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Abstract

We study the Pandora’s Box problem in an online learning setting with semi-bandit
feedback. In each round, the learner sequentially pays to open up to n boxes with
unknown reward distributions, observes rewards upon opening, and decides when
to stop. The utility of the learner is the maximum observed reward minus the
cumulative cost of opened boxes, and the goal is to minimize regret defined as
the gap between the cumulative expected utility and that of the optimal policy.
We propose a new algorithm that achieves Õ(

√
nT ) regret after T rounds, which

improves the Õ(n
√
T ) bound of Agarwal et al. [2024] and matches the known

lower bound up to logarithmic factors. To better capture real-life applications,
we then extend our results to a natural but challenging contextual linear setting,
where each box’s expected reward is linear in some known but time-varying d-
dimensional context and the noise distribution is fixed over time. We design an
algorithm that learns both the linear function and the noise distributions, achieving
Õ(nd

√
T ) regret. Finally, we show that our techniques also apply to the online

Prophet Inequality problem, where the learner must decide immediately whether
or not to accept a revealed reward. In both non-contextual and contextual settings,
our approach achieves similar improvements and regret bounds.

1 Introduction

Pandora’s Box is a fundamental problem in stochastic optimization, initiated by Weitzman [1978]. In
this problem, the learner is given n boxes, each associated with a known cost and a known reward
distribution. The learner may open a box at a time, paying the corresponding cost to observe a
realized reward. Based on the known distributions, the learner designs a policy that specifies the order
of inspecting boxes and a stopping rule for when to halt the process and select a reward. Weitzman
[1978] shows that the optimal policy computes a threshold (i.e., reservation value) for each box based
on its cost and distribution, and opens boxes in descending order of these thresholds until a stopping
condition is met. This model abstracts a wide range of sequential decision-making scenarios where
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information is costly to acquire and decisions must be made under uncertainty. For example, in the
hiring process, an employer interviews candidates one by one, where each interview incurs a cost
(e.g., time), and each candidate’s performance is drawn from a known distribution (e.g., candidate’s
profile). The employer must decide when to stop interviewing and make an offer, balancing the
expected benefit of finding a better candidate in the future against the accumulated cost of continued
search. Other real-world applications include online shopping and path planning [Atsidakou et al.,
2024].

While the classic Pandora’s Box problem and its variants have been extensively studied (see survey
[Beyhaghi and Cai, 2024]), recent work [Fu and Lin, 2020, Guo et al., 2021, Gatmiry et al., 2024,
Agarwal et al., 2024, Atsidakou et al., 2024] has started to explore settings where the reward
distributions are unknown. This line of work is motivated by practical scenarios where distributions
are unavailable upfront and must be learned through interaction. These formulations move beyond
the classical setting by requiring the learner to adapt based on observed outcomes. Prior studies have
considered probably approximately correct (PAC) guarantees, establishing the near-optimal sample
complexity Fu and Lin [2020], Guo et al. [2021], and regret minimization over a T -round repeated
game Gergatsouli and Tzamos [2022], Gatmiry et al. [2024], Agarwal et al. [2024], Atsidakou et al.
[2024]. In the basic regret minimization setting, the learner repeatedly solves a Pandora’s Box
problem at each round and observes the rewards of the opened boxes (a.k.a. semi-bandit feedback),
drawn from fixed but unknown distributions. However, even in this setting, a gap remains between the
Ω(

√
nT ) lower bound of Gatmiry et al. [2024] and the best known upper bound of Õ(Un

√
T ) by

Agarwal et al. [2024], where U is the magnitude of the utility function that can be as large as n.

In addition to the fixed-distribution setting, prior work studied the online Pandora’s Box problems
with time-varying reward distributions, which better capture many real-world scenarios Gergatsouli
and Tzamos [2022], Atsidakou et al. [2024]. For example, in the hiring process, the distribution
of candidate quality may shift over time due to market trends or seasonal patterns. To model such
dynamics, Gergatsouli and Tzamos [2022] consider a setting where the rewards are chosen by an
oblivious adversary and show that sublinear regret is achievable when the algorithm competes against
a benchmark weaker than the optimal policy, obtained by imposing constraints on the set of boxes it
can open. Later, Gatmiry et al. [2024] showed that in the same setting, when the algorithm competes
against the optimal policy, no algorithm can achieve sublinear regret, even with full information
feedback (i.e., the learner observes the rewards of all boxes regardless of which policy is played). To
make the problem tractable while still allowing distributions to change over time, Atsidakou et al.
[2024] propose a contextual model where, in each round, the learner observes a context vector for
each box, whose optimal threshold can be approximated by a function of the context and an unknown
vector. Their approach reduces the problem to linear-quadratic online regression, which provides
generality but leads to a regret bound with poor dependence on the horizon T . In particular, if the
function is linear, they achieve Õ(nT 5/6) regret bound with semi-bandit feedback (referred to as
bandit feedback in their work).

Motivated by these limitations, we address two main challenges in this paper. First, we close the gap
in the regret dependence on the number of boxes n. Second, we propose a new contextual model
that allows the reward distributions to vary over time, and under this setting, we achieve improved
dependence on the time horizon T . Our contributions are summarized as follows, and further related
work is discussed in Appendix B.

• For the online Pandora’s Box problem, we propose a new algorithm that achieves a regret bound
of Õ(

√
nT ), improving upon the Õ(Un

√
T ) bound by Agarwal et al. [2024] and matching the

known Ω(
√
nT ) lower bound (up to logarithmic factors) [Gatmiry et al., 2024]. Our algorithm

builds on the optimism-based framework of Agarwal et al. [2024], but introduces a simple yet
crucial modification. Specifically, we first construct empirical distributions for each box using
the observed reward samples, and then shift probability mass to form optimistic distributions
that encourage exploration. In contrast to the fixed-mass shifting scheme used in Agarwal et al.
[2024], we adaptively reallocate mass at each point based on problem-dependent factors. As we
demonstrate below, this adaptive construction is central to enabling a more refined regret analysis.

• We extend these results to the contextual linear setting, where each box’s expected reward is linear
in some known but time-varying d-dimensional context and the noise distribution is fixed over
time. Our algorithm preserves the overall structure of the non-contextual case, but modifies the
construction of optimistic distributions to account for context-dependent variation. Since the reward
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samples are no longer identically distributed, we adjust not only the probability mass but also
the observed rewards themselves in a value-optimistic manner to maintain optimism. While the
algorithm of Atsidakou et al. [2024] applies to our setting with Õ(nT 5/6) regret (see Appendix B),
we establish Õ(nd

√
T ) regret. As long as d = o(T 1/3), our algorithm yields a better regret

guarantee.

• Finally, we extend our algorithms and analytical techniques to the Prophet Inequality problem in
both non-contextual and contextual settings. In the non-contextual case, our algorithm achieves
Õ(

√
nT ) regret bound, which again improves upon the Õ(n

√
T ) regret bound of Agarwal et al.

