documents and hard negative
documents for the synthetic queries as illustrated
in Figure 1.b.

3.1.3 LLM Ranking Preference from
Llama-3.37¢g-Instruct

Instead of relying solely on the relevance prefer-
ences of the 8B embedding model, which are influ-
enced by its fine-tuning on supervised data Dyg, the
instruction-following LLM such as Llama-3.370p-
Instruct can be further leveraged to refine relevance
judgments. Specifically, we prompt the LLM to
perform listwise reranking of the top-% candidates
retrieved for each synthetic query, as illustrated in
Figure 1.c. In this process, the LLM provides its
relevance judgments by reranking the candidates.
The top-1 candidate after reranking is treated as
the positive document D, while the top [k — n, k]
candidates from the reranked list are designated as

hard negatives Dyy. In our experiments, we set
k = 20,n = 10. This listwise reranking approach
aligns more closely with how humans select the
most relevant one among multiple candidates.

In practice, having the data augmentation from
LLM listwise rerank can further improve the
LLMge; by combining the augmented data with
the initial supervised data Dgg. We sampled LLM
listwise rerank augmented data as the same amount
of Dgy; to re-train the LLMge. The effectiveness of
this operation is further analyzed in Section. 6.1.

3.1.4 Triplet Generation from
Llama-3.37g-Instruct

Another approach to leverage the LLM’s relevance
preferences for data augmentation is to directly
prompt the LLM to generate triplets consisting of
a query, a positive document, and a hard negative
document. This approach does not rely on a pre-
existing corpus to provide seed documents. Fol-
lowing Mistral-ES (Wang et al., 2024b), but ad-
hering to our controlled data augmentation frame-
work (i.e., creating the same amount of augmenta-
tion data with the same LLM), we first prompt the
LLM to brainstorm |C/ retrieval tasks. Each task
includes a retrieval scenario ¢, a query ¢, and its
context. Based on the task and query, the LLM is
then prompted to generate a corresponding positive
document and a hard negative document. While
this method appears promising in theory, our ex-
periments revealed that purely synthetic triplet data
generated in this manner does not substantially im-
prove the training of smaller retriever models. De-
tailed analyses can be found in Section 6.1.

3.2 Pruning

Previous pre-LLM-era retriever models predom-
inantly utilized encoder-only architectures, such
as BERT-base for English retrieval and XLM-
RoBERTa-Large for multilingual retrieval. In



this work, in addition to leveraging LLMs for
data augmentation, we investigate whether recent
decoder-only LLMs can provide better backbones
for smaller retriever models. We perform struc-
tured pruning on an LLLM to obtain models with
non-embedding parameter sizes of 0.1B and 0.3B,
making them comparable to BERT-base and XLM-
RoBERTa-Large, respectively. Specifically, we ini-
tialize the pruning process with Llama3.2g, itself
a pruned version of Llama3.1gg. Following the
methodology from ShearedLlama (Xia et al., 2024),
the pruning process is performed in two stages. In
the first stage, a parameter mask is learned to se-
lectively prune the model. This is followed by
a continuous pretraining stage to recover the per-
formance of the pruned model. Pruning from an
LLM offers several potential advantages compared
to training traditional pre-trained language models.
First, it allows us to leverage the latest advance-
ments in LLMs, which are trained on large-scale,
high-quality datasets and exhibit strong general-
ization and multilingual capabilities. Secondly, it
supports longer contexts than earlier models, allow-
ing for improved handling of retrieval scenarios
requiring extended input sequences. Thirdly, the
pruning process provides the flexibility to tailor
model sizes based on specific deployment needs.

4 Experiment Setup

4.1 Finetuning Data

Controlling the supervised fine-tuning data is crit-
ical for ensuring a fair comparison across meth-
ods when studying the generalizability of retrieval
models. BEIR (Thakur et al., 2021) was origi-
nally designed for zero-shot evaluation, encourag-
ing the use of MS MARCO Passage Retrieval as
the sole fine-tuning dataset. However, many re-
cent retrievers incorporate supervised data from
the evaluation tasks, making the evaluation not en-
tirely zero-shot. To balance fairness in assessing
model generalization while maintaining adequate
baselines for comparison, we follow the fine-tuning
data setup of E5 (Wang et al., 2024a). This setup in-
cludes general-domain retrieval datasets but not in-
clude fine-tuning data for domain-specific retrieval
tasks such as financial QA or scientific document
retrieval. For our experiments, we use the open-
source replication of the E5 fine-tuning data (Li
etal., 2024).

