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Abstract

If a planning agent is considering taking a bus, for example,
the time that passes during its planning can affect the fea-
sibility of its plans, as the bus may depart before the agent
has found a complete plan. Previous work on this situated
temporal planning setting proposed an abstract deliberation
scheduling scheme for minimizing the expected cost of a
plan that is still feasible at the time it is found. In this pa-
per, we introduce the CoPEC model, extending the deliber-
ation scheduling approach to allow for executing initial ac-
tions before the solution plan is fully specified. Although
this may allow lower overall time to goal achievement, it
also entails the risk of performing incorrect actions, a trade-
off formally treated in our model. We develop algorithms to
solve CoPEC instances. Our empirical evaluation shows that
a greedy scheme performs well in practice on problem in-
stances generated from weighted 15-puzzle instances.

1 Introduction
Situated temporal planning (Cashmore et al. 2018a) is a
model for the planning problem faced by an agent for which
significant time passes as it plans. In this setting, exter-
nal temporal constraints (e.g., deadlines) are introduced, de-
pending on the actions in a plan. For example, taking the
9:00 bus introduces a new constraint that the agent must be
at the bus stop by 9:00. These plan-specific constraints make
the problem different from real-time search (e.g., (Koenig
and Sun 2009; Sharon, Felner, and Sturtevant 2014; Cserna,
Ruml, and Frank 2017; Cserna et al. 2018)), deadline-aware
search (Dionne, Thayer, and Ruml 2011), or Utility Guided
Search (Burns, Ruml, and Do 2013).

Situated temporal planning calls for a search strategy
different from traditional offline search algorithms, as the
choice of which node to expand must account for the fact
that time spent exploring one part of the search space passes
in the real world and may invalidate some partial plans.
Shperberg et al. (2019) suggested a rational metareason-
ing (Russell and Wefald 1991) scheme for situated tem-
poral planning. They formalized the problem as an MDP
called (AE)2 (for Allocating Effort when Actions Expire)
whose actions allocate a unit of time to one of n running
processes, showed that solving this MDP optimally is NP-
hard, and suggested a greedy decision rule (denoted as P-
Greedy) that worked well empirically. However, P-Greedy

attempts merely to maximize the chance of finding a timely
plan, without considering plan cost. For example, if taking a
taxi does not introduce a deadline but is much more expen-
sive than taking the bus, P-Greedy always chooses to take
the taxi, even if there is very little uncertainty about whether
the agent could catch the bus on time. Factoring in solution
cost was done in Shperberg et al. (2020b), by introducing
the (ACE)2 model (Allocating Computational Effort when
Actions (with Costs) Expire), defining the appropriate MDP,
and introducing a greedy algorithm for assigning processing
time in order to minimize expected cost.

All these prior works assume that planning must termi-
nate before starting to act, and since planning takes time,
this may cause otherwise valid plans to become invalid. One
way to ameliorate this problem is by starting to act before the
plan is complete, although obviously this entails the risk of
performing actions that will cause failure. For example, con-
sider an agent that needs to get to the airport, and can do so
by riding the train or by taking a taxi. Both of these options
can be thought of as partial plans that need to be elaborated
into complete plans. Now, suppose that the estimated time to
completely refine each plan is seven minutes, but that both
plans expire in six minutes. Suppose also that the planner
has already determined that the first action in the train plan
is to walk to the station, which takes three minutes, and that
the first action in the taxi plan is to call a taxi, which takes
two minutes. The only way to achieve the agent’s goal in
time is to start acting before a complete plan is formulated.

In this paper, we extend the (ACE)2 model to allow for
concurrent planning and execution. First, we provide a for-
mal model of the resulting tradeoff between risk and re-
wards in executing actions before planning completes, called
CoPEC (Concurrent Planning and Execution with action
Costs), and define an appropriate MDP of this problem.
We examine theoretical properties of this model, and point
out indicators of intractability that go beyond that of the
(ACE)2 model. Due to the difficulty of exact solution,
we examine special cases and provide an analytical solu-
tion to the special case where only one process remains.
This solution is used to construct a greedy decision rule for
the general case. Our empirical evaluation suggests that the
new greedy schemes perform significantly better than vari-
ous baseline algorithms and the P-Greedy scheme on bench-
marks based on distributions gathered from the weighted 15-



puzzle. This ongoing work provides a formal foundation for
the central issue in concurrent planning and execution.

2 Background
Cashmore et al. (2018b) formulated a situated temporal
planning problem as propositional temporal planning with
Times Initial Literals (TILs) (Cresswell and Coddington
2003; Edelkamp and Hoffmann 2004), which is specified by
a tuple Π = ⟨F,A, I, T,G⟩. F is a set of Boolean proposi-
tions that describe the state of the world. A is a set of dura-
tive actions. Each action a ∈ A has a duration in the range
[durmin(a), durmax(a)], and a start, invariant and end con-
ditions (all are subsets of F ). Each action a also has a start
and end effect, which specify which propositions in F are
affected when a starts or ends. I ⊆ F specifies the initial
state, and G ⊆ F specifies the goal condition. T is a set of
timed initial literals (TILs), each TIL l affects a proposition
lit(l) ∈ F at time time(l). A solution to a situated temporal
planning problem is a sequence σ of triples ⟨a, t, d⟩ (i.e. a
schedule), where a ∈ A, t is the time at which the execu-
tion of a starts, and d is the duration of the execution of a.
This work abstracts away from details of the state or action
representation and search process. For example, rather than
considering TILs themselves, we assume possible deadlines,
based on the TILs, for each action a ∈ A. These deadlines
may or may not be known in advance, but as in (AE)2 and
(ACE)2, we assume a known distribution over deadlines.

