

000
001 **EViNOTE-RAG: ENHANCING RAG MODELS VIA**
002 **ANSWER-SUPPORTIVE EVIDENCE NOTES**
003

004 **Anonymous authors**
005

006 Paper under double-blind review
007

008 **ABSTRACT**
009

010 Retrieval-Augmented Generation (RAG) has advanced open-domain question an-
011 swering by incorporating external information into model reasoning. However,
012 effectively leveraging external information to enhance reasoning presents the fol-
013 lowing challenges: (1) *low signal-to-noise ratio*, where answer-supportive ex-
014 ternal information is diluted by irrelevant material, and (2) *error accumulation*,
015 which arises in multi-hop reasoning when incomplete or misleading informa-
016 tion is incorporated. To address these challenges, we introduce **EviNote-RAG**,
017 a framework that follows a retrieve–note–answer workflow. Instead of reason-
018 ing directly over raw external information, the model first produces *Supportive-
019 Evidence Notes (SENs)*, which concisely preserve answer-critical information and
020 explicitly mark key and uncertainty information to improve accuracy. We further
021 design an entailment-based *Evidence Quality Reward (EQR)* to ensure that SENs
022 are logically sufficient to derive the final answer, thereby enhancing SENs’ qual-
023 ity. Experiments on both in-domain and out-of-domain QA benchmarks show that
024 EviNote-RAG achieves state-of-the-art performance, improving answer accuracy,
025 training stability, robustness, and efficiency. In particular, it yields relative F1
026 gains of **20%** on HotpotQA (+0.093), **40%** on Bamboolle (+0.151), and **91%** on
027 2Wiki (+0.256), benefiting from improvements in the reasoning process.
028

029 **1 INTRODUCTION**
030

031 Large Language Models (LLMs) have evolved from next-token predictors into systems capable of
032 advanced reasoning (Chowdhery et al., 2022; Verma et al., 2024b; Zheng et al., 2025; Yin et al.,
033 2025; Jiang et al., 2025). Since the factual knowledge of LLMs is fixed during pre-training, they
034 are prone to generating incorrect or outdated information when deployed in real-world tasks where
035 knowledge evolves rapidly (Ji et al., 2022; Zhang et al., 2025). To address this limitation, Retrieval-
036 Augmented Generation (RAG) (Arslan et al., 2024; Gao et al., 2025) has emerged by incorporating
037 a search tool that supplies up-to-date external evidence at inference time, enabling models to ground
038 their responses in timely information and improve factual consistency.
039

040 Despite recent advances, how to effectively leverage external documents to support reasoning re-
041 mains a fundamental challenge (Gao et al., 2025). Prompt-based methods address this through
042 multi-step reasoning (Jiang et al., 2024; Tran et al., 2024; Xiong et al., 2025) or adaptive work-
043 flows (Lee et al., 2024; Zhou et al., 2024; Wu et al., 2025a; Li et al., 2025a; Zhao et al., 2025b),
044 while tuning-based strategies (Liu et al., 2024; Zhang et al., 2024a) improve fine-grained infor-
045 mation extraction but often sacrifice generalization. More recently, advances in Reinforcement Learn-
046 ing (RL) (Kaelbling et al., 1996; Guo et al., 2025) have inspired RL-based RAG approaches (Zhang
047 et al., 2024a; Wei et al., 2025a; Song et al., 2025b; Jin et al., 2025; Li et al., 2025a; Deng et al., 2025),
048 which surpass earlier paradigms by exploring optimal strategies and enhancing generalization. Yet,
049 RL-based RAG methods still rely on outcome-based rewards that evaluate only final correctness,
050 offering little guidance for intermediate reasoning. Consequently, models remain constrained to
051 the *retrieve-then-answer* paradigm, facing two persistent obstacles: (1) **Low Signal-to-Noise Ratio**
052 (**SNR**), where retrieved evidence often includes substantial irrelevant content, making supportive in-
053 formation sparse (Shi et al., 2023; Jin et al., 2024); and (2) **Error Accumulation**, where reasoning
054 errors (Shi et al., 2023) amplify when inference depends on incomplete or noisy evidence, especially

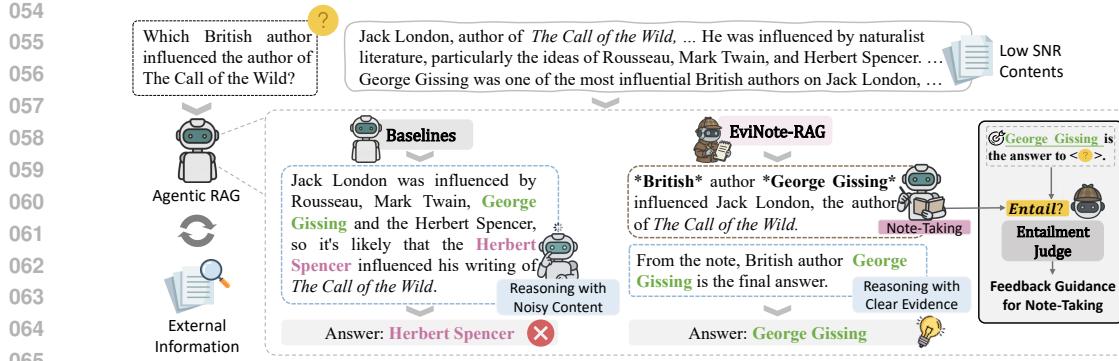


Figure 1: EviNote-RAG vs. Baselines (Song et al., 2025b; Jin et al., 2025): EviNote-RAG distills key information through evidence notes and, guided by an Entailment Judge, ensures that retained content directly supports the answer, thereby mitigating noise and enhancing performance.

in multi-hop QA. Addressing these issues calls for RL strategies that not only boost performance but also equip models with more effective workflows for handling long and noisy contexts.

To address the core limitation of existing RAG systems, we propose **EviNote-RAG**, an end-to-end RL-based RAG framework that restructures the pipeline into a *retrieve–note–answer* process (Fig. 1). EviNote-RAG trains LLMs to generate *Supportive-Evidence Notes (SENs)*, concise abstractions that preserve only answer-critical information and discard irrelevant content to improve answer accuracy. Each SEN further highlights *key* and *uncertain* information, echoing human note-taking strategies to improve focus and reduce misleading reasoning. Most importantly, we formulate evidence selection as a reinforcement learning problem: through the *Evidence Quality Reward (EQR)*, a lightweight entailment judge evaluates how well each SEN supports the final answer. This reward signal encourages the model to explore strategies for evidence extraction while being guided toward more accurate and faithful use of information. As a result, EviNote-RAG achieves end-to-end optimization that reduces noise, mitigates error accumulation, and enables the model to learn an effective strategy for precise information utilization.

We validate our approach through extensive experiments on both in-domain and out-of-domain QA benchmarks, and summarize our main contributions as follows:

- We propose **EviNote-RAG**, a structured agentic RAG framework that transforms the standard retrieve-then-answer paradigm into a retrieve–note–answer pipeline, improving content distillation and reasoning reliability.
- We introduce a human-inspired *Retrieval-based Summarization* mechanism that generates Supportive-Evidence Notes (SENs), highlighting key and uncertain information to enhance focus and mitigate noise in retrieved content.
- Our approach not only achieves state-of-the-art performance across multiple QA benchmarks, but also significantly improves training robustness. For example, relative to the Base model, EviNote-RAG lifts F1 by 20% on in-domain HotpotQA (+0.093), 40% on OOD Bamboogle (+0.151), and 91% on 2Wiki (+0.256). Moreover, denser, better-shaped reward signals and reduced verbosity yield more stable, sample-efficient training.

2 RELATED WORK

2.1 INSTRUCTION-GUIDED RAG METHODS

Instruction-guided methods (Amplayo et al., 2022; Yao et al., 2023; Jeong et al., 2024; Jiang et al., 2024; Wu et al., 2025a) enhance RAG by designing prompts that automate retrieval and guide multi-step reasoning (Jiang et al., 2024; Xiong et al., 2025). These approaches (Zhang et al., 2024b; Li et al., 2024a) typically decompose questions into sub-problems, retrieve external knowledge, and synthesize structured answers (Zhou et al., 2024; Zhao et al., 2025b; Tran et al., 2024). Other works (Li et al., 2025a; Lee et al., 2025) integrate retrieval directly into the reasoning loop, while

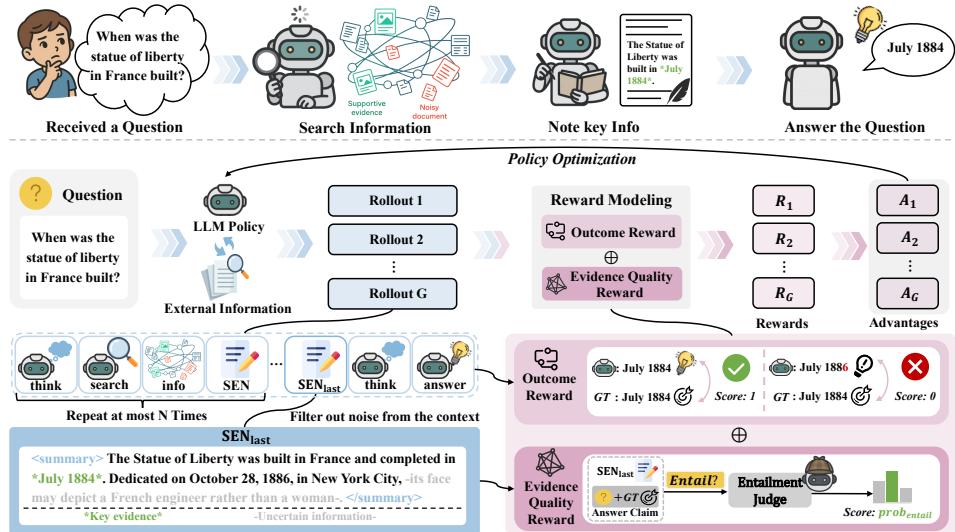


Figure 2: Overview of the EviNote-RAG. To improve information utilization, the method introduces a note-taking phase where the model generates Supportive-Evidence Notes (SENs) that capture only the information necessary for answering. An entailment-based Evidence Quality Reward (EQR) further ensures that each note faithfully supports the final answer, guiding the model toward more accurate and evidence-grounded reasoning.

more recent efforts (Yue et al., 2024; Verma et al., 2024a; Li et al., 2025a; Alzubi et al., 2025; Feng et al., 2025) interleave retrieval and reasoning adaptively. Despite these advances, prompt-based approaches inherently depend on the foundation model’s generalization ability in RAG, which remains limited. Our framework instead employs a post-training, reward-driven objective that explicitly shapes information selection and reasoning, leading to more faithful and task-adapted performance.

