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Abstract
Despite the superior capability in complementary
information exploration and consistent cluster-
ing structure learning, most current weight-based
multi-modal clustering methods still contain three
limitations: 1) lack of trustworthiness in learned
weights; 2) isolated view weight learning; 3) extra
weight parameters. Motivated by the peer-review
mechanism in the academia, we in this paper give
a new peer-review look on the multi-modal clus-
tering problem and propose to iteratively treat one
modality as “author” and the remaining modali-
ties as “reviewers” so as to reach a peer-review
score for each modality. It essentially explores
the underlying relationships among modalities.
To improve the trustworthiness, we further design
a new trustworthy score with a self-supervision
working mechanism. Following that, we propose
a novel Peer-review Trustworthy Information Bot-
tleneck (PTIB) method for weighted multi-modal
clustering, where both the above scores are si-
multaneously taken into account for accurate and
parameter-free modality weight learning. Exten-
sive experiments on eight multi-modal datasets
suggest that PTIB can outperform the state-of-the-
art multi-modal clustering methods.

1. Introduction
Learning a consistent clustering result from different modal-
ities by fully mining the underlying modality correlations is
the essence of multi-modal clustering (MMC) (Raya et al.,
2024). From the view of basic method, existing MMC
methods are generally based on k-means, canonical cor-
relation analysis, spectral clustering, matrix factorization,
information bottleneck and deep learning methods. From
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the perspective of strategies, current MMCs can be classified
into weighted MMC (Wang et al., 2020a), shared feature
subspace learning based MMC (Li et al., 2022), multi-modal
consensus clustering (Liu et al., 2021; Liang et al., 2024),
multi-modal co-clustering (Kumar et al., 2011; Zhang et al.,
2024), multi-modal subspace clustering (Li et al., 2022),
and tensor representation learning based MMC (He & Atia,
2022; Gu et al., 2024). With the rapid development of vari-
ous kinds of methods, MMC has been successfully applied
into many practical applications, such as object recogni-
tion (Lou et al., 2013), human action recognition (Hu et al.,
2020) and coherent groups detection in crowd scenes (Wang
et al., 2020b).

Related Works. Investigated from the above methods, the
weighted MMCs have exhibited remarkable clustering per-
formance in the past decade, which is mainly due to its
superior capability in complementary relationship discov-
ery and consistent clustering structure learning. For the
example of some typical ones, Xu et al. (2016) incorpo-
rated feature selection into weighted MMC for solving the
high-dimensional data clustering, so that the discriminative
representations and accurate clustering results can be jointly
learned. Further, to address the challenging large-scale data
clustering, Zhang et al. (2019) proposed an efficient binary
MMC method, worked by collaboratively conducting the
discrete representation learning and binary clustering as-
signment discovery. Different from most weighted MMCs,
Zhao et al. (2020) designed a cluster weights learning based
method to find the more fine-grained cluster relationships
compared to the modality-weighted methods. For the diffi-
cult parameter learning issue, Wang et al. (2020a) focused
on automatically tuning the weight parameters to obtain a
refined unified graph fusion matrix. In more recent year,
Zhou & Shen (2020) leveraged adversarial learning and at-
tention mechanism to align the latent feature distributions
and quantify the importance of modalities respectively. Xia
et al. (2023b) introduced an adaptive fusion layer to adap-
tively sense the importance of modalities. Hu et al. (2025)
introduced a simple fusion mechanism that dynamically
updates modality-specifc weights via backpropagation, sim-
ilar to parameter optimization. Chen et al. (2023) explored
the higher-order relations across modalities by designing a
low-rank Tensor based proximity learning method for MMC
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Figure 1. The upper box indicates the general peer-review process
in academia, while the lower box shows the peer-review look
on multi-modal clustering, where each modality can be either an
“author” or a “reviewer”.

problem.

Limitations. Investigated from the above closely-related
weighted MMC works, we observed there mainly lies three
limitations. First, all the existing weighted MMCs only
focus on learning the modality weights using different meth-
ods, ignoring whether the learned weights are trustworthy
or not. Second, the weight learning mechanisms of most
weighted MMCs is separated and essentially relied on the
“single-modal information”, e.g., wi = 1

F i , where wi and
F i indicate the modality weight and the objective function
value of the i-th modality respectively. Thus, the modality
correlations are not fully explored and exploited, which may
degrade the clustering performance. Third, most weighted
MMCs require one or more parameters for controlling the
weight distribution, where these parameters are usually dif-
ficult to be tuned by hand without any prior knowledge.

Motivation. In academia, peer-review mechanism is always
adopted to mutually assess the contribution of one specific
work to the community, discuss the significance of work,
and provide communication to peers. Similarly, different
modalities jointly contribute to the multi-modal clustering
task, making it necessary to assess their individual contri-
butions. Inspired by this, we naturally give a peer-review
look on the multi-modal clustering problem. As illustrated
in Figure 1, in general peer-review process, a person may
be an author or a reviewer. When a person acts as an au-
thor, the work will be assigned to different reviewers by
Editor in Chief (EIC) / Associate Editor (AE) to provide
recommendations and suggestions. The peer-review mech-
anism facilitates the improvement and refinement of work,
ensuring high-quality and reliable publications. From the
“peer-review” look on multi-modal clustering, one modality
can either be an “author” or a “reviewer”. The “reviewer”
modalities review the work of the “author” modality, and
produce feedback review scores to evaluate the contribution

or quality of the “author” modality. By mimicking this inter-
esting mechanism in Figure 1, we can employ the feedback
review scores to effectively integrate the complementary dis-
criminative information across modalities so as to promote
multi-modal clustering performance.

Contribution. In this paper, we propose to address the
multi-modal clustering problem from the new peer-review
look. It allows the remaining modalities as “reviewers” to
review one “author” modality, and provides peer-review
scores for each modality. Additionally, the correspond-
ing trustworthy score is designed to measure the reliabil-
ity of different “reviewer” modalities, thus ensuring the
trustworthiness of the peer-review scores learned from the
“peer-review” process. With the remarkable performance
of the popular information bottleneck theory (Tishby et al.,
1999) in multi-modal learning (Gao et al., 2007; Lou et al.,
2013; Hu et al., 2022), we in this paper propose a Peer-
review Trustworthy Information Bottleneck (PTIB) method
for solving the weighted multi-modal clustering problem.
The clustering result obtained in each iteration is used to
update the trustworthy score of each “reviewer” modality,
working in a self-supervised mechanism. Thus, a more rea-
sonable trustworthy evaluation of the peer-review score for
each modality is reached. The peer-review scores given
by “reviewer” modalities and the corresponding trustworthy
scores for evaluating these “reviewer” modalities are com-
bined to determine the importance or contribution (using
modality weights in this paper) of each “author” modal-
ity. Moreover, we solve the optimization problem of PTIB
by an effective k-means-like algorithm. Experiments on
eight multi-modal datasets demonstrate the superiority and
effectiveness of the proposed method.