4.2 Data Augmentation

For the LLM retriever model LLM,.;, we initialize
it with Llama3.1gg and first fine-tune it follow-
ing the training recipe of RepLlama (Ma et al.,
2024) for one epoch on the MS MARCO Passage
Ranking training set (Bajaj et al., 2018). We then
further fine-tune it on the aforementioned ES5 fine-
tuning data to obtain an LLM retriever focusing
on English retrieval. We train another multilin-
gual LLM retriever by continuous fine-tuning of
the MS MARCO-trained LLM retriever using only
the MIRACL (Zhang et al., 2023) training data.
This allows us to better study generalization in the
multilingual retrieval setting.

For the large corpus C' used in English data aug-
mentation, we sample 25M documents from a di-
verse open web-crawled dataset. For multilingual
augmentation, we use a combination of multilin-
gual Wikipedia and a multilingual web-crawled
corpus covering 19 non-English languages, with
each corpus containing 25M documents. In both
cases, we segment documents into text chunks of
up to 256 tokens.

4.3 Pruning

We prune Llama3.2;p into 0.1B and 0.3B models
using 25B tokens in total covering English and 19
non-English languages from web-crawled corpora.
The pruned models support a maximum context
length of 8,192 tokens.

4.4 Training

The full training data for the smaller retriever mod-
els consists of: (1) LLM augmented data based on
cropped sentences. (2) 25M LLM retriever aug-
mented data based on generated queries. (3) 25M
Inst-LLM listwise reranker augmented data based
on generated queries. These three types of data aug-
mentation are applied to all sources, including En-
glish web-crawl corpora, multilingual Wikipedia,
and multilingual web-crawl corpora (denoted as
enWeb, mWiki, and mWeb respectively). The sam-
pling ratio of augmented data across these three
sources is 2:1:1.

We train the model with each query paired with
one positive document and seven hard negative doc-
uments for the 0.1B and 0.3B models and three hard
negative documents for the 1B model. We adopt
the Matryoshka Representation Learning (MRL)
during training to enable flexible dimensionality
choice (Kusupati et al., 2022). See B for the details



| English Multilingual

Non-Emb. Repre. Contra. Data Multi.
Method Param. Dim. Pretrain. Aug. Lang, BEIR (13) MIRACL (18) MTEB-FR (5) MTEB-ZH (8§) MTEB-DE (4)
BM25 x x v | 437 385
Contriever 86M 768 v X X 47.5
DRAGON 86M 768 X v X 50.2
E5-v2-base 86M 768 v X X 51.9
bge-base-en-v1.5 86M 768 v X X 55.0 - - - -
mES5-base 86M 768 v X v 50.2 60.1 454 61.6 49.2
mGTE-Dense 113M 768 v X v 543 62.1 50.6 72.0 49.1
ArcticEmb-v2-M 113M 768 v X v 56.9 59.2 53.7 55.7 55.0
DRAMA( 18 113M 768 X v v 56.9 70.4 52.1 61.7 55.1
E5-large-v2 303M 1024 v X X 52.1
bge-large-en-v1.5 303M 1024 v X X 56.1 - - - -
mES5-large 303M 1024 v X v 529 65.4 47.7 63.7 50.4
mES5-Inst 303M 1024 v v v 54.1 66.0 49.9 64.2 52.5
M3-BGE-Dense 303M 1024 v X v 50.0 69.2 48.6 65.6 50.4
ArcticEmb-v2-L 303M 1024 v X v 572 64.9 54.5 63.6 55.9
DRAMA 38 265M 1024 X v v 58.0 714 54.8 63.0 55.6
Gecko 1B 768 v v v 58.0 56.2 - - -
DRAMA B 1B 2048 X v v 59.1 71.7 57.6 63.7 56.2
DRAMA B (768d) 1B 768 X v v 58.5 70.9 56.5 62.8 55.8
MistralES 7B 4096 X v v ‘ 59.0 62.2

Table 1: Effectiveness of DRAMA compared to baseline methods (measured in nDCG@10). For each method,
we indicate the number of non-embedding parameters, the text embedding dimensionality, whether contrastive
pretraining is needed, whether data augmentation is applied during supervised fine-tuning, and whether the retriever
supports multilingual retrieval. The notation (x) after a dataset name indicates the average value across = subsets
within the dataset. Detailed results for each subset are provided in the D. We highlight the highest score for each
dataset in bold and the highest score within each parameter level with an underscore. The notation (768d) indicates

that we use the first 768 dimensions of representations from DRAMA g, as our model is trained with MRL.

of DRAMA with different dimensionality.

4.5 Evaluation

Our main evaluations are conducted on
BEIR (Thakur et al., 2021) and MIRACL (Zhang
et al., 2023), to assess the generalization of dense
retrievers and multilingual retrieval capability.
To further analyze the generalization of multi-
lingual retrievers, we also evaluate on retrieval
subsets of MTEB-FR (Ciancone et al., 2024),
MTEB-ZH (Xiao et al., 2024) and MTEB-DE. To
assess the effectiveness of long-context retrieval,
which benefits from pruning an LLM, we evaluate
on MDLR (Chen et al., 2024), a benchmark
for long-context multilingual retrieval across 13
languages. We use nDCG@10 as the metrics for
all evaluations.