In (AE)2 and its extended version (ACE)2 (Shperberg
et al. 2020a) that includes plan costs, one posits the exis-
tence of n computational processes, all attempting to solve
the same problem. One can imagine these representing par-
tial plans that are competing to be elaborated. (ACE)2 in-
troduced a cost of failure cf , and the problem was to min-
imize the cost of a timely plan executed after it was found
by some process that has terminated; with a cost of cf if no
such plan is found in time. For every process i there is also
a possibly unknown deadline, after which the solution can-
not be used. The following distributions are assumed to be
known in the (ACE)2 model: (i) Di(t), the cumulative dis-
tribution function (CDF) over wall clock times of a random
variable denoting the deadline for each process i; (ii) Mi(t),
the CDF giving the probability that process i will terminate
when given an accumulated computation time of t or less;
and (iii) Ci, a probability mass function (PMF) over solu-
tion costs for process i. The true values of the deadline and
the plan cost for process i are revealed only when process i
terminates. The cost of a plan of a process that has not ter-
minated, as well as the cost of a terminated process which
failed to deliver a solution, is cf .

The objective of the (ACE)2 model is to schedule pro-
cessing time between the n processes, optionally stopping
deliberation and executing a complete plan delivered by one
of the processes, so as to minimize the expected cost of the
executed plan. It is necessary to include an explicit decision
to start executing a plan, because even after a timely plan
is found, we may want to keep searching for a plan with a
lower cost.

Shperberg et al. (2020a) then formulated a discrete-time

version of the problem, called D(ACE)2, which allowed
them to model the problem as an MDP. But since allow-
ing dependencies in the model leads to severe intractability
(PSPACE-complete), all distributions were assumed to be
independent in the subsequent analysis.

Greedy Scheme for (ACE)2 Shperberg et al. (2020a)
used their analysis of the special case of (ACE)2, where
only one process has not terminated, to propose a greedy
scheme for the general case. They called that greedy scheme
Delay-Aware Greedy (DAG). Therein, they defined a policy
πi,k(t, td) that allocates at most t time to process i, starting
after delay td, always stopping computation at time dk, at
which time the least-cost available plan is executed. The ex-
pected cost of such a policy was denoted by Eπi,k

(t, td) and
can be computed in linear time. For only one unterminated
process, just setting td to 0 and t infinite, and maximizing
over k, we get the optimal policy.

But when other processes can also be scheduled, there is a
tradeoff, so they defined the most-effective reward gain (i.e.
cost reduction) rate for process i, relative to the current best
valid plan cost cc as:

ecri(td) = max
t,k

cc − Eπi,k
(t, td)

t
(1)

The value ecri(0) represents the highest returns rate (mi-
nus expected cost). However, some processes are more time-
critical than others. This can be measured by how much the
returns rate decreases due to delaying the time at which the
process starts running. Therefore, they defined the following
criterion, which trades off high returns rate and decrease in
returns rate due to delay.

Qi(td) = ecri(0)− γecri(td) (2)

where γ is an empirically determined constant that is used to
balance immediate reward and future loss. The DAG scheme
allocates time to the process i that maximizes Qi(td) (Equa-
tion 2). Note that td was empirically determined as well.

3 The CoPEC Model
3.1 Problem Statement
This paper extends the (ACE)2 model to allow concurrent
planning and execution with action costs. As in (ACE)2, we
posit n computational processes, all attempting to solve the
same problem. To model the execution of actions in the real
world, we assume that each process i has already computed
a prefix of its complete plan, denoted Hi (H for head). That
is, Hi is a (possibly empty) sequence of actions from a set
of base-level actions B. Each action b ∈ B has a known
duration dur(b) and may have a known deadline D(b). The
rest of process i’s plan, denoted βi, is still unknown.

Base-level actions can be executed even before having a
complete plan. When a base-level action is executed, any
process i for which the executed plan so far is not a prefix
of Hi, is invalidated. We make the simplifying assumptions
that actions are irreversible, uninterruptible, and cannot be
executed concurrently with other actions in B. Computation,
however, may be concurrent with action execution.



Process i can compute the rest of its plan, βi, when given
sufficient computation time. We assume that the base-level
actions in βi can be executed only when process i termi-
nates. Also when the execution of a remainder βi begins,
any other process j ̸= i is invalidated. This assumption cor-
responds to each process representing a different subtree in a
forward state-space search in which different actions modify
the state in different ways. Thus, executing one remainder
modifies the state in a way that is incompatible with all the
other remainders.

Since βi is unknown until process i terminates and deliv-
ers the rest of its plan, we assume a known distribution Ri

on the duration of the remainder βi. That is, if we extend
the dur function to have an action sequence S as input, such
that dur(S) = Σ

|S|
i=1dur(S[i]), then Ri is a distribution on

dur(βi).
As in the (ACE)2 model, every process has a (possibly

unknown) overall deadline; we assume a known distribu-
tion of a random variable Xi, over di the deadline for pro-
cess i. We say that the execution of a solution delivered by
process i is timely only if the execution of the remainder
βi begins in time to complete before the deadline di. That
is, denoting by start(βi) the time at which the execution
of βi starts, the execution of the solution is timely only if
start(βi) ≤ di − dur(βi). Since both di and dur(βi) are
random variables before process i terminates, start(βi) is
also a random variable, which we call the induced deadline
for process i and denote by Di. By definition, Di = Xi−Ri.
Thus, we can assume that for every process i, the induced
deadline Di is given, and ignore Xi and Ri henceforth.

