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Abstract

Large language models (LLMs) have demon-001
strated strong effectiveness and robustness002
when fine-tuned as dense retrievers. How-003
ever, their large parameter size presents sig-004
nificant computational challenges at inference005
time. While smaller retrievers offer better ef-006
ficiency, they often fail to generalize effec-007
tively with limited supervised fine-tuning data.008
In this work, we introduce DRAMA, a train-009
ing framework that leverages LLMs to train010
smaller generalizable dense retrievers. In par-011
ticular, we adopt pruned LLMs as the backbone012
and train on diverse LLM-augmented data in a013
single-stage contrastive learning setup. Exper-014
iments show that DRAMA offers better multi-015
lingual and long-context capabilities than tra-016
ditional encoder-based retrievers, and achieves017
strong effectiveness across multiple tasks and018
languages.1019

1 Introduction020

Recent advancements in large language models021

(LLMs) have demonstrated their effectiveness and022

robustness in text retrieval tasks (Muennighoff023

et al., 2024; Sun et al., 2023; Li et al., 2024;024

BehnamGhader et al., 2024; Lee et al., 2025).025

Directly fine-tuning advanced billion-parameter026

LLMs with available annotated data can generate027

significantly higher zero-shot effectiveness than028

fine-tuning a pre-LLM-era smaller model with only029

a few hundred million parameters (Ma et al., 2024;030

Luo et al., 2024). However, the large parameter031

size of LLMs brings non-negligible inference-time032

compute costs, such as encoding large-scale cor-033

pora and increased query latency. For example,034

using Llama3.18B as the backbone increases the035

inference cost around 40× compared to a dense036

retriever based on BERT.037

In this work, we holistically explore how to ef-038

fectively leverage large language models to create039

1DRAMA checkpoints are available at <anonymized>.

smaller retrievers, in terms of both data and model 040

backbone, to develop generalizable yet efficient 041

dense retrievers with fewer than 1B parameters. 042

Although several works have discussed using 043

LLMs for retrieval data augmentation, such as 044

directly generating training triplet (Wang et al., 045

2024b) or using LLM to mine positive and negative 046

documents from a real corpus (Lee et al., 2024), 047

the effectiveness of these methods has not been 048

thoroughly compared under standardized condi- 049

tions. We comprehensively study the effectiveness 050

of multiple methods of LLM data augmentation 051

with a controlled setup: using the same models 052

and corpora across different data creation methods 053

and only relying on open-sourced models and open- 054

access data. Specifically, we utilize LLM retrievers 055

(based on Llama3.1-8B) and Insturct-LLM (based 056

on Llama3.370B-Instruct) to generate augmentation 057

data. This includes lower computational cost ap- 058

proaches such as generating cropped sentences as 059

queries and using an LLM retriever to mine positive 060

and negative documents over a corpus, as well as 061

higher computational cost methods that further uti- 062

lize Instruct-LLM to generate queries and provide 063

relevance judgment as a listwise reranker. We in- 064

vestigate the effectiveness of various combinations 065

of these diverse LLM augmentations, providing 066

high-quality augmented training data for English 067

and multilingual retrieval. 068

Existing work on training smaller dense retriever 069

models is mostly based on pretrained language 070

models with encoder-only architecture, either con- 071

tinuously pretrain pre-LLM-era models like BERT 072

or XLM-RoBERTa-Large (Wang et al., 2023; Chen 073

et al., 2024) or more recently using higher quality 074

corpora to pretrain from scratch with modern model 075

optimizations (Warner et al., 2024). We instead pro- 076

pose to leverage LLMs as the backbone for smaller 077

dense retrievers by pruning the decoder-only LLM 078

into a small size and serving as initialization for 079

the text encoder. Specifically, we further prune 080
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Llama3.21B (which is pruned from Llama3.18B)081