[2024]. For the contextual linear setup, we also establish a Õ(nd
√
T ) regret bound. Due to space

constraints, all results and proofs for the Prophet Inequality problem are deferred to the appendix.

Technical Overview for Õ(
√
nT ) Improvement. Inspired by Agarwal et al. [2024], we decompose

the regret at any round t by
∑

i Termt,i, where Termt,i captures the difference in expected reward
when replacing the optimistic distribution of the i-th box, denoted by Êt,i, with its true distribution
Di, while keeping all other boxes fixed. Agarwal et al. [2024] bound Termt,i by O(TV(Êt,i, Di)),
where TV denotes the total variation distance. However, simply bounding Termt,i by the TV distance
results in Õ(n

√
T ) regret bound. To obtain a tighter bound, we take a different approach to handle

Termt,i. Let R̃i(σt, z) be the expected utility when using threshold vector σt, and the i-th box has
a fixed value z. We then write Termt,i =

∫ 1

0

(
FDi(z) − FÊt,i

(z)
)

∂
∂z R̃i(σt; z) dz where FD is the

cumulative density function of distribution D. Our main techniques to bound this term are as follows.

Technique 1: Bernstein-type Bound. Both our analysis and algorithm design are based on a
Bernstein-type concentration bound. In particular, our algorithm adaptively adjusts the probability
mass when constructing empirical distributions, guided by this bound. This introduces an extra
factor

√
FDi(·) (1− FDi(·)) in the upper bound on |FDi(·)− FEt,i(·)|, where Et,i is the empirical

distribution constructed at round t by assigning equal probability mass to iid samples from Di.

Technique 2: Sharp Bound of ∂
∂z R̃i(σt, z). We show 1-Lipschitz and monotonically-increasing

properties for R̃i(σt, z), which imply that 0 ≤ ∂
∂z R̃i(σt, z) ≤ 1. Moreover, when z is small, we

prove a sharper bound where ∂
∂z R̃i(σt, z) is bounded by the probability that the first i− 1 boxes have

values no larger than z.

Next, we apply the techniques above to obtain a sharper bound for Termt,i =
∫ 1

0

(
FDi

(z) −
FÊt,i

(z)
)

∂
∂z R̃i(σt; z) dz. The high-level idea is as follows: when z is large, the Bernstein-type

bound for (FDi(z)− FÊt,i
(z)) contributes to a factor

√
FDi(z) (1− FDi(z)), which is small since

a large z implies a small 1− FDi(z); on the other hand, when z is small, we use the sharper bound
on ∂

∂z R̃i(σt, z) to obtain a tighter bound.

Techniques for Contextual Linear Case. We first build a virtual empirical distribution D̂t,i for each
box i at round t, by using all available noise samples from this box plus the mean of the current round.
This is virtual since we only observe non-i.i.d. reward samples, not the raw noises. To overcome
this issue, we introduce a value-optimistic empirical distribution Êt,i by using the linear mean model
to shift the observed samples to overestimate D̂t,i. We then decompose Termt,i into three terms,
two of which can be handled in a similar way as in the non-contextual case. The remaining piece is
Ez∼Et,i [R̃i(σÊt

; z)]− Ez∼D̂t,i
[R̃i(σÊt

; z)] which measures the mean estimation error. This term is

bounded by applying the 1-Lipschitz property of R̃i(σÊt
; z) and contextual linear bandit techniques.

2 Preliminaries

In this section, we introduce online Pandora’s Box problem in both non-contextual and contextual
settings. Due to the limited space, the Prophet Inequality problem is deferred to Appendix A.

Online Pandora’s Box. In this problem, the learner is given n boxes, each with a known cost
ci ∈ [0, 1] and an unknown fixed reward distribution Di supported on [0, 1]. The learner plays a
T -round repeated game where at each round t ∈ [T ], the learner decides an order to inspect boxes
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Algorithm 1 Generic descending threshold algorithm for Pandora’s Box
Input: threshold σ = (σ1, . . . , σn).
Initialize: Vmax = −∞. Let πi ∈ [n] be the box with the i-th largest threshold.
The environment generates an unknown realization v = (v1, . . . , vn).
for i = 1, . . . , n do

Pay cπi
to open box πi, observe vπi

, and update Vmax = max{Vmax, vπi
}.

If i = n or Vmax ≥ σπi+1
, then stop and take reward Vmax.

and a stopping rule. Upon opening a box i, the learner pays cost ci and receives a reward vt,i ∈ [0, 1]
independently sampled from Di. Once the stopping rule is met, she selects the highest observed
reward so far. The utility for the round is the chosen reward minus the total cost of opened boxes.

Contextual Linear Pandora’s Box. This setting extends the above by allowing each box’s distribu-
tion to vary across rounds. Specifically, each box i ∈ [n] is associated with a known cost ci ∈ [0, 1],
an unknown parameter θi ∈ Rd, and a fixed unknown noise distribution Di with zero-mean, supported
on [− 1

4 ,
1
4 ]. At the beginning of each round t ∈ [T ], the learner observes a context xt,i ∈ Rd for each

box i ∈ [n]. These contexts {xt,i}i∈[n] can be chosen arbitrarily by an adaptive adversary. Based on
these contexts and past observations, the learner then decides an inspection order and a stopping rule
to open boxes. Different from the non-contextual setup, upon opening box i, the learner observes the
reward vt,i = ηt,i + µt,i where µt,i = θ⊤i xt,i ∈ [ 14 ,

3
4 ] is the mean and ηt,i is a noise independently

drawn from Di.2 That is, the reward is drawn from the [0, 1]-bounded distribution Dt,i = µt,i +Di

which shifts Di by the context-dependent mean µt,i. Following standard assumptions in contextual
linear bandits, we assume that ∥θi∥2 ≤ 1 and ∥xt,i∥2 ≤ 1 for all t, i.

Optimal Policy and Regret. To measure the performance, we compete our algorithm against
the per-round optimal policy. For both settings, the optimal policy at round t is the Weitzman’s
algorithm [Weitzman, 1978] which operates with the distribution Dt = (Dt,1, . . . , Dt,n). In the
non-contextual setting, the distribution is fixed across rounds i.e., Dt = D = (D1, . . . , Dn), and thus,
we will retain the notation Dt in the following. More specifically, Weitzman’s algorithm proceeds by
computing a threshold σ∗

t,i for each box i, which is the solution of Ex∼Dt,i [(x− σ∗
t,i)+] = ci where

(x)+ = max{0, x}. Then, the algorithm inspects the boxes in descending order of σ∗
t,i and stops as

soon as the maximum observed reward so far exceeds the threshold of the next unopened box.