In addition, every process i has a performance profile de-
scribed by a CDF Mi(t), the probability that process i will
terminate given an accumulated computation time of t or
less. We also have a known distribution Ci over solution
costs for process i and a cost of failure cf . The true values of
the induced deadline and the plan’s cost for process i are re-
vealed only when process i terminates. The cost of a plan of
an incomplete process, as well as a completed process that
has failed to find a timely solution, is assumed to be cf .

We can now define the CoPEC problem, as follows. We
have a set of base-level actions B, and a cost of failure cf .
Given n processes, each with a sequence Hi of actions from
B, a performance profile Mi, an induced deadline distribu-
tion Di, and a plan cost distribution Ci, the objective is to
find a policy for allocating the computation time among the
n processes and executing base-level actions from the set B,
as well as optionally stopping deliberation and executing a
complete plan already computed by one of the processes, so
as to minimize the expected cost of the executed plan.

Example 1. Extending the example from the introduction,
(agent needing to get to the airport in time for a flight), we
have two candidate plans (processes): process 1 for the train
plan, and process 2 for the taxi plan. Suppose that a unit of
time is one minute, and that the agent needs to be in termi-
nal A at the airport 30 minutes from now. Let the cost of
failing, i.e. not reaching terminal A in 30 minutes and miss-
ing the flight, is $500 (cost of the flight). The train leaves in
8 minutes, the ride takes 20 minutes, and costs $55. Suppose

the planner has already found that the first action in the train
plan is to walk to the station (which takes 5 minutes), but
has not yet found what to do at the end of the ride. It may
require an additional 10 minutes to walk to terminal A (say
with probability 0.2), or terminal A may be adjacent to the
train station (with probability 0.8), which requires no tran-
sit time. The taxi can arrive in 5 minutes from the moment
it is called, takes 18 minutes to reach terminal A, and costs
30$. The first action of the taxi plan is calling a taxi, which
takes one minute, and the second action is to wait for the taxi
for 5 minutes. However, the planner has not yet determined
what to do at the end of the ride. At the end of the taxi ride,
there is a payment, which takes two minutes. Suppose that
the remaining time for finding the rest of the taxi plan is 4
minutes, and the remaining time for finding the rest of the
train plan is either 2 or 7 minutes, each with probability 0.5.

Translating this into a CoPEC problem instance, base-
level actions B = {walk, call, wait, train, taxi}, with
dur(walk) = 5, dur(call) = 1, dur(wait) = 5,
dur(train) = 20, and dur(taxi) = 18. Failure costs cf =
500. The process plan prefixes are H1 = [walk, train],
H2 = [call, wait, taxi]. The performance profiles are dis-
tributed M1 ∼ [0.5 : 2, 0.5 : 7] and M2 ∼ [1 : 4]. The dead-
lines for both processes are known, that is, X1 = X2 = 30
with probability 1. The distributions over the duration of the
remainder of the plans are R1 ∼ [0.8 : 0, 0.2 : 10] for β1,
and R2 ∼ [1 : 2] for β2. Therefore, the induced deadlines
are distributed D1 ∼ [0.8 : 30, 0.2 : 20] and D2 ∼ [1 : 28].
The distributions over the plan costs are C1 ∼ [1 : 5] and
C2 ∼ [1 : 30]. An optimal policy here is to first run pro-
cess 1 for 2 minutes. If process 1 terminates and reveals that
its deadline is 30, then start walking to the train station and
proceed with the train plan. If process 1 does not terminate,
or reveals that its deadline is 20, then start executing the ac-
tions in H2 (call a taxi), run process 2 for 4 minutes, and
proceed with the taxi plan. The expected cost of this policy
is E = 0.5 · 0.8 · 5 + 0.6 · 30 = 20.

3.2 The CoPEC MDP
Following (Shperberg et al. 2019), we formulate a discrete-
time version called DCoPEC, allowing us to model the prob-
lem as an MDP, similar to the one defined for (ACE)2. We
define mi(t) = Mi(t)−Mi(t− 1), the probability that pro-
cess i terminates after exactly t steps of computation, and
di(t) = Di(t)−Di(t− 1), the probability that the deadline
for process i is exactly at time t.

The state variables are the wall clock time T , and one
state variable Ti for each process, with domain N, which
represents the cumulative time assigned to process i so far.
In addition, we have state variables cti and dli, the cost and
deadline (respectively) of each process that has completed
its computation. We also have state variables rt and ne. The
variable rt denotes the remaining time to execute an action,
in case some action is currently being executed. The vari-
able ne denotes the number of actions that were already ex-
ecuted, including the currently executed action, if such ex-
ists. We also have a special terminal state DONE. As in the
D(ACE)2 MDP, the cti and dli variables are irrelevant for
incomplete processes, and the time assigned to a process is



irrelevant to completed processes, thus the state space can
be stated as:

S ={DONE} ∪
(
dom(T )× dom(rt)× dom(ne)

× ×
1≤i≤n

(dom(Ti) ∪ (dom(cti)× dom(dli)))

)
The initial state S0 has T = 0, Ti = 0 for all 1 ≤ i ≤ n,

rt = 0 and ne = 0. We use the notation T [S0] = 0 and
Ti[S0] = 0 (i.e. state variable as a function of the state) as a
shorthand to denote this.