2.2 REWARD-GUIDED AGENTIC RAG

Reward-guided approaches (Zhang et al., 2024a; Guan et al., 2025; Huang et al., 2025; Zhao et al., 2025a; Wang et al., 2024b; Wei et al., 2025a; Deng et al., 2025) employ Reinforcement Learning (RL) (Kaelbling et al., 1996) to optimize reasoning policies through scalar feedback derived from task performance. Early work (Nakano et al., 2021) demonstrated that reward signals can effectively guide multi-step retrieval and improve factual accuracy. Building on recent advances in RL (Guo et al., 2025), RL-based RAG approaches (Qi et al., 2025; Chen et al., 2025; Jin et al., 2025; Wei et al., 2025b) have surpassed previous paradigms by enabling optimal strategy exploration and improved generalization. Subsequent works have broadened this framework to diverse scenarios and tool use (Zheng et al., 2025; Dai et al., 2025; Wang et al., 2025; Sun et al., 2025a; Gutiérrez et al., 2025; Shao et al., 2025), highlighting the performance gains from RL-based supervision. However, most existing reward-guided methods (Wu et al., 2025b; Song et al., 2025b; Sun et al., 2025b) operate directly on raw, often noisy passages, which leads to a low signal-to-noise ratio (Shi et al., 2023; Jin et al., 2024) and error accumulation across multi-hop reasoning. EviNote-RAG tackles this limitation by using supportive-evidence notes to structure retrieved information and by applying supervision that enforces logical consistency between the notes and the final answers. These mechanisms together promote more reliable reasoning and improve answer accuracy.

3 METHODOLOGY

This section presents EviNote-RAG (as shown in Fig. 2), which integrates Supportive Evidence Notes (SENs) to distill answer-relevant content from retrievals and an Evidence Quality Reward (EQR) to ensure each note faithfully supports the final answer. Together, these components guide more accurate and robust reasoning. The following subsections describe the pipeline, SEN design, and reward formulation.

162
163

3.1 EVINOTE-RAG PIPELINE

164 Upon receiving a query, **EviNote-RAG** either issues `<search>` to retrieve external evidence or,
 165 when sufficiently confident, answers directly. Retrieved content arrives as `<information>` and
 166 may be noisy; therefore, the system produces *Supportive-Evidence Notes (SENs)* in `<summary>` to
 167 filter distractors and retain evidence critical to the answer. Once sufficient notes are consolidated, the
 168 agent finalizes the response in `<answer>`. Importantly, SENs explicitly link supportive evidence to
 169 the evolving answer, ensuring consistency and precision. The following subsections provide further
 170 details.

171
172

3.2 SUPPORTIVE-EVIDENCE NOTE

173 To improve information utilization, our method uses Supportive-Evidence Notes (SENs) within
 174 `<summary>` tags to filter out irrelevant content, ensuring retention of supportive evidence. Next, we
 175 detail two key components of SENs: evidence-aware annotations and the dynamic SEN workflow,
 176 which jointly enhance information utilization and strengthen model performance.

177

178 **Evidence-aware Annotations.** To enhance information utilization, SENs incorporate two anno-
 179 tation types: *key information* (denoted by $*$) and *uncertain information* (denoted by $-$). These
 180 annotations preserve the model’s certainty in multi-turn interactions, enabling precise identification
 181 of key information and avoiding misguidance from uncertain data, yielding substantial gains over
 182 naive summarization (Section 4.6, Naive Summary vs. SEN).

183

184 **Dynamic SEN Workflow.** We emphasize that SEN generation is optional after each retrieval
 185 phase, allowing the model to dynamically determine the necessity of summarization based on re-
 186 trieval outcomes. This dynamic workflow design is essential for enhancing RL training effectiveness
 187 (Section 4.6, Force Summary vs. Ours), underscoring the importance of flexibility in achieving opti-
 188 mal RAG strategies. Furthermore, To guide high-quality SEN generation, we propose the Evidence
 189 Quality Reward (EQR), which provides entailment-based feedback to focus on answer-relevant con-
 190 tent. Details are presented in the next section.

191
192

3.3 EVIDENCE QUALITY REWARD

193 To encourage the generation of high-quality SEN, the Evidence Quality Reward (EQR) introduces
 194 an Entailment Judge as a source of supervision. The underlying intuition is straightforward: a well-
 195 formed SEN should provide sufficient grounds for logically inferring the ground-truth answer. We
 196 realize the Entailment Judge through a lightweight Natural Language Inference (NLI) model (e.g.,
 197 DistilBERT (Sanh et al., 2019)), which evaluates whether the final SEN entails the correct answer.
 198 To be more specific, we first construct an answer claim h that asserts the ground-truth answer ANS_{gt}
 199 is the correct answer to the question q . We then use the final SEN SEN_{last} as the input text, and
 200 evaluate whether it logically supports h using the Entailment Judge model $\mathcal{M}_{\text{Judge}}$, as shown below:

201
202

$$R_{\text{EQR}} = \mathcal{M}_{\text{Judge}}(SEN_{last}, h)[\text{entailment}], \quad (1)$$

203

204 where $[\text{entailment}]$ denotes the confidence score assigned to the entailment class. This reward
 $R_{\text{EQR}} \in \mathbb{R}$ encourages the model to generate SENs that logically support the correct answer. To
 205 reduce computational overhead, EQR is applied only to the final SEN in each output sequence. For
 206 example, given the question “*What is the largest planet in the solar system?*” with the ground-
 207 truth answer “*Jupiter*”, we construct the answer claim “*Jupiter is the answer to ‘What is the largest*
 208 *planet in the solar system?’*”. If the SEN states “*Jupiter is the largest planet in the solar system*”, the
 209 entailment score is high. In contrast, if it only states “*Jupiter is a planet in the solar system*” while
 210 omitting the crucial fact of being *the largest*, the score is low. This example demonstrates how subtle
 211 semantic distinctions in SENs affect whether the answer can be logically inferred, underscoring the
 212 importance of entailment-aware generation.

213
214

3.4 TRAINING STRATEGY

215

Reward Strategy. We design a reward strategy to supervise the model’s behavior throughout train-
 216 ing. This strategy balances two goals: (1) encouraging the model to explicitly mark uncertainty and

highlight key information when answer prediction is unreliable; (2) promoting accurate and well-supported answers as performance improves. The scalar reward $R(\cdot)$ is computed as:

$$R = \begin{cases} 1 + R_{\text{EQR}} & \text{format } \checkmark, \text{ answer } \checkmark \\ 0.1 + R_{\text{EQR}} & \text{format } \checkmark, \text{ answer } \times, \text{ note-taking } \checkmark \\ 0 & \text{otherwise} \end{cases}. \quad (2)$$

Here, \checkmark indicates satisfaction and \times a violation. The **format** criterion holds if the output includes an explicit `<answer>` tag, at least one `<summary>` tag, and follows the prescribed schema. The **answer** criterion requires an exact match with the ground truth, and the **note-taking** criterion holds when Evidence-aware Annotations are marked according to the SEN design. This reward design ensures that the model is gently guided to perform structured note-taking when its QA capability is still developing (through a small reward of $0.1 + R_{\text{EQR}}$), and increasingly incentivized to generate precise, logically supported answers when it becomes more reliable (through $1 + R_{\text{EQR}}$). Note that this strategy integrates the Evidence Quality Reward (EQR) R_{EQR} , which provides entailment-based feedback to further emphasize relevance and faithfulness in the final generated answers.

Policy Optimization. In this work, we adopt the GRPO algorithm (Shao et al., 2024) to optimize the policy π_θ using the reward R . GRPO updates the current policy π_θ using a reference policy $\pi_{\theta_{\text{ref}}}$ and a set of rollouts generated by a previous policy $\pi_{\theta_{\text{old}}}$. The training objective is extended and formulated as follows:

$$r_1, r_2, \dots, r_G = R(y_1, y_2, \dots, y_G), \quad (3)$$

$$A_i = \frac{r_i - \text{mean}(r_1, r_2, \dots, r_G)}{\text{std}(r_1, r_2, \dots, r_G)}, \quad (4)$$

$$\begin{aligned} \mathcal{J}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|x)} \left[\frac{1}{G} \sum_{i=1}^G \min \left(\frac{\pi_\theta(y_i|x)}{\pi_{\theta_{\text{old}}}(y_i|x)} A_i, \right. \right. \\ \left. \left. \text{clip} \left(\frac{\pi_\theta(y_i|x)}{\pi_{\theta_{\text{old}}}(y_i|x)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) \right. \\ \left. - \beta \mathbb{D}_{\text{KL}}(\pi_\theta \parallel \pi_{\theta_{\text{ref}}}) \right] \end{aligned} \quad (5)$$

where, x denotes an input sampled from the experience distribution \mathcal{D} , y_i denotes an trajectory generated by π_θ , r_i denotes the reward assigned to y_i ; A_i represents its corresponding advantage. \mathbb{D}_{KL} denotes the unbiased estimator of KL divergence (Shao et al., 2024), and ϵ and β are hyperparameters for balancing exploration and exploitation.

4 EXPERIMENTS

4.1 DATASETS

We evaluated EviNote-RAG on seven widely used Question Answering (QA) benchmark datasets: **(1) In-Domain Datasets** consist of NQ (Kwiatkowski et al., 2019) and HotpotQA (Yang et al., 2018). These datasets are considered in-domain because they originate from the same question distribution, allowing for a direct comparison on familiar tasks. **(2) Out-of-Domain Datasets:** Out-of-Domain Datasets include PopQA (Mallen et al., 2022), TriviaQA (Joshi et al., 2017), 2WikiMulti-HopQA (2Wiki) (Ho et al., 2020), Musique (Trivedi et al., 2022) and Bamboogle (Press et al., 2022). These datasets involve more complex multi-hop reasoning and are classified as out-of-domain because their question distributions differ significantly from our fine-tuning set. For testing, we randomly select 500 samples from each of the datasets, except for Bamboogle, where we use the entire 125 samples from its validation set.

4.2 METRICS.

We evaluated the model using the following metrics: **(1) Exact Match (EM)** evaluates whether the predicted answer strictly matches the ground truth, while **(2) F1 Score** balances precision and recall,

270 offering a more flexible measure when answers are close but not identical to the ground truth. These
 271 two metrics complement each other, providing a more comprehensive assessment of the accuracy
 272 of the answer. Furthermore, to demonstrate the impact of improving the quality of SEN support in
 273 the Ablation Study section, we introduce **(3) Evidence Quality Reward (EQR)**: a metric designed
 274 to assess the quality of supporting evidence nodes (SEN), focusing on their relevance and logical
 275 consistency.