into 0.1B (BERT-base) and 0.3B (XLM-RoBERTa-082

Large), while preserving multilingual and long-083

context capability. We demonstrate that pruned084

decoder-only models perform well as retrievers, by085

simply turning on the bi-directional attention dur-086

ing retriever training. This offers a more flexible087

pathway to creating smaller dense retrievers with ar-088

bitrary sizes while still leveraging pretrained LLM089

weights, making smaller retrievers compatible with090

current and future LLM advancements.091

Combining LLM-based data augmentation and092

backbones, we introduce a single-stage training093

framework:DRAMA (smaller Dense Retriever from094

diverse LLM AugMentAtion). Our smaller re-095

triever models achieve strong effectiveness on096

BEIR (Thakur et al., 2021), MIRACL (Zhang et al.,097

2023), and multiple multilingual retrieval tasks on098

MTEB (Muennighoff et al., 2022). These results099

demonstrate that our training framework produces100

models that excel in generalization across diverse101

English retrieval tasks and exhibit strong multilin-102

gual effectiveness, showing the potential for unified103

smaller retrievers that perform effectively across104

tasks and languages.105

In summary, our contributions are as follows:106

• We investigate diverse methods for leveraging107

LLMs to generate data augmentation for train-108

ing smaller models, analyzing their individual109

and combined effectiveness.110

• We prune LLMs to derive smaller decoder-111

only language models as backbones for re-112

trievers, demonstrating their advantages in ef-113

fectiveness and length extrapolation compared114

to pre-LLM-era models.115

• Our training framework produces a series116

of multilingual and generalizable smaller re-117

trievers, highlighting the benefits of aligning118

smaller retriever training with ongoing ad-119

vancements in LLMs.120

2 Related Work121

2.1 Robust Dense Retrieval122

Dense Passage Retrieval (Karpukhin et al., 2020)123

utilizes a pre-trained language model such as124

BERT (Devlin et al., 2019), to encode text into125

dense vectors and conduct passage retrieval as a126

nearest neighbor search. This approach has shown127

strong in-domain effectiveness compared to tra-128

ditional lexical retrievers such as BM25 (Robert-129

son and Zaragoza, 2009). However, dense re-130

trievers have been found to struggle with gener- 131

alization when applied to out-of-domain retrieval 132

tasks (Thakur et al., 2021). To address this issue, 133

various works have aimed to improve the gener- 134

alization of dense retrievers through continuous 135

pre-training tailored for retrieval tasks. Works 136

such as Condenser (Gao and Callan, 2021), Retro- 137

MAE (Xiao et al., 2022), and SimLM (Wang et al., 138

2023) have enhanced the dense representation of 139

BERT via customized architectures during lan- 140

guage modeling. Other works, including Con- 141

triever (Izacard et al., 2022), GTE (Li et al., 2023), 142

E5 (Wang et al., 2024a) have further adapted two- 143

stage contrastive learning. These models are first 144

trained with unsupervised or weakly supervised 145

large-scale contrastive learning, followed by super- 146

vised contrastive learning with available relevance- 147

judged data (Nussbaum et al., 2024; Yu et al., 2024). 148

CDE (Morris and Rush, 2024) further proposes a 149

two-stage model architecture that integrates corpus- 150

level information into document embeddings. 151

2.2 LLM for Text Ranking 152

On the other hand, recent large language models 153

have shown strong potential in relevance modeling 154

for text ranking. Finetuning LLM as dense retriever 155

models have shown significantly stronger effective- 156

ness across various tasks and languages compared 157

to smaller ones (Wang et al., 2024b; Muennighoff 158

et al., 2024; Springer et al., 2024; Li et al., 2024). 159

For example, RepLlama (Ma et al., 2024), which 160

uses straightforward supervised fine-tuning based 161

on the Llama2-7B model, outperforms previous 162

smaller retriever models that were based on multi- 163

stage continuous pre-training, with a lower training 164

cost. This demonstrates the data efficiency and 165

naturally strong generalization of LLM-based re- 166

trievers (Luo et al., 2024). Moreover, instruction- 167

following LLMs have also shown strong effective- 168

ness when directly prompted as rerankers (Ma et al., 169

2023; Sun et al., 2023). Reflecting the excel rele- 170

vance understanding of large language models for 171

retrieval. In this work, we aim to leverage the char- 172

acteristics of LLM-based ranking methods that are 173

data-efficient and generalizable, shifting their high 174

inference time costs into training time costs as data 175

augmentation. 176

2.3 Data Augmentation for Retriever 177

InPars (Bonifacio et al., 2022) and Promptaga- 178

tor (Dai et al., 2023) generate synthetic queries 179

that align with given documents sampled from the 180
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task corpus, creating training data for retrieval cor-181

pora with limited human queries and judgments.182

DRAGON (Lin et al., 2023) enhances the robust-183

ness of dense retrievers by employing sentence184

cropping as pseudo-queries and generating aug-185

mented data based on retrieval results from multiple186

retrievers (e.g., sparse, multi-vector models). With187

the emergence of LLMs, Mistral-E5 (Wang et al.,188

2024b) directly prompts an LLM to generate syn-189

thetic query-positive-negative triplets, using them190

as augmentation data to train a 7B LLM retriever191

across diverse text embedding tasks. Gecko (Lee192

et al., 2024) takes a different approach by leverag-193

ing real documents: it generates synthetic queries194

from sampled real documents, retrieves top candi-195

date passages, and uses an LLM to rerank them in196

pointwise way. While these methods introduce var-197

ious strategies for data augmentation in retrievers,198

they have not been systematically compared within199

a single framework where LLMs and corpora are200

controlled for fair comparison. We explore various201

types of LLM-based data augmentation and evalu-202

ate their individual and combined effectiveness.203

2.4 Multilingual Retriever204

Multilingual capabilities are crucial for effective205

retrieval systems. While numerous multilingual re-206

trievers have been developed (Izacard et al., 2022;207

Wang et al., 2024c; Zhang et al., 2024; Chen et al.,208

2024), they often face a trade-off between achiev-209

ing strong performance in multilingual retrieval210

across various languages and preserves good En-211

glish generalization performance on English re-212

trieval. While concurrent work ArcticEmbV2 (Yu213

et al., 2024) also aims to have strong effectiveness214

in both English and multilingual, they follow the215

previous training paradigm that firstly pretrain the216

model with contrastive learning over weakly super-217

vised data pairs and then followed by supervised218

fine-tuning. In our work, we address this challenge219

from a different view, by conducting data augmen-220

tation from LLM and using pruned LLM as the221

backbone of smaller retriever.222

3 Method223

3.1 Data Augmentation for Contrastive Dense224

Retriever Training225

Given a query q, a positive document D+ rele-226

vant to the query, and a set of hard negative docu-227

ments {DHN} that are similar to the positive doc-228

ument but are not highly relevant to the query, a229

dense retriever model is trained using the InfoNCE 230

loss (van den Oord et al., 2019) as follows: 231

L(q,D+, {DN}) = − log p(D = D+ | q)

= − log
exp(Sim(q,D+)/τ)∑

Di∈{D+}∪{DN}
exp(Sim(q,Di)/τ)

, 232

where {DN} is the union of the hard negative docu- 233

ments {DHN} for each query and in-batch negative 234

documents, which are positive or hard negatives 235

from other queries in the same training batch. The 236

similarity Sim(Q,D) is commonly computed as 237

the cosine similarity between the embedding vec- 238

tors of the query and document. 239

Data augmentation for dense retrieval focuses on 240

creating triplets of queries q, positive documents 241

DP, and hard negative documents {DHN}. In this 242

work, we make the following assumptions regard- 243

ing available resources for data augmentation: 244

• Initial Supervised Data (Dsft): A commonly 245

accessible general-domain retrieval dataset. 246

• Large Retrieval Model (LLMRet): An LLM- 247

based retrieval model, fine-tuned on Dsft. 248

• Instruction-following LLM (LLMInst): An 249

LLM with strong instruction-following capa- 250

bility that can generate synthetic data reflect- 251

ing its relevance preferences. 252

• Large Corpus (C): A diverse or multilingual 253

document corpus that serves as the basis for 254

synthetic query generation and relevance as- 255

sessment. 256

With the above assumption, we explored various 257

ways of utilizing LLM to conduct data augmenta- 258

tion for smaller retrievers, ranging from lower to 259

higher computational costs for data creation. 260

3.1.1 Data Augmentation via Llama-3.18B 261

Retriever 262

Given an LLM-based retriever model, one of the 263

simplest approaches to data augmentation, with- 264

out relying on even larger LLMs, is to enable the 265

smaller retriever to learn from the relevance pref- 266

erences of the 8B embedding model LLMemb. In- 267

spired by methods such as SPAR (Chen et al., 2022) 268

and DRAGON (Lin et al., 2023), we begin with the 269

corpus C. For each document in C, we perform 270

random sentence cropping to extract a smaller seg- 271

ment, which is treated as pseudo-query q. These 272
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Figure 1: Methods to create data augmentation for smaller retriever with LLMs: (a) Using cropped sentences as
queries, selecting the top-ranked documents from top-k retrieval as positives and the remaining as hard negatives.
(b) Replacing cropped sentences with synthetic queries generated by prompting instruction-following LLM. (c)
Refining retrieval results from the LLM retriever using an instruction-following LLM as a listwise reranker.