There are three types of actions in the MDP. The first type,
denoted ai.i ∈ [1, n], assigns the next unit of computation
time to an unterminated process i that has not already failed.
The second type, denoted gi, gives the plan computed by
completed process i the go-ahead to execute, and transitions
into a terminal state. Note that for every process i, either ai
or gi is applicable, but not both. The third type is execut-
ing the base-level action b ∈ B. This can be thought of as
committing to execute action b in the following dur(b) time
units. Action b is applicable only if there is no other action
executing at the same time.

The transition distribution is determined by the executed
base-level actions and by the Mi and Di distributions. If a
process i completes its computation in the transition from
state S to state S′, then cti[S

′] and dli[S
′] are assigned ac-

cording to the actual deadline and cost of the solution ob-
tained by process i. In this case, the time at which the exe-
cution of the solution delivered by process i will end (given
that the execution starts now) is:

li(S, S
′) = T [S′] + rt[S′] + dur(Hi[ne[S]...|Hi|])

where Hi[j...k] denotes a subsequence of sequence Hi from
j to k, inclusive. That is, li(S, S′) equals the time after allo-
cating one time unit to process i, plus the remaining time for
executing the current base-level action (if such exists), plus
the duration of the remaining tail of the prefix Hi. Then,
when transitioning from state S to S′ by applying action ai
(which is applicable only if process i has not terminated):

• The current time T [S′] = T [S] + 1.
• rt[S′] = max{0, rt[S]− 1}.
• The computation time of every other process remains un-

changed, that is ∀j ̸= i : Tj [S
′] = Tj [S].

• The probability that process i’s computation completes
in this transition (given that it has not previously termi-
nated) is Pterm = mi(Ti[S]+1)

1−Mi(Ti[S]) . Therefore, with probabil-
ity 1 − Pterm, process i does not complete and we have
Ti[S

′] = Ti[S] + 1.
• Conversely, with probability Pterm, process i completes.

In this case, cti[S′] and dli[S
′] are assigned values ac-

cording to distributions Ci and Di, respectively. For ex-
ample, in the independent cost case, for all x ≤ dmaxi

,
dli[S

′] = x with probability di(x). If x < li, then
cti[S

′] = cf (with probability 1), otherwise, for all
y ∈ Supp(Ci), cti[S′] = y with probability Ci(y).

The state variables for other processes remain unchanged.
Denote by dmaxi the last deadline for process i, i.e. the
smallest t for which Di(t) = 1. The reward for being in
state S and executing action ai such that a solution delivered
by process i can be executed entirely before the last deadline
for process i, that is T [S]+rt[S]+dur(Hi[ne[S]...|Hi|]) <
dmaxi

, is always 0. However, when ai is applied in state S
such that T [S]+rt[S]+dur(Hi[ne[S]...|Hi|]) ≥ dmaxi

, the
reward is −cf . In the latter case, transition into S′ = DONE
with probability 1. This exception is in order to avoid use-
less allocation of time to processes that cannot find a timely
plan, as well as infinite allocation sequences.

When applying action b in state S (which is applicable
only if rt[S] = 0), that is, declaring that action b ∈ B
will be executed in the next dur(b) time units, then if
T [S] + dur(b) > D(b), the transition is to terminal state
S′ = DONE with probability 1. The reward in this case is
−cf . Otherwise, transition to state S′ such that:

• The current time does not change, T [S′] = T [S].
• rt[S′] = dur(b) and ne[S′] = ne[S] + 1,
• For any process i whose prefix Hi is not compatible with
b, i.e. Hi[ne[S]] ̸= b, assign dli[S

′] = −1 and cti[S
′] =

cf . For any other process i, for which Hi[ne[S]] = b, the
accumulated time is preserved, i.e. Ti[S

′] = Ti[S].

The reward in this case is 0.
When applying action gi in state S (applicable only if pro-

cess i has terminated and the variables dli[S], cti[S] have
been assigned), that is, executing the plan found by process
i, the transition is always to terminal state S′ = DONE. The
reward in this case is −cti[S] if dli[S] ≥ T [S] + rt[S] +
dur(Hi[ne[S]...|Hi|]) and −cf otherwise.

4 Theoretical Examination of CoPEC
Shperberg et al. (2020a) showed that, for the general
case, with unrestricted dependencies, optimally solving the
(ACE)2 problem is PSPACE-hard. Since CoPEC is a gen-
eralization of (ACE)2, unrestricted CoPEC problem is also
PSPACE-hard. We thus examine special cases to see whether
they have lower complexity. In particular, we consider spe-
cial cases where the deadlines and costs are known, and the
number of different plan costs is restricted. If the optimal
policy can be described by a simple sequence of actions
(called “linear”), this would simplify solution algorithms.
Unfortunately, even under additional restrictions, the opti-
mal policy may be non-linear.

Theorem 4.1. Even for the special case of DCoPEC where
all plan costs are 0, except for one plan with cost 1, and a
cost of failure greater than 1, the optimal solution requires
a conditional (i.e. non-linear) policy.