277 4.3 BASELINES

279 To evaluate our model, we compare it against several established baselines: **(1) Foundational**
 280 **Model**: All of our models use the Qwen-2.5-7B-Instruct model (Yang et al., 2024) as the foun-
 281 dational model. This includes *Direct Inference*, which generates answers without using retrieved
 282 context, and RAG WORKFLOW, which guides the foundational model for RAG retrieval solely
 283 by modifying instructions, without any additional training or fine-tuning. **(2) Chain-of-Thought**
 284 **(CoT) Methods**: This category includes RECAT and IRCoT (Trivedi et al., 2023), which en-
 285 hance reasoning by explicitly generating intermediate Chain-of-Thought reasoning steps. **(3)**
 286 **Prompt-Based Agentic RAG**: This group includes models such as SELF-ASK (Press et al., 2022),
 287 ITER-RETEGEN (Shao et al., 2023), SELF-RAG (Asai et al., 2024), and SEARCH-O1 (Li et al.,
 288 2025b), which combine retrieval and reasoning through designed prompts. We also include CR-
 289 PLANNER (Li et al., 2024b), which employs Monte Carlo Tree Search (MCTS) for planning. **(4)**
 290 **RL-Based Agentic RAG**: This category includes models like REARTER (Sun et al., 2025b), R1-
 291 SEARCH (Song et al., 2025a), and SEARCH-R1 (Jin et al., 2025), which extend the traditional RAG
 292 paradigm by incorporating agentic search and policy learning through reinforcement learning, en-
 293 abling the model to adaptively refine its retrieval and reasoning strategies during training.

294 4.4 IMPLEMENTATION DETAILS

295 Our experimental framework is built upon the Qwen-2.5-7B-Instruct model (Yang et al., 2024) us-
 296 ing the Verl framework (Sheng et al., 2025). The retrieval module utilizes the 2018 Wikipedia
 297 dump (Karpukhin et al., 2020) as the knowledge corpus, with the E5 model (Wang et al., 2024a)
 298 serving as the dense retriever. For model optimization, we apply loss masking to update only the
 299 tokens generated by the model. The learning rate is set to 1e-5, with a sampling temperature of 1.0.
 300 Training is performed with a batch size of 600 (distributed across 15 NVIDIA A100 Tensor Core
 301 GPUs), generating 4 rollouts per sample and limiting the maximum retrieval count to 5. In addition,
 302 one separate GPU is used to run a 144M-parameter DISTILBERT (Sanh et al., 2019) model for
 303 calculating the Evidence Quality Reward.

304 4.5 MAIN RESULTS

305 The overall performance of EVI NOTE-RAG is summarized in Tab. 1, which reports results across
 306 both in-domain and out-of-domain benchmarks.

307 **In-Domain Performance.** On benchmarks whose distributions are aligned with the training data,
 308 EVI NOTE-RAG achieves strong results and consistently surpasses baseline models. On HotpotQA,
 309 a dataset that requires complex multi-hop reasoning, EVI NOTE-RAG significantly outperforms both
 310 RAG and CHAIN-OF-THOUGHT (CoT) methods. These improvements arise from the Supportive-
 311 Evidence Notes (SEN) mechanism, which filters out spurious retrievals, and the Evidence Quality
 312 Reward (EQR), which encourages the selection of answer-critical evidence. Together, these mech-
 313 anisms enable the model to construct faithful reasoning chains and maintain factual consistency,
 314 thereby yielding more accurate in-domain answers.

315 **Out-of-Domain Generalization.** Across out-of-domain benchmarks, EVI NOTE-RAG achieves
 316 clear gains over the strong RL baseline (Search-R1): +91% F1 on 2Wiki (0.536 vs. 0.280, +0.256),
 317 +40% on Bamboogle (0.528 vs. 0.377, +0.151), +23% on Musique (0.336 vs. 0.274, +0.062),
 318 and +5.4% on TriviaQA (0.795 vs. 0.754, +0.040), with near-parity on PopQA (0.491 vs. 0.498).
 319 These gains are driven by behavior shaping: Supportive-Evidence Notes (SEN) compress question-
 320 conditioned evidence before generation, and the entailment-based Evidence Quality Reward (EQR)
 321 enforces that notes logically support the final answer, reducing distractor-induced errors.

324 Table 1: Performance comparisons on out-of-domain (TriviaQA, 2Wiki, Bamboogle, Musique,
 325 PopQA) and in-domain (NQ, HotpotQA) benchmarks. For each dataset, the **bold** indicates the
 326 best performance, and underline indicates the second-best performance.

Methods	TriviaQA		2Wiki		Bamboogle		Musique		PopQA		NQ		HotpotQA	
	F1	EM												
Foundational Model														
Direct Inference	0.321	0.298	0.264	0.228	0.221	0.216	0.085	0.074	0.170	0.150	0.198	0.134	0.244	0.216
RAG Workflow	0.456	0.442	0.244	0.232	0.254	0.240	0.100	0.094	0.479	0.458	0.420	0.376	0.371	0.330
CoT														
ReCAT	0.474	0.438	0.482	0.336	0.272	0.184	0.192	0.118	0.367	0.308	0.495	0.454	0.421	0.380
IRCoT	0.432	0.418	0.492	0.417	0.245	0.112	0.192	0.102	0.322	0.287	0.512	0.470	0.435	0.392
Prompt-Based Agentic RAG														
Self-Ask	0.392	0.362	0.336	0.278	0.332	0.320	0.260	0.214	0.410	0.398	0.471	0.423	0.410	0.365
Iter-RetGen	0.374	0.356	0.326	0.270	0.232	0.160	0.178	0.118	0.376	0.348	0.442	0.395	0.390	0.342
Self-RAG	0.451	0.436	0.432	0.391	0.351	0.256	0.192	0.183	0.332	0.314	0.508	0.465	0.448	0.402
CR-Planner	0.417	0.403	0.473	0.452	0.434	0.304	0.271	0.202	0.351	0.350	0.520	0.482	0.452	0.405
Search-o1	0.589	0.566	0.286	0.272	0.358	0.328	0.168	0.140	0.369	0.336	0.345	0.310	0.330	0.268
RL-Based Agentic RAG														
ReARTeR	0.468	0.506	0.554	0.534	0.119	0.096	0.296	0.237	0.432	0.422	0.545	0.502	0.512	0.465
R1-Searcher	0.731	0.688	0.491	0.446	0.201	0.176	0.228	0.214	0.427	0.413	0.538	0.492	0.498	0.451
Search-R1	<u>0.754</u>	<u>0.694</u>	0.280	0.244	0.377	0.320	0.274	0.184	0.498	0.482	<u>0.550</u>	<u>0.508</u>	0.464	0.420
EviNote-RAG (Ours)	0.795	0.730	<u>0.536</u>	<u>0.494</u>	0.528	0.424	0.336	0.240	<u>0.491</u>	<u>0.480</u>	0.563	0.524	0.557	0.490

344
 345
 346 Overall, EviNOTE-RAG delivers consistent improvements across both in-domain and out-of-
 347 domain settings. These results demonstrate that effective noise filtering, coupled with reward design,
 348 enhances not only stability and accuracy but also generalization across diverse QA tasks. The Abla-
 349 tions in the following section further confirm that **SEN+EQR** is the strongest configuration across
 350 OOD sets while controlling sequence length and token usage, aligning with our generalization claim.

352 4.6 ABLATION STUDY

354 **Settings.** Our experiments build on **Base** model SEARCH-R1 (Jin et al., 2025), an end-to-end
 355 RAG pipeline trained with reinforcement learning. On top of this baseline, we examine several con-
 356 figurations. In the **Force Summary (FS)** setting, the model must output an explicit `<summary>`
 357 after each retrieval, with zero reward assigned if the tag is absent, which ensures strict compliance
 358 but increases reward sparsity. Relaxing this constraint, the **Naive Summary (NS)** setting allows the
 359 model to generate a concise `<summary>` of retrieved documents before answering, and the model
 360 still receives reward for a correct answer even when a summary is not provided. Building on NS,
 361 the **Supportive-Evidence Notes (SEN)** configuration enriches the summaries with evidence-aware
 362 annotations, improving focus and reducing misleading reasoning. Finally, the **SEN+EQR** configura-
 363 tion extends SEN by introducing the Evidence Quality Reward (EQR), which uses an Entail Judge
 364 to assess the quality of SENs and further enhance reasoning accuracy.

365 Overall, as shown in Tab. 2, the effectiveness of our workflow and training strategy makes SEN
 366 and SEN+EQR highly competitive, with performance consistently ranked as follows: SEN+EQR
 367 > SEN > Naive Summary > Base > Force Summary. Additionally, we observed the following
 368 experimental observations:

370 **Effectiveness of Dynamic Summarization.** Force Summary yields inferior results, indicating that
 371 rigid structural constraints and reward sparsity hinder model adaptability. In contrast, Naive Sum-
 372 mary significantly outperforms the baseline, demonstrating that flexible summarization improves
 373 reasoning quality. In addition, we find that changing prompts to require summarization or evidence
 374 selection does not affect model performance (see Appendix A).

375 **Effectiveness of Evidence-aware Annotations:** The improvement observed when transitioning
 376 from Naive Summary to SEN validates our central hypothesis: the structured organization of evi-
 377 dence, coupled with explicit uncertainty markings (key info, uncertain info), serves as an efficient

Table 2: Ablation results on in-domain and out-of-domain QA benchmarks. **Bold** highlights the best performance, while underline marks the second best.