The major contributions are summarized as follows:

• A novel peer-review trustworthy information bottle-
neck (PTIB) method is proposed for multi-modal clus-
tering, which performs by jointly learning the peer-
review scores on different modalities and the trustwor-
thy scores for quantifying the trustworthiness of the
peer-review scores.

• We give a new peer-review look on the multi-modal
clustering problem, and thus design a peer-review score
for evaluating the quality of each modality.

• A corresponding trustworthy score is newly designed
to evaluate the trustworthiness of peer-review score,
ensuring the reliability of multi-modal peer-review.

• Rich experiments on eight multi-modal datasets demon-
strate the superiority and effectiveness of the proposed
PTIB.

Relations Between Multi-modal and Multi-view Clus-
tering. Generally, the aim of multi-modal clustering and
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multi-view clustering is similar, especially in integrating
different sources of information for improving clustering
performance. The differences between them are as follows:
Multi-view learning focuses on diverse feature representa-
tions of the same object, while multi-modal learning deals
with complex relationships between heterogeneous modal-
ities, which is more complicated to handle. In practical
applications, overlaps between them may exist (e.g., multi-
modal data can also be considered as generalized multi-view
data). However, technical solutions should be selected based
on data characteristics (feature homogeneity and semantic
consistency) to ensure methodological compatibility. In this
paper, we use a more general expression of multi-modal
clustering instead of multi-view clustering.

2. Revisit: Information Bottleneck
Information bottleneck (IB) principle (Tishby et al., 1999)
originated from the rate-distortion theory, and its details can
be referred from our survey (Hu et al., 2024b).

For clustering problem, IB considers it as a data compres-
sion process, which attempts to learn an optimal compressed
representation T of X while maximally maintaining the rel-
evant information about variable Y . It is formally described
as

R(D) = min
{p(t|x):I(T,Y )≥D}

I(T ;X), (1)

where the compact representation T compresses the source
variable X while maximally capturing the relevant infor-
mation with respect to the variable Y , p(t|x) indicates the
probability of data point x being assigned to t-th cluster,
I(T ;X) and I(T ;Y ) denote the mutual information be-
tween the compressed variable T and variable X and Y
respectively.

By adopting a positive β, we have the following Lagrange
version of the IB method

Lmin[p(t|x)] = I(T ;X)− βI(T ;Y ), (2)

where β ∈ (0,+∞) is a Lagrange multiplier which serves
as a trade-off parameter between data compression and rele-
vant information preservation. And a formal iterative solu-
tion for the above Eq. (2) is given as

p(t|x) = p(t)

Z(x, β)
e−βDKL[p(y|x)||p(y|t)], (3)

where p(t) =
∑

x p(t|x)p(x), Z(x, β) is a normalization
function, p(y|t) = 1

p(t)

∑
x p(t|x)p(x, y), and DKL (Cover

& Thomas, 2006) is the Kullback-Leibler divergence.

In recent years, IB theory has been widely used in various
multi-modal clustering tasks. For example, Federici et al.
(2020) propose a multi-modal IB method that can identify
non-shared information between two modalities. Yan et al.

(2024) propose a multi-modal IB method that uses shared
representations of multiple modalities to eliminate private
information of a single modality. But the modality-private
information is eliminated as much as possible during the
process of data compression, only exploring the shared in-
formation of modalities without taking advantage of the
complex relationship between modalities. Hu et al. (2024a)
learn embeddings on two distinct feature spaces, reconstruct
semantic information in a parallel manner, and IB theory
is further used to reduce representation noise. However, its
final clustering result is obtained by directly averaging the
local clusters from the modal high-dimensional features.

Different from the existing multi-modal clustering methods
based on IB theory, the proposed method considers the com-
plex relationship between modalities, where the designed
multi-modal peer-review process is used to reasonably score
the contribution of each modality, and the trustworthiness
of it is ensured in a self-supervised manner.

3. The Proposed Method
In this section, we first give the problem formulation and
overall framework, then elaborately picture the details of
the PTIB method.

Problem Formulation. Given the random variable X =
{x1, x2, . . . , xn} denoting the set of n data samples from
the dataset X , we have the random variable {Y j}mj=1 denot-
ing the data feature representation of m different modalities,
where Y j ∈ Rn∗dj

indicates that the feature dimension of
the j-th modality is dj . Then, we reach the corresponding
co-occurrence matrix {X,Y j}mj=1 and its joint probability
distribution {p(X,Y j)mj=1} by adopting the popular Bag-
of-Words model (Fei-Fei & Perona, 2005).

Overall Framework. As the overall framework illustrated
in Figure 2, PTIB first captures the local clustering struc-
ture of each modality, i.e., {T 1, T 2, · · · , Tm}, with the
IB method, and then obtains the peer-review scores for
each “author” modality with the evaluation of remaining
“reviewer” modalities. Meanwhile, the final clustering re-
sult is adopted for assessing the trustworthiness of each
modality in a self-supervision fashion. With the peer-review
{µ1, µ2, · · · , µm} and trustworthy {σ1, σ2, · · · , σm} score
for each modality, more accurate modality weights and im-
proved clustering result are learned in each iteration.

Regarding the trustworthiness of multiple modalities, al-
most all existing methods focus on trustworthy multi-modal
classification(Han et al., 2021; 2023; Zheng et al., 2023;
Zou et al., 2023). Han et al. (2023) introduce the variational
Dirichlet to characterize the distribution of the class proba-
bilities, parameterized with evidence from different views
and integrated with the Dempster-Shafer theory, thus pro-
moting both classification reliability and robustness. Zheng
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Figure 2. The framework of PTIB. Each modality is treated as an “author” or “reviewer”, with its local clustering result serving as the
“work” or “criteria”. A peer-review is conducted in the multi-modal setting to obtain peer-review score. Additionally, the final clustering
result played “EIC /AE” quantifies the reliability of “reviewer” modality to obtain trustworthy score. Both the two scores are taken into
account for modality weight learning, leading to more accurate weights and improved clustering result through iteration.

et al. (2023) proposes a trustworthy multi-modal classifi-
cation network via multi-level confidence learning, which
integrates both feature and label-level confidence learning
for trustworthy multi-modal classification. Zou et al. (2023)
induces a transparent fusion strategy based on the modality
confidence estimation strategy to track information variation
within different modalities for dynamical fusion. Different
from them, the proposed method aims to guarantee the trust-
worthiness of the learned modal weights in a self-supervised
manner. To the best of our knowledge, none of the exist-
ing weighted MMCs employ the trustworthy strategy in the
weight learning process.