4.6 Baseline

We select representative baselines with similar re-
trieval task training data settings, as described
in Sec. 4.1. The major baselines include Con-
triever (Izacard et al., 2022), DRAGON (Lin et al.,
2023), E5 (Wang et al., 2024a), BGE (Xiao et al.,
2024), mES (Wang et al., 2024c), BGE-M3 (Chen
et al., 2024), mGTE (Zhang et al., 2024), Arc-
ticEmbV2 (Yu et al., 2024), Gecko (Lee et al.,
2024), and MistralES (Wang et al., 2024b).

5 Results

5.1 Generalization of Smaller Retrievers

Table 1 shows the performance of our DRAMA
variants on both English and multilingual retrieval
tasks. The results indicate that DRAMA is a strong
and generalizable retriever at different model sizes.
For example, DRAMA( 1 achieves an nDCG@10
of 56.9 on BEIR, on par with ArcticEmb-v2-M, and
outperforms other English-only and multilingual
retrievers. When scaling up to DRAMA( 3g, the
score increases to 58.0, outperforming ArcticEmb-
v2-L by 0.8 points and matching Gecko, which is
a much larger 1B-parameter model. Beyond En-
glish retrieval, DRAMA exhibits strong multilingual
capabilities. On MIRACL, all DRAMA variants
(from 0.1B to 1B) outperform previous best mod-
els like M3-BGE-Dense, while also maintaining
strong English retrieval performance. This suggests
that DRAMA works well across different languages
without losing effectiveness in English.

As discussed by (Lin et al., 2023), there is often a
trade-off between in-domain and out-of-domain re-
trieval performance. While DRAMA achieves very
high in-domain multilingual effectiveness—for
example, DRAMA( g is 5.5 points higher than
ArcticEmb-v2-L on MIRACL, it still maintains
strong zero-shot retrieval performance in multi-



MLDR

Method Param. L-CPT. L-FT. Max Len

Avg
BM25 - X X 00 53.6
mES5-large 303M X X 512 342
M3-BGE-Dense 303M v X 8192 45.0
ArcticEmb-v2-M 113M X X 8192 34.0
DRAMAg 18 113M X X 8192 47.1
DRAMA( 3B 265M X X 8192 48.8
DRAMA;p 1B X X 128k 54.8
M3-BGE-Dense 303M v v 8192 52.5
mGTE-Dense 113M v v 8192 56.6
DRAMAg3-MLDR  113M X v 8192 60.2
DRAMA(33-MLDR  265M X v 8192 58.9
DRAMA;3-MLDR 1B X v 128k 62.3

Table 2: Effectiveness of DRAMA on the multilingual
long-context retrieval task. L-CPT: Model has seen
long-context data during contrastive pretraining. L-FT:
Model has seen long-context data during supervised fine-
tuning. Max Len: Maximum input length supported.

lingual settings like MTEB-FR. On MTEB-ZH,
DRAMA performs slightly lower than ArcticEmb-
v2, but the difference is within 1 point. Over-
all, these results suggest DRAMA is generalizable
across retrieval tasks and languages.

5.2 Effectiveness in Long Context Retrieval

Pruning an recent LLM to create smaller retriever
backbones offers two key advantages in functional-
ity. First, it helps preserve multilingual capability.
Most existing retrievers at the 0.1B parameter scale
use bert-base-uncased as their backbone. While
these models achieve strong performance in En-
glish retrieval, they do not support multilingual
retrieval. By pruning an LLM instead, we achieve
strong English retrieval effectiveness while retain-
ing its multilinguality with only a small amount of
multilingual web data (less than 10B tokens).

Second, as recent LLMs are designed to han-
dle long contexts, pruning an LLM as the retriever
backbone allows better long-context retrieval capa-
bilities. Table 2 shows that even though DRAMA’s
fine-tuning data does not include MLDR training
data, and DRAMA is not trained with text beyond
256 tokents, it still performs well in length extrap-
olation. For example, DRAMAg g achieves an
nDCG@10 of 46.8 on MLDR, despite never be-
ing trained on long-context retrieval data. Com-
paring DRAMA( 15 to M3-BGE-Dense, which was
trained with long-context data during contrastive
pretraining but not fine-tuned on MLDR, DRAMA
outperforms it by 2.1 points. This demonstrates
the advantage of using a pruned LLLM, which inher-
ently supports longer contexts.

It is also important to note that BM25, a tra-
ditional lexical retrieval method, performs well
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Figure 2: Effectiveness of different data augmentation
combinations. The model is trained based on 0.1B back-
bone, using only the English data augmentation and
with 1 hard negative per query.

in long-context retrieval. However, after further
fine-tuning DRAMA on MLDR training data, it sur-
passes BM25 and other methods that have MLDR
in training data. This result shows the potential of
further adapting DRAMA to long-context multilin-
gual retrieval tasks.