Proof. Consider processes {1, 2, 3} with costs C1 = 1,
C2 = 0, C3 = 0 and with deadlines d1 = 2, d2 = 2, d3 = 3.
Let the prefixes of the processes be H1 = H2 = [b], where
b is a base-level action with dur(b) = 1 and deadline(b) =
∞, and H3 = ∅. Let the completion-time distributions be
m1 = [0.9 : 1, 0.1 : 10], m2 = [0.1 : 1, 0.9 : 10] and
m3 = [0.2 : 2, 0.8 : 10]. That is, processes 1 and 2 have



some probability to complete their computation in one time
unit, otherwise they fail. Process 3 needs two time units to
complete its computation successfully, otherwise it fails. Fi-
nally, let the cost of failure be cf = 10.

It can be shown that the only optimal policy P ∗ is contin-
gent: first run process 1 for one time unit. If process 1 termi-
nates, then execute base-level action b and then run process
2. Since base-level action b was executed before the dead-
line of processes 1 and 2 passed, the expected cost in this
branch is 0.1 · 0 + 0.9 · 1 = 0.9, because if process 2 suc-
ceeds we get a plan with cost 0 (do action g2), and if process
2 fails we get a plan with cost 1 (do action g1). If process
1 fails, then run process 3 for two time units. The expected
cost in this branch is 0.2 ·0+0.8 ·10 = 8, because if process
3 succeeds we get a plan with cost 0 (do action g3), and if
process 3 fails we fail to find a plan altogether and get the
cost of failure 10. Thus, the expected cost of policy P ∗ is
E[C(P ∗)] = 0.9 · 0.9 + 0.1 · 8 = 1.61.

4.1 Special Case: One Remaining Process
Following Shperberg et al. (2020a), we consider the case
where there is only one running process, w.l.o.g. we assume
it is process 0, and n − 1 terminated processes that already
delivered plans with known induced deadlines dj and known
costs cj , with j ∈ [1, n−1]. We begin by showing that in this
simplified case, there exist optimal policies that have special
properties, which simplify the analysis.

We only need to consider policies that start from the initial
state S0. Thus, a policy can be represented as an and-tree
rooted at state S0. The possible actions can be represented
as edges from each state node, that lead to chance nodes with
all the next possible states as children (see example 1).

Observe that a state in which all n processes are termi-
nated (and have known induced deadlines dj and known
costs cj) or failed (i.e. have deadline dj = −1 and cost cj =
cf ), can be considered a terminal state. The reward in such a
state would be minus the minimal plan cost min1≤j≤n{cj}
for which the deadline dj has not passed. This is equivalent
to committing to the best timely plan i (using action gi).

Definition 4.1. A policy tree is called a linear policy if every
chance node leads to at most one non-terminal state node
with non-zero transition probability.

Such policy trees are called linear because they can be
represented by a sequence A of meta-level and base-level
actions, where A[t] = ai means ’assign time unit t to pro-
cess i’ and A[t] = b means ’execute base-level action b ∈ B
starting from time t’.

Theorem 4.2. In the case of CoPEC with only one running
process, every legal policy is a linear policy.

Proof. Let σ be a legal policy, and consider some chance
node N in σ. There are three cases: (i) The edge leading
to N represents a base-level action b ∈ B. In this case
the transition is deterministic: N has a single child. (ii) The
edge leading to N represents a go-ahead action gi. Here the
transition is also deterministic (to terminal state DONE with
probability 1). (iii) The edge leading to N represents an al-
location action ai. Note that all processes j ∈ [1, n − 1]

have terminated, so only a0 is allowed. In this case, with
probability 1 − Pterm, N transitions into a state where the
running process 0 does not terminate. Otherwise, N transi-
tions into states S where process 0 terminated (either with
cost cf or with some cost c ∈ Supp(Ci)). Since the remain-
ing n− 1 processes have also terminated, S are all terminal
states. Therefore, N has at most one non-terminal child.

Given a linear policy σ, we denote by BLA(σ) the se-
quence of base-level actions executed according to σ.

Theorem 4.3. In CoPEC with only process p0 untermi-
nated, there exists an optimal policy σ s.t. BLA(σ) ⊆ H0.

Proof. Let σ be an optimal (linear) policy. If BLA(σ) ⊆
H0, then we are done. Otherwise, let k be the first in-
dex such that BLA(σ)[1...k] is not a prefix of H0. Denote
bk = BLA(σ)[k], and let t be the time at which bk is exe-
cuted according to σ, that is σ[t] = bk. Note that once bk is
executed, the running process 0 is invalidated, and since all
other processes are either completed or failed, the policy σ
transitions into a terminal state with probability 1. Thus, bk
is the last action in policy σ.

Let i be a valid plan with the lowest cost before bk is exe-
cuted. Consider policy σ′ = σ[1...t− 1] · [gi]. We now show
that policy σ′ is optimal. Let j be a valid plan with the low-
est cost after bk is executed. Note that j is also a valid plan
before bk is executed, thus, ci ≤ cj . Since the only differ-
ence between σ′ and σ is committing to plan i (with cost ci)
instead of executing action bk and then committing to a plan
with cost cj , we get that E(σ′) = E(σ) − cj + ci ≤ E(σ).
Thus, σ′ is optimal and BLA(σ′) ⊆ H0.

4.2 One Process and Known Deadlines
We simplify this case even further and assume that process
0 has a known deadline d0. We show that for this simplified
case, there exists an XP algorithm that computes an optimal
policy in time O(n|H0|+2), as follows.