Methods	TriviaQA		2Wiki		Bamboogle		Musique		PopQA		NQ		HotpotQA	
	F1	EM												
Base	0.754	0.694	0.280	0.244	0.377	0.320	0.274	0.184	0.498	0.482	0.550	0.508	0.464	0.420
+ Force Summary	0.708	0.638	0.334	0.304	0.338	0.224	0.274	0.184	0.472	0.454	0.505	0.450	0.423	0.362
+ Naïve Summary	0.774	0.712	0.462	0.424	0.496	0.384	0.280	0.204	0.500	0.488	0.551	0.502	0.560	0.498
+ SEN	0.795	0.730	0.505	0.464	0.440	0.352	0.317	0.210	0.524	0.514	0.563	0.518	0.550	0.482
+ SEN + EQR (Ours)	0.795	0.730	0.536	0.494	0.528	0.424	0.336	0.240	0.491	0.480	0.563	0.524	0.557	0.490

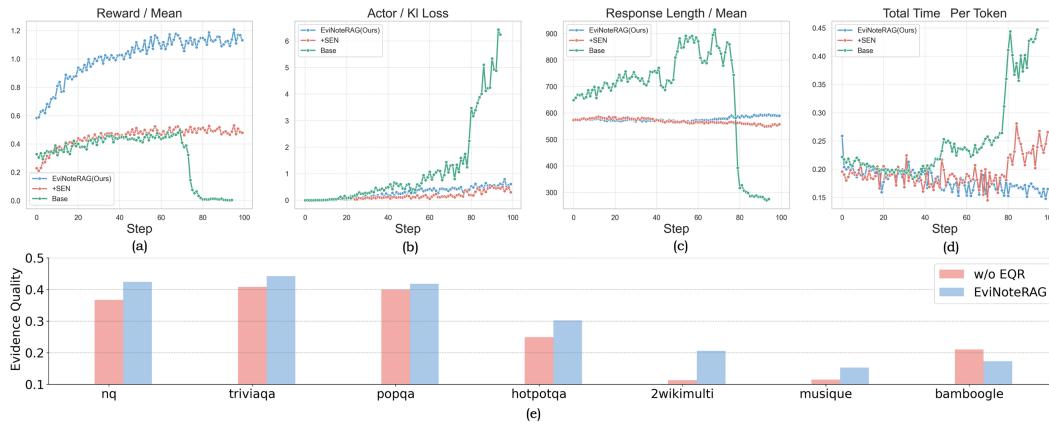


Figure 3: Training dynamics illustrating (a) reward, (b) KL Loss, (c) Response Length, and (d) Total Time Per Token (TPT). (e) Ablation study on EQR experiments.

filter for noise and enhances multi-hop reasoning accuracy. SEN's effectiveness arises from its dual capacity for selective evidence highlighting and uncertainty quantification.

Effectiveness of EQR SEN+EQR achieves optimal performance through entailment-based supervision. The Evidence Quality Reward ensures logical consistency between generated notes and final answers, providing crucial semantic alignment that complements SEN’s structural guidance. We further demonstrate the advantages of this setting in the supplementary material, showing that it guides the model toward thorough and effective summarization behavior while maintaining stability (Appendix A, B, and C).

4.7 TRAINING STABILITY AND PERFORMANCE ENHANCEMENT ANALYSIS

Stable Training Requires Proper Workflow Design. Fig. 3(a)–(d) highlights the crucial role of workflow design in training stability. The base model (Jin et al., 2025) collapses around epoch 80, marked by rising KL divergence, declining rewards, and unstable actor loss. In contrast, EviNOTE-RAG adopts a retrieval–note–answer workflow that yields consistently stable curves across all metrics. By introducing structured instructions that resemble human note-taking, it reduces task difficulty, avoids degenerate outputs, and enables more stable policy learning.

Behavioral Supervision and Noise Filtering Improve Efficiency. Fig. 3(c) shows that incorporating evidence-quality rewards (EQR) prevents unstable performance and excessive per-token latency. This improvement arises from EviNOTE-RAG’s ability to produce shorter, more focused responses by filtering irrelevant content early, thereby reducing redundant reasoning. Fig. 3(d) further demonstrates that it maintains consistently lower token-level latency (Time Per Token, TPT), while the base model suffers from reasoning loops and collapses near epoch 80. Overall, the joint use of evidence note-taking and behavioral supervision yields shorter responses, reduces unnecessary computation, and enhances stability.

Question: who wrote knock knock knocking on heavens' door?	
<p>Baseline</p> <p><information></p> <p>Doc 1 (Title: "Knockin' on Heaven's Door"): ... a song by Bob Dylan, written for the soundtrack of the 1973 film Pat Garrett and Billy the Kid ...</p> <p>Doc 2 (Title: "90s Rock Hits Magazine Feature"): ... refers to Guns N' Roses' "Knockin' on Heaven's Door" (1991) as one of their signature songs ... language implies band authorship ... no explicit writer credit shown in excerpt ...</p> <p>Doc 3 (Title: "Song database — authors & covers"): ... entry lists Writer: Bob Dylan ... numerous covers including Guns N' Roses ... popularity of the cover highlighted ...</p> <p><information></p> <p><think></p> <p>Doc 1 and Doc 3 indicate Bob Dylan as writer, but Doc 2 repeatedly frames the song as a Guns N' Roses piece, and the cover's prominence ... may suggest authorship by the band. Writer credit unclear in Doc 2 excerpt , conclude Guns N' Roses.</p> <p></think></p> <p><answer></p> <p>Guns N' Roses Incorrect Answer</p> <p></answer></p>	<p>EviNote-RAG</p> <p><information></p> <p>Doc 1 (Title: "Knockin' on Heaven's Door"): ... is a song by Bob Dylan, written for the soundtrack of the 1973 film Pat Garrett and Billy the Kid ... Released as a single ... covered by Guns N' Roses ...</p> <p>Doc 2 (Title: "Knockin' on Heaven's Door"): ... "Knockin' on Heaven's Door" is a song by Bob Dylan, written for the soundtrack of the 1973 film Pat Garrett and Billy the Kid ... Doc 3 (Title: "Knock on Wood (song)": ... unrelated song "Knock On Wood" written by Eddie Floyd and Steve Cropper ...</p> <p><information></p> <p><summary></p> <p>The answer to who wrote "Knock knock knocking on heaven's door?" is *Bob Dylan*. The song was written for the film *Pat Garrett and Billy the Kid* (1973). Other mentions of covers (e.g., Guns N' Roses, The Jenerators) ... not relevant to authorship.</p> <p></summary></p> <p><answer></p> <p>Bob Dylan Correct Answer</p> <p></answer></p>

Figure 4: Case study on the query “who wrote *Knocking’ on Heaven’s Door*?” The baseline model is misled by misleading contextual information (Doc 2 repeatedly frames the song as a Guns N’ Roses piece), resulting in the incorrect answer “Guns N’ Roses”. In contrast, our **EviNote-RAG** model effectively filters out misleading signals, emphasizes key evidence (e.g., writer credit in Doc 1 and Doc 2), and produces the correct answer “Bob Dylan”. This highlights the importance of mitigating the interference of false or misleading information in knowledge-intensive tasks.

EQR Improves SEN Quality Throughout Training. Fig. 3(a) shows that the Evidence Quality Reward (EQR) steadily increases as training proceeds, indicating that the model learns to generate higher-quality Supporting Evidence Notes (SEN). This dynamic growth reflects the model’s improved ability to align evidence with the target answer. In addition, Fig. 3(e) demonstrates that incorporating EQR leads to SEN with stronger entailment support compared to the ablated variant, highlighting the effectiveness of behavioral supervision. Together, these results confirm that EQR not only stabilizes training but also directly enhances the reasoning quality of SEN.

4.8 CASE STUDY

Baseline Fails by Mixing Speculation with Evidence. In the case in Fig. 4, the baseline retrieves passages noting that Knockin’ on Heaven’s Door was performed by Guns N’ Roses but fails to distinguish between performance and authorship. Its reasoning chain introduces speculative guesses (e.g., “may suggest”), which dilute the role of explicit evidence in Doc 1 and Doc 3 stating that Bob Dylan wrote the song. As a result, the model wastes tokens on noisy deliberations and incorrectly concludes that Guns N’ Roses are the authors.

EviNote-RAG Clarify Evidence and Improve Efficiency. EviNOTE-RAG highlights decisive authorship evidence (e.g., “Bob Dylan”) in key-info notes (*), keeping reasoning constrained to facts directly relevant to “who wrote ...”. Moreover, the Evidence Quality Reward (EQR) guides the model to produce clearer, entailment-supported notes that isolate answer-supportive information before generation; this yields shorter answers and lower token-level latency with stable decoding. Overall gains stem from evidence shaping (SEN+EQR). More case studies are provided in Appendix D.

5 CONCLUSION

We present **EviNote-RAG**, a framework that introduces a note-taking step to extract answer-supportive evidence before answering. By training LLMs to produce *Supportive-Evidence Notes (SENs)* and guiding them via a tailored entailment-based reward, our approach improves answer accuracy. Extensive experiments demonstrate that EviNote-RAG achieves state-of-the-art performance while enhancing training stability. These results highlight the benefits of evidence-focused abstraction for robust, faithful retrieval-augmented reasoning. Beyond empirical gains, our work establishes a general recipe for integrating structured note-taking with reward design, offering a principled path toward more interpretable and controllable RAG systems.

486 REFERENCES
487

488 Salaheddin Alzubi, Creston Brooks, Purva Chiniya, Edoardo Contente, Chiara von Gerlach, Lucas
489 Irwin, Yihan Jiang, Arda Kaz, Windsor Nguyen, Sewoong Oh, et al. Open deep search: Democ-
490 ratizing search with open-source reasoning agents. *arXiv*, 2025.

491 Reinald Kim Amplayo, Kellie Webster, Michael Collins, Dipanjan Das, and Shashi Narayan. Query
492 refinement prompts for closed-book long-form question answering. *arXiv*, 2022.

493 Muhammad Arslan, Hussam Ghanem, Saba Munawar, and Christophe Cruz. A survey on rag with
494 llms. *Procedia computer science*, 2024.

495 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
496 retrieve, generate, and critique through self-reflection. In *ICLR*, 2024.

497 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
498 Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
499 ment learning. *arXiv*, 2025.

500 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
501 Roberts, Paul Barham, et al. Palm: Scaling language modeling with pathways. *arXiv*, 2022.

502 Yuqin Dai, Shuo Yang, Guoqing Wang, Yong Deng, Zhanwei Zhang, Jun Yin, Pengyu Zeng, Zhen-
503 zhe Ying, Changhua Meng, Can Yi, et al. Careful queries, credible results: Teaching rag models
504 advanced web search tools with reinforcement learning. *arXiv*, 2025.

505 Yong Deng, Guoqing Wang, Zhenzhe Ying, Xiaofeng Wu, Jinzhen Lin, Wenwen Xiong, Yuqin Dai,
506 Shuo Yang, Zhanwei Zhang, Qiwen Wang, et al. Atom-searcher: Enhancing agentic deep research
507 via fine-grained atomic thought reward. *arXiv preprint arXiv:2508.12800*, 2025.

508 Wenfeng Feng, Chuzhan Hao, Yuwei Zhang, Jingyi Song, and Hao Wang. Airrag: Activating
509 intrinsic reasoning for retrieval augmented generation using tree-based search. *arXiv*, 2025.