To formally define regret, we introduce the following notations. For any product distribution D =
(D1, . . . , Dn), let σD = (σD,1, . . . , σD,n) denote the optimal threshold vector, where each σD,i is
the solution of Ex∼Di

[(x− σD,i)+] = ci. For any threshold vector σ = (σ1, . . . , σn) ∈ [0, 1]n and
reward realization v = (v1, . . . , vn) ∈ [0, 1]n, we use W (σ; v) ⊆ [n] to denote boxes opened by
Algorithm 1. Further, we define the utility function and expected utility function respectively as:

R(σ; v) = max
i∈W (σ;v)

vi −
∑

i∈W (σ;v)

ci, and R(σ;D) = Ev∼D[R(σ; v)].

With these definitions, the optimal expected utility is R(σDt ;Dt) since when v ∼ Dt, the set
W (σDt ; v) corresponds to the boxes opened by the Weitzman’s algorithm. Let σt ∈ Rn denote
the threshold vector selected by the algorithm at round t. Throughout the paper, all our algorithms
follow Algorithm 1 using σt as input at round t, and thus the expected utility our algorithm at
round t is R(σt;Dt). The cumulative regret in T rounds RegT is then defined as follows: RegT =

E
[∑T

t=1 R(σDt
;Dt)−R(σt;Dt)

]
, where Dt = D for the non-contextual case.

3 Õ(
√
nT ) Regret Bound for Non-Contextual Pandora’s Box

In this section, we first present Algorithm 2 for the non-contextual Pandora’s Box problem and the
main result, and then discuss the analysis.

2The boundedness assumptions on the noise and mean ensure that rewards lie in [0, 1], which avoids re-
deriving standard results under a different scaling. Our results readily extends to sub-Gaussian rewards. We refer
readers to Appendix C.7 for details.

4



3.1 Algorithm and Main Result

While Algorithm 2 is inspired by the principle of optimism in the face of uncertainty, its application
differs from that in the classic multi-armed bandit setting, such as in the Upper Confidence Bound
(UCB) algorithm [Auer et al., 2002]. In bandit problems, optimism is typically applied to the mean
reward of each arm. In contrast, the Pandora’s Box problem requires learning the entire distribution
of each box, particularly its cumulative distribution function (CDF). We follow a similar idea to
Agarwal et al. [2024], but employ a different approach in the construction of an optimistic estimate
of the distribution. The threshold σt is computed from this optimistic distribution, which implicitly
ensures optimism in the algorithm’s decisions. More formally, we begin by introducing the notion of
stochastic dominance.
Definition 3.1.1 (Stochastic dominance). Let D and E be two probability distributions with CDFs
FD and FE , respectively. If PX∼E(X ≥ a) ≥ PY∼D(Y ≥ a) for all a ∈ R, we say that E
stochastically dominates D, and we denote this by E ⪰SD D.

For any two product distributions D = (D1, . . . , Dn) and E = (E1, . . . , En), we use E ⪰SD D to
indicate that Ei ⪰SD Di for all i ∈ [n]. Let mt,i be the number of samples for each box i at round t
and let ti(j) be the round that the j-th reward sample of box i is observed by the learner. We define
empirical distribution and optimistic distribution as follows.

• Empirical distribution Et,i. For each box i ∈ [n], we use mt,i i.i.d. samples {vti(j),i}
mt,i

j=1

to construct Et,i with respect to the underlying distribution Di by assigning each sample with
probability mass 1

mt,i
. Specifically, FEt,i

(x) = 1
mt,i

∑mt,i

j=1 I
{
vti(j) ≤ x

}
for all x ∈ [0, 1].

• Optimistic distribution Êt,i. Let L = 4 log(2nT 2/δ). The CDF of Êt,i is constructed as follows:

FÊt,i
(x) =


1, x = 1;

max

{
0, FEt,i(x)−

√
2FEt,i

(x)(1−FEt,i
(x))L

mt,i
− L

mt,i

}
, 0 ≤ x < 1.

(1)

As verified in Lemma C.1.4, the construction in Eq. (1) ensures that FÊt,i
(·) is a valid CDF. We

denote Et = (Et,1, . . . , Et,n) and Êt = (Êt,1, . . . , Êt,n). This type of construction has been previously
used in [Guo et al., 2019, 2021], but our use differs substantially in the analysis. The following
lemma shows that the optimistic product distribution stochastically dominates the underlying product
distribution.
Lemma 3.1.2. With probability at least 1− δ, for all t ∈ [T ], we have Êt ⪰SD D.

It is noteworthy that our approach to constructing the optimistic distribution is more adaptive than
that of [Agarwal et al., 2024]. In particular, Agarwal et al. [2024] move a fixed amount of probability
mass, approximately 1/

√
mt,i, to the maximal value that Di can take. In contrast, we adjust the

CDF based on a data-dependent confidence interval, resulting in a more fine-grained and adaptive
optimistic distribution. As stated in the following theorem, this construction results in a tighter regret
bound.
Theorem 3.1.3. For Pandora’s Box problem, with δ = T−1 Algorithm 2 ensures RegT = Õ(

√
nT ).

Again, our bound matches the Ω(
√
nT ) lower bound of Gatmiry et al. [2024] up to logarithmic

factors. It is worth noting that their lower bound is proven under the easier full-information setting
and thus applicable to our setting.

Remark 3.1.4 (High-probability regret bound). Under regret metric
∑T

t=1(R(σD;D)−R(σt;D)),
our proposed algorithm also achieves a high-probability bound of Õ(

√
nT ) via two modifications

only in our analysis. We refer readers to Appendix C.6 for details.

3.2 Analysis

In this subsection, we sketch the main proof ideas for Theorem 3.1.3 and summarize the new analytical
techniques. We start by leveraging a monotonicity property for Pandora’s Box problem, established
by Guo et al. [2021]: for any distributions D,E, if E ⪰SD D, then R(σE ;E) ≥ R(σD;D). Since
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Algorithm 2 Near-optimal algorithm for Pandora’s Box
Input: confidence δ ∈ (0, 1), horizon T .
Initialize: open all boxes once and observe rewards. Set m1,i = 1 for all i ∈ [n].
for t = 1, 2, . . . , T do

For each i ∈ [n], construct an optimistic distribution Êt,i according to Eq. (1).
Compute σt = (σt,1, . . . , σt,n) where σt,i is the solution of Ex∼Êt,i

[
(x− σt,i)+

]
= ci.

Run Algorithm 1 with σt to open a set of boxes, denoted by Bt, and observe rewards {vt,i}i∈Bt
.

Update counters mt+1,i = mt,i + 1, ∀i ∈ Bt and mt+1,i = mt,i, ∀i /∈ Bt.

the algorithm uses threshold σt = σÊt
at each round t and Lemma 3.1.2 shows Êt ⪰SD D, the regret

at round t, denoted by Reg(t), is bounded as

Reg(t) := E
[
R(σD;D)−R(σt; Êt) +R(σt; Êt)−R(σt;D)

]
≤ E

[
R(σt; Êt)−R(σt;D)

]
.