In order to find an optimal policy, we need to consider
which base-level actions to execute and when to execute
each action. In addition, we need to consider how much
computation time to give to running process 0. By theorem
4.3, in CoPEC with only one running process (even with un-
known deadline), there exists an optimal policy σ such that
BLA(σ) ⊆ H0. Thus, we need to consider only sequence
H0, or a sub-sequence of H0, rather than all prefixes Hj .

We call a mapping from a sequence Hi to the action ex-
ecution start times an initiation function, and denote it Ii.
That is, for every 1 ≤ k ≤ |Hi|, Ii(Hi[k]) is the time at
which base level action Hi[k] is executed. Given an initi-
ation function Ii, we can compute the exact time, the ”ef-
fective deadline” deffj (Ii), at which each process j will be
invalidated (according to the deadline dj and Ii). There are
two cases in which process j can be invalidated (before its
induced deadline dj):

(i) Hi is not a prefix of Hj . In this case, process j will be
invalidated at the time the first base-level action b ∈ Hi \
Hj is executed.



(ii) Hi is a prefix of Hj , but there exists an index m such
that the execution of base-level action Hj [m] must start
before time Ii(Hi[m]), otherwise process j will be tardy.
In this case, process j will be invalidated at the time the
execution of action Hj [m] must start, that is, at time dj−
dur(Hj [m...|Hj |]).

Therefore, denoting by m the first index for which

(Hi[m]̸=Hj [m])∨(Ii(Hi[m])>dj−dur(Hj [m...|Hj |])) (3)

the effective deadline for process j is:

deffj (Ii)=min

(
Ii(Hi[m]), dj−dur(Hj [m...|Hj |])

)
(4)

The effective deadline of running process 0 is simply d0.
To compute the optimal policy we may have to examine

all possible initiation functions (mappings from the prefix
H0 to possible action execution start times) I0. However,
we show that all but O(n|H0|) of them are dominated

Given a process i with a known deadline di, and some
base-level action b ∈ Hi, we denote by LSTi(b) the lat-
est start time of b according to deadline di. That is, let
k be the index such that Hi[k] = b, then LSTi(b) =
di − dur(Hi[k...|Hi|]) (see example 2). We get:
Theorem 4.4. In the case of CoPEC where there is only
one running process with a known deadline, there exists an
optimal policy σ such that BLA(σ) ⊆ H0 and for every
base-level action b ∈ BLA(σ) there exists a process i such
that b is executed at time LSTi(b).

Proof. From theorem 4.3, there exists an optimal (linear)
policy σ such that BLA(σ) ⊆ H0. Let k be the maximal
index in the sequence BLA(σ) such that base-level action
bk = BLA(σ)[k] is executed at time tk ̸= LSTi(bk) for all
i. Let Pk be the set of processes that are valid after base-
level action bk is executed, and let j ∈ Pk be a process
with a minimal deadline dj . Since bk is executed at time
tk ̸= LSTj(bk) and since j is still valid after the execution
of bk, we deduce that tk < LSTj(bk). Let σ′ be the policy
where we swap base-level action bk with the actions that fol-
low bk until bk is executed at time LSTj(bk) (if there are not
enough actions that follow bk, we just add computation ac-
tions a0). That is, σ′ = σ[1...tk−1] ·σ[tk+1...LSTj(bk)−
1] · [bk] · σ[LSTj(bk) + 1...|σ|].

We now show that σ′ is a legal policy (i.e. there are no
overlaps between base-level actions). If bk is the last base-
level action executed according to σ, since bk is executed
at time LSTj(bk) > tk according to σ′, there are no over-
laps between bk and any other base-level action, and there-
fore, σ′ is legal. Otherwise, let bk+1 = BLA(σ)[k + 1]
be the base-level action that is executed after bk according
to σ. Note that, since the index k is maximal, there ex-
ists a process i ∈ Pk such that bk+1 is executed at time
tk+1 = LSTi(bk+1). As dj is a minimal deadline among
the deadlines of all processes i ∈ Pk, we can deduce that
tk+1 = LSTi(bk+1) ≥ LSTj(bk)+dur(bk). Therefore, the
subsequence σ[tk + 1...LSTj(bk) + dur(bk)] consists only
of computation actions a0, and thus BLA(σ′) = BLA(σ).
In addition, since bk is executed at time LSTj(bk) > tk ac-
cording to σ′, and since there are no other base-level actions

executed at time LSTj(bk) ≤ t ≤ LSTj(bk) + dur(bk),
there are no overlaps between bk and any other base-level
actions executed according to σ′. Thus, σ′ is a legal policy.

Finally, since according to σ′, bk is executed at time
t′k = LSTj(bk) ≤ LSTi(bk) for all i ∈ Pk, then all the
processes that are valid after the execution of bk according
to σ, are also valid after the execution of bk according to σ′.
Therefore, since the rest of policy σ remains unchanged, we
get that the expected cost E(σ′) = E(σ), hence, σ′ is an
optimal policy.

Repeating these steps for all base-level actions b ∈
BLA(σ), we get an optimal policy as required.

By theorem 4.4, it suffices to compute all the legal map-
pings from H0 by considering the latest start time of the
base-level actions according to the deadlines di for all i ∈
[0, n− 1] (see example 2). Note that there are at most n|H0|

such mappings.
Example 2. Consider processes {0, 1} with prefixes H0 =
H1 = [b1, b2], where dur(b1) = dur(b2) = 1, and with
deadlines d0 = 4, d1 = 2. Then lst0(b2) = 3, lst0(b1) =
2, lst1(b2) = 1 and lst1(b1) = 0. Thus, we return
the following mappings: {(b1, 2), (b2, 3)}, {(b1, 0), (b2, 1)},
{(b1, 0), (b2, 3)}. Note that the mapping {(b1, 2), (b2, 1)} is
illegal since action b1 needs to be executed after the subse-
quent action b2.