pseudo-queries, along with the full corpus, are en-273

coded using the 8B retriever model. Retrieval is274

then conducted for each pseudo-query q to identify275

the top-k candidate documents. Among these can-276

didates, the top [1,m] documents are regarded as277

positive D+, while the top [k − n, k] documents278

are designated as hard negatives DHN. The process279

is illustrated in Figure 1.a. In this work, we set280

k = 50,m = 10, n = 20.281

3.1.2 Synthetic Queries from282

Llama-3.370B-Instruct283

The availability of instruction-following LLMs,284

such as Llama-3.370B-Instruct, enables the gener-285

ation of synthetic queries that are more similar to286

real queries compared to those from random sen-287

tence cropping. For each document in the corpus288

C, we prompt the LLM to generate a synthetic289

query q. Similar to the above process, these LLM-290

generated queries are fed into the 8B LLMRet to291

perform retrieval. Based on the retrieval results, we292

can identify positive documents and hard negative293

documents for the synthetic queries as illustrated294

in Figure 1.b.295

3.1.3 LLM Ranking Preference from296

Llama-3.370B-Instruct297

Instead of relying solely on the relevance prefer-298

ences of the 8B embedding model, which are influ-299

enced by its fine-tuning on supervised data Dsft, the300

instruction-following LLM such as Llama-3.370B-301

Instruct can be further leveraged to refine relevance302

judgments. Specifically, we prompt the LLM to303

perform listwise reranking of the top-k candidates304

retrieved for each synthetic query, as illustrated in305

Figure 1.c. In this process, the LLM provides its306

relevance judgments by reranking the candidates.307

The top-1 candidate after reranking is treated as308

the positive document D+, while the top [k−n, k]309

candidates from the reranked list are designated as310

hard negatives DHN. In our experiments, we set 311

k = 20, n = 10. This listwise reranking approach 312

aligns more closely with how humans select the 313

most relevant one among multiple candidates. 314

In practice, having the data augmentation from 315

LLM listwise rerank can further improve the 316

LLMRet by combining the augmented data with 317

the initial supervised data Dsft. We sampled LLM 318

listwise rerank augmented data as the same amount 319

of Dsft to re-train the LLMRet. The effectiveness of 320

this operation is further analyzed in Section. 6.1. 321

3.1.4 Triplet Generation from 322

Llama-3.370B-Instruct 323

Another approach to leverage the LLM’s relevance 324

preferences for data augmentation is to directly 325

prompt the LLM to generate triplets consisting of 326

a query, a positive document, and a hard negative 327

document. This approach does not rely on a pre- 328

existing corpus to provide seed documents. Fol- 329

lowing Mistral-E5 (Wang et al., 2024b), but ad- 330

hering to our controlled data augmentation frame- 331

work (i.e., creating the same amount of augmenta- 332

tion data with the same LLM), we first prompt the 333

LLM to brainstorm |C| retrieval tasks. Each task 334

includes a retrieval scenario t, a query q, and its 335

context. Based on the task and query, the LLM is 336

then prompted to generate a corresponding positive 337

document and a hard negative document. While 338

this method appears promising in theory, our ex- 339

periments revealed that purely synthetic triplet data 340

generated in this manner does not substantially im- 341

prove the training of smaller retriever models. De- 342

tailed analyses can be found in Section 6.1. 343

3.2 Pruning 344

Previous pre-LLM-era retriever models predom- 345

inantly utilized encoder-only architectures, such 346

as BERT-base for English retrieval and XLM- 347

RoBERTa-Large for multilingual retrieval. In 348
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this work, in addition to leveraging LLMs for349

data augmentation, we investigate whether recent350

decoder-only LLMs can provide better backbones351

for smaller retriever models. We perform struc-352

tured pruning on an LLM to obtain models with353

non-embedding parameter sizes of 0.1B and 0.3B,354

making them comparable to BERT-base and XLM-355

RoBERTa-Large, respectively. Specifically, we ini-356

tialize the pruning process with Llama3.21B, itself357

a pruned version of Llama3.18B. Following the358

methodology from ShearedLlama (Xia et al., 2024),359

the pruning process is performed in two stages. In360

the first stage, a parameter mask is learned to se-361

lectively prune the model. This is followed by362

a continuous pretraining stage to recover the per-363

formance of the pruned model. Pruning from an364

LLM offers several potential advantages compared365

to training traditional pre-trained language models.366

First, it allows us to leverage the latest advance-367

ments in LLMs, which are trained on large-scale,368

high-quality datasets and exhibit strong general-369

ization and multilingual capabilities. Secondly, it370

supports longer contexts than earlier models, allow-371

ing for improved handling of retrieval scenarios372

requiring extended input sequences. Thirdly, the373

pruning process provides the flexibility to tailor374

model sizes based on specific deployment needs.375

4 Experiment Setup376

4.1 Finetuning Data377

Controlling the supervised fine-tuning data is crit-378

ical for ensuring a fair comparison across meth-379

ods when studying the generalizability of retrieval380

models. BEIR (Thakur et al., 2021) was origi-381

nally designed for zero-shot evaluation, encourag-382

ing the use of MS MARCO Passage Retrieval as383

the sole fine-tuning dataset. However, many re-384

cent retrievers incorporate supervised data from385

the evaluation tasks, making the evaluation not en-386

tirely zero-shot. To balance fairness in assessing387

model generalization while maintaining adequate388

baselines for comparison, we follow the fine-tuning389

data setup of E5 (Wang et al., 2024a). This setup in-390

cludes general-domain retrieval datasets but not in-391

clude fine-tuning data for domain-specific retrieval392

tasks such as financial QA or scientific document393

retrieval. For our experiments, we use the open-394

source replication of the E5 fine-tuning data (Li395

et al., 2024).396

4.2 Data Augmentation 397

For the LLM retriever model LLMret, we initialize 398

it with Llama3.18B and first fine-tune it follow- 399

ing the training recipe of RepLlama (Ma et al., 400

2024) for one epoch on the MS MARCO Passage 401

Ranking training set (Bajaj et al., 2018). We then 402

further fine-tune it on the aforementioned E5 fine- 403

tuning data to obtain an LLM retriever focusing 404

on English retrieval. We train another multilin- 405

gual LLM retriever by continuous fine-tuning of 406

the MS MARCO-trained LLM retriever using only 407

the MIRACL (Zhang et al., 2023) training data. 408

This allows us to better study generalization in the 409

multilingual retrieval setting. 410

For the large corpus C used in English data aug- 411

mentation, we sample 25M documents from a di- 412

verse open web-crawled dataset. For multilingual 413

augmentation, we use a combination of multilin- 414

gual Wikipedia and a multilingual web-crawled 415

corpus covering 19 non-English languages, with 416

each corpus containing 25M documents. In both 417

cases, we segment documents into text chunks of 418

up to 256 tokens. 419

4.3 Pruning 420

We prune Llama3.21B into 0.1B and 0.3B models 421

using 25B tokens in total covering English and 19 422

non-English languages from web-crawled corpora. 423

The pruned models support a maximum context 424

length of 8,192 tokens. 425

4.4 Training 426

The full training data for the smaller retriever mod- 427

els consists of: (1) LLM augmented data based on 428

cropped sentences. (2) 25M LLM retriever aug- 429

mented data based on generated queries. (3) 25M 430

Inst-LLM listwise reranker augmented data based 431

on generated queries. These three types of data aug- 432

mentation are applied to all sources, including En- 433

glish web-crawl corpora, multilingual Wikipedia, 434

and multilingual web-crawl corpora (denoted as 435

enWeb, mWiki, and mWeb respectively). The sam- 436

pling ratio of augmented data across these three 437

sources is 2:1:1. 438

We train the model with each query paired with 439

one positive document and seven hard negative doc- 440

uments for the 0.1B and 0.3B models and three hard 441

negative documents for the 1B model. We adopt 442

the Matryoshka Representation Learning (MRL) 443

during training to enable flexible dimensionality 444

choice (Kusupati et al., 2022). See B for the details 445
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English Multilingual

Method Non-Emb.
Param.