6 Analysis and Ablation Study

6.1 Effectiveness of Data Augmentation

Figure 2 illustrates the effectiveness of different
data augmentation combinations. First, we observe
that directly fine-tuning the model without data
augmentation results in poor generalization perfor-
mance. Incorporating any form of LLM-based data
augmentation significantly improves BEIR perfor-
mance, with one exception: directly prompting
Llama3.37op-Instruct to generate fully synthetic
triplets (queries, positive documents, and negative
documents) does not yield meaningful improve-
ments. This suggests that training a smaller re-
triever model benefits more from using real doc-
uments. Moreover, combining multiple types of
data augmentation further enhances effectiveness
beyond using any single augmentation method
alone. The highest performance is achieved when
all three types of data augmentation are combined.
Notably, when all augmentation strategies are ap-
plied together, the importance of fine-tuning data
is diminishing, showing the effectiveness of our
data augmentation approach. The data point noted
by [FT, Sent*, QGen*, Rerank] shows the perfor-
mance of using LLMg,¢ without further improve-
ment from LLM listwise rerank augmentation. Its
lower effectiveness compared to the final combi-
nation underscores that incorporating LL.M-based
rerank augmentation enhances the performance of
LLMRe and further improving the effectiveness of
the smaller retriever model. In addition, we study



Backbone Param. BEIR
BERT 0.1B 53.50
ModernBERT 0.1B 54.22
Llama3.213ﬁ0‘13 0.1B 54.47
XLM-RoBERTa-Large  0.3B 54.74
Llama3.213ﬁ0‘33 0.3B 56.14

Figure 3: Effectiveness of using pruned Llama3.2 as
smaller retriever backbone compares to pre-LLM-era or
recent encoder-only backbone. The models are trained
using only the English data augmentation and with 1
hard negative per query.

Model Size  Attention  Pooling BEIR
0.1B Bi-direction Mean 54.47
Bi-direction EOS 54.37

Uni-direction  Mean 53.88

Uni-direction EOS 53.58

0.3B Bi-direction Mean 56.14
Bi-direction EOS 55.85

Uni-direction  Mean 55.18

Uni-direction EOS 54.79

Figure 4: Impact of different attention and pooling
mechanisms for the smaller retriever. The model is
trained using only the English data augmentation and
with 1 hard negative per query.

the effectiveness of multilingual data mixture in
Appendix A.

6.2 Effectiveness of Model Backbone

In Table 3, we compare the effectiveness of us-
ing a pruned Llama model as the retriever back-
bone against pre-LLM-era encoder-only models.
At the 0.1B scale, the pruned model outperforms
BERT by approximately 1 point on average across
BEIR. Similarly, at the 0.3B scale, the pruned
model surpasses XLM-RoBERTa-Large by about
1.5 points. This demonstrates the effectiveness
of using pruned-decoder-only LL.M as a retriever
backbone for text encoding tasks. Additionally, the
0.1B pruned model performs slightly better than
ModernBERT, a recently developed encoder-only
model. However, unlike ModernBERT, our ap-
proach retains multilingual support and leverages
existing LLM pretraining, dropping the need to
train the backbone from scratch.

6.3 Attention and Pooling Mechanism

In Table 4, we analyze how the attention mecha-
nism and pooling strategy affect retrieval perfor-
mance when training the pruned model as a text en-
coder. It shows that bi-directional attention outper-

Backbone = MIRACL-de MIRACL-yo MTEB-pl
1B — 0.1B 45.48 68.77 32.38
1B — 0.3B 55.83 83.85 36.85
1B 58.20 76.20 51.08

Figure 5: Cross-lingual generalization performance of
models trained with English data augmentation, evalu-
ated on zero-shot languages. DE and YO are seen during
the pruning stage, while PL is unseen. For MTEB-pl,
results are averaged over 11 retrieval tasks.

forms uni-directional attention. While mean pool-
ing yields higher scores than last-token pooling,
the impact of the attention mechanism is greater
than that of the pooling strategy. Even with mas-
sive augmented training data, uni-directional atten-
tion remains a limiting factor. However, simply
enabling bi-directional attention allows the small
decoder-only model to function more effectively.

6.4 Cross-lingual Generalization

In Table 5, we analyze how our model generalizes
to zero-shot languages. The models are trained
using English data augmentation and evaluated on
languages that were not explicitly included in the
fine-tuning stage. First, we examine German (de), a
higher-resource language. The results show a clear
trend where zero-shot effectiveness improves as the
model size increases, suggesting that scaling up en-
hances cross-lingual generalization. For Yoruba
(yo), an interesting pattern emerges: the 0.3B
pruned model outperforms the larger 1B model.
This may be due to the fact that the 1B model was
not well-trained in Yoruba. The pruning stage of
our approach includes yo data, leading to stronger
performance in this language. In contrast, Polish
(pD), which was not covered in either the fine-tuning
or pruning stages, shows a noticeable performance
gap compared to the 1B model. This shows the
importance of including a language during prun-
ing, as exposure at this stage significantly benefits
zero-shot retrieval effectiveness.