3.1. Peer-review Score

Here, we give a new peer-review look on the multi-modal
clustering, resorting the advantages of this mechanism to
learn modal weight through modal interaction.

In a general peer-review process, there are often some spe-
cific review criteria conducted to assess and score the au-
thor’s work. By mimicking this, we reach the peer-review
score in a similar manner under the multi-modal peer-review
process. First of all, it is necessary to establish the peer-
review criteria for different reviewer modalities. The feature
of each modality contains unique characteristics, but their
different feature dimensions make it hard to quantify their
discrepancy. Therefore, we instead adopt the local cluster-
ing result of the reviewer modality as review criteria. Then,
the author’s work is also represented with the local cluster-
ing result, which can be directly compared with the review

Author

Reviewer

criteria

work
Modality 1

Modality 2

peer-review 
score

mutual 
information

1T

2T
1T 2T

result

Figure 3. The local clustering results from the modality 1 and
modality 2 are regarded as the criteria and the work, respectively.
The peer-review score is the mutual information between them.

criteria. The peer-review score depends on how similar it
is to the review criteria. Apparently, the general metric of
mutual information is a good choice for quantifying them.
For clarity, we give a two-modal example in Figure 3. To be
more accurate, we adopt the normalized mutual information
version and formally define it as follows

µk
i =

2× I(T i, T k)

H(T i) +H(T k)
(4)

where µk
i is the peer-review score given by the reviewer

modality V i to the author modality V k, T i and T k are the
local clustering results obtained from the reviewer modality
V i and the author modality V k, respectively. H(•) denotes
the entropy of one variable. Naturally, all of the peer-review
scores of author modality V k can be represented as a vector

µk = {µk
1 , . . . , µ

k
i , . . . , µ

k
m}, i ̸= k. (5)
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Remark. Actually, there are many ways to attain the final
peer-review scores, while we only select the normalized
mutual information as a typical metric. Additionally, al-
though the peer-review score provides a quantitative anal-
ysis for exploring the modality correlations, it still has its
limitations. Due to the varying quality of multiple modali-
ties, low-quality “reviewer” modality may give an inaccu-
rate peer-review score to a relatively high-quality “author”
modality. This may probably lead to wrong evaluation of
the importance of modalities and eventually do harm to the
clustering performance. Hence, it is imperative to analyze
and evaluate the trustworthiness of the peer-review scores
given by reviewer modalities to ensure their reliability.

3.2. Trustworthy Score

In this part, we propose to regard the final clustering assign-
ment as the “EIC / AE”, which is then used to evaluate the
trustworthiness of the peer-review score in each iteration
with a self-supervision fashion. The final clustering assign-
ment improves as the iteration increases, thus leading to
more accurate trustworthy scores.

Clustering is to divide samples into different clusters accord-
ing to their features, which is similar to a two-layer decision
tree process. By treating the input sample set as the root
node of decision tree, each leaf node thus corresponds to one
specific cluster of the reviewer modality. Thus, we assess
the trustworthiness of the reviewer modality by measuring
cluster uncertainty, as defined follow, much like evaluating
the quality of decision by measuring leaf purity.
Definition 3.1 (Major/Minor Category). Given a multi-
modal dataset, if the local clustering result of modality super-
vised by the final clustering result, the category of correctly
assigned samples in a cluster of a specific local clustering
result is called major category, the set of categories of incor-
rectly assigned samples in it is called minor categories.
Definition 3.2 (Cluster Uncertainty). For one reviewer
modality, if the probability of major category in a cluster
is p, then the cluster uncertainty can be measured by the
following information entropy

H(p) = −p log2 p− (1− p) log2(1− p). (6)

The final clustering result cannot make a completely ac-
curate judgment on the local clustering result like the true
label. We can only expect that the two are as similar as pos-
sible, that is, the probability of major category is as larger as
possible. In a self-supervised scenario, the mixing of minor
categories introduces interference when judging the infor-
mation of the current cluster, so we only use the p and 1− p
to represent the cluster uncertainty. The following theorem
can prove this claim and its proof is given in Appendix A.1.
Theorem 3.3. For arbitrary cluster of a reviewer modality,
the more mixed the minor categories gain, the higher the
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Figure 4. A typical example of the “symmetry crisis” issue that the
poor and better clusters may have the same cluster uncertainty.

(0.5, 1) (0.5, 1)

Figure 5. The solution of handling the “symmetry crisis” problem.

entropy of it gets, thus resulting in high uncertainty of the
cluster and interference in information judgment.

Eq. (6) leads to an issue that a poor cluster and a better
cluster obtain the same value of Eq. (6), where we call it
“symmetry crisis”. A typical example is illustrated in Figure
4. To address this crisis, we assume that a cluster with more
than half incorrectly assigned samples (i.e., less than half
major category) is of low quality, and we directly set its
cluster uncertainty as the max value, as shown our handling
of it in Figure 5. Finally, based on Definition 3.2, we define
the following concept of cluster distortion to evaluate the
quality of the reviewer modality.

Definition 3.4 (Cluster Distortion). Let U =
{u1, u2, . . . , u|U |} denote the set of clusters in each
reviewer modality and C = {c1, c2, . . . , c|U |} denote the
set of clusters in the final clustering result in each iteration,
then the cluster distortion from U to C is given by

d(uq, c∗) =

{
1, if 0 ≤ p < 1

2 ,

H(p), if 1
2 ≤ p ≤ 1.

(7)

where uq (1 ≤ q ≤ |U |) denotes the arbitrary cluster in the
cluster set U , c∗ denotes the major category of each cluster
uq in U , and p = 1

|uq| |uq ∩ c∗|. Note that d(uq, c∗) = 1

indicates that a cluster dominated by incorrectly assigned
samples have the largest distortion.