Repre.
Dim.

Contra.
Pretrain.

Data
Aug.

Multi.
Lang. BEIR (13) MIRACL (18) MTEB-FR (5) MTEB-ZH (8) MTEB-DE (4)

BM25 - - × × ✓ 43.7 38.5 - - -

Contriever 86M 768 ✓ × × 47.5 - - - -
DRAGON 86M 768 × ✓ × 50.2 - - - -
E5-v2-base 86M 768 ✓ × × 51.9 - - - -
bge-base-en-v1.5 86M 768 ✓ × × 55.0 - - - -
mE5-base 86M 768 ✓ × ✓ 50.2 60.1 45.4 61.6 49.2
mGTE-Dense 113M 768 ✓ × ✓ 54.3 62.1 50.6 72.0 49.1
ArcticEmb-v2-M 113M 768 ✓ × ✓ 56.9 59.2 53.7 55.7 55.0
DRAMA0.1B 113M 768 × ✓ ✓ 56.9 70.4 52.1 61.7 55.1

E5-large-v2 303M 1024 ✓ × × 52.1 - - - -
bge-large-en-v1.5 303M 1024 ✓ × × 56.1 - - - -
mE5-large 303M 1024 ✓ × ✓ 52.9 65.4 47.7 63.7 50.4
mE5-Inst 303M 1024 ✓ ✓ ✓ 54.1 66.0 49.9 64.2 52.5
M3-BGE-Dense 303M 1024 ✓ × ✓ 50.0 69.2 48.6 65.6 50.4
ArcticEmb-v2-L 303M 1024 ✓ × ✓ 57.2 64.9 54.5 63.6 55.9
DRAMA0.3B 265M 1024 × ✓ ✓ 58.0 71.4 54.8 63.0 55.6

Gecko 1B 768 ✓ ✓ ✓ 58.0 56.2 - - -
DRAMA1B 1B 2048 × ✓ ✓ 59.1 71.7 57.6 63.7 56.2
DRAMA1B (768d) 1B 768 × ✓ ✓ 58.5 70.9 56.5 62.8 55.8

MistralE5 7B 4096 × ✓ ✓ 59.0 62.2 - - -

Table 1: Effectiveness of DRAMA compared to baseline methods (measured in nDCG@10). For each method,
we indicate the number of non-embedding parameters, the text embedding dimensionality, whether contrastive
pretraining is needed, whether data augmentation is applied during supervised fine-tuning, and whether the retriever
supports multilingual retrieval. The notation (x) after a dataset name indicates the average value across x subsets
within the dataset. Detailed results for each subset are provided in the D. We highlight the highest score for each
dataset in bold and the highest score within each parameter level with an underscore. The notation (768d) indicates
that we use the first 768 dimensions of representations from DRAMA1B, as our model is trained with MRL.

of DRAMA with different dimensionality.446

4.5 Evaluation447

Our main evaluations are conducted on448

BEIR (Thakur et al., 2021) and MIRACL (Zhang449

et al., 2023), to assess the generalization of dense450

retrievers and multilingual retrieval capability.451

To further analyze the generalization of multi-452

lingual retrievers, we also evaluate on retrieval453

subsets of MTEB-FR (Ciancone et al., 2024),454

MTEB-ZH (Xiao et al., 2024) and MTEB-DE. To455

assess the effectiveness of long-context retrieval,456

which benefits from pruning an LLM, we evaluate457

on MDLR (Chen et al., 2024), a benchmark458

for long-context multilingual retrieval across 13459

languages. We use nDCG@10 as the metrics for460

all evaluations.461

4.6 Baseline462

We select representative baselines with similar re-463

trieval task training data settings, as described464

in Sec. 4.1. The major baselines include Con-465

triever (Izacard et al., 2022), DRAGON (Lin et al.,466

2023), E5 (Wang et al., 2024a), BGE (Xiao et al.,467

2024), mE5 (Wang et al., 2024c), BGE-M3 (Chen468

et al., 2024), mGTE (Zhang et al., 2024), Arc-469

ticEmbV2 (Yu et al., 2024), Gecko (Lee et al.,470

2024), and MistralE5 (Wang et al., 2024b).471

5 Results 472

5.1 Generalization of Smaller Retrievers 473

Table 1 shows the performance of our DRAMA 474

variants on both English and multilingual retrieval 475

tasks. The results indicate that DRAMA is a strong 476

and generalizable retriever at different model sizes. 477

For example, DRAMA0.1B achieves an nDCG@10 478

of 56.9 on BEIR, on par with ArcticEmb-v2-M, and 479

outperforms other English-only and multilingual 480

retrievers. When scaling up to DRAMA0.3B, the 481

score increases to 58.0, outperforming ArcticEmb- 482

v2-L by 0.8 points and matching Gecko, which is 483

a much larger 1B-parameter model. Beyond En- 484

glish retrieval, DRAMA exhibits strong multilingual 485

capabilities. On MIRACL, all DRAMA variants 486

(from 0.1B to 1B) outperform previous best mod- 487

els like M3-BGE-Dense, while also maintaining 488

strong English retrieval performance. This suggests 489

that DRAMA works well across different languages 490

without losing effectiveness in English. 491

As discussed by (Lin et al., 2023), there is often a 492

trade-off between in-domain and out-of-domain re- 493

trieval performance. While DRAMA achieves very 494

high in-domain multilingual effectiveness—for 495

example, DRAMA0.1B is 5.5 points higher than 496

ArcticEmb-v2-L on MIRACL, it still maintains 497

strong zero-shot retrieval performance in multi- 498
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Method Param. L-CPT. L-FT. Max Len MLDR
Avg

BM25 - × × ∞ 53.6
mE5-large 303M × × 512 34.2
M3-BGE-Dense 303M ✓ × 8192 45.0
ArcticEmb-v2-M 113M × × 8192 34.0
DRAMA0.1B 113M × × 8192 47.1
DRAMA0.3B 265M × × 8192 48.8
DRAMA1B 1B × × 128k 54.8

M3-BGE-Dense 303M ✓ ✓ 8192 52.5
mGTE-Dense 113M ✓ ✓ 8192 56.6
DRAMA0.1B-MLDR 113M × ✓ 8192 60.2
DRAMA0.3B-MLDR 265M × ✓ 8192 58.9
DRAMA1B-MLDR 1B × ✓ 128k 62.3