7 Conclusion

We introduced DRAMA, a training framework that
leverages LLMs for diverse data augmentation and
pruned LLMs as backbones to train smaller, gener-
alizable dense retrievers. DRAMA achieves strong
effectiveness across English and multilingual re-
trieval tasks. By shifting the computational costs
of LLM ranking methods from inference to smaller
retriever training, our approach offers a scalable
solution for practical deployment.



Limitations

While DRAMA achieves strong retrieval effective-
ness across English and multilingual tasks, several
areas remain open for further investigation.

Firstly, the scope of language support. As ob-
served in Section 6.4, including a language during
the pruning stage is crucial for enabling the smaller
model to generalize well to that language. While
the 0.1B and 0.3B variants of DRAMA covers 20
languages, expanding this coverage could improve
performance for low-resource languages that lack
sufficient contrastive learning data. A more com-
prehensive pruning strategy, incorporating addi-
tional languages, would likely enhance zero-shot
multilingual retrieval.

Another limitation lies in the amount of super-
vised fine-tuning data. To maintain a fair evaluation
of generalization, we followed the E5 fine-tuning
setup, which does not include domain-specific re-
trieval tasks such as financial and medical. How-
ever, incorporating a broader range of supervised
datasets could further improve retrieval perfor-
mance across diverse domains.

Additionally, DRAMA is trained with up to 256
context length by default. Although it demonstrates
strong zero-shot extrapolation in long-context re-
trieval, it is worth more exploration on how to better
integrate the long-context training data into the data
augmentation mixing with shorter-context data effi-
ciently. One possible approach is to organize train-
ing batches based on context length (Chen et al.,
2024).

Besides, DRAMA follows a single-stage train-
ing approach, where the model is directly fine-
tuned from a pruned LLM. While this simplifies
the pipeline and produces strong generalization,
it remains an open question whether combining
with multi-stage pertaining (Yu et al., 2024) or
recently proposed multi-stage distillation (Zhang
et al., 2025) will help further improve the effective-
ness of DRAMA.

Finally, DRAMA focused on retrieval tasks.
Many recent models additionally optimize for
broader text embedding tasks such as clustering
and classification as well as instruction following
retrieval. We leave further integrate supervised fine-
tuning data and LLM data augmentation for these
tasks into DRAMA training framework as future
work.
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Multilingual Data Mixture

—— 1Web:0mWeb:ImWiki
== 1Web:1mWeb:0OmWiki

+r+ 2Web:0.5mWeb:0.5mWiki
2Web:1mWeb:1mWiki

Figure 6: Effectiveness of different mixture ratios of
English and multi-lingual data augmentation ratio for
the data source of Web, mWeb and mWiki. The model
is trained based on 0.1B backbone with 1 hard negative
per query.

Appendix A Multilingual Data Balance

Figure 6 illustrates how different mixtures of
data sources affect effectiveness across English re-
trieval, in-domain multilingual retrieval, and mul-
tilingual generalization. We observe that exclud-
ing mWeb negatively impacts multilingual general-
ization, likely due to overfitting on the Wikipedia
corpus. Conversely, excluding mWiki leads to a
drop in in-domain multilingual retrieval effective-
ness. However, mixing both mWiki and mWeb
enables strong performance across both in-domain
effectiveness and multilingual generalization. Ad-
ditionally, we find that maintaining a 1:1 balance
between English and multilingual data yields better
overall performance than doubling the proportion
of English data. While increasing the English pro-
portion slightly improves BEIR effectiveness, it
significantly weakens multilingual retrieval perfor-
mance. Overall, using a 1:1 ratio of English to
multilingual data and incorporating augmentation
data from both Wikipedia and web-crawled multi-
lingual sources achieves the best trade-off, cover-
ing the largest area in the radar chart and ensuring
robust performance across retrieval tasks.

Appendix B Matryoshka Representation
Learning

In Figure 7, we compare the effectiveness of
DRAMA variants across different dense representa-
tion dimensionalities. For dimensions larger than
256, the trend of model size scaling is clear—larger
model achieves higher effectiveness. Additionally,
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Figure 7: Effectiveness of DRAMA across different text
representation dimensions. Points marked with x indi-
cate dimensionalities that were not explicitly optimized
in the MRL process.

text representations largely retain their effective-
ness compared to using the full-dimensionality rep-
resentation. However, at 128 dimensions, the scal-
ing trend is not guaranteed. At 64 dimensions,
the 0.1B model outperforms both the 0.3B and 1B
models, likely because 64 dimensions were not a
target setting during MRL training for the larger
models. In contrast, for dimensions 384 and 1536,
despite also not being target dimensions for MRL,
the effectiveness is well preserved. This observa-
tion raises the importance of considering the range
of target dimensionalities during MRL training to
ensure effectiveness at test time.