510 Yunfan Gao, Yun Xiong, Yijie Zhong, Yuxi Bi, Ming Xue, and Haofen Wang. Synergizing rag and
511 reasoning: A systematic review. *arXiv preprint arXiv:2504.15909*, 2025.

512 Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin, Yaojie Lu, Hongyu Lin, Xianpei Han,
513 Le Sun, and Jie Zhou. Deeprag: Thinking to retrieve step by step for large language models.
514 *arXiv*, 2025.

515 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
516 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
517 via reinforcement learning. *arXiv*, 2025.

518 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
519 Non-parametric continual learning for large language models. *arXiv*, 2025.

520 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
521 qa dataset for comprehensive evaluation of reasoning steps. In *COLING*, pp. 6609–6625, 2020.

522 Jerry Huang, Siddarth Madala, Risham Sidhu, Cheng Niu, Hao Peng, Julia Hockenmaier, and Tong
523 Zhang. Rag-rl: Advancing retrieval-augmented generation via rl and curriculum learning. *arXiv*,
524 2025.

525 Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong C. Park. Adaptive-rag:
526 Learning to adapt retrieval-augmented large language models through question complexity. *arXiv*,
527 2024.

528 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
529 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
530 computing surveys*, 2022.

531 Songtao Jiang, Yuan Wang, Ruizhe Chen, Yan Zhang, Ruilin Luo, Bohan Lei, Sibo Song, Yang
532 Feng, Jimeng Sun, Jian Wu, and Zuozhu Liu. Capo: Reinforcing consistent reasoning in medical
533 decision-making, 2025. URL <https://arxiv.org/abs/2506.12849>.

540 Yucheng Jiang, Yijia Shao, Dekun Ma, Sina J Semnani, and Monica S Lam. Into the unknown un-
 541 knowns: Engaged human learning through participation in language model agent conversations.
 542 *arXiv*, 2024.

543 Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O Arik. Long-context llms meet rag: Overcoming
 544 challenges for long inputs in rag. *arXiv preprint arXiv:2410.05983*, 2024.

545 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 546 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 547 learning. *arXiv*, 2025.

548 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 549 supervised challenge dataset for reading comprehension. *arXiv*, 2017.

550 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
 551 survey. *JAIR*, 1996.

552 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 553 Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering. *arXiv*,
 554 2020.

555 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 556 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 557 benchmark for question answering research. *ACL*, 2019.

558 Myeonghwa Lee, Seonho An, and Min-Soo Kim. Planrag: A plan-then-retrieval augmented gener-
 559 ation for generative large language models as decision makers. *arXiv*, 2024.

560 Zhicheng Lee, Shulin Cao, Jinxin Liu, Jiajie Zhang, Weichuan Liu, Xiaoyin Che, Lei Hou, and
 561 Juanzi Li. Rearag: Knowledge-guided reasoning enhances factuality of large reasoning models
 562 with iterative retrieval augmented generation. *arXiv*, 2025.

563 Jinzheng Li, Jingshu Zhang, Hongguang Li, and Yiqing Shen. An agent framework for real-time
 564 financial information searching with large language models. *arXiv*, 2024a.

565 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 566 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv*, 2025a.

567 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 568 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv*, 2025b.

569 Xingxuan Li, Weiwen Xu, Ruochen Zhao, Fangkai Jiao, Shafiq Joty, and Lidong Bing. Can we
 570 further elicit reasoning in llms? critic-guided planning with retrieval-augmentation for solving
 571 challenging tasks. *arXiv*, 2024b.

572 Wanlong Liu, Enqi Zhang, Li Zhou, Dingyi Zeng, Shaohuan Cheng, Chen Zhang, Malu Zhang, and
 573 Wenyu Chen. A compressive memory-based retrieval approach for event argument extraction.
 574 *arXiv*, 2024.

575 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
 576 When not to trust language models: Investigating effectiveness and limitations of parametric and
 577 non-parametric memories. *arXiv*, 7, 2022.

578 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
 579 pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 580 question-answering with human feedback. *arXiv*, 2021.

581 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 582 and narrowing the compositionality gap in language models. *arXiv*, 2022.

583 Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Jiadai Sun, Xinyue Yang, Yu Yang,
 584 Shuntian Yao, Wei Xu, Jie Tang, and Yuxiao Dong. Webrl: Training llm web agents via
 585 self-evolving online curriculum reinforcement learning. In *ICLR*, 2025.

594 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 595 bert: smaller, faster, cheaper and lighter. *arXiv*, 2019.

596

597 Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan
 598 Kian Hsiang Low, Sewon Min, Wen-tau Yih, Pang Wei Koh, et al. Reasonir: Training retrievers
 599 for reasoning tasks. *arXiv*, 2025.

600

601 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
 602 retrieval-augmented large language models with iterative retrieval-generation synergy. *arXiv*,
 603 2023.

604

605 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 606 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 607 reasoning in open language models. *arXiv*, 2024.

608

609 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 610 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 611 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

612

613 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
 614 Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
 615 In *ICML*, 2023.

616

617 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 618 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 619 learning. *arXiv*, 2025a.

620

621 Huatong Song, Jinhao Jiang, Wenqing Tian, Zhipeng Chen, Yuhuan Wu, Jiahao Zhao, Yingqian
 622 Min, Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher++: Incentivizing the dynamic
 623 knowledge acquisition of llms via reinforcement learning. *arXiv*, 2025b.

624

625 Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
 626 Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
 627 searching. *arXiv*, 2025a.

628

629 Zhongxiang Sun, Qipeng Wang, Weijie Yu, Xiaoxue Zang, Kai Zheng, Jun Xu, Xiao Zhang, Song
 630 Yang, and Han Li. Rearter: Retrieval-augmented reasoning with trustworthy process rewarding.
 631 *arXiv*, 2025b.

632

633 Hieu Tran, Zonghai Yao, Junda Wang, Yifan Zhang, Zhichao Yang, and Hong Yu. Rare: Retrieval-
 634 augmented reasoning enhancement for large language models. *arXiv*, 2024.

635

636 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 637 questions via single-hop question composition. *ACL*, 2022.

638

639 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 640 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *ACL*,
 641 2023.

642

643 Prakhar Verma, Sukruta Prakash Midigesi, Gaurav Sinha, Arno Solin, Nagarajan Natarajan, and
 644 Amit Sharma. Plan* rag: Efficient test-time planning for retrieval augmented generation. *arXiv*,
 645 2024a.

646

647 Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting text ghostwrit-
 648 ten by large language models. In *NAACL*, 2024b.

649

650 Jinyu Wang, Jingjing Fu, Rui Wang, Lei Song, and Jiang Bian. Pike-rag: specialized knowledge and
 651 rationale augmented generation. *arXiv preprint arXiv:2501.11551*, 2025.

652

653 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 654 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv*,
 655 2024a.

648 Ruobing Wang, Qingfei Zhao, Yukun Yan, Daren Zha, Yuxuan Chen, Shi Yu, Zhenghao Liu, Yixuan
 649 Wang, Shuo Wang, Xu Han, et al. Deepnote: Note-centric deep retrieval-augmented generation.
 650 *arXiv*, 2024b.

651 Jiaqi Wei, Hao Zhou, Xiang Zhang, Di Zhang, Zijie Qiu, Wei Wei, Jinzhe Li, Wanli Ouyang, and Siqi
 652 Sun. Alignrag: An adaptable framework for resolving misalignments in retrieval-aware reasoning
 653 of rag. *arXiv*, 2025a.

654 Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
 655 Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn rein-
 656 forcement learning. *arXiv*, 2025b.

657 Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A streamlined
 658 framework for enhancing llm reasoning with agentic tools. *arXiv*, 2025a.

659 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 660 An empirical analysis of compute-optimal inference for problem-solving with language models.
 661 In *ICLR*, 2025b.

662 Ruibin Xiong, Yimeng Chen, Dmitrii Khizbulin, Mingchen Zhuge, and Jürgen Schmidhuber. Be-
 663 yond outlining: Heterogeneous recursive planning for adaptive long-form writing with language
 664 models. *arXiv*, 2025.

665 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 666 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv*, 2024.

667 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 668 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 669 answering. In *EMNLP*, 2018.

670 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 671 React: Synergizing reasoning and acting in language models. *arXiv*, 2023.

672 Jun Yin, Pengyu Zeng, Haoyuan Sun, Yuqin Dai, Han Zheng, Miao Zhang, Yachao Zhang, and
 673 Shuai Lu. Floorplan-llama: Aligning architects' feedback and domain knowledge in architectural
 674 floor plan generation. In *ACL*, 2025.

675 Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong
 676 Wang, Xuanhui Wang, and Michael Bendersky. Inference scaling for long-context retrieval aug-
 677 mented generation. *arXiv*, 2024.

678 Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E
 679 Gonzalez. Raft: Adapting language model to domain specific rag. *arXiv*, 2024a.

680 Xiaoming Zhang, Ming Wang, Xiaocui Yang, Daling Wang, Shi Feng, and Yifei Zhang. Hierarchi-
 681 cal retrieval-augmented generation model with rethink for multi-hop question answering. *arXiv*,
 682 2024b.

683 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
 684 Yu Zhang, Yulong Chen, et al. Siren's song in the ai ocean: A survey on hallucination in large
 685 language models. *Computational Linguistics*, 2025.

686 Qingfei Zhao, Ruobing Wang, Dingling Xu, Daren Zha, and Limin Liu. R-search: Empowering llm
 687 reasoning with search via multi-reward reinforcement learning. *arXiv*, 2025a.

688 Xuejiao Zhao, Siyan Liu, Su-Yin Yang, and Chunyan Miao. Medrag: Enhancing retrieval-
 689 augmented generation with knowledge graph-elicited reasoning for healthcare copilot. In *WWW*,
 690 2025b.

691 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 692 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
 693 ments. *arXiv*, 2025.

694 Yujia Zhou, Zheng Liu, Jiajie Jin, Jian-Yun Nie, and Zhicheng Dou. Metacognitive retrieval-
 695 augmented large language models. In *WWW*, 2024.