Table 2: Effectiveness of DRAMA on the multilingual
long-context retrieval task. L-CPT: Model has seen
long-context data during contrastive pretraining. L-FT:
Model has seen long-context data during supervised fine-
tuning. Max Len: Maximum input length supported.

lingual settings like MTEB-FR. On MTEB-ZH,499

DRAMA performs slightly lower than ArcticEmb-500

v2, but the difference is within 1 point. Over-501

all, these results suggest DRAMA is generalizable502

across retrieval tasks and languages.503

5.2 Effectiveness in Long Context Retrieval504

Pruning an recent LLM to create smaller retriever505

backbones offers two key advantages in functional-506

ity. First, it helps preserve multilingual capability.507

Most existing retrievers at the 0.1B parameter scale508

use bert-base-uncased as their backbone. While509

these models achieve strong performance in En-510

glish retrieval, they do not support multilingual511

retrieval. By pruning an LLM instead, we achieve512

strong English retrieval effectiveness while retain-513

ing its multilinguality with only a small amount of514

multilingual web data (less than 10B tokens).515

Second, as recent LLMs are designed to han-516

dle long contexts, pruning an LLM as the retriever517

backbone allows better long-context retrieval capa-518

bilities. Table 2 shows that even though DRAMA’s519

fine-tuning data does not include MLDR training520

data, and DRAMA is not trained with text beyond521

256 tokens, it still performs well in length extrap-522

olation. For example, DRAMA0.1B achieves an523

nDCG@10 of 46.8 on MLDR, despite never be-524

ing trained on long-context retrieval data. Com-525

paring DRAMA0.1B to M3-BGE-Dense, which was526

trained with long-context data during contrastive527

pretraining but not fine-tuned on MLDR, DRAMA528

outperforms it by 2.1 points. This demonstrates529

the advantage of using a pruned LLM, which inher-530

ently supports longer contexts.531

It is also important to note that BM25, a tra-532

ditional lexical retrieval method, performs well533

Figure 2: Effectiveness of different data augmentation
combinations. The model is trained based on 0.1B back-
bone, using only the English data augmentation and
with 1 hard negative per query.

in long-context retrieval. However, after further 534

fine-tuning DRAMA on MLDR training data, it sur- 535

passes BM25 and other methods that have MLDR 536

in training data. This result shows the potential of 537

further adapting DRAMA to long-context multilin- 538

gual retrieval tasks. 539

6 Analysis and Ablation Study 540

6.1 Effectiveness of Data Augmentation 541

Figure 2 illustrates the effectiveness of different 542

data augmentation combinations. First, we observe 543

that directly fine-tuning the model without data 544

augmentation results in poor generalization perfor- 545

mance. Incorporating any form of LLM-based data 546

augmentation significantly improves BEIR perfor- 547

mance, with one exception: directly prompting 548

Llama3.370B-Instruct to generate fully synthetic 549

triplets (queries, positive documents, and negative 550

documents) does not yield meaningful improve- 551

ments. This suggests that training a smaller re- 552

triever model benefits more from using real doc- 553

uments. Moreover, combining multiple types of 554

data augmentation further enhances effectiveness 555

beyond using any single augmentation method 556

alone. The highest performance is achieved when 557

all three types of data augmentation are combined. 558

Notably, when all augmentation strategies are ap- 559

plied together, the importance of fine-tuning data 560

is diminishing, showing the effectiveness of our 561

data augmentation approach. The data point noted 562

by [FT, Sent∗, QGen∗, Rerank] shows the perfor- 563

mance of using LLMRet without further improve- 564

ment from LLM listwise rerank augmentation. Its 565

lower effectiveness compared to the final combi- 566

nation underscores that incorporating LLM-based 567

rerank augmentation enhances the performance of 568

LLMRet and further improving the effectiveness of 569

the smaller retriever model. In addition, we study 570
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Backbone Param. BEIR

BERT 0.1B 53.50
ModernBERT 0.1B 54.22
Llama3.21B→0.1B 0.1B 54.47

XLM-RoBERTa-Large 0.3B 54.74
Llama3.21B→0.3B 0.3B 56.14

Figure 3: Effectiveness of using pruned Llama3.2 as
smaller retriever backbone compares to pre-LLM-era or
recent encoder-only backbone. The models are trained
using only the English data augmentation and with 1
hard negative per query.

Model Size Attention Pooling BEIR

0.1B Bi-direction Mean 54.47
Bi-direction EOS 54.37

Uni-direction Mean 53.88
Uni-direction EOS 53.58

0.3B Bi-direction Mean 56.14
Bi-direction EOS 55.85

Uni-direction Mean 55.18
Uni-direction EOS 54.79

Figure 4: Impact of different attention and pooling
mechanisms for the smaller retriever. The model is
trained using only the English data augmentation and
with 1 hard negative per query.

the effectiveness of multilingual data mixture in571

Appendix A.572

6.2 Effectiveness of Model Backbone573

In Table 3, we compare the effectiveness of us-574

ing a pruned Llama model as the retriever back-575

bone against pre-LLM-era encoder-only models.576

At the 0.1B scale, the pruned model outperforms577

BERT by approximately 1 point on average across578

BEIR. Similarly, at the 0.3B scale, the pruned579

model surpasses XLM-RoBERTa-Large by about580

1.5 points. This demonstrates the effectiveness581

of using pruned-decoder-only LLM as a retriever582

backbone for text encoding tasks. Additionally, the583

0.1B pruned model performs slightly better than584

ModernBERT, a recently developed encoder-only585

model. However, unlike ModernBERT, our ap-586

proach retains multilingual support and leverages587

existing LLM pretraining, dropping the need to588

train the backbone from scratch.589

6.3 Attention and Pooling Mechanism590

In Table 4, we analyze how the attention mecha-591

nism and pooling strategy affect retrieval perfor-592

mance when training the pruned model as a text en-593

coder. It shows that bi-directional attention outper-594

Backbone MIRACL-de MIRACL-yo MTEB-pl
1B → 0.1B 45.48 68.77 32.38
1B → 0.3B 55.83 83.85 36.85
1B 58.20 76.20 51.08

Figure 5: Cross-lingual generalization performance of
models trained with English data augmentation, evalu-
ated on zero-shot languages. DE and YO are seen during
the pruning stage, while PL is unseen. For MTEB-pl,
results are averaged over 11 retrieval tasks.