Appendix C Detailed Training Setup

Model License: Our LLM retriever is trained
based on Llama3.1-8B follows Llama 3.1 Com-
munity License Agreement. Data augmentation
based on Inst-LLM is based on Llama3.3-70B-
Instruct follows Llama 3.3 Community License
Agreement. Our backbone model is pruned based
on Llama3.2-1B, following Llama 3.2 Community
License Agreement.

Languages: For pruning and data augmentation,
our web crawl text corpora cover the following 20
languages: English, Arabic, Bengali, Spanish, Per-
sian, Finnish, French, Hindi, Indonesian, Japanese,
Korean, Russian, Swahili, Telugu, Thai, Chinese,
German, Yoruba, Italian, Portuguese.

Training: The models are trained using the
dpr-scale? codebase on 32 A100 GPUs over ap-
proximately two days. The training configurations
for different model sizes are as follows:

2https://github.com/facebookresearch/dpr-scale


https://github.com/facebookresearch/dpr-scale

DRAMAg: Batch size of 2048, with
each query paired with seven hard negatives.
DRAMA( 35: Batch size of 1024, with each query
paired with seven hard negatives. DRAMAp:
Batch size of 256, with each query paired with
three hard negatives. All three variants are trained
for 200,000 steps.

Appendix D Detailed Evaluation Results

We use the tevatron codebase to evaluate BEIR
and MIRACL. For retrieval tasks in MTEB-
FR/ZH/DE, we utilize the mteb codebase. For
BEIR and MIRACL, we set the maximum con-
text length as 512 for both query and document
following previous works. For baselines, we adopt
BEIR and MIRACL scores directly from the orig-
inal works. In MLDR, we reference baseline re-
sults from the mGTE work for mES5, BGE-M3,
and mGTE. For Arctic-Embedding, we conduct the
MLDR evaluation ourselves. While some MTEB
scores are reported in previous works, we observe
version changes in certain datasets within MTEB-
FR. To ensure consistency, we re-evaluate MTEB-
FR/ZH/DE baselines ourselves. We set the max-
imum context length as 1024 following (Zhang
etal., 2024).

The full evaluation results are presented in Ta-
ble 3, Table 4, Table 5, Table 6, Table 7, and Ta-
ble 8.
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BEIR (nDCG@10)
. . TREC- NF Sci SCI . Argu Touche- DB  Climate- Hotpot

Method Param. CPT Multi. | Avg COVID Corpus Fact DOCS FiQA Ana 2020 Pedia FEVER FEVER NQ QA Quora
BM25 - X v ‘ 43.7 ‘ 59.5 322 67.9 14.9 23.6  39.7 44.2 31.8 16.5 65.1 30.5 63.3 78.9
Contriever 86M v X 47.5 59.6 32.8 67.7 16.5 329 446 23.0 41.3 23.7 75.8 498  63.8 86.5
DRAGON 86M X X 50.2 75.9 339 67.9 159 35.6 469 26.3 41.7 227 78.1 53.7  66.2 87.5
ES-v2-base 86M v X 51.9 69.6 354 719 187 399 445 264 422 26.6 85.0 582 692 86.6
bge-base-en-v1.5 86M v X 55.0 78.1 374 740 217 40.6 63.6 25.7 40.8 31.2 86.3 54.1 72.6 88.9
mES5-base 86M v v 50.2 69.7 325 69.3 17.2 382 442 214 40.4 239 79.4 60.0 68.6 87.6
mGTE-Dense 113M v v 54.3 57.4 36.7 73.4 18.3 63.0 584 22.8 40.1 34.8 92.1 58.1 63.0 88.0
ArcticEmb-v2-M 113M v v 56.9 80.3 35.9 71.8 203 44.0 58.0 29.8 439 38.3 91.6 64.6 724 88.7
DRAMA 1B 113M X v 56.9 83.3 36.9 75.7 19.1 442 548 29.1 44.8 38.0 89.4 60.8 749 88.3
ES5-large-v2 303M v X 52.1 66.5 37.1 722 205 41.1 464 20.7 44.0 222 82.8 634 731 86.8
bge-large-en-v1.5  303M v X 56.1 74.8 38.1 746 226 450 635 24.8 44.1 36.6 87.2 55.0 741 89.1