For simplicity of the exposition, without loss of generality, we assume that σt,1 ≥ σt,2 ≥ · · · ≥ σt,n.
Following Agarwal et al. [2024], we define

Ht,0 = Êt, and Ht,i = (D1, · · · , Di, Êt,i+1, · · · , Êt,n) for all t, i. (2)

Therefore Ht,n = D so that

R(σt; Êt)−R(σt;D) =

n∑
i=1

R(σt;Ht,i−1)−R(σt;Ht,i). (3)

The decomposition in Eq. (3) breaks the reward difference into a sequence of steps, where each step
replaces one coordinate of the optimistic distribution with its true counterpart, thereby allowing for
isolation of the effect of each individual coordinate change.

Let Eσ,i be the event that box i is opened under the threshold σ, and let Ec
σ,i be the corresponding

complementary event. We define Qt,i as the probability that σt opens box i given the true product
distribution D. Using the same argument as in [Agarwal et al., 2024], we have that

E [R(σt;Ht,i−1)−R(σt;Ht,i)]

= E
[
Qt,i

(
Ex∼Ht,i−1

[R (σt;x) | Eσt,i]− Ey∼Ht,i
[R (σt; y) | Eσt,i]

)︸ ︷︷ ︸
Termt,i

]
. (4)

The key step is to carefully bound Termt,i, and this is where our analysis fundamentally diverges
from Agarwal et al. [2024]. Before presenting our analysis, we explain below why the previous
analysis fails to achieve the Õ(

√
nT ) regret bound.

Õ(Un
√
T ) bound of Agarwal et al. [2024]. In the analysis of Agarwal et al. [2024], if the product

distribution D is discrete, then they bound Termt,i ≤ O(U · TV(Di, Êt,i)) (cf. [Agarwal et al., 2024,
Lemma 1.3]) where U is the upper bound of the absolute value of function R and could be as large as
n. Therefore,

RegT =

T∑
t=1

Reg(t) ≤
T∑

t=1

E
[
R(σt; Êt)−R(σt;D)

]
≤ U

T∑
t=1

n∑
i=1

O
(
E
[
Qt,iTV(Di, Êt,i)

])
.

Since their algorithm moves probability mass by a fixed amount, approximately Õ(1/
√
mt,i) for

each distribution i, a simple calculation gives TV(Di, Êt,i) ≤ Õ(1/
√
mt,i), which in turn implies that

RegT ≤ Õ

(
U · E

[
T∑

t=1

n∑
i=1

Qt,i√
mt,i

])
≤ Õ

U ·

√√√√E

[
n

T∑
t=1

n∑
i=1

Qt,i

] ≤ Õ
(
Un

√
T
)
, (5)

where the second inequality follows from the standard analysis of optimistic algorithms (e.g., [Slivkins,
2019]), and the last inequality uses the fact that

∑n
i=1 Qt,i ≤ n for all t. It is noteworthy that
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∑n
i=1 Qt,i = 1 appears in multi-armed bandit problems since only one arm is played in each round.

However, in the problems we consider, there is a chance to open all boxes in one round.

Refined analysis for Õ(
√
nT ) bound. To get the Õ(

√
nT ) regret bound, it suffices to show

Reg(t) ≤ Õ(
√∑

i Qt,i/mt,i) since

RegT ≤ Õ

E

 T∑
t=1

√√√√∑
i∈[n]

Qt,i

mt,i


 ≤ Õ

E

√√√√T

T∑
t=1

∑
i∈[n]

Qt,i

mt,i

 ≤ Õ
(√

nT
)
,

where the second inequality follows from the Cauchy–Schwarz inequality, and the last inequality
results from the bound

∑
t,i Qt,i/mt,i ≤ Õ(n). For any threshold σ ∈ [0, 1]n and z ∈ [0, 1], define

R̃i(σ; z) := Ex∼Ht,i [R (σ; (x1, . . . , xi−1, z, xi+1, . . . , xn)) | Eσ,i] . (6)

Based on these definitions and the fact that Eσt,i is independent of i-th box’s reward, we write

Termt,i = Ez∼Êt,i

[
R̃i(σt; z)

]
− Ez∼Di

[
R̃i(σt; z)

]
.

The following lemma is a key enabler for our refined analysis of both problems.
Lemma 3.2.1 (1-Lipschitzness and monotonicity). Consider the Pandora’s box problem. For all
t ∈ [T ], i ∈ [n], the function R̃i(σt; z) is 1-Lipschitz and monotonically-increasing with respect to z.

Since R̃i(σt; z) is 1-Lipschitz with respect to z, the map R̃i(σt; z) is absolutely continuous on [0, 1],
which implies that it is differentiable almost everywhere in [0, 1]. By the fundamental theorem of
calculus, for any x ∈ [0, 1], we have that R̃i(σt;x) = R̃i(σt; 0) +

∫ x

0
∂
∂z R̃i(σt; z) dz. Then it is

straightforward to deduce that

Termt,i =
∫ 1

0

(
1− FÊt,i

(z)
) ∂

∂z
R̃i(σt; z) dz −

∫ 1

0

(1− FDi(z))
∂

∂z
R̃i(σt; z) dz

=

∫ 1

0

(
FDi(z)− FÊt,i

(z)
) ∂

∂z
R̃i(σt; z) dz

≤
∫ 1

σt,i+1

∣∣∣FDi(z)− FÊt,i
(z)
∣∣∣ dz︸ ︷︷ ︸

At,i

+

∫ σt,i+1

0

(
FDi(z)− FÊt,i

(z)
) ∂

∂z
R̃i(σt; z) dz︸ ︷︷ ︸

Bt,i

,

where the inequality holds since R̃i(σt; z) is 1-Lipschitz with respect to z and thus its derivative is
bounded in [−1, 1] almost everywhere. Here, we decompose Termt,i into two parts At,i and Bt,i to
isolate contributions from different value regions, enabling a problem-dependent analysis that yields
a sharper regret bound. An advantage of this analysis is to avoid using [Agarwal et al., 2024, Lemma
1.3], which incurs a linear dependence on U . Indeed, we have

At,i ≤
∫ 1

σt,i+1

∣∣FDi
(z)− FEt,i

(z)
∣∣ dz + ∫ 1

σt,i+1

∣∣∣FEt,i
(z)− FÊt,i

(z)
∣∣∣ dz

≤ O

(
L

mt,i
+

∫ 1

σt,i+1

√
FDi

(z)(1− FDi
(z))L

mt,i
dz +

∫ 1

σt,i+1

√
FEt,i

(z)(1− FEt,i
(z))L

mt,i
dz

)

≤ O

(
L

mt,i
+

√
(1− FDi

(σt,i+1))L

mt,i
+

√
(1− FEt,i

(σt,i+1))L

mt,i

)

≤ O

(√
(1− FDi

(σt,i+1))L

mt,i
+

L

mt,i

)
,

where the second inequality bounds |FDi(z) − FEt,i(z)| by a Bernstein-type Dvoretzky-Kiefer-
Wolfowitz inequality (cf. Lemma C.1.2 in Appendix C.1) and bounds |FEt,i

(z)− FÊt,i
(z)| by the
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construction Eq. (1); the third inequality bounds 1− FDi(z) ≤ 1− FDi(σt,i+1), and an analogous
inequality holds for 1 − FEt,i(z) since z ≥ σt,i+1; the last inequality replaces FEt,i(σt,i+1) with
FDi

(σt,i+1) by paying a term of the same order (cf. Eq. (19)).