696

702 **LLM USAGE STATEMENT**
703704 In the preparation of this manuscript, a Large Language Model (LLM) was employed solely for
705 language polishing. All academic content, interpretations, and responsibilities remain entirely with
706 the authors.
707708 **A EFFECT OF SUMMARY STRATEGIES**
709710 Table 3: Ablation study on in-domain and out-of-domain QA tasks. We compare different instruc-
711 tional designs: Naive Summary (NS), Naive Evidence (NE), Force Summary (FS), and our proposed
712 Supportive-Evidence Notes (SEN). **Bold** indicates the best performance, while underline marks the
713 second best.
714

Methods	TriviaQA		2Wiki		Bamboogle		Musique		PopQA		NQ		HotpotQA	
	F1	EM												
Base	0.754	0.694	0.280	0.244	0.377	0.320	0.274	0.184	0.498	0.482	0.550	<u>0.508</u>	0.464	0.420
+ NS	<u>0.774</u>	<u>0.712</u>	<u>0.462</u>	<u>0.424</u>	0.496	0.384	0.280	0.204	0.500	0.488	0.551	0.502	0.560	0.498
+ NE	0.773	0.710	0.460	0.422	<u>0.494</u>	<u>0.382</u>	<u>0.281</u>	<u>0.206</u>	<u>0.501</u>	0.486	<u>0.552</u>	0.503	<u>0.559</u>	0.497
+ FS	0.708	0.638	0.334	0.304	0.338	0.224	0.274	0.184	0.472	0.454	0.505	0.450	0.423	0.362
+ SEN	0.795	0.730	0.505	0.464	0.440	0.352	0.317	0.210	0.524	0.514	0.563	0.518	0.550	0.482

721
722 **A.1 EXPERIMENTAL SETUP FOR SUMMARY STRATEGY ABLATIONS**
723724 We evaluate summary strategies using the unified QA setup described in the *Experiments* section
725 (Section 4). Unless otherwise noted, all components (retriever, datasets, metrics) and hyperparam-
726 eters follow the main setup to control for confounding factors. The base system (Jin et al., 2025) im-
727 plements an end-to-end reinforcement learning pipeline for retrieval-augmented generation (RAG),
728 upon which we vary only the summary strategy as follows:
729

- **Naive Summary (NS):** The model can dynamically generate a concise `<summary>` of the retrieved documents prior to answering, without incorporating evidence-aware annotations. Unlike FS setting, the model remains eligible for a reward if the answer is correct, even when a summary is not provided.
- **Naive Evidence (NE):** A tag-variant of NS in which the model is instructed to output an `<evidence>` section instead of `<summary>` and to include only answer-relevant content. Beyond the tag replacement and this content restriction, the procedure mirrors NS and introduces no additional supervision.
- **Force Summary (FS):** The model is forced to produce an explicit `<summary>` section after each retrieval. If the tag is absent, the reward is set to zero during training, which strictly enforces compliance but consequently increases reward sparsity.
- **Supportive-Evidence Notes (SEN):** Our proposed strategy that guides the model to extract and organize supporting evidence into structured notes before answering. SEN further requires explicit marking of *key* information (with “*”) and *uncertain* information (with “-”), promoting fine-grained supervision aligned with human note-taking.

745 **A.2 MAIN RESULTS**
746747 As shown in Tab. 3, our ablation results provide a systematic comparison across different instruc-
748 tional designs. Several consistent patterns emerge.
749750 **Overall Ranking of Instruction Designs.** A clear hierarchy of effectiveness can be observed:
751

752
$$\text{SEN} > \text{NS} \approx \text{NE} > \text{Base} > \text{FS}.$$

753

754 This ranking reflects the strength of supervision each design introduces. SEN enforces structured
755 note-taking and yields the most effective, high-information-utilization summary; NS and NE pro-
756 vide only weak summarization signals; Base relies purely on raw retrieval without additional su-
757 pervision, while FS over-constrains optimization with sparse rewards and ultimately harms per-
758 formance. These results show that:

756

757

758

759

760

761

Finding 1. Effective summary strategies are not about requiring or forcing summaries, but about organizing supportive evidence to meaningfully guide reasoning.

762

763

764

765

766

767

SEN vs. NS vs. FS. Compared with naive summaries (NS), SEN encourages explicit identification and organization of supporting evidence, rather than compressing retrievals into a single passage. This design substantially reduces noise from irrelevant documents and better aligns the model’s reasoning with human note-taking practices. By contrast, FS enforces summary production too rigidly, introducing instability during optimization and degrading performance. Together, these results highlight the importance of instructional flexibility combined with evidence structuring, which SEN uniquely achieves.

768

769

770

771

772

773

Effect of Evidence Marking. We further disentangle whether improvements stem from mere tag changes or from structural constraints. Simply replacing the `<summary>` tag with `<evidence>` and requiring evidence-only summaries yields virtually identical performance to NS, i.e., $\text{evidence} \approx \text{summary}$. However, when we further require explicit evidence marking (i.e., SEN), the model benefits significantly. This suggests that:

774

775

776

777

778

Finding 2. Gains come from highlighting key evidence. Methods that structure evidence (selection, organization, explicit marking) outperform those that only require a summary format, yielding stronger factual accuracy.

779

780

A.3 TRAINING DYNAMIC ANALYSIS.

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Figure 5: Training dynamics under different summary strategies. (a) actor entropy loss; (b) actor KL loss (w.r.t. the reference policy); (c) mean response length; (d) token-level latency (ms/token). SEN maintains low entropy and KL drift with stable, shorter responses and low latency; NS is slightly less stable but similar in trend; FS achieves low latency at the cost of under-exploration and weaker accuracy; the BASE policy exhibits late-stage blow-up in KL/entropy, response-length sprawl, and higher per-token latency.

799

800

801

802

803

804

Stability (Fig. 5a–b). SEN yields the most stable optimization: policy entropy and KL divergence remain low and flat across training, indicating controlled exploration and limited drift from the reference policy. NS shows a similar but slightly noisier profile. By contrast, the BASE policy exhibits a late-stage surge in both entropy and KL, signalling distribution shift and unstable updates. FS keeps KL small but does not translate this regularization into accuracy improvements, consistent with under-exploration caused by rigid compliance constraints.

805

806

807

808

809

Efficiency (Fig. 5c–d). SEN/NS produce consistently shorter, more focused responses (hundreds of tokens fewer than BASE) and sustain low ms/token latency. The BASE policy’s response length inflates markedly in later steps, accompanied by a clear rise in per-token latency. FS attains the lowest latency overall, but its gains reflect conservative decoding rather than improved reasoning, aligning with its inferior task performance.

810 **Overall Analysis.** The curves corroborate our ablation ranking (SEN > NS \approx NE > Base > FS):
 811 The SEN stabilizes optimization (low KL/entropy), filters noise to keep responses concise, and
 812 improves runtime efficiency—benefits that rigidly enforced summaries (FS) fail to realize. These
 813 observations are consistent with the training-stability analysis reported in the paper, where structured
 814 supervision densifies useful reward signals and regularizes the policy towards faithful evidence use.
 815

816 B ANALYSIS OF REWARD SHAPING APPROACHES

819 Table 4: **Reward shaping ablations.** We compare Force Summary (FS) and its shaped variants with
 820 Stochastic Reward (SR) and Evidence Quality Reward (EQR), and contrast them with Supportive-
 821 Evidence Notes (SEN) and SEN+EQR. SR serves as a stochastic control to test whether gains come
 822 from reward perturbations alone; **SEN** and **EQR** are our proposed components. **Bold** marks the best
 823 performance; underline marks the second best.

Methods	TriviaQA		2Wiki		Bamboogle		Musique		PopQA		NQ		HotpotQA	
	F1	EM												
Base	0.754	0.694	0.280	0.244	0.377	0.320	0.274	0.184	0.498	0.482	0.550	0.508	0.464	0.420
+ FS	0.708	0.638	0.334	0.304	0.338	0.224	0.274	0.184	0.472	0.454	0.505	0.450	0.423	0.362
+ FS + SR	0.752	0.690	0.410	0.398	0.328	0.296	0.276	0.188	0.514	0.502	0.546	0.500	0.460	0.402
+ FS + EQR	0.766	0.704	0.426	0.414	0.224	0.208	0.274	0.184	0.528	0.518	0.551	0.510	0.464	0.408
+ SEN	0.795	0.730	<u>0.505</u>	<u>0.464</u>	<u>0.440</u>	<u>0.352</u>	<u>0.317</u>	<u>0.210</u>	<u>0.524</u>	<u>0.514</u>	0.563	<u>0.518</u>	<u>0.550</u>	<u>0.482</u>
+ SEN + EQR	0.795	0.730	<u>0.536</u>	<u>0.494</u>	0.528	0.424	<u>0.336</u>	<u>0.240</u>	0.491	0.480	0.563	<u>0.524</u>	<u>0.557</u>	0.490

831 B.1 EXPERIMENTAL SETUP FOR REWARD SHAPING

832 In our experimental design, we retain the unified QA framework introduced in the previous section
 833 and vary only the reward signals. This allows us to isolate the effect of different reward shaping
 834 strategies while keeping the model architecture and training pipeline fixed. In addition to the base-
 835 line (Base), Force Summary (FS), and Supportive-Evidence Notes (SEN), we introduce two further
 836 reward mechanisms:

- 837 • **Stochastic Reward (SR):** A mechanism that provides a small reward (0.1) with probability
 838 1/3 even when the predicted answer is incorrect. The motivation is to alleviate reward
 839 sparsity under FS during early training, preventing the model from stagnating due to overly
 840 strict zero-reward penalties.
- 841 • **Evidence Quality Reward (EQR):** Our entailment-based reward function, which eval-
 842 uates whether the final note (or summary) semantically supports the gold answer. By ex-
 843 plicitly encouraging consistency between retrieved evidence and the correct answer, EQR
 844 not only mitigates reward sparsity but also directly aligns the optimization process with the
 845 task objective of evidence-faithful reasoning.

846 Note: Among all variants, **SEN** and **EQR** are our proposed components.

851 B.2 MAIN RESULTS: FS vs. SR vs. EQR

852 **Overall ranking.** Across all datasets, as shown in Tab. 4, the methods follow a clear hierarchy:

$$853 \quad \text{SEN+EQR} > \text{SEN} > \text{FS+EQR} > \text{FS+SR} = \text{BASE} > \text{FS}.$$

854 This ordering highlights two key insights: (1) semantic alignment through EQR improves over
 855 purely stochastic shaping (SR), but (2) structural supervision (SEN) is essential, as it consistently
 856 delivers the largest performance gains.

857 **SEN remains the primary driver of performance.** Structural supervision from SEN delivers the
 858 strongest improvements across almost all benchmarks. By guiding the model to explicitly organize
 859 supportive evidence, SEN alleviates reward sparsity. Even without additional shaping, SEN alone
 860 surpasses all FS-based methods.