forms uni-directional attention. While mean pool- 595

ing yields higher scores than last-token pooling, 596

the impact of the attention mechanism is greater 597

than that of the pooling strategy. Even with mas- 598

sive augmented training data, uni-directional atten- 599

tion remains a limiting factor. However, simply 600

enabling bi-directional attention allows the small 601

decoder-only model to function more effectively. 602

6.4 Cross-lingual Generalization 603

In Table 5, we analyze how our model generalizes 604

to zero-shot languages. The models are trained 605

using English data augmentation and evaluated on 606

languages that were not explicitly included in the 607

fine-tuning stage. First, we examine German (de), a 608

higher-resource language. The results show a clear 609

trend where zero-shot effectiveness improves as the 610

model size increases, suggesting that scaling up en- 611

hances cross-lingual generalization. For Yoruba 612

(yo), an interesting pattern emerges: the 0.3B 613

pruned model outperforms the larger 1B model. 614

This may be due to the fact that the 1B model was 615

not well-trained in Yoruba. The pruning stage of 616

our approach includes yo data, leading to stronger 617

performance in this language. In contrast, Polish 618

(pl), which was not covered in either the fine-tuning 619

or pruning stages, shows a noticeable performance 620

gap compared to the 1B model. This shows the 621

importance of including a language during prun- 622

ing, as exposure at this stage significantly benefits 623

zero-shot retrieval effectiveness. 624

7 Conclusion 625

We introduced DRAMA, a training framework that 626

leverages LLMs for diverse data augmentation and 627

pruned LLMs as backbones to train smaller, gener- 628

alizable dense retrievers. DRAMA achieves strong 629

effectiveness across English and multilingual re- 630

trieval tasks. By shifting the computational costs 631

of LLM ranking methods from inference to smaller 632

retriever training, our approach offers a scalable 633

solution for practical deployment. 634
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Limitations635

While DRAMA achieves strong retrieval effective-636

ness across English and multilingual tasks, several637

areas remain open for further investigation.638

Firstly, the scope of language support. As ob-639

served in Section 6.4, including a language during640

the pruning stage is crucial for enabling the smaller641

model to generalize well to that language. While642

the 0.1B and 0.3B variants of DRAMA covers 20643

languages, expanding this coverage could improve644

performance for low-resource languages that lack645

sufficient contrastive learning data. A more com-646

prehensive pruning strategy, incorporating addi-647

tional languages, would likely enhance zero-shot648

multilingual retrieval.649

Another limitation lies in the amount of super-650

vised fine-tuning data. To maintain a fair evaluation651

of generalization, we followed the E5 fine-tuning652

setup, which does not include domain-specific re-653

trieval tasks such as financial and medical. How-654

ever, incorporating a broader range of supervised655

datasets could further improve retrieval perfor-656

mance across diverse domains.657

Additionally, DRAMA is trained with up to 256658

context length by default. Although it demonstrates659

strong zero-shot extrapolation in long-context re-660

trieval, it is worth more exploration on how to better661

integrate the long-context training data into the data662

augmentation mixing with shorter-context data effi-663

ciently. One possible approach is to organize train-664

ing batches based on context length (Chen et al.,665

2024).666

Besides, DRAMA follows a single-stage train-667

ing approach, where the model is directly fine-668

tuned from a pruned LLM. While this simplifies669

the pipeline and produces strong generalization,670

it remains an open question whether combining671

with multi-stage pertaining (Yu et al., 2024) or672

recently proposed multi-stage distillation (Zhang673

et al., 2025) will help further improve the effective-674

ness of DRAMA.675

Finally, DRAMA focused on retrieval tasks.676

Many recent models additionally optimize for677

broader text embedding tasks such as clustering678

and classification as well as instruction following679

retrieval. We leave further integrate supervised fine-680

tuning data and LLM data augmentation for these681

tasks into DRAMA training framework as future682

work.683
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Figure 6: Effectiveness of different mixture ratios of
English and multi-lingual data augmentation ratio for
the data source of Web, mWeb and mWiki. The model
is trained based on 0.1B backbone with 1 hard negative
per query.

Appendix A Multilingual Data Balance912

Figure 6 illustrates how different mixtures of913

data sources affect effectiveness across English re-914

trieval, in-domain multilingual retrieval, and mul-915

tilingual generalization. We observe that exclud-916

ing mWeb negatively impacts multilingual general-917

ization, likely due to overfitting on the Wikipedia918

corpus. Conversely, excluding mWiki leads to a919

drop in in-domain multilingual retrieval effective-920

ness. However, mixing both mWiki and mWeb921

enables strong performance across both in-domain922

effectiveness and multilingual generalization. Ad-923

ditionally, we find that maintaining a 1:1 balance924

between English and multilingual data yields better925

overall performance than doubling the proportion926

of English data. While increasing the English pro-927

portion slightly improves BEIR effectiveness, it928

significantly weakens multilingual retrieval perfor-929

mance. Overall, using a 1:1 ratio of English to930

multilingual data and incorporating augmentation931

data from both Wikipedia and web-crawled multi-932

lingual sources achieves the best trade-off, cover-933

ing the largest area in the radar chart and ensuring934

robust performance across retrieval tasks.935

Appendix B Matryoshka Representation936

Learning937

In Figure 7, we compare the effectiveness of938

DRAMA variants across different dense representa-939

tion dimensionalities. For dimensions larger than940

256, the trend of model size scaling is clear—larger941

model achieves higher effectiveness. Additionally,942

Figure 7: Effectiveness of DRAMA across different text
representation dimensions. Points marked with × indi-
cate dimensionalities that were not explicitly optimized
in the MRL process.

text representations largely retain their effective- 943

ness compared to using the full-dimensionality rep- 944

resentation. However, at 128 dimensions, the scal- 945

ing trend is not guaranteed. At 64 dimensions, 946

the 0.1B model outperforms both the 0.3B and 1B 947

models, likely because 64 dimensions were not a 948

target setting during MRL training for the larger 949

models. In contrast, for dimensions 384 and 1536, 950

despite also not being target dimensions for MRL, 951

the effectiveness is well preserved. This observa- 952

tion raises the importance of considering the range 953

of target dimensionalities during MRL training to 954

ensure effectiveness at test time. 955

Appendix C Detailed Training Setup 956

Model License: Our LLM retriever is trained 957

based on Llama3.1-8B follows Llama 3.1 Com- 958

munity License Agreement. Data augmentation 959

based on Inst-LLM is based on Llama3.3-70B- 960

Instruct follows Llama 3.3 Community License 961

Agreement. Our backbone model is pruned based 962

on Llama3.2-1B, following Llama 3.2 Community 963

License Agreement. 964

Languages: For pruning and data augmentation, 965

our web crawl text corpora cover the following 20 966

languages: English, Arabic, Bengali, Spanish, Per- 967

sian, Finnish, French, Hindi, Indonesian, Japanese, 968

Korean, Russian, Swahili, Telugu, Thai, Chinese, 969

German, Yoruba, Italian, Portuguese. 970

Training: The models are trained using the 971

dpr-scale2 codebase on 32 A100 GPUs over ap- 972

proximately two days. The training configurations 973

for different model sizes are as follows: 974

2https://github.com/facebookresearch/dpr-scale
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DRAMA0.1B: Batch size of 2048, with975