To handle the term Bt,i, instead of bounding the derivative by one as before, we introduce the
following lemma which more tightly bounds the derivative by the probability that the first i− 1 boxes
have values no larger than z, conditioning on opening box i.
Lemma 3.2.2. Suppose that σt,1 ≥ σt,2 ≥ · · · ≥ σt,n. Pandora’s Box problem satisfies

0 ≤ ∂

∂z
R̃i(σt; z) ≤

∏
j<i

FDj
(z)/Qt,i, ∀z ∈ [0, σt,i+1) .

For shorthand, define azi =
∏

j≤i FDj
(z). By Lemma 3.2.2 and some calculations (deferred to

Appendix C), we have that

Bt,i ≤
∫ σt,i+1

0

∣∣∣FDi
(z)− FÊt,i

(z)
∣∣∣ √azi−1

√
azi−1

Qt,i
dz

≤
∫ σt,i+1

0

(∣∣FDi
(z)− FEt,i

(z)
∣∣+ ∣∣∣FEt,i

(z)− FÊt,i
(z)
∣∣∣)√azi−1

Qt,i
dz

≤ O

(
L

mt,i
+

1√
Qt,i

∫ 1

0

√
azi−1(1− FDi

(z))

√
L

mt,i
dz

)
,

where the second inequality follows from azi−1 ≤ a
σt,i+1

i−1 ≤ a
σt,i

i−1 = Qt,i for all z < σt,i+1, and
the last inequality repeats the same argument used to bound At,i to bound |FDi

(z)− FEt,i
(z)| and

|FEt,i(z)− FÊt,i
(z)|, respectively.

Plugging the above bounds of At,i into Eq. (3) and Eq. (4), the regret contribution of {At,i}i at round
t (omitting L/mt,i and some constant) is bounded by

∑
i∈[n]

Qt,i

√
(1− FDi

(σt,i+1))L

mt,i
≤
√∑

i∈[n]

Qt,i(1− FDi
(σt,i+1))

√√√√∑
i∈[n]

LQt,i

mt,i
≤

√√√√∑
i∈[n]

LQt,i

mt,i
,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality fol-
lows from

∑
i∈[n] Qt,i(1− FDi

(σt,i+1)) ≤ 1. Indeed, since Qt,i = a
σt,i

i−1 and σt,1 ≥ σt,2 . . . ≥ σt,n,
we have that Qt,i ≤ a

σt,j+1

i−1 , which in turn yields the telescoping sum
∑n

i=1 Qt,i (1− FDi
(σt,i+1)) ≤∑n

i=1

(
a
σt,j+1

i−1 − a
σt,j+1

i

)
≤ 1.

Similarly, the regret contribution of {Bt,i}i at round t (omitting L/mt,i and some constant) is
bounded by

∑
i∈[n]

∫ 1

0

√
azi−1 − azi

√
LQt,i

mt,i
dz ≤

∫ 1

0

√∑
i∈[n]

(azi−1 − azi )

√√√√∑
i∈[n]

LQt,i

mt,i
dz ≤

√√√√∑
i∈[n]

LQt,i

mt,i
,

where the first inequality uses the Cauchy-Schwarz inequality and the second inequality uses the tele-
scoping sum and azi ≤ 1 for all i, z. Hence, the cumulative regret is bounded by Õ(

√∑
i Qt,i/mt,i).

Combining all the results completes the proof of Theorem 3.1.3.

4 Õ(nd
√
T ) Regret Bound for Contextual Linear Pandora’s Box

In this section, we present Algorithm 5 (in Appendix D) for the contextual linear Pandora’s Box prob-
lem. While our algorithm inherits the main structure of Algorithm 2, it introduces key modifications
to ensure optimism, which is critical in the contextual setting. To ensure the optimism, we need to
construct an optimistic product distribution which stochastically dominates the underlying product
distribution Dt for each round t. In the non-contextual case, the optimistic distribution is constructed
by using iid samples to first construct empirical distribution and then move the probability mass.
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However, due to context-dependent shifts, this strategy no longer applies. To address this, we leverage
the fact that the shift in each box’s distribution is determined by a fixed but unknown vector θi.

A natural idea here is to construct empirical distribution by using samples {ztti(j),i}
mt,i

j=1 where
ztti(j),i = ηti(j),i + µt,i, since they can be treated as mt,i iid samples drawn from Dt,i. However,
the learner never directly observes the noise sample ηti(j),i. To overcome this, we maintain an
estimation θ̂t,i at each round t by using ridge regression on past observations. Specifically, for
each opened box i ∈ Bt, we make the following updates: θ̂t,i = V −1

t,i

∑
s≤t:i∈Bs

xs,ivs,i where
Vt,i = I+

∑
s≤t:i∈Bs

xs,ix
⊤
s,i. Let X denote the context space. By the analysis of linear bandits (e.g.,

[Abbasi-Yadkori et al., 2011]), for each box i ∈ [n], there exists a known function βt
i : X × (0, 1) →

R>0 such that with probability at least 1− δ, for all x ∈ X and all t,∣∣∣x⊤(θi − θ̂t−1,i)
∣∣∣ ≤ βt

i (x, δ),where βt
i (x, δ) = O

(
∥x∥V −1

t−1,i

√
log(nδ−1) + d log(1 + T/d)

)
.

With a confidence radius of θ, we construct a value-optimistic empirical distribution Et,i by assigning
each of the following with equal probability mass m−1

t,i .