864 **SEN+EQR achieves the best overall results.** The combination of structural supervision (SEN)
 865 and semantic shaping (EQR) provides the best balance of stability and task alignment. SEN+EQR
 866 consistently outperforms both standalone SEN and FS-based variants, achieving the strongest results
 867 on 2Wiki, Bamboogle, and Musique, while maintaining top-tier performance on TriviaQA, NQ, and
 868 HotpotQA.
 869

870 **FS alone degrades performance.** Using FS in isolation leads to degraded performance. Since
 871 FS enforces the `<summary>` structure through zero-reward penalties, it introduces severe reward
 872 sparsity. This “hard penalty” discourages exploration and limits the model’s ability to discover
 873 useful behaviors, resulting in accuracy that often falls below the BASE model on several datasets.
 874

875 **SR partially alleviates sparsity but lacks semantic guidance.** Introducing SR helps smooth the
 876 optimization process by reducing the harshness of reward sparsity. By occasionally rewarding incor-
 877 rect answers, SR enables more stable training and closes part of the gap to BASE. However, the gains
 878 remain modest because SR is not semantically aligned: the reward does not provide guidance about
 879 evidence faithfulness, leaving the model largely uninformed about whether its reasoning supports
 880 the gold answer.
 881

882 **EQR provides task-aligned shaping; SEN remains essential.** Replacing SR with the entailment-
 883 based EQR yields larger, more consistent improvements over FS. However, structural supervision
 884 from SEN remains the primary driver: SEN surpasses all FS-based variants, and combining EQR
 885 with SEN achieves the best overall results across benchmarks (SEN+EQR).
 886

887 **Finding 3.** Reward shaping is most effective when semantically aligned with evidence qual-
 888 ity and paired with structured supervision: EQR improves over FS/FS+SR, but SEN+EQR
 889 delivers the strongest and most consistent gains across datasets.
 890

893 C JOINT EFFECTS AND ADVANCED ANALYSIS

894
 895
 896 Table 5: Ablation study on in-domain and out-of-domain QA tasks. We report the effect of Force
 897 Summary (FS), Stochastic Reward (SR), Supportive-Evidence Notes (SEN), and Evidence Quality
 898 Reward (EQR). SR serves as a stochastic control to examine whether improvements stem from
 899 reward perturbations alone, while SEN and EQR represent our proposed modules. **Bold** highlights
 900 the best performance, while underline marks the second best.
 901

902 Methods	903 TriviaQA		904 2Wiki		905 Bamboogle		906 Musique		907 PopQA		908 NQ		909 HotpotQA	
	910 F1	911 EM	912 F1	913 EM	914 F1	915 EM	916 F1	917 EM	918 F1	919 EM	920 F1	921 EM	922 F1	923 EM
924 Base	925 0.754	926 0.694	927 0.280	928 0.244	929 0.377	930 0.320	931 0.274	932 0.184	933 0.498	934 0.482	935 0.550	936 0.508	937 0.464	938 0.420
939 + NS	940 0.774	941 0.712	942 0.462	943 0.424	944 <u>0.496</u>	945 <u>0.384</u>	946 0.280	947 0.204	948 0.500	949 0.488	950 0.551	951 0.502	952 0.560	953 0.498
954 + FS	955 0.708	956 0.638	957 0.334	958 0.304	959 0.338	960 0.224	961 0.274	962 0.184	963 0.472	964 0.454	965 0.505	966 0.450	967 0.423	968 0.362
969 + FS + SR	970 0.752	971 0.690	972 0.410	973 0.398	974 0.328	975 0.296	976 0.276	977 0.188	978 0.514	979 0.502	980 0.546	981 0.500	982 0.460	983 0.402
984 + FS + EQR	985 0.766	986 0.704	987 0.426	988 0.414	989 0.224	990 0.208	991 0.274	992 0.184	993 0.528	994 0.518	995 0.551	996 0.510	997 0.464	998 0.408
999 + SEN	0.795		0.730		0.505		0.464		0.440		0.352		0.317	
1000 + SEN + EQR	0.795		0.730		<u>0.536</u>		0.494		0.528		<u>0.424</u>		<u>0.336</u>	

911 C.1 EXPERIMENTAL SETTINGS FOR ABLATION STUDY

912 We follow the same unified QA setup and training protocol described in the previous section. Unless
 913 otherwise noted, model architecture, optimization schedule, and data splits remain unchanged. The
 914 only differences across variants lie in the instruction strategies and reward signals, ensuring that
 915 observed effects can be attributed solely to the proposed modules (SEN and EQR) or their ablations.
 916

917 These templates define the behavior of the agent under different summary strategies, and their design
 918 choices directly account for the performance differences observed in our ablation studies.
 919

Figure 6: **Training stability.** Actor-side stability diagnostics across methods (Base, FS, FS+SR, FS+EQR, NS, SEN, and **Ours** = SEN+EQR). Panels: (a) reward score, (b) actor KL loss w.r.t. the reference policy. Lower and smoother curves indicate more stable optimization. (c) number of actions. When the model generates invalid actions, it tends to repeat the previous behavior, leading to a rapid increase in action frequency.

C.2 BEST PERFORMING COMBINATIONS (E.G., SEN+EQR).

Synergy Analysis of Instruction and Reward. EQR encourages the model to produce higher-quality evidence, improving factual reliability. On its own, EQR provides moderate gains, but the strongest improvements arise when it is combined with SEN. This synergy enables the model not only to identify relevant evidence but also to prioritize higher-quality reasoning chains, leading to the best performance across both in-domain and out-of-domain QA tasks.

In-domain vs. Out-of-domain Generalization. A closer look at Tab. 5 reveals that SEN alone already establishes strong in-domain gains on factoid QA datasets such as HotpotQA and NQ. However, the addition of EQR becomes particularly impactful in out-of-domain or compositional settings, such as 2Wiki, Bamboogle, and Musique, where SEN+EQR consistently achieves the highest F1 and EM. This indicates that semantic shaping through EQR plays a critical role in transferring structural supervision to unfamiliar domains.

Comparison against Naive Summarization (NS). The contrast between SEN and instructional naive summarization (NS) underscores the importance of structured evidence organization. While NS sometimes improves over the base model, its benefits are inconsistent, and it occasionally introduces noise by forcing the model to compress evidence prematurely. By contrast, SEN’s explicit structuring yields consistent improvements across all datasets, confirming that inductive biases toward evidence organization are more effective than general summarization prompts.

Overall Patterns. Bringing these observations together, we can summarize the joint effects as follows:

$$\text{SEN+EQR} > \text{SEN} > \text{NS} > \text{FS+EQR} > \text{BASE} > \text{FS+SR} > \text{FS}.$$

This ordering highlights two key findings: (1) SEN is indispensable as the structural backbone of our framework, and (2) the benefits of EQR are most pronounced when paired with SEN, enabling robust generalization to both factoid and multi-hop QA tasks.

C.3 TRAINING STABILITY AND EFFICIENCY

Stability (Fig. 6). Overall, we observe different degrees of collapse across the control variants. In terms of collapse order, the stability ranking is:

$$\text{OURS} \approx \text{NS} \approx \text{SEN} > \text{FS+SR} > \text{FS+EQR} > \text{FS} > \text{BASE}.$$

This ordering highlights that structural supervision (SEN) is the key factor preventing collapse, while stochastic shaping (SR) or entailment alignment (EQR) alone provide only partial stabilization. In addition, **SEN** and **Ours** maintain low, smooth entropy and KL throughout training, together

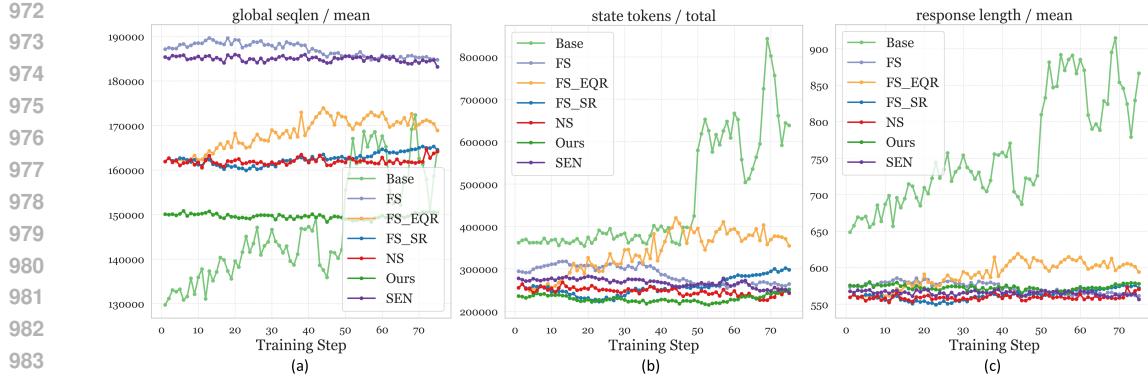


Figure 7: Training efficiency analysis across methods (Base, FS, FS+SR, FS+EQR, NS, SEN, and Ours=SEN+EQR). (a) Average global sequence length, (b) total state tokens, and (c) mean response length. While the Base policy suffers from uncontrolled length growth and instability, FS variants suppress length but often reflect conservative decoding without accuracy gains. By contrast, SEN and SEN+EQR maintain concise, stable responses with lower variance, confirming that structured supervision and semantic shaping jointly improve efficiency.

with steadily improving rewards, indicating controlled exploration and limited drift from the reference policy. In contrast, **Base** exhibits a late-stage surge in KL, accompanied by reward collapse, revealing a distribution shift under noisy retrieval. **FS** keeps KL small but fails to convert this regularization into accuracy due to zero-reward penalties that induce under-exploration. Adding **SR** partially alleviates sparsity by smoothing the reward landscape, but gains remain limited because it lacks semantic alignment with evidence quality. In comparison, the entailment-aligned **EQR** produces both more stable reward trajectories and higher peaks; when combined with **SEN** (**Ours**), it delivers the most robust and consistent improvements across datasets. Furthermore, Fig. 6(c) reports the *number of actions* executed during training. We find that when the model generates invalid actions, it often repeats the previous behavior, leading to a rapid escalation in action counts. This instability is especially pronounced under **FS**, where zero-reward penalties trigger repetitive failure modes. In contrast, **SEN+EQR** effectively regulates the action space, avoiding runaway repetitions and thereby ensuring more efficient and reliable policy updates.

Training Efficiency (Fig. 7). The efficiency curves complement our stability analysis by illustrating how different methods manage output length and token usage during training. First, the **Base** model exhibits pronounced growth in both global sequence length (Fig. 7a) and response length (Fig. 7c), often exceeding 900 tokens, which signals uncontrolled decoding and redundant reasoning. This sprawl aligns with the instability patterns observed in KL divergence and reward collapse, showing that the lack of structured supervision leads to degenerate behaviors.