Once we compute all the initiation functions, we can com-
pute the effective deadlines deffj (I0) for all processes j, for
every initiation function I0. Then, given effective deadlines
deffj (I0), we can simply use them (instead of the induced
deadlines dj) in the equation proposed by Shperberg et al.
(2020a). Factoring the fact that the deadlines are known,
we never schedule computation after the respective plan is
bound to be tardy, so we get:

Eπo,k
(deff (I0), 0) = (1−M0(d

eff
k (I0))) · ck+

k∑
j=2

(s0(d
eff
j (I0), 0)−s0(d

eff
j−1(I0), 0))E[min(C0, cj)] (5)

where s0(t, td) is the probability that process 0 will find a
timely plan given t time units starting at time td.

In the algorithm, for each such possible initiation func-
tion I0, we compute the effective deadlines deffj (I0) using
equation 4. Given the effective deadlines, we iterate over k
to find the expected cost of a best policy (i.e. a policy with
minimal expected cost) using equation 5. Finally, we return
the policy with the minimal expected cost that was found.

5 Algorithms for the General Case
We propose several algorithmic schemes for CoPEC. In all
schemes below that require a known deadline, we use as the
deadline di the minimal value in the support of Di, though
other values can be chosen such as the expectation.

5.1 Demand-ExecutionA

The Demand-ExecutionA scheme uses any (ACE)2 al-
gorithm A, and adapts it to CoPEC. Given a CoPEC prob-
lem instance, at each decision point we use algorithm A to



choose which process i is given computation time. Then, we
check whether the next base-level action in the prefix Hi

must be executed now in order for process i to be non-tardy.
That is, let ind be the index of the first base-level action
in prefix Hi that was not yet executed, and let T be the wall
clock time. Given a deadline di, the latest start time of action
Hi[ind] is lsti(Hi[ind]) = di − dur(Hi[ind...|Hi|]). Thus,
if lsti(Hi[ind]) ≤ T , return base-level action Hi[ind], oth-
erwise return computation action ai.

5.2 Min-LETDAG

The Min-LETDAG algorithm is based on the algorithm for
the special case where there is one running process and n−
1 completed processes. We compute an initiation function
Ii for each process i by setting each base level action b in
Hi to be at the latest execution time at which it must be
executed according to the deadline di and to the deadline of
b, D(b). Pseudo-code for computing the initiation function
Ii for process i is given in Algorithm 1.

Algorithm 1: Compute the latest execution time of
base-level actions

Input: Hi - the head of process i, d - a value from
the support of Di

Output: An initiation function Ii
1 Function compute init func(Hi, d):
2 Let I = {}, t = d
3 for j = length(Hi) . . . 1 do
4 t = min(t− dur(Hi[j]), deadline(Hi[j])−

dur(Hi[j]))
5 I[Hi[j]] = t

6 return I

As before, given an initiation function Ii, we can com-
pute the effective deadlines deffj (I0) (equation 4) for all pro-
cesses j, and reduce the instance into an (ACE)2 instance.
Then, for each process i, we compute the effective deadlines
deffj (Ii) of all the processes j according to the initiation
function Ii. The Min-LETDAG algorithm iteratively allo-
cates time to the process i that maximizes Qi(d

eff (Ii), td),
and executes base-level actions according to the initiation
function Ii. See Algorithm 2 (one iteration).

5.3 MPP
We also implemented a Most Promising Process (MPP) al-
gorithm, where in each iteration we schedule the process
with the lowest expected cost. The expected cost of a process
i is computed according to the Mi, Di and Ci distributions,
as follows. For every value t ∈ Supp(Mi), compute the
probability pterm that process i will terminate in t time units.
Then for each deadline x ∈ Supp(Di), if process i will miss
the deadline x after running for t time units, iteratively add
pterm · di(x) · cf to the expected cost. Otherwise, if process
i will meet deadline x, iteratively add pterm ·di(x) ·Ci(y) ·y
for every cost y ∈ Supp(Ci). The pseudo-code for comput-
ing (recursively) the expected cost of the plan delivered by a
process i is appears as Algorithm 3.

Algorithm 2: Min-LETDAG Outline
Input: S - a state of an CoPEC problem instance
Output: A base-level action or a meta-level action

1 Let I = (), Q = ()
2 for j = 1, ..., n do
3 d = min(Supp(Dj))
4 append(I, compute init func(Hj , d))

5 deff = compute effective deadlines(Ij)

6 append(Q,Qi(d
eff , td))

7 i = argmaxj∈[1,n]Qj ; ind = ne[S]
8 if Ii(Hi[ind]) ≤ T [S] then
9 return Hi[ind]

10 else
11 return ai

Algorithm 3: Expected plan cost for process i
Input: S: state of an CoPEC instance, i: a process#
Output: The expected cost of plan i

1 Function expected cost(S, i):
2 if is empty(Mi) then
3 return cf

4 t = draw(Mi) ▷ draw the minimal value from
Mi pterm = mi(t)

1−Mi(t−1) ;
5 cost = 0;
6 for x ∈ Supp(Di) do
7 if T [S] + t− Ti[S] > x then
8 cost = cost+ pterm · di(x) · cf ;
9 else