ẑtti(j),i := min
{
1, vti(j),i − LCBt

i(θ̂t−1,i, xti(j),i)︸ ︷︷ ︸
Optimistic debiased noise sample

+ UCBt
i(θ̂t−1,i, xt,i)︸ ︷︷ ︸

Optimistic estimated mean

}
, (7)

where for any context x ∈ X , any failure probability δ ∈ (0, 1), and any θ ∈ Rd

UCBt
i(θ, x) := x⊤θ + βt

i (x, δ), and LCBt
i(θ, x) := x⊤θ − βt

i (x, δ). (8)

The construction of Et,i is value-optimistic because ẑtti(j),i ≥ ztti(j),i holds. If one has mt,i samples
at round t for box i, then Et,i stochastically dominates the empirical distribution constructed by using
samples {ztti(j),i}

mt,i

j=1 . Then, for each box i, we construct the optimistic distribution Êt,i by moving a
small amount probability mass for the value-optimistic empirical distribution Et,i so that it dominates
the true distribution (the detailed construction of Êt,i and the proof are deferred to Appendix D).

Lemma 4.1. With probability at least 1− δ, for all t ∈ [T ], Êt ⪰SD Dt.

Once the optimism is ensured, we prove the following regret bound for Algorithm 5 in Appendix D.
Theorem 4.2. For contextual linear Pandora’s Box problem, choosing δ = T−1 for Algorithm 5
ensures RegT = Õ(nd

√
T ) regret bound.

While the algorithm of [Atsidakou et al., 2024] applies to our setting with Õ(nT 5/6) regret, The-
orem 4.2 gives a

√
T -type regret bound in the contextual linear setting, which is better whenever

d = o(T 1/3). The tightness of Õ(nd
√
T ) remains an open question. In the contextual linear bandit

setting with θ1 = · · · = θn, the known lower bound is Ω(d
√
T ) [Dani et al., 2008]. Our setting

however requires learning a separate noise distribution for each box, and we conjecture that this
makes the linear dependence on n unavoidable, even when all boxes share the same θ.

Analysis. As Lemma 4.1 ensures that Êt ⪰SD Dt for all t, we follow the same argument in the
non-contextual case to arrive at Eq. (4). The decomposition of the main term in Eq. (4) slightly
differs from that of the non-contextual case. We introduce an empirical distribution D̂t,i for the
decomposition, which is constructed by assigning equal probability mass m−1

t,i for each {ztti(j),i}
mt,i

j=1 .

Notice that conditioning on history before t, D̂t is a product distribution. Then, conditioning on the
history before t, for any i, the main term is rewritten as

Termt,i = Ez∼Êt,i

[
R̃i(σt; z)

]
− Ez∼Et,i

[
R̃i(σt; z)

]
︸ ︷︷ ︸

(I)

+Ez∼Et,i

[
R̃i(σt; z)

]
− Ez∼D̂t,i

[
R̃i(σt; z)

]
︸ ︷︷ ︸

(II)

+ Ez∼D̂t,i

[
R̃i(σt; z)

]
− Ez∼Dt,i

[
R̃i(σt; z)

]
︸ ︷︷ ︸

(III)

.
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Here, term (I) captures the error of optimistic reweighting, which arises from shifting probability mass
in the empirical distribution Et,i to construct the optimistic distribution Êt,i. Term (III) quantifies the
estimation error between the empirical distribution D̂t,i and the true underlying distribution Di. Both
can be bounded in a similar way as in the non-contextual case. It thus remains to handle (II), which
captures the error incurred by the optimistic value shifts. One can show that

(II) =
1

mt,i

mt,i∑
j=1

(
R̃(σt; ẑti(j),i)− R̃(σt; zti(j),i)

)
≤ 1

mt,i

mt,i∑
j=1

∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣ ,
where the inequality uses 1-Lipschitz property (see Lemma 3.2.1). Following standard linear bandit
analysis (e.g., [Abbasi-Yadkori et al., 2011]), the total regret incurred by (II) for all boxes is bounded
by (omitting constant)

T∑
t=1

n∑
i=1

E

Qt,i

mt,i

mt,i∑
j=1

∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣
 ≤

T∑
t=1

n∑
i=1

E

Qt,i

βt
i (xt,i, δ) +

1

mt,i

mt,i∑
j=1

βt
i (xti(j),i, δ)

 ,

The first summation term can be bounded by

T∑
t=1

n∑
i=1

E
[
Qt,iβ

t
i (xt,i, δ)

]
≤ Õ

 n∑
i=1

E

mT,i∑
j=1

min{1,
∥∥xti(j),i

∥∥
V −1
ti(j)−1,i

}

 ≤ Õ(nd
√
T ),

where the last inequality applies the Cauchy–Schwarz inequality followed by the elliptical potential
lemma [Abbasi-Yadkori et al., 2011, Lemma 11]. The second summation term can be bounded
similarly. We refer readers to Appendix D for the omitted details.

5 Conclusion and Future Work

In this paper, we propose new algorithms for the Pandora’s Box problem in both non-contextual and
contextual settings. In the non-contextual case, our algorithm achieves a regret of Õ(

√
nT ) which

matches the known lower bound up to logarithmic factors. For the contextual case, we design a
modified algorithm that attains Õ(nd

√
T ) regret. We further extend our methods and analysis to the

Prophet Inequality problem in both settings, achieving similar improvements and regret bounds. Our
results also elicit compelling open questions:

1. Minimax regret for Prophet Inequality. We establish an upper bound of Õ(
√
nT ) for Prophet

Inequality problem, while Gatmiry et al. [2024] proved a lower bound of Ω(
√
T ), leaving a√

n-gap. In fact, Jin et al. [2024] show that the optimal sample complexity of Prophet Inequality
is Õ( 1

ϵ2 ), independent of n, which suggests that a simple explore-then-commit strategy achieves
an n-independent regret upper bound of Õ(T 2/3). Whether Õ(

√
T ) is achievable remains open.

2. Tighter regret for contextual linear case. In the non-contextual case, our bound scales as
√
n,

while in the contextual linear setting, it grows linearly with n. Can this dependence be improved?
It also remains unclear whether the linear dependence on the dimension d is improvable.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide clear motivations for the research questions in the introduction
section and explicitly itemize our contributions, outlining how we address and resolve these
challenges throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In this paper, for the contextual model, we only study the linear structure of
rewards for both Pandora’s Box and Prophet Inequality problems.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All assumptions are clearly stated in Section 2 and we defer the proof to
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper is theoretically oriented. There are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper is theoretically oriented. There are no experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper is theoretically oriented. There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper is theoretically oriented. There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper is theoretically oriented. There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed NeurIPS Code of Ethics and commit to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the introduction, we highlight that our research can benefit sequential
decision-making problems, modeled by Pandora’s Box and Prophet Inequality. We do not
foresee any negative societal impacts arising from this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is theoretically oriented and does not release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This is a theory-oriented paper with no experiments or code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This is a theory-oriented paper. There are no new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theory-oriented paper. There are no experiments or research with
human objects in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is a theory-oriented paper. There are no experiments or research with
human objects in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Algorithm 3 Generic threshold algorithm for Prophet Inequality
Input: threshold σ = (σ1, . . . , σn).
The environment generates an unknown realization v = (v1, . . . , vn).
for i = 1, . . . , n do

Open box i to observe vi.
If vi ≥ σi or i = n, then stop and take reward vi.