Based on the distortion measurement Eq. (7) with respect
to a cluster, the distortion between U and C is defined as
follows

D(U,C) =
1

|U |

|U |∑
q=1

d(uq, c∗). (8)

5



A Peer-review Look on Multi-modal Clustering: An Information Bottleneck Realization Method

The above clustering distortion works by measuring how
much the local clustering result of a single reviewer modality
distorts from the final clustering result, similar to the evalu-
ation from EIC / AE to reviewer in peer-review mechanism.
It is noted that this approach is coincidentally consistent
with the self-supervised learning. Generally, the smaller
the clustering distortion is, the more reliable the reviewer
modality is. Formally, the trustworthy score is defined by

σf
i =

1

D(T i, T f )
, (9)

where σf
i is the trustworthy score of reviewer modality

V i, T i is the local clustering result of reviewer modality
V i, and T f is the final clustering result. Similarly, all the
trustworthy scores for reviewer modalities of reviewing the
author modality V k can be represented as a vector

σk = {σf
1 , . . . , σ

f
i , . . . , σ

f
m}, i ̸= k. (10)

3.3. Modality Weight Learning

By jointly considering the peer-review and trustworthy
score, we obtain the final modality weight with the inner
product as follows

wk = µk • σk =

m∑
i=1,i̸=k

µk
i · σ

f
i ,m > 2. (11)

Note that Eq. (11) is only applicable when there are more
than two modalities. Next, we will discuss in detail the cir-
cumstance where two modalities are given in the following.

Two-modal Prejudice Processing. In academic peer-
review, unreliable reviewers can give an unreasonable dis-
like or preference for the author’s work. Similarly, in multi-
modal setting, reviewer modalities tend to have modality
prejudice. If we have more than two modalities, the modal-
ity prejudice will be eliminated by multiple reviewers and
their trustworthiness in modality weight learning. However,
it can not be solved like this if only two modalities.

Assume only two modalities, it is inevitable that one modal-
ity will be better or worse than another, so they may have
different trustworthy scores. As shown in Figure 6(a), due
to the single reviewer, the modality prejudice can not be
eliminated, leading to unreasonable modality weight. Simi-
lar to the scenario that the EIC / AE makes the final decision
by directly adopting his/her own review instead of using
the comments from the unreliable reviewer, it can learn the
modality weight by directly leveraging the trustworthy score
given by the final clustering result to the author modality, as
shown in Figure 6(b). In this case, the peer-review score has
no effect, as they are all the same value due to the symmetric
scoring function.
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Figure 6. Example of two-modal prejudice processing. (a) It is
unreasonable that high-quality modality 1 with high trustworthy
score learned a small weight. (b) T f gives the final modality
weights by directly adopting its own review.

Based on above, we summarize the final modality weight
learning as follows

wk =


m∑

i=1,i̸=k

µk
i · σ

f
k , if m = 2,

m∑
i=1,i̸=k

µk
i · σ

f
i , if m > 2.

(12)

3.4. The Objective Function

Finally, with the above modality weight learning mecha-
nism, we have the objective function with the popular infor-
mation bottleneck realization as follows

Fmax[p(t|x)] =
m∑
i=1

wi · [I(T ;Y i)− β−1I(T ;X)], (13)

when β ∈ (0,+∞) balances the information compression
and preservation. Note that β equal to +∞ represents the
extreme compression, and in this case it is parameter-free.

The advantages and possible weaknesses of the proposed
method are discussed in Appendix B.

3.5. Optimization Method

We solve the optimization problem of PTIB with an effective
sequential k-means-like draw-and-merger algorithm (Lou
et al., 2013; Hu et al., 2020; 2022), where each sample
is sequentially drawn from the old cluster and assigned to
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an optimal new cluster that minimizes the merger cost to
maximize the objective function. It is shown as follows:

Weight Initialization. Modality weights are initialized with
the initial peer-review and trustworthy scores.

Random Clustering. The initial input, i.e., X , is randomly
partitioned to |T | data clusters.

Draw. Each sample x is sequentially drawn from its “old”
cluster told of the i-th modality, which is then taken as a
separate cluster {x}. Now, it leads to |T |+ 1 data clusters.

Merger. To make the number of clusters recover to |T |,
a “new” cluster tnew is required to be selected from the
existing data clusters for merger, which meanwhile satisfies
the minimal cost for the separate cluster {x}. This ensures
that the separate cluster {x} will be merged to the optimal
candidate data cluster.

Appendix A.2 shows a formal definition of the above
“merger” and “merger cost” process. Appendix A.3 shows
the details of algorithm and its computational complexity.

4. Experiments
4.1. Experiments Setup

Eight multi-modal datasets are used, including 20NG,
COIL20, Event, Soccer, 17Flowers, 75Flowers, COIL100
and MMI. The brief information of them is summarized in
Table 1 and their details are shown in the Appendix C.1.

We compare with 4 traditional single-modal clustering
methods, including KM, Ncuts, KM-ALL, Ncuts-ALL,
and 13 state-of-the-art multi-modal clustering methods, in-
cluding MVIB, Co(reg), MfIB, RMSC, LMSC, MLAN,
GMC, DMIB, FPMVS-CAG, MCMLE, TBGL, TIM and
SMVAGC-SF. Their details are shown in the Appendix C.2.

For all the compared methods, we adopt the parameter value
settings from their papers to attain the best clustering results
with optimal parameter setting on each dataset. For the pro-
posed method, we search the parameters from the settings
in the following parameter analysis section. Afterwards,
we conduct the experiments for 10 times and report the av-
erage results and standard deviation in terms of Accuracy
(Acc) and Normalized Mutual Information (NMI). All the
compared methods and the proposed method are conducted
in the same experimental environment, which is a desktop
computer with Windows 10 operating system, 32GB RAM,
and MATLAB 2021a.

Due to the limited space, the T-SNE visualization analysis
is shown in Appendix C.3.

Table 1. Brief Information of the Datasets

Dataset Type # Modality # Samples # Clusters

20NG Text 3 500 5
COIL20 Image 3 1440 20

Event Image 3 1579 8
Soccer Image 3 280 7

17Flowers Image 3 1360 17
75Flowers Image 2 5514 75
COIL100 Image 2 7200 100

MMI Video 2 1760 22

4.2. Results and Analysis

We present the comparison clustering results with state-of-
the-art methods on 8 multi-modal datasets in terms of Acc
and NMI on Table 2 and 3. Observed from both the tables,
we have the following discoveries.

Single-modal VS All-modal. Intuitively, concatenating the
features from different modalities may improve the clus-
tering quality in comparison to the single-modal clustering.
However, from both tables, the clustering results degrade sig-
nificantly on the multi-modal COIL20 and Soccer datasets.
For instance, compared to Ncuts method on COIL20 dataset,
the Acc and NMI values of Ncuts-All decrease by 28.55%
and 26.08%, respectively. This clearly shows the instability
of the all-modal methods and also reveals the necessity of
multi-modal clustering.

Single/all-modal VS Compared multi-modal. Overall, the
compared MMCs can beat the single/all-modal methods on
most multi-modal datasets. Additionally, the second best
results are always reached by the compared multi-modal
method for all the datasets. However, it is also seen that on
some datasets the MMCs is inferior to the single/all-modal
methods. This is probably because that some compared
MMCs tend to be trapped into local optimal solution and
thus lead to unsatisfactory results.