mE5-large 303M v v 529 71.3 340 704 175 438 544 23.4 41.3 25.7 82.8 641 712 88.2
mES5-Inst 303M v v 54.1 82.0 35.5 71.9 18.7 477 584 272 38.4 299 78.0 578 693 89.1
M3-BGE-Dense 303M v v 50.0 55.6 314 64.4 16.4 413 540 22.6 39.8 242 81.4 60.6 694 88.6
ArcticEmb-v2-L 303M v v 572 83.9 353 70.6  20.2 455 59.2 29.5 43.4 43.5 91.9 63.7 68.2 89.0
DRAMA( 3 265M X v 58.0 83.8 379 76.1 19.7 469 541 28.1 47.7 419 89.5 64.1 756 88.4
Gecko 1B v v 58.0 82.6 403 754 204 592 622 259 47.1 332 87.0 613 713 88.2
DRAMA g 1B x v 59.1 85.8 376 779 207 50.6 535 29.6 50.0 38.7 89.9 673 774 88.7
DRAMA;15(768d) 1B X v 58.4 85.2 37.1 715 207 502  53.1 29.0 49.2 379 89.5 66.5 75.5 88.5
MistralES 7B X v ‘ 59.0 ‘ 87.2 38.6 76.4 16.3 56.6 619 26.4 48.9 38.4 87.8 63.5 75.7 89.6

Table 3: Full BEIR evaluation of DRAMA.
MIRACL (nDCG@10)

Method Param. | Avg ‘ ar bn en es fa fi fr hi id ja ko u sW te th zh de yo
BM25 - ‘ 38.5 ‘ 48.1 50.8 35.1 319 333 551 183 458 449 369 419 334 383 494 484 18.0 22.6 406
mES5-base 86M 654760 759 529 529 590 77.8 545 620 529 70.6 665 674 749 84.6 802 56.0 564 56.5
mGTE-Dense 113M | 62.1 | 71.4 727 541 514 512 735 539 516 503 658 627 632 699 83.0 740 60.8 49.7 583
ArcticEmb-v2-M  113M | 59.2 - - - - - - - - - - - - - - - - - -

DRAMA.18 113M | 704 | 80.5 745 563 614 628 789 622 619 580 742 705 723 77.1 815 804 648 623 885
mES5-large 303M | 60.1 | 71.6 702 512 515 574 744 497 584 51.1 647 622 615 71.1 752 752 515 434 423
mES5-Inst 303M | 66.0 | 76.8 739 51.5 537 594 773 537 603 521 69.0 653 679 725 834 786 562 555 815
M3-BGE-Dense 303M | 69.2 | 784 80.0 569 56.1 609 78.6 583 59.5 56.1 728 69.9 70.1 787 862 826 62.7 567 81.8
ArcticEmb-v2-L 303M | 64.9 - - - - - - - - - - - - - - - - - -

DRAMA( 3B 265M | 714 | 814 772 585 624 637 799 624 648 583 756 700 736 781 818 814 651 634 872
Gecko 1B 56.2 - - - - - - - - - - - - - - - - - -

DRAMA 3 1B 71.7 | 81.1 766 584 622 645 809 628 657 587 764 693 746 776 80.6 81.8 682 639 88.1
MistralES 7B ‘ 62.2 ‘ 733 703 573 522 521 747 552 521 527 668 61.8 677 684 739 740 540 540 588

Table 4: Full MIRACL evaluation of DRAMA.
MLDR (nDCG@10)

Method Param. L-CPT. L-FT. MaxLen | Avg ‘ ar de en es fr hi it ja ko pt ru th zh

BM25 - X X %) 53.6 | 45.1 526 57.0 780 757 437 709 362 257 826 613 33.6 346
mES5-large 303M X X 512 342 |33.0 269 33.0 51.1 495 21.0 43.1 299 27.1 587 424 159 132
M3-BGE-Dense 303M v X 512 45.0 | 379 433 412 677 646 320 558 434 331 678 528 272 182
DRAMAg,1B 113M X X 8192 46.8 | 40.0 462 39.7 744 732 256 562 420 359 69.7 57.8 293 189
DRAMA( 3B 265M X X 8192 46.8 |1 393 47.1 399 748 723 269 605 410 328 70.7 559 314 164
DRAMA;p 1B X X 128k 547 | 49.1 541 509 803 77.1 377 676 51.6 435 772 61.7 359 244
M3-BGE-Dense 303M v v 512 525|476 46.1 489 748 738 40.7 627 509 429 744 595 33.6 260
mGTE-Dense 113M v v 512 56.6 | 550 549 51.0 812 762 452 66.7 521 467 79.1 642 353 274
DRAMAg3-MLDR  113M X v 8192 60.2 | 60.6 553 56.6 840 813 43.6 722 559 487 823 73.8 388 29.1
DRAMA(33-MLDR  265M X v 8192 589 1582 531 570 831 810 399 71.0 549 475 80.8 71.8 392 28.7
DRAMA;3-MLDR 1B X v 128k 623 1599 582 62.1 84.6 8l.6 492 77.6 579 527 843 708 437 329