A Problem Setting of Prophet Inequality

Online Prophet Inequality. In this problem, the learner is given n boxes, each with an unknown fixed
reward distribution Di supported on [0, 1]. The learner plays a T -round repeated game where at each
round t ∈ [T ], the learner inspects boxes in a fixed order. Upon opening a box i, the learner receives a
reward vt,i ∈ [0, 1] independently sampled from Di. Then, she needs to decide immediately whether
to accept this reward and stop the process at round t or discard this reward and open the next box.
The utility for the round is the chosen reward.

Contextual Linear Prophet Inequality. This setting extends the non-contextual one, and the
assumptions on reward distributions and boundedness are the same as Section 2.

Optimal Policy and Regret. To measure the performance, we compare our algorithm against the
per-round optimal policy. Let Dt = (Dt,1, ..., Dt,n) be the product distribution of boxes. The optimal
policy for Prophet Inequality in round t is also a threshold policy, in which the threshold for each box
i, denoted by σ∗

t,i is derived from a reverse/backward programming.

Definition A.1 (Optimal Threshold on Dt). Let σ∗
t,n = EX∼Dt,n [X]. For i = n − 1, . . . , 1, let

σ∗
t,i = EX∼Dt,i [max{X,σ∗

t,i+1}].

The optimal policy at round t is to run Algorithm 3 with threshold vector σ∗
t . In fact, the optimal

threshold of box i computed from Definition A.1 is equal to the expected reward obtained by running
σ∗
t,i, . . . , σ

∗
t,n directly from box i [Gatmiry et al., 2024].

More formally, similar to those definitions in Pandora’s Box setting, for any product distribution
D = (D1, ..., Dn), let σD = (σD,1, . . . , σD,n) denote the optimal threshold vector, where each σD,i

is the threshold calculated by reverse programming. For any threshold vector σ = (σ1, ..., σn) ∈
[0, 1]n and realization v = (v1, ..., vn) ∈ [0, 1]n, we use S(σ; v) ∈ [n] corresponds to the box where
Algorithm 3 stops. Further, we define the utility function and expected utility function, respectively:

R(σ; v) = vS(σ;v), and R(σ;D) = Ev∼D[R(σ; v)]. (9)

With these definitions, the optimal expected utility is R(σDt
;Dt) since when v ∼ Dt, S(σDt

; v) ∈
[n] corresponds to the box chosen by the optimal policy. Let σt ∈ Rn denote the threshold vector
selected by the algorithm at round t. Throughout the paper, all our algorithms in the Prophet Inequality
setting follow the general structure outlined in Algorithm 3 using σt as input at round t, and thus the
expected utility of our algorithms at round t is R(σt;Dt). The cumulative regret in T rounds RegT
is then defined as

RegT = E

[
T∑

t=1

R(σDt ;Dt)−R(σt;Dt)

]
,

where Dt = D for the non-contextual case.

B Related Work

The Pandora’s Box problem, introduced by Weitzman [1978], has been extended in various directions,
including matroid constraints [Singla, 2018], correlated distributions [Chawla et al., 2020, Gergatsouli
and Tzamos, 2023], order constraints [Boodaghians et al., 2020], and settings without inspection
[Fu et al., 2023, Beyhaghi and Cai, 2023]. The Prophet Inequality problem was first studied by
Krengel and Sucheston [1977], Samuel-Cahn [1984], with subsequent generalizations to k-selection
[Alaei, 2014, Jiang et al., 2022], matroid constraints [Kleinberg and Weinberg, 2012, 2019, Feldman
et al., 2021], and online matching [Gravin and Wang, 2019, Ezra et al., 2022]. These works typically
assume known distributions and focus on achieving constant-factor approximation guarantees.
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A growing body of work has begun to study online variants of the Prophet Inequality and Pandora’s
Box problems [Guo et al., 2019, Fu and Lin, 2020, Guo et al., 2021, Gatmiry et al., 2024, Agarwal
et al., 2024]. In the PAC setting, Fu and Lin [2020], Guo et al. [2021] establish a sample complexity
upper bound of Õ( n

ϵ2 ) for Pandora’s Box, matching the known lower bound up to logarithmic factors,
where ϵ denotes the desired accuracy. Guo et al. [2021] further develop a general framework for
learning over product distributions, which applies to both problems and yields a sample complexity
of Õ( n

ϵ2 ) for Prophet Inequality as well. Later, Jin et al. [2024] provide a near-optimal sample
complexity Õ( 1

ϵ2 ) for Prophet Inequality, which removes the linear dependence on n. For the regret
minimization problem, Gatmiry et al. [2024] establish Õ(n3

√
T ) regret bound for Prophet Inequality

and Õ(n4.5
√
T ) regret bound for Pandora’s Box under a constrained feedback model, where the

learner observes only the final reward without knowing which box produced it. Subsequently, Agarwal
et al. [2024] introduce a general framework for monotone stochastic optimization under semi-bandit
feedback, achieving Õ(n

√
T ) regret for both problems. All these works assume a fixed but unknown

product distribution. Moreover, despite this progress, the best known regret bounds for both Prophet
Inequality and Pandora’s Box under semi-bandit feedback remain at Õ(n

√
T ), which falls short of

the known lower bounds [Gatmiry et al., 2024].

To better capture the dynamics in decision-making scenarios, Gergatsouli and Tzamos [2022] study
the Pandora’s Box problem in the adversarial setting where the reward of each box is chosen by an
adversary and obtain sublinear regret bounds by comparing the algorithm against a weak benchmark.
Later, Gatmiry et al. [2024] show that in the same setting, when the algorithm competes against the
optimal policy, no algorithm can achieve sublinear regret, even with full information feedback. To
make the problem tractable while still allowing distributions to change over time, Atsidakou et al.
[2024] explore a contextual Pandora’s Box model where in each round, the learner observes a context
vector for each box, whose optimal threshold can be approximated by a function of the context
and an unknown vector. They provide a reduction from contextual Pandora’s Box to an instance of
online regression. Their algorithm suffers a Õ(T 5/6) regret bound if the threshold can be linearly
approximated. We note that their algorithm for the linear case also applies to our setting (see the
discussion below), but our algorithm enjoys Õ(nd

√
T ), which is improves on the aforementioned

bound whenever d = o(T 1/3).

Discussion of [Atsidakou et al., 2024]. Here, we show how the algorithm proposed by Atsidakou
et al. [2024] can be applied to our setting. Their work makes the following realizability assumption.
Assumption 1 (Realizability of [Atsidakou et al., 2024]). There exists w1, . . . , wn ∈ Rd and a
function h such that every time t ∈ [T ] and every box i ∈ [n], the optimal threshold for distribution
Dt,i is equal to h(wi, x

′
t,i), i.e., σ∗

t,i = h(wi, x
′
t,i) where x′

t,i is a context vector of box i at round t
and

E
X∼Dt,i

[
(X − σ∗

t,i)+
]
= ci.