Single/all-modal VS Ours. The proposed method out-
performs the single/all-modal methods by a large margin
on all the involved multi-modal datasets. For a notable
example, our PTIB obtains an improvement of 57% and
42.07% in terms of Acc and NMI compared to the best
values of single/all-modal methods on 20NG dataset. This
phenomenon clearly demonstrates the superiority of the
proposed method.

Compared multi-modal VS Ours. For the compared multi-
modal IB-based methods, they have reached the second best
results by two times on 17 flowers and MMI datasets. This
mainly lies in the fact that the compared IB-based methods
have the strong ability of the mutual information on the vari-
able correlation quantization, while the remaining compared
methods fail to do that. The compared multi-modal non-
IB-based methods achieve the most second best clustering
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Table 2. Clustering Results (+/-Standard Deviation) on First Four Datasets with SOTA Methods (• denotes the best result, ◦ denotes the
second best. )

Method 20NG COIL20 Event Soccer
Acc NMI Acc NMI Acc NMI Acc NMI

KM 22.28±1.48 4.45±2.32 53.06±3.20 65.06±2.12 33.93±4.10 19.84±2.69 25.82±5.06 18.70±7.97
Ncuts (TPAMI’00) 42.80±2.40 27.65±2.01 74.69±1.30 84.01±0.54 34.10±1.28 14.97±0.40 48.21±1.14 45.02±2.21

KM-All 21.46±0.68 1.76±0.65 46.14±6.58 60.70±4.51 28.85±2.29 11.37±2.10 22.46±3.94 8.14±3.59
Ncuts-All (TPAMI’00) 71.20±0.17 57.23±0.10 46.14±0.52 57.93±0.23 35.06±0.69 20.11±0.85 39.75±0.94 34.04±0.57

MVIB (DASFAA’07) 94.22±1.37 83.21±3.18 61.74±10.51 73.65±6.63 40.02±2.04 23.71±1.56 35.79±3.96 21.42±4.25
Co(reg) (NeurIPS’11) 20.02±0.62 3.15±0.54 64.33±1.68 83.79±0.45 38.58±0.92 24.30±0.55 24.13±0.53 11.43±0.39
MfIB (IJCAI’13) 93.76±2.89 85.11±4.54 83.81±4.29 92.39±1.97 48.58±1.50 33.41±1.35 53.64±2.76 49.74±3.44
RMSC (AAAI’14) 37.26±0.91 15.70±0.84 65.43±3.31 79.16±2.35 36.58±1.26 21.02±0.88 28.96±1.90 12.16±2.18
LMSC (CVPR’17) 96.16±0.57 88.37±1.54 71.94±2.72 82.18±2.37 43.92±2.84 27.53±2.58 31.25±6.53 15.85±8.71
MLAN (TIP’18) 96.40±0.11 89.18±0.17 87.22±2.30 ◦ 94.35±1.10 ◦ 19.90±0.72 6.66±0.80 28.21±0.01 21.27±0.17
GMC (TKDE’20) 98.20±0.00 93.92±0.00 60.90±0.00 84.67±0.00 18.11±0.00 10.74±0.00 29.29±0.00 25.82±0.00
DMIB (TCYB’22) 98.30±0.14 97.56±0.49 65.90±4.03 77.70±2.46 49.80±3.02 32.97±2.38 54.07±3.67 50.68±2.23 ◦
FPMVS-CAG (TIP’22) 73.80±0.00 59.23±0.00 69.17±0.00 85.11±0.00 48.89±0.00 31.99±0.00 50.14±0.00 49.56±0.00
MCMLE (TPAMI’22) 77.40±0.00 69.96±0.00 85.83±0.00 93.48±0.00 44.46±0.00 30.24±0.00 56.07±0.00 ◦ 50.06±0.00
TBGL (TPAMI’23) 89.11±0.00 83.45±0.00 86.10±0.00 92.41±0.00 42.84±0.00 28.40±0.00 54.39±0.00 49.78±0.00
TIM (TIP’23) 99.40±0.00 ◦ 98.08±0.00 ◦ 56.70±4.08 71.39±0.29 54.60±2.50 36.86±1.75 48.93±0.51 41.42±4.09
SMVAGC-SF (TIP’24) 86.07±6.40 72.61±3.59 75.66±5.10 89.43±2.11 54.76±1.27◦ 36.97±0.65◦ 45.14±1.56 29.61±1.85

PTIB 99.80±0.00 • 99.30±0.00 • 93.33±0.00 • 96.46±0.00 • 60.24±0.16 • 45.36±0.28 • 62.86±0.17 • 53.23±0.16 •
Improve (• VS ◦) 0.40 (↑) 1.22 (↑) 6.11 (↑) 2.11 (↑) 5.48 (↑) 8.39 (↑) 6.79 (↑) 2.55 (↑)

Table 3. Clustering Results (+/-Standard Deviation) on Remaining Four Datasets with SOTA Methods (• denotes the best result, ◦ denotes
the second best.)

Method 17Flowers 75Flowers COIL100 MMI
Acc NMI Acc NMI Acc NMI Acc NMI

KM 22.41±1.67 24.31±1.14 19.48±0.85 35.21±0.75 27.96±1.78 58.13±1.52 26.89±2.95 44.15±1.60
Ncuts (TPAMI’00) 27.71±0.72 26.43±0.40 24.80±0.58 41.50±0.19 40.97±1.28 58.52±0.59 38.43±0.47 53.17±0.43

KM-All 17.63±1.27 13.55±1.86 21.13±0.88 32.57±0.71 29.25±1.57 50.55±2.15 27.11±1.81 38.76±1.59
Ncuts-All (TPAMI’00) 28.77±0.63 26.31±0.27 27.41±0.31 42.41±0.21 48.63±0.97 64.74±0.56 40.53±1.52 52.77±0.62