Table 5: Full MLDR evaluation of DRAMA.
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MTEB-FR-Retrieval nDCG@10)
Method Param. | Avg | AlloprofRetrieval BSARDRetrieval MintakaRetrieval SyntecRetrieval XPQARetrieval
mE5-base 86M 45.4 344 18.8 31.0 82.9 59.6
mGTE-Dense 113M | 50.6 49.4 19.1 34.7 82.6 67.4
ArcticEmb-v2-M  113M | 53.7 54.6 18.4 314 89.8 74.4
DRAMA .18 113M | 52.1 51.9 24.7 26.7 85.5 71.5
mES5-large 303M | 47.7 39.3 21.4 342 82.4 61.3
mES-Inst 303M | 499 51.4 24.3 30.3 86.2 57.4
M3-BGE-Dense 303M | 48.6 48.3 16.6 22.9 84.5 70.9
ArcticEmb-v2-L 303M | 545 53.9 21.9 30.7 88.5 77.3
DRAMA 3B 265M | 54.8 55.8 26.6 28.8 89.9 72.8
DRAMA1p 1B 57.6 55.9 29.9 37.5 91.6 72.9
Table 6: Full MTEB-FR-Retrieval evaluation of DRAMA.
MTEB-ZH-Retrieval (nDCG@10)
Method Param. | Avg | Cmedqa Covid Du Ecom Medical MMarco T2 Video
mES5-base 86M 61.6 27.2 735 81.7 542 48.4 76.0 70.8 61.3
mGTE-Dense 113M | 72.0 43.8 81.0 875 648 61.9 794 847 72.8
ArcticEmb-v2-M  113M | 55.7 19.7 722 684 48.6 38.3 71.2 71.3  56.1
DRAMA 18 113M | 61.7 21.2 784 749 579 42.4 76.2 764  66.0
mES5-large 303M | 63.7 28.7 75.6 853 54.7 51.5 79.2 76.1 582
mES-Inst 303M | 64.2 33.9 76.1 852 53.7 56.2 78.6 829 472
M3-BGE-Dense 303M | 65.6 33.8 783 84.0 585 54.2 717.3 81.5 57.0
ArcticEmb-v2-L 303M | 63.6 27.8 78.8 784 564 51.1 78.4 79.7 58.6
DRAMAg 3B 265M | 63.0 21.2 784 749 579 42.4 76.2 764  66.0
DRAMA g 1B 63.7 23.6 76.1 77.8 60.1 45.8 79.4 79.0 67.8
Table 7: Full METB-ZH-Retrieval evaluation of DRAMA.
MTEB-DE-Retrieval (nDCG@10)
Method Param. | Avg | GerDaLIR GermanDPR GermanQuAD-Retrieval XMarket
mE5-base 86M 49.2 6.9 79.6 93.9 16.3
mGTE-Dense 113M | 49.1 94 80.0 91.1 16.0
ArcticEmb-v2-M  113M | 55.0 16.1 81.8 94 .4 27.6
DRAMA-0.1B 113M | 55.1 154 82.8 95.9 26.2
mES5-large 303M | 504 6.5 82.9 94.6 17.5
mES5-Inst 303M | 52.5 10.7 79.4 94.5 25.3
M3-BGE-Dense 303M | 504 10.9 82.5 95.1 13.1
ArcticEmb-v2-L 303M | 55.9 17.5 83.7 95.2 27.0
DRAMA-0.3B 265M | 55.6 15.7 82.6 96.4 27.7
DRAMA-1B 1B 56.2 153 84.4 97.1 28.0

Table 8: Full MTEB-DE-Retrieval evaluation of DRAMA.

15



	Introduction
	Related Work
	Robust Dense Retrieval
	LLM for Text Ranking
	Data Augmentation for Retriever
	Multilingual Retriever

	Method
	Data Augmentation for Contrastive Dense Retriever Training
	Data Augmentation via Llama-3.1-8B Retriever
	Synthetic Queries from Llama-3.3-70B-Instruct
	LLM Ranking Preference from Llama-3.3-70B-Instruct
	Triplet Generation from Llama-3.3-70B-Instruct

	Pruning

	Experiment Setup
	Finetuning Data
	Data Augmentation
	Pruning
	Training
	Evaluation
	Baseline

	Results
	Generalization of Smaller Retrievers
	Effectiveness in Long Context Retrieval

	Analysis and Ablation Study
	Effectiveness of Data Augmentation
	Effectiveness of Model Backbone
	Attention and Pooling Mechanism
	Cross-lingual Generalization

	Conclusion
	Multilingual Data Balance
	Matryoshka Representation Learning
	Detailed Training Setup
	Detailed Evaluation Results