each query paired with seven hard negatives.976

DRAMA0.3B: Batch size of 1024, with each query977

paired with seven hard negatives. DRAMA1B:978

Batch size of 256, with each query paired with979

three hard negatives. All three variants are trained980

for 200,000 steps.981

Appendix D Detailed Evaluation Results982

We use the tevatron codebase to evaluate BEIR983

and MIRACL. For retrieval tasks in MTEB-984

FR/ZH/DE, we utilize the mteb codebase. For985

BEIR and MIRACL, we set the maximum con-986

text length as 512 for both query and document987

following previous works. For baselines, we adopt988

BEIR and MIRACL scores directly from the orig-989

inal works. In MLDR, we reference baseline re-990

sults from the mGTE work for mE5, BGE-M3,991

and mGTE. For Arctic-Embedding, we conduct the992

MLDR evaluation ourselves. While some MTEB993

scores are reported in previous works, we observe994

version changes in certain datasets within MTEB-995

FR. To ensure consistency, we re-evaluate MTEB-996

FR/ZH/DE baselines ourselves. We set the max-997

imum context length as 1024 following (Zhang998

et al., 2024).999

The full evaluation results are presented in Ta-1000

ble 3, Table 4, Table 5, Table 6, Table 7, and Ta-1001

ble 8.1002
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Method Param. CPT Multi.

BEIR (nDCG@10)

Avg TREC-
COVID

NF
Corpus

Sci
Fact

SCI
DOCS

FiQA
Argu
Ana

Touche-
2020

DB
Pedia

Climate-
FEVER

FEVER NQ
Hotpot

QA
Quora

BM25 - × ✓ 43.7 59.5 32.2 67.9 14.9 23.6 39.7 44.2 31.8 16.5 65.1 30.5 63.3 78.9

Contriever 86M ✓ × 47.5 59.6 32.8 67.7 16.5 32.9 44.6 23.0 41.3 23.7 75.8 49.8 63.8 86.5
DRAGON 86M × × 50.2 75.9 33.9 67.9 15.9 35.6 46.9 26.3 41.7 22.7 78.1 53.7 66.2 87.5
E5-v2-base 86M ✓ × 51.9 69.6 35.4 71.9 18.7 39.9 44.5 26.4 42.2 26.6 85.0 58.2 69.2 86.6
bge-base-en-v1.5 86M ✓ × 55.0 78.1 37.4 74.0 21.7 40.6 63.6 25.7 40.8 31.2 86.3 54.1 72.6 88.9
mE5-base 86M ✓ ✓ 50.2 69.7 32.5 69.3 17.2 38.2 44.2 21.4 40.4 23.9 79.4 60.0 68.6 87.6
mGTE-Dense 113M ✓ ✓ 54.3 57.4 36.7 73.4 18.3 63.0 58.4 22.8 40.1 34.8 92.1 58.1 63.0 88.0
ArcticEmb-v2-M 113M ✓ ✓ 56.9 80.3 35.9 71.8 20.3 44.0 58.0 29.8 43.9 38.3 91.6 64.6 72.4 88.7
DRAMA0.1B 113M × ✓ 56.9 83.3 36.9 75.7 19.1 44.2 54.8 29.1 44.8 38.0 89.4 60.8 74.9 88.3

E5-large-v2 303M ✓ × 52.1 66.5 37.1 72.2 20.5 41.1 46.4 20.7 44.0 22.2 82.8 63.4 73.1 86.8
bge-large-en-v1.5 303M ✓ × 56.1 74.8 38.1 74.6 22.6 45.0 63.5 24.8 44.1 36.6 87.2 55.0 74.1 89.1
mE5-large 303M ✓ ✓ 52.9 71.3 34.0 70.4 17.5 43.8 54.4 23.4 41.3 25.7 82.8 64.1 71.2 88.2
mE5-Inst 303M ✓ ✓ 54.1 82.0 35.5 71.9 18.7 47.7 58.4 27.2 38.4 29.9 78.0 57.8 69.3 89.1
M3-BGE-Dense 303M ✓ ✓ 50.0 55.6 31.4 64.4 16.4 41.3 54.0 22.6 39.8 24.2 81.4 60.6 69.4 88.6
ArcticEmb-v2-L 303M ✓ ✓ 57.2 83.9 35.3 70.6 20.2 45.5 59.2 29.5 43.4 43.5 91.9 63.7 68.2 89.0
DRAMA0.3B 265M × ✓ 58.0 83.8 37.9 76.1 19.7 46.9 54.1 28.1 47.7 41.9 89.5 64.1 75.6 88.4

Gecko 1B ✓ ✓ 58.0 82.6 40.3 75.4 20.4 59.2 62.2 25.9 47.1 33.2 87.0 61.3 71.3 88.2
DRAMA1B 1B × ✓ 59.1 85.8 37.6 77.9 20.7 50.6 53.5 29.6 50.0 38.7 89.9 67.3 77.4 88.7
DRAMA1B(768d) 1B × ✓ 58.4 85.2 37.1 77.5 20.7 50.2 53.1 29.0 49.2 37.9 89.5 66.5 75.5 88.5

MistralE5 7B × ✓ 59.0 87.2 38.6 76.4 16.3 56.6 61.9 26.4 48.9 38.4 87.8 63.5 75.7 89.6

Table 3: Full BEIR evaluation of DRAMA.

Method Param.
MIRACL (nDCG@10)

Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

BM25 - 38.5 48.1 50.8 35.1 31.9 33.3 55.1 18.3 45.8 44.9 36.9 41.9 33.4 38.3 49.4 48.4 18.0 22.6 40.6

mE5-base 86M 65.4 76.0 75.9 52.9 52.9 59.0 77.8 54.5 62.0 52.9 70.6 66.5 67.4 74.9 84.6 80.2 56.0 56.4 56.5
mGTE-Dense 113M 62.1 71.4 72.7 54.1 51.4 51.2 73.5 53.9 51.6 50.3 65.8 62.7 63.2 69.9 83.0 74.0 60.8 49.7 58.3
ArcticEmb-v2-M 113M 59.2 - - - - - - - - - - - - - - - - - -
DRAMA0.1B 113M 70.4 80.5 74.5 56.3 61.4 62.8 78.9 62.2 61.9 58.0 74.2 70.5 72.3 77.1 81.5 80.4 64.8 62.3 88.5

mE5-large 303M 60.1 71.6 70.2 51.2 51.5 57.4 74.4 49.7 58.4 51.1 64.7 62.2 61.5 71.1 75.2 75.2 51.5 43.4 42.3
mE5-Inst 303M 66.0 76.8 73.9 51.5 53.7 59.4 77.3 53.7 60.3 52.1 69.0 65.3 67.9 72.5 83.4 78.6 56.2 55.5 81.5
M3-BGE-Dense 303M 69.2 78.4 80.0 56.9 56.1 60.9 78.6 58.3 59.5 56.1 72.8 69.9 70.1 78.7 86.2 82.6 62.7 56.7 81.8
ArcticEmb-v2-L 303M 64.9 - - - - - - - - - - - - - - - - - -
DRAMA0.3B 265M 71.4 81.4 77.2 58.5 62.4 63.7 79.9 62.4 64.8 58.3 75.6 70.0 73.6 78.1 81.8 81.4 65.1 63.4 87.2

Gecko 1B 56.2 - - - - - - - - - - - - - - - - - -
DRAMA1B 1B 71.7 81.1 76.6 58.4 62.2 64.5 80.9 62.8 65.7 58.7 76.4 69.3 74.6 77.6 80.6 81.8 68.2 63.9 88.1

MistralE5 7B 62.2 73.3 70.3 57.3 52.2 52.1 74.7 55.2 52.1 52.7 66.8 61.8 67.7 68.4 73.9 74.0 54.0 54.0 58.8

Table 4: Full MIRACL evaluation of DRAMA.