MVIB (DASFAA’07) 21.32±1.05 18.28±1.48 18.49±0.61 33.05±0.45 46.71±2.30 70.29±1.10 44.95±2.60 ◦ 54.65±1.49
Co(reg) (NeurIPS’11) 26.28±0.49 27.12±0.20 28.16±0.36 44.95±0.09 48.35±0.44 70.86±0.15 34.72±0.53 51.31±0.22
MfIB (IJCAI’13) 38.52±2.03 37.24±1.40 ◦ 24.57±0.32 40.79±0.37 50.52±0.08 72.81±0.46 40.14±2.09 52.50±1.69
RMSC (AAAI’14) 19.70±0.66 17.86±0.38 26.42±0.97 42.95±0.30 46.32±0.28 69.33±0.45 30.28±1.05 43.94±0.89
LMSC (CVPR’17) 33.29±2.29 31.49±1.60 24.58±0.90 42.50±0.59 48.76±1.45 66.74±0.85 40.17±1.88 51.62±1.29
MLAN (TIP’18) 24.32±1.91 22.21±1.24 25.58±0.53 34.16±1.15 45.05±0.41 59.55±0.53 38.15±0.05 52.68±0.04
GMC (TKDE’20) 6.76±0.00 4.78±0.00 18.52±0.00 30.96±0.00 38.86±0.00 67.55±0.00 35.60±0.00 55.65±0.00 ◦
DMIB (TCYB’22) 35.48±6.04 32.56±5.47 26.72±1.13 43.13±0.79 50.33±1.88 72.57±0.87 41.10±2.65 52.96±2.10
FPMVS-CAG (TIP’22) 30.51±0.00 27.27±0.00 23.83±0.00 38.24±0.00 45.03±0.00 70.58±0.00 36.77±0.00 51.03±0.00
MCMLE (TPAMI’22) 32.13±0.00 32.11±0.00 28.76±0.00 47.03±0.00 50.47±0.00 74.59±0.00 42.04±0.00 52.97±0.00
TBGL (TPAMI’23) 31.07±0.00 32.46±0.00 26.52±0.00 47.09±0.00 ◦ 51.66±0.00 67.82±0.00 43.15±0.00 53.27±0.00
TIM (TIP’23) 32.98±3.28 29.36±3.60 21.83±0.60 26.23±1.24 51.43±1.72 74.98±0.70 28.98±1.57 39.56±2.96
SMVAGC-SF (TIP’24) 42.41±2.07◦ 36.40±1.43 31.92±0.63◦ 46.89±0.22 56.78±1.93◦ 76.78±0.55◦ 40.93±2.14 53.03±1.25

PTIB 45.29±0.05 • 42.49±0.08 • 35.73±0.36 • 51.91±0.20 • 61.17±0.23 • 82.86±0.19 • 48.30±0.80 • 60.39±0.49 •
Improve (• VS ◦) 2.88 (↑) 5.25 (↑) 3.81 (↑) 4.82 (↑) 4.39 (↑) 6.08 (↑) 3.35 (↑) 4.74 (↑)

results, but still underperform the proposed method.

Improvement Analysis. Compared with the TIM, MLAN,
SMVAGC-SF, MCMLE and MVIB that obtained the sec-
ond best results, the proposed method has attained notable
improvements about 0.4%, 6.11%, 5.48%, 6.79%, 2.88%,
3.81%, 4.39% and 3.35% on the eight multi-modal datasets
in terms of Acc values respectively. For weighted MMCs,
the trustworthiness of the learned modality weights is sig-
nificant for ensuring better clustering performance. The
proposed method explicitly considers this vital factor by
jointly incorporating the peer-review and trustworthy score.

4.3. Parameter Analysis

There is only one parameter β in the proposed PTIB
method, where we give the parameter settings as
[10, 50, 100, 500, 700, 900, 1000]. Then we conduct exten-
sive experiments on all the datasets with different settings to
investigate the parameter sensitivity, and show the clustering
performance with both Acc and NMI results in Figure 7.

From the figure, we can clearly obtain the best parameter set-
tings corresponding to the optimal clustering results for dif-
ferent datasets, which are [10, 50, 100, 500, 700, 900, 1000],
[500, 700, 900, 1000], [50], [50, 100], [700, 900, 1000],
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 Figure 7. Parameter study of our PTIB method on eight multi-modal datasets. Note that the values in the horizontal axis indicate the seven
parameters [10, 50, 100, 500, 700, 900, 1000].

Table 4. Clustering Results (+/-Standard Deviation) on multi-
modal Datasets with Parameter-free Version

Datasets PTIB Parameter-free PTIB Versus Margin
Acc NMI Acc NMI Acc NMI

20NG 99.80±0.00 99.30±0.00 99.80±0.00 99.30±0.01 0.00 0.00
COIL20 93.33±0.00 96.46±0.00 86.46±0.00 93.80±0.00 -6.87 -2.66
Event 60.24±0.16 45.36±0.28 59.01±0.62 44.39±0.50 -1.23 -0.97
Soccer 62.86±0.17 53.23±0.16 59.64±0.00 51.65±0.01 -3.22 -1.58
17Flowers 45.29±0.05 42.49±0.08 42.74±1.38 40.92±0.82 -2.55 -1.57
75Flowers 35.73±0.36 51.91±0.20 34.57±0.36 51.23±0.24 -1.16 -0.68
COIL100 61.17±0.23 82.86±0.19 59.93±0.61 82.24±0.30 -1.24 -0.62
MMI 48.30±0.80 60.39±0.49 44.26±0.01 58.38±0.00 -4.04 -2.01

[500], [50], and [100], respectively. It is observed that there
are more than one best parameters for most datasets, such
as 20NG, COIL20, and 17Flowers. Additionally, for all the
datasets, the better results are obtained approximately from
the range [500, 700, 900, 1000], which is a wide range for
practical parameter selection. All these observations reveal
that the parameter tuning in practice is not a heavy burden
and also shows the great potential of the proposed method
for real-world applications.

4.4. Potential for Parameter-free Version

To further investigate the potential of the proposed method
in practical applications, we make parameter β as +∞,
leading to an elegant parameter-free version of our PTIB,
formulated as Fmax[p(t|x)] =

∑m
i=1 w

i · I(T ;Y i). Then
we conduct a series of experiments on involved eight multi-
modal datasets, as shown in Table 4.

We also add a new column called versus margin, using
the value of parameter-free version minus that of the PTIB
method to compare the difference between them. From

the table, we observe that the versus margin value always
reaches roughly −2%, and leads to about −4% on only few
datasets (e.g., obtaining −6.87% on COIL20 datasets in
terms of Acc value). This phenomenon demonstrates that
the proposed method has a huge potential for more real-
world applications, especially in the fields where we hardly
tune the parameters without any prior knowledge.