Below, we show that in our setting, the optimal threshold can be realized by a linear function
h (that is, h(a, b) = a⊤b). To see this, first note that the optimal threshold σ∗

t,i in our setting
satisfies EX∼Dt,i

[
(X − σ∗

t,i)+
]
= ci, which, based on the definition of Dt,i, is equivalent to

EX∼Di

[
(X − (σ∗

t,i − µt,i))+
]
= ci where µt,i = θ⊤i xt,i. Therefore, if we let σ∗

i be the unique
solution of EX∼Di [(X − σ∗

i )+] = ci, then we have

σ∗
t,i = µt,i + σ∗

i = ⟨wi, x
′
t,i⟩ = h(wi, x

′
t,i),

for wi = (θi,1, . . . , θi,d, σ1, . . . , σn) ∈ Rd+n, and x′
t,i = ([xt,i]1, . . . , [xt,i]d, 0, . . . , 1, . . . , 0) ∈

Rd+n, where x′
t,i takes value one at the d+ i index. This proves that the optimal threshold is realized

by a linear function of some context, making the algorithm of [Atsidakou et al., 2024] applicable to
our setting.

A seemingly related strand is cascading bandits [Kveton et al., 2015], where the learner presents an
ordered list of items to a user, with items corresponding to boxes in our setting. Then, the user scans
the list and clicks the first attractive item if any. The learner observes binary click signals for items
up to that click, which yields order dependent semi bandit feedback. Despite this shared feedback
structure, Pandora’s Box and Prophet Inequality differ in who controls how many items are inspected.
In cascading bandits the number is user driven since observation stops at the first click. In Pandora’s
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Box and in Prophet Inequality the number is policy driven since the algorithm adaptively opens boxes
and decides when to stop.

C Omitted Details from the Non-Contextual Settings

C.1 Technical Lemmas

Lemma C.1.1 (Bernstein inequality). Given m ∈ N , let X1, X2, . . . , Xm be i.i.d. random variables
such that E[Xi] = 0,E[X2

i ] = σ2, and |Xi| ≤ M for some constant M > 0. Then, for all t > 0

P
(∣∣∣ m∑

i=1

Xi

∣∣∣ > t
)

≤ 2 exp

(
− t2

2mσ2 + 2
3Mt

)
.

Lemma C.1.2. Let D = (D1, . . . , Dn) be a [0, 1]-bounded product distribution, and for each i, let
ENi,i be the empirical distribution constructed by assigning Ni i.i.d. samples from Di with equal
probability mass 1/Ni. With probability at least 1 − δ, for any i ∈ [n], any Ni ∈ [T ], and any
z ∈ [0, 1],

∣∣FDi(z)− FENi,i
(z)
∣∣ ≤√2FDi

(z)(1− FDi
(z)) log(2T 2nδ−1)

Ni
+

log(2T 2nδ−1)

Ni
. (10)

Proof. This proof follows a similar idea to Guo et al. [2019, Lemma 5], but we apply an additional
union bound to account for all possible Ni. Fix i and Ni. It is suffices to show that for all z ∈ [0, 1]
such that FDi(z) is multiples of 1/Ni, the following holds.

∣∣FDi(z)− FENi,i
(z)
∣∣ ≤√2FDi(z)(1− FDi(z)) log(2T

2nδ−1)

Ni
+

2 log(2T 2nδ−1)

3Ni
, (11)

This is because given the results above, the general bound on the difference of CDF of any value
differs at most an extra additive factor 1

Ni
≤ log(2T 2nδ−1)

3Ni
.

Then fix any z such that FDi(z) is multiples of 1/Ni. Let Yi be the indicator function of the i-th
sample no smaller than z and let Xi = Yi − E[Yi]. By Bernstein inequality (see Lemma C.1.1),
taking t be Ni times the RHS of Eq. (11),

P

(∣∣∣∣∣
Ni∑
i=1

Xi

∣∣∣∣∣ > t

)
= exp

(
− t2

2NiFDi(z)(1− FDi(z)) +
2
3 t

)
≤ δ

nT 2

Since Ni ≤ T , by a union bound over all Ni, with probability at least 1− δ
nT , Eq. (11) holds for all

z such that FDi
(z) is multiples of 1/Ni. Further, by union bounds over all i ∈ [n] and Ni ∈ [T ], we

get that Eq. (10) does not hold with probability at most δ.

As FDi
(·) is unknown, we present the following corollary, which provides a confidence bound

depending on known FEi(·).
Corollary C.1.3. Under the same setting of Lemma C.1.2, suppose that the concentration bounds of
Lemma C.1.2 all hold, and then for any i ∈ [n], any Ni ∈ [T ] and any x ∈ [0, 1],

∣∣FDi
(x)− FENi,i

(x)
∣∣ ≤

√
2FENi,i

(x)(1− FENi,i
(x))L

Ni
+

L

Ni
, where L = 4 log(2nT 2δ−1). (12)

Proof. Fix any i and Ni. For notional simplicity, we write Ei = ENi,i. For any x ∈ [0, 1],

FDi
(x)(1− FDi

(x)) ≤ FEi
(x)(1− FEi

(x)) + |FDi
(x)(1− FDi

(x))− FEi
(x)(1− FEi

(x))|
≤ FEi

(x)(1− FEi
(x)) + |FDi

(x)− FEi
(x)| , (13)

where the last inequality uses the fact that function y − y2 is 1-Lipschitz for y ∈ [0, 1].
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Let L′ = log(2nT 2δ−1). From Eq. (10), we can show for any x ∈ [0, 1]

|FDi
(x)− FEi

(x)| ≤

√
2FDi

(x)(1− FDi
(x))L′

Ni
+

L′

Ni

≤

√
2L′ (FEi

(x)(1− FEi
(x)) + |FDi

(x)− FEi
(x)|)

Ni
+

L′

Ni

≤

√
2L′FEi(x)(1− FEi(x))

Ni
+

√
2L′ |FDi(x)− FEi(x)|

Ni
+

L′

Ni

≤

√
2L′FEi

(x)(1− FEi
(x))

Ni
+

|FDi
(x)− FEi

(x)|
2

+
2L′

Ni
, (14)

where the second inequality uses Eq. (13), and the last inequality uses 2
√
ab ≤ a+ b for any a, b ≥ 0

(here a = L′/Ni and b = 1
2 |FDi

(x)− FEi
(x)|). Rearranging the above inequality gives the claimed

bound for fixed i,Ni. Since this argument holds for all i,Ni, the lemma thus follows.

Lemma C.1.4. For all t, i, FÊt,i
(·) constructed by