Method Param. L-CPT. L-FT. Max Len
MLDR (nDCG@10)

Avg ar de en es fr hi it ja ko pt ru th zh

BM25 - × × ∞ 53.6 45.1 52.6 57.0 78.0 75.7 43.7 70.9 36.2 25.7 82.6 61.3 33.6 34.6
mE5-large 303M × × 512 34.2 33.0 26.9 33.0 51.1 49.5 21.0 43.1 29.9 27.1 58.7 42.4 15.9 13.2
M3-BGE-Dense 303M ✓ × 512 45.0 37.9 43.3 41.2 67.7 64.6 32.0 55.8 43.4 33.1 67.8 52.8 27.2 18.2
DRAMA0.1B 113M × × 8192 46.8 40.0 46.2 39.7 74.4 73.2 25.6 56.2 42.0 35.9 69.7 57.8 29.3 18.9
DRAMA0.3B 265M × × 8192 46.8 39.3 47.1 39.9 74.8 72.3 26.9 60.5 41.0 32.8 70.7 55.9 31.4 16.4
DRAMA1B 1B × × 128k 54.7 49.1 54.1 50.9 80.3 77.1 37.7 67.6 51.6 43.5 77.2 61.7 35.9 24.4

M3-BGE-Dense 303M ✓ ✓ 512 52.5 47.6 46.1 48.9 74.8 73.8 40.7 62.7 50.9 42.9 74.4 59.5 33.6 26.0
mGTE-Dense 113M ✓ ✓ 512 56.6 55.0 54.9 51.0 81.2 76.2 45.2 66.7 52.1 46.7 79.1 64.2 35.3 27.4
DRAMA0.1B-MLDR 113M × ✓ 8192 60.2 60.6 55.3 56.6 84.0 81.3 43.6 72.2 55.9 48.7 82.3 73.8 38.8 29.1
DRAMA0.3B-MLDR 265M × ✓ 8192 58.9 58.2 53.1 57.0 83.1 81.0 39.9 71.0 54.9 47.5 80.8 71.8 39.2 28.7
DRAMA1B-MLDR 1B × ✓ 128k 62.3 59.9 58.2 62.1 84.6 81.6 49.2 77.6 57.9 52.7 84.3 70.8 43.7 32.9

Table 5: Full MLDR evaluation of DRAMA.
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Method Param.
MTEB-FR-Retrieval (nDCG@10)

Avg AlloprofRetrieval BSARDRetrieval MintakaRetrieval SyntecRetrieval XPQARetrieval

mE5-base 86M 45.4 34.4 18.8 31.0 82.9 59.6
mGTE-Dense 113M 50.6 49.4 19.1 34.7 82.6 67.4
ArcticEmb-v2-M 113M 53.7 54.6 18.4 31.4 89.8 74.4
DRAMA0.1B 113M 52.1 51.9 24.7 26.7 85.5 71.5

mE5-large 303M 47.7 39.3 21.4 34.2 82.4 61.3
mE5-Inst 303M 49.9 51.4 24.3 30.3 86.2 57.4
M3-BGE-Dense 303M 48.6 48.3 16.6 22.9 84.5 70.9
ArcticEmb-v2-L 303M 54.5 53.9 21.9 30.7 88.5 77.3
DRAMA0.3B 265M 54.8 55.8 26.6 28.8 89.9 72.8
DRAMA1B 1B 57.6 55.9 29.9 37.5 91.6 72.9

Table 6: Full MTEB-FR-Retrieval evaluation of DRAMA.

Method Param.
MTEB-ZH-Retrieval (nDCG@10)

Avg Cmedqa Covid Du Ecom Medical MMarco T2 Video

mE5-base 86M 61.6 27.2 73.5 81.7 54.2 48.4 76.0 70.8 61.3
mGTE-Dense 113M 72.0 43.8 81.0 87.5 64.8 61.9 79.4 84.7 72.8
ArcticEmb-v2-M 113M 55.7 19.7 72.2 68.4 48.6 38.3 71.2 71.3 56.1
DRAMA0.1B 113M 61.7 21.2 78.4 74.9 57.9 42.4 76.2 76.4 66.0

mE5-large 303M 63.7 28.7 75.6 85.3 54.7 51.5 79.2 76.1 58.2
mE5-Inst 303M 64.2 33.9 76.1 85.2 53.7 56.2 78.6 82.9 47.2
M3-BGE-Dense 303M 65.6 33.8 78.3 84.0 58.5 54.2 77.3 81.5 57.0
ArcticEmb-v2-L 303M 63.6 27.8 78.8 78.4 56.4 51.1 78.4 79.7 58.6
DRAMA0.3B 265M 63.0 21.2 78.4 74.9 57.9 42.4 76.2 76.4 66.0
DRAMA1B 1B 63.7 23.6 76.1 77.8 60.1 45.8 79.4 79.0 67.8

Table 7: Full METB-ZH-Retrieval evaluation of DRAMA.

Method Param.
MTEB-DE-Retrieval (nDCG@10)

Avg GerDaLIR GermanDPR GermanQuAD-Retrieval XMarket

mE5-base 86M 49.2 6.9 79.6 93.9 16.3
mGTE-Dense 113M 49.1 9.4 80.0 91.1 16.0
ArcticEmb-v2-M 113M 55.0 16.1 81.8 94.4 27.6
DRAMA-0.1B 113M 55.1 15.4 82.8 95.9 26.2

mE5-large 303M 50.4 6.5 82.9 94.6 17.5
mE5-Inst 303M 52.5 10.7 79.4 94.5 25.3
M3-BGE-Dense 303M 50.4 10.9 82.5 95.1 13.1
ArcticEmb-v2-L 303M 55.9 17.5 83.7 95.2 27.0
DRAMA-0.3B 265M 55.6 15.7 82.6 96.4 27.7
DRAMA-1B 1B 56.2 15.3 84.4 97.1 28.0

Table 8: Full MTEB-DE-Retrieval evaluation of DRAMA.
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