5. Conclusion
Motivating by the peer-review mechanism in academia, in
this article we propose a novel peer-review trustworthy infor-
mation bottleneck (PTIB) method for addressing weighted
multi-modal clustering problem. PTIB measures the modal-
ity correlations by iteratively learning the peer-review score
of each modality, which works by alternately playing the
role of “author” and “reviewer” for each modality. Addition-
ally, we further design a trustworthy score for improving
the reliability of the learned peer-review score, thus leading
to more accurate modalities weights. Rich experiments on 8
datasets reveal the superiority and effectiveness of the pro-
posed PTIB. The proposed method is also with some possi-
ble weaknesses. It is designed for fully aligned multi-modal
clustering and complete multi-modal clustering, where none
of the data samples across modalities are unaligned, missing,
or damaged. And it requires the number of clusters of the
dataset in advance, like almost all the existing multi-modal
clustering methods. In future, we will focus on solving the
discussed possible weaknesses of PTIB and apply it into
more real-world applications. Moreover, this “peer-review”
idea may be considered using for other problems, such as
federated learning.
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A. Theorem Proof and Optimization
A.1. Proof of Theorem 3.3

Proof. Given a dataset with its true category of θ clusters and a specific clustering result, for a certain cluster, the probability
of its major category is denoted as a and the sum of the probabilities of minor categories is 1 − a, leading to the first
probability distribution {a, 1− a}. It is assumed that the minor categories obey an arbitrary probability distribution B =
{b1, b2, . . . , bθ−1}, i.e.,

∑
j bj = 1, leading to the second probability distribution {a, b1(1−a), b2(1−a), . . . , bθ−1(1−a)}.

Then, we use the entropy of the second distribution to minus that of the first distribution as follows

H2({a, b1(1− a), b2(1− a), . . . , bθ−1(1− a)})−H1({a, 1− a})

=− a log2 a−
θ−1∑
j=1

[bj(1− a)] log2[bj(1− a)] + a log2 a+ (1− a) log2(1− a)

=(1− a) log2(1− a)−
θ−1∑
j=1

[bj(1− a)][log2 bj + log2(1− a)]

=(1− a) log2(1− a)− [

θ−1∑
j=1

(1− a)bj log2 bj +

θ−1∑
j=1

bj(1− a) log2(1− a)]

=(1− a) log2(1− a)− (1− a)

θ−1∑
j=1

bj log2 bj − (1− a) log2(1− a)

=(1− a)[−
θ−1∑
j=1

bj log2 bj ]

=(1− a)H(B)

(14)

Since 1− a ≥ 0 and 0 ≤ H(B) ≤ log2(θ − 1), we have 0 ≤ H2 −H1 ≤ (1− a)log2(θ − 1), which clearly shows that,
the more mixed the minor categories are, the higher the entropy of it gets, thus resulting in high uncertainty of the cluster.
Actually, H(B) is the noisy and uncertain information that the minor categories convey, which interferes with the judgment
of useful information.

This proves the theorem.

A.2. The Formal Definition of the Optimization Process

Proposition A.1. [Merger] (Hu et al., 2020) If the separate cluster {x} is merged into one specific cluster t in the i-th
modality, a new merged cluster is reached, named t̂. This process is formulated as the following:{

p(t̂) = p(x) + p(t)

p(yi|t̂) = π1 · p(yi|x) + π2 · p(yi|t)
(15)

where p(yi|x) indicates the feature conditional distribution of the i-th modality, p(yi|t) indicates the cluster centroid of the
i-th modality, and the merger function Π = {π1, π2} = {p(x)p(t̂)

, p(t)

p(t̂)
}.

Proof. The detailed proof can be referred from the Proposition 1 in the work (Hu et al., 2020).

To obtain the maximal value of the function Eq.(13), we attempt to select the optimal cluster tnew for each merger, and
ensure the “merger cost” i.e., the value change of function Eq.(13), is always minimal. This is formulated by

tnew = argmin(∆Fmax) = argmin(Fbef
max −Faft

max), (16)

where Fbef
max and Faft

max indicate the value of Eq.(13) before and after the merger process respectively.

Actually, the above formulation has a significant impact on whether a good or bad new cluster tnew is selected. We thus
have the merger cost formulation with the following theorem.

12
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Algorithm 1 The Proposed PTIB
1: Input: m joint distributions {p(X,Y i)}mi=1, the number of clusters |T |, the balance parameter β.
2: Output: Final clustering result p(t|x).
3: Modality Weight Initialization: Compute the initial modality weights with initial peer-review and trustworthy score;
4: Random Clustering: T ← Random partition of X into |T | clusters;
5: repeat
6: for all x ∈ X do
7: Draw: Draw x from the “old” cluster told to become a separate cluster {x};
8: Merger: Select a “new” cluster tnew for the separate cluster {x} to merge corresponding to the minimal merger

cost in Theorem A.2;
9: end for

10: Update the trustworthy score using the clustering result in each iteration;
11: Update the weight for each modality;
12: until Samples in different clusters remain unchanged or a fixed number of iterations.

Theorem A.2. [Merger Cost] (Hu et al., 2020) Given two clusters {x} and t, we have the merger cost as

∆Fmax({x}, t) = p(t̂) · dist({x}, t), (17)

where

dist({x}, t) =
m∑
i=1

wi[JSΠ[p(y
i|x), p(yi|t)]− β−1JSΠ[p(y(x), p(x|t)]].

where JS is the Jensen-Shannon divergence (Lin, 2006).

Proof. The detailed proof can be referred from the Theorem 1 in the work (Hu et al., 2020).

A.3. Algorithm and Computational Complexity

The Algorithm 1 shows the details of the optimization process and we investigate the computational complexity of it.
At step 8 in Algorithm 1, given sample x, we have the merger cost as ∆Fmax({x}, t) for every “new” cluster t to
reach the minimal one, and it takes O(|T ||X|(|Y 1| + |Y 2| · · · + |Y m|)). When the samples in different clusters remain
unchanged or after a fixed number of iterations, it takes O(r|T ||X|(|Y 1| + |Y 2| · · · + |Y m|)), where r is the number of
repetitions. Generally, the number of clusters is treated as constant. Hence, the overall computational complexity takes
O(r|X|(|Y 1|+ |Y 2| · · ·+ |Y m|)).

B. Discussion
In this section, we first discuss and show the differences or advantages of the proposed method with existing multi-modal
clustering methods. Then, we further analyze the weaknesses of our method.

The main strengths of the PTIB method in comparison with existing methods are as follows.

• Trustworthy weight learning. To our knowledge, none of the existing weighted MMCs employ the trustworthy
strategy in the weight learning process, which may probably leads to inaccurate modality weights. Unlike them, we
attempt to learn trustworthy modality weights in an iterative optimization process.

• Correlation quantization based learning. We in this paper focus on modality correlation quantization using mutual
information, while most related existing methods generally measure themselves for weight learning, e.g., using
objective function value of each modality for complementary information learning.

• Parameter-free weight learning. Most weighted MMCs usually adopt one or more regularization parameters to
control the learned weight distribution, where the parameters are difficult to tune in practice. In contrast, the weight
learning process in this paper is completely parameter-free without need any prior knowledge.