In contrast, **FS** and its shaped variants constrain response length (often below 600 tokens), but this reduction largely reflects conservative decoding rather than improved reasoning, consistent with their weaker QA performance. **SR** provides partial smoothing of the optimization landscape, while **EQR** encourages more semantically grounded evidence use, leading to slightly shorter but more reliable responses.

SEN and especially **SEN+EQR** (**Ours**) achieve the best balance: they keep global sequence length and state tokens stable across training, while producing consistently concise and focused responses. This efficiency stems from structured evidence organization (SEN), which filters noise before generation, and semantic reward shaping (EQR), which discourages degenerate repetitions. Together, these mechanisms prevent runaway growth in sequence length and maintain efficient decoding, corroborating the overall finding that SEN+EQR delivers both stability and efficiency.

Takeaways. These dynamics corroborate our ablations: SEN > NS \approx NE > Base > FS. Structuring and validating evidence (SEN + EQR) densifies useful reward signals and regularizes the policy toward evidence-faithful reasoning, yielding both *greater stability* and *better efficiency*.

1026
1027
1028
1029
1030

Finding 4. Semantic reward shaping alone (EQR) yields more stable training and improves factual reliability compared to stochastic shaping, but its benefits are limited without structural guidance. When combined with SEN, the two components act synergistically, producing the most consistent gains in both accuracy and generalization across QA benchmarks.

1031
1032
1033
1034

Question: who won the oscar for best picture in 1976?	
Baseline	
<information>	Too Much Noisy Information
Doc 1 (Title: "48th Academy Awards")	
Mentions the ceremony held March 29, 1976, but does not clearly state the Best Picture winner.	
Describes films like Jaws and "Traffic", and lists general details about nominations and awards.	
Doc 2 (Title: "48th Academy Awards")	
Confirms the 48th Academy Awards took place in Los Angeles, 1976, hosted by Walter Matthau, Robert Shaw, George Segal, Goldie Hawn, and Gene Kelly. Provides context about broadcasting and side events, but again no explicit Best Picture winner.	
Doc 3 (Title: "12th Academy Awards")	
Historical context from 1940 (12th Awards). Mentions films like The Wizard of Oz, Ninotchka, Of Mice and Men, and introduces the first Academy Award for special effects. Not relevant for 1976 Best Picture.	
</information>	
<think>	Reasoning Inconsistent with the Question
"Network" was the winner of the Oscar for Best Picture in 1976. Other details about the awards ceremony, including presenters and categories, were also mentioned but were not relevant to the question.	
</think>	
<answer>	
Network	Incorrect Answer
</answer>	
EviNote-RAG	
<information>	
Doc 1 (Title: "49th Academy Awards") The 49th Academy Awards ceremony (held in 1977, honoring 1976 films) awarded <u>Best Picture</u> to "Rocky". Other major winners included "Network" in acting/writing categories.	
Doc 2 (Title: "48th Academy Awards") The 48th Academy Awards were held on March 29, 1976, honoring 1975 films. Not directly about 1976 films.	
Doc 3 (Title: "Network (1976 film)") "Network" won multiple Oscars (acting/writing) for the 1976 film year, but not Best Picture.	
</information>	Filter Noise, Summarize, Identify Intent
<summary>	
The answer to who won the Oscar for Best Picture in 1976 is "Rocky." Additionally, the information mentions "Beginners" and "Network", but the query specifically asks who won Best Picture in 1976.	
</summary>	
<answer>	
Rocky	Correct Answer Further mark key info in the summary
</answer>	
Highlight: More accurate intent recognition	

1072
1073
1074
1075
1076
1077
1078
1079

Figure 8: **Temporal-intent disambiguation in open-domain QA.** Query: "Who won the Oscar for Best Picture in 1976?" The baseline retrieves and reasons over noisy passages about the *48th Academy Awards* (1976 ceremony; honoring 1975 films) and predicts *Network*. EviNOTE-RAG detects the temporal intent ("1976 films \Rightarrow 49th Academy Awards, held in 1977"), filters distractors, highlights the key evidence, and correctly answers *Rocky*. Red callouts mark baseline failure modes (noise and off-intent reasoning); green callouts mark EviNOTE-RAG behaviors (filter, summarize, identify intent).

1080
1081**Question: Number of co2 molecules produced in aerobic respiration?**

1082

Baseline

1083

<information>

1084

Doc 1 (Title: "Cellular respiration"): ... Biology textbooks often state that 38 ATP molecules can be made per oxidised glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). However, this maximum yield is never quite reached ...

1085

Doc 2 (Title: "Cellular respiration"): ... According to some newer sources the ATP yield during aerobic respiration is not 36–38, but only about 30–32 ATP molecules per molecule of glucose ... Altogether this gives 30 (or 32) ATP per molecule of glucose ...

1086

</information>

1087

Aerobic respiration results in the production of approximately 30–32 CO₂ molecules per glucose molecule based on newer estimates. The process includes glycolysis, the Krebs cycle, and the electron transport chain. Each molecule of glucose in aerobic respiration leads to 4 CO₂ molecules from glycolysis, 3 from the Krebs cycle, and 20 from the electron transport chain. Thus, the total number of CO₂ molecules produced is 27 from glycolysis, 3 from the Krebs cycle, and 2 from the electron transport chain, summing up to 32.

1088

</think>

1089

<answer>

32

Incorrect Answer

1090

</answer>

1091

EviNote-RAG

1092

<information>

1093

Doc 1 (Title: "Cellular respiration"): Overall reaction: "Glucose + 6 O₂ → 6 CO₂ + 6 H₂O ..." → 6 CO₂ per glucose ...

1094

Doc 2 (Title: "Cellular respiration"): Pyruvate oxidation: 2 CO₂ (from 2 pyruvate → 2 acetyl-CoA + 2 CO₂) ... Krebs cycle: 4 CO₂ (from 2 acetyl-CoA → 4 CO₂) ... total 6 CO₂.

1095

Doc 3 (Title: "Cellular respiration"): Stepwise summary lists "... 2 Acetyl CoA + 3 O₂ → ... + 4 CO₂ ..." and overall "Glucose + 6 O₂ → 6 CO₂ + 6 H₂O ..." → 6 CO₂.

1096

</information>

1097

<summary>

Eliminated noise interference

1098

The answer to how many CO₂ molecules are produced in aerobic respiration? is 6. This information is consistent across the search results, which also mention 32 ATP, but the query specifically asks about CO₂ molecules produced, not the ATP yield.

1099

</summary>

1100

<answer>

6

Correct Answer

1101

</answer>

1102

Further mark key info in the summary

1103

Figure 9: **Distractor suppression in scientific QA.** Query: "Number of CO₂ molecules produced in aerobic respiration?" The baseline conflates ATP yield facts and answers 32. EviNOTE-RAG retains only reaction-relevant facts—2 CO₂ from pyruvate oxidation and 4 CO₂ from the TCA cycle—totaling 6 CO₂ per glucose, and answers 6. Red callouts indicate distractor-driven errors; green callouts show how EviNOTE-RAG filters noise and foregrounds the correct variable.

1104

1105

D MORE CASE STUDIES: INTENT RECOGNITION AND DISTRACTOR FILTERING WITH EVINOTE-RAG

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

We provide two qualitative case studies complementing the quantitative results. They show how EviNOTE-RAG improves answer accuracy by (i) recognizing user intent (especially temporal intent) and (ii) filtering distractors during retrieval-augmented reasoning. In both cases, EviNOTE-RAG and the baseline operate over comparable retrieved passages; the difference is that EviNOTE-RAG enforces a note-taking discipline with explicit <information> → <summary> → <answer> stages that compress, align, and verify evidence against the question.

1134
1135

D.1 CASE A: TEMPORAL-INTENT DISAMBIGUATION (BEST PICTURE, 1976)

1136
1137
1138

Task & challenge. Queries naming a year and an award admit two competing interpretations: the *ceremony year* vs. the *content year* (films produced in that year). Popular documents discuss both, making temporal intent easy to misread.

1139
1140
1141
1142
1143

Baseline behavior. The baseline surfaces documents about the *48th Academy Awards* (held in 1976, honoring 1975 films) and the film *Network*, then produces an answer consistent with that off-intent thread of reasoning. Failure modes: (1) evidence overload—long verbatim passages not aligned to the asked year; (2) intent drift.

1144
1145
1146
1147
1148
1149

EViNOTE-RAG behavior. The `<information>` notes isolate short, query-conditioned facts, e.g., “49th Academy Awards (held 1977, honoring 1976 films); Best Picture: *Rocky*.” The `<summary>` explicitly states the intent mapping (“1976 \Rightarrow winners announced at the 49th ceremony”) and marks the decisive evidence. This structured condensation suppresses ceremony-year distractors and yields the correct answer *Rocky*.

1150
1151
1152

Takeaways. EviNote-style notes act as a temporal alignment layer: before generation, the system resolves event/year semantics; after alignment, plausible but off-intent documents lose influence.

1153
1154D.2 CASE B: DISTRACTOR SUPPRESSION (CO₂ MOLECULES IN AEROBIC RESPIRATION)1155
1156
1157

Task & challenge. The question asks for the *count of CO₂ molecules per glucose*. Corpus passages often co-mention ATP yields (about 30–32), a frequent but irrelevant number that can anchor the model.

1158
1159
1160
1161
1162
1163
1164
1165

Baseline behavior. The baseline mixes ATP-yield statements into its reasoning trace and outputs 32, a distractor-anchoring error.

EViNOTE-RAG behavior. The `<information>` notes keep only stoichiometrically relevant facts: 2 CO₂ from pyruvate oxidation and 4 CO₂ from the Krebs/TCA cycle, matching the overall reaction “glucose + 6 O₂ \rightarrow 6 CO₂ + 6 H₂O.” The `<summary>` restates the tally and reasserts the target variable (CO₂ count, not ATP). The final answer is 6.

1166
1167
1168

Takeaways. By forcing an intermediate summary that names the variable of interest and aggregates counts, EViNOTE-RAG resists frequent-but-irrelevant facts and prevents numeric anchoring.

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Overall observation. Across both cases, improvements arise not from additional retrieval, but from *evidence shaping*: (1) extracting minimal, question-conditioned notes; (2) explicitly resolving intent (time, entity, variable); and (3) committing to a concise summary before answering. This mirrors the measured gains on both out-of-domain and in-domain benchmarks.