10 for y ∈ Supp(Ci) do
11 cost = cost+pterm ·di(x) ·Ci(y) ·y;

12 Mi = remove(Mi, t) ▷ remove t in Supp(Mi)
cost = cost+(1−pterm)·expected cost(S, i);

13 return cost

6 Empirical Evaluation
Data for our experiments uses weighted 15-puzzle instances:
action cost for a tile is the number on the tile. To create
CoPEC problem instances, we first solved 60,000 puzzle in-
stances using A∗, with h =weighted Manhattan distance.
For each puzzle instance, we recorded the h-value of the ini-
tial state, number of nodes expansions required by A∗ from
the initial state, and length and cost of the path found by
A∗. Then, we created three PMF and CDF histograms for
each initial h-value: the required number of expansions, the
optimal solution length, and the optimal solution cost.

Given the three histograms, we create a CoPEC problem
instance of n ∈ {2, 5, 10, 20} processes as follows. We drew
a random puzzle instance, and ran A∗ until the open list con-
tained at least n search nodes. We chose the first n nodes in
the open list, recording their h-value. Each chosen node i be-
comes an CoPEC process, where Mi is the node expansion
CDF histogram corresponding to node i h-value h(i), Ci is



Figure 1: Avg. norm. cost vs. runtime: n=10, dur(b) = 1

the solution cost PMF histogram corresponding to h(i), Ri

(the distribution over the duration of the remainder of plan
i) is the solution length CDF histogram corresponding to
h(i) multiplied by the actions duration, and the prefix Hi

is the sequence of actions leading to node i from the initial
state. To get a deadline distribution Xi, we also recorded the
non-weighted Manhattan distance heuristic value for each
search node j, we denote it h′(j). Then, we use the (known)
deadline distribution Xi = 4 · h′(i) for each chosen node
i. Recall that the induced deadline distribution is defined as
Di = Xi − Ri, thus, even though Xi is known, Di is un-
known as Ri is unknown. For the cost of failure cf , we used
the maximal cost among all Ci distributions, multiplied by
2. Finally, we assumed that each base-level action (i.e. move
up, down, left or right) requires l ∈ {1, 2, 3} time units
to complete. For each such duration l we created a sepa-
rate CoPEC instance. The empirical evaluation included 50
CoPEC instances in each such setting.

We implemented the following scheduling algorithms
as baselines for the evaluation: Basic Greedy Scheme (P-
Greedy, (Shperberg et al. 2019)) from the (AE)2 model;
Round Robin (RR) - allocate computation time to pro-
cesses cyclically; Random - allocate computation time to
a random (valid) process at each iteration. We also imple-
mented the MPP algorithm, and the DAG algorithm with
γ ∈ {0, 0.5, 1, 2, 10} and a delay td ∈ {0, 1, 2, 5, 20}. Re-
sults are reported only for the best-performing parameters.

Our results figures present the average expected cost of
an optimal policy found by the algorithms, divided by the
cost of failure cf , and the algorithm runtime. The legends
are sorted by algorithm performance from lowest (i.e. best)
to highest expected cost.

The results suggest that most of the algorithms, even those
not executing base-level actions until a complete plan is
found, perform well on average when the base-level ac-
tion duration is 1, because time-pressure is not critical
here. However, the performance of “raw” algorithms that do
not support concurrent execution, gets worse as time pres-
sure increases. The CoPEC schemes Demand-Execution and
Min-Let, on the other hand, perform well even under severe

Figure 2: Avg. norm. cost vs. runtime: n=10, dur(b) = 3

Figure 3: Avg. normalized cost vs. runtime: n=5, dur(b) = 1

time pressure, as they execute base-level actions while plan-
ning, thus potentially delivering cheaper plans.

The Demand-Execution schemes perform better than the
raw algorithms when the time pressure is higher, but worse
than the Min-Let schemes. The reason is that the Demand-
Execution schemes do not consider the effective deadlines
of the processes (i.e. do not consider that processes might be
invalidated by the execution of base-level actions). There-
fore, when the base-level action duration is 1, the Demand-
Execution schemes perform even worse than the raw algo-
rithms, as they execute actions and invalidate good processes
(see figures 1 and 3). Whereas the raw algorithms do not in-
validate processes, and have enough time to find plan with
relatively low expected cost.

The results suggest that Demand-ExecutionMPP and
Min-LetDAG have the best performance. When time
pressure is low, the Min-LetDAG versions find poli-
cies with lower expected cost, and are almost as fast
as Demand-ExecutionMPP (see figures 1 and 3).
When the time pressure is high, the Min-LetDAG vari-
ants find policies with slightly lower expected cost, but



Figure 4: Avg. normalized cost vs. runtime: n=5, dur(b) = 3

Figure 5: Avg. norm. cost vs. runtime: n=20, dur(b) = 3

Demand-ExecutionMPP is much faster (see figures 2, 5).

7 Conclusion
We defined a formal abstract model for concurrent plan-
ning and execution that shows how to trade off the risk of
executing incorrect actions against the opportunity of find-
ing cheaper plans. Even the abstract problem is hard, so we
examined special cases for which we were able to design
greedy algorithms. These seemed to have good performance
on problem instances generated from weighted 15 puzzles.
This work provides a formal foundation for addressing con-
current planning and execution. However, much work still
remains to be done in adapting these algorithms to work in-
side a situated planner.
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