13
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COIL20

Soccer

MMI

17Flowers

Figure 8. Some typical images and videos from COIL20, Soccer, 17Flowers and MMI datasets.

• Self-supervision mechanism. Self-supervised learning mechanism (Xu et al., 2023) is incorporated into the proposed
method for guiding the modality weight learning. Thus, in this way both the clustering structure learning and the
weight learning can mutually benefit from win-win cooperation.

Some possible weaknesses of the proposed method are revealed in the following.

• Fully aligned multi-modal clustering. The proposed method works under the assumption that each data sample across
different modalities is fully aligned. For example of the multi-feature images, the first sample described with one kind
of feature, e.g., shape, must be aligned with the same sample described with another feature, e.g., color.

• Complete multi-modal clustering. The proposed method can only solve the complete multi-modal clustering problem
where none of the data samples across modalities are missing or damaged. Incomplete multi-modal clustering (Wen
et al., 2023; 2024) or its self-supervised version (Huang et al., 2023) has attracted lots of attention and is worth
considering in the future.

• Given number of clusters in advance. Like almost all the existing multi-modal clustering methods, the proposed
method requires the number of clusters of the dataset in advance, which may limit its wide applications in completely
unknown areas.

C. More Experimental Details
C.1. The Detail of Datasets

Here, we provide detailed description of the dataset used in the experimental part of this paper and some exemplar samples
from the image and video data are shown in Figure 8.

20NG dataset 1 is composed of 500 newsgroup documents extracted from the 20 Newsgroup dataset. Three different
pre-processing methods provide the modalities for each document.

COIL20 dataset 2 has 1440 images about 20 objects, where each object has 72 images taken at 5◦ intervals in its 360◦

horizontal rotation. Three features are adopted for shape, color and texture representation, i.e., SIFT (Lowe, 2004), Color
Attention (Khan et al., 2009), and TPLBP (Wolf et al., 2008) respectively. Every feature represents one single modality.

Event dataset 3 contains eight kinds of sports event classes with 1579 images. The features are the same as those of the
COIL20 dataset.

1http://lig-membres.imag.fr/grimal/data.html
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://vision.stanford.edu/lijiali/event_dataset/
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Soccer dataset 4 contains 280 images of 7 soccer teams captured from the websites. The features extracted by three
ways, including SIFT (Lowe, 2004), Color Attention (Khan et al., 2009), and TPLBP (Wolf et al., 2008), are used as three
modalities.

17Flowers dataset 5 consists of 1360 images of flowers belonging to 17 different classes, each of which has 80 images.
Three kinds of features, i.e., SURF (Bay et al., 2006), Color Attention (Khan et al., 2009), and TPLBP (Wolf et al., 2008),
are used as three modalities. This dataset is challenging for clustering because there are classes with large variations within
each class and close similarity across classes.

75Flowers dataset 6 is selected from the 102 Flowers dataset. The images contain a large variation on the posture and the
light. This dataset contains two modalities by using SIFT (Lowe, 2004) and Color Attention (Khan et al., 2009) as shape
and color feature extractors respectively.

COIL100 dataset 7 consists of images from 100 objects, where each object has 72 images. We use two features extracted
by SIFT (Lowe, 2004) and SURF (Bay et al., 2006) as two modalities.

MMI dataset 8 has 1760 samples with challenging 22 multi-modal (RGB, depth and Skeleton) and multi-modal (front and
side modalities) interactive human actions, which are collected in cluttered and unclear places. Note that we adopt the RGB
action videos with two modalities for experiments.

C.2. The Detail of Comparison Methods

1. KM, Ncuts (Shi & Malik, 2000) : KM (k-means) and Ncuts are traditional single-modal clustering methods, and the
best results are reported among different modalities for each dataset.

2. KM-All, Ncuts-All: Both of the methods are built by applying their single-modal version on the multi-modal datasets
with concatenated features.

3. MVIB (Gao et al., 2007): It is the first multi-view IB method proposed to address the document clustering problems
from the websites, working by designing a compatible constraint to ensure the consistency among view assignments.

4. Co(reg) (Kumar et al., 2011): It co-regularizes the data clustering hypotheses among views to learn consistent
assignments based on spectral model.

5. MfIB (Lou et al., 2013): It is a weighted multi-feature IB method designed for solving the unsupervised image
classification, where the weights are set manually.

6. RMSC (Xia et al., 2014): It solves the noisy multi-view clustering problem by designing a robust spectral method.

7. LMSC (Zhang et al., 2017): It learns latent shared representations among views to make the feature subspace more
robust and accurate.

8. MLAN (Nie et al., 2018): It jointly learns the local structure and clustering assignments, and then automatically tunes
the view weights without using parameters.

9. GMC (Wang et al., 2020a): It is a graph-based weighted multi-view clustering method by automatically tuning the
algorithm parameters.

10. DMIB (Hu et al., 2022): It jointly takes account into the dual correlations about the cross-feature and cross-cluster
view correlations for multi-view clustering based on IB theory.

11. FPMVS-CAG (Wang et al., 2022): It deals with the multi-view subspace clustering problem by a fast parameter-free
method with the guidance of selected consensus anchors.

12. MCMLE (Zhong & Pun, 2022): It improves the traditional Ncuts method for multi-view clustering by Laplacian
embedding to learn a shared binary assignment matrix among different modalities.

4http://lear.inrialpes.fr/people/vandeweijer/data.html
5http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/index.html
6http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/index.html
7http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
8http://media.tju.edu.cn/m2i.html
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Figure 9. T-sne visualization results on 20NG, COIL20 and MMI datasets.

13. TBGL (Xia et al., 2023a): It focuses on learning tensorized bipartite graphs for clustering multi-view datasets by
simultaneously considering the intra/inter-view similarities.

14. TIM (Zhang et al., 2023): It is an information-theoretical method for solving the multi-view clustering problem, and
works by following three principles, i.e., contained, complementary and compatible principle.

15. SMVAGC-SF (Wang et al., 2024): It jointly optimizes anchor graph construction and graph alignment, and adaptively
fuses multiple anchor graphs with different magnitudes to improve the quality of multi-view clustering.

C.3. T-SNE Visualization Analysis

To further illustrate the learned clustering structure, we vividly show the t-SNE visualization of the clustering results in
Figure 9 with three typical multi-modal datasets, i.e., 20NG, COIL20 and MMI. From this figure, it is observed that the
visualization of most modalities from the involved datasets illustrate a relatively compact and separated clustering structure.
For a typical example of the modality 2 and 3 in COIL20 dataset, the data clusters with different colors are quite clear, and
data samples in most clusters are densely distributed while samples from different clusters are in a long distance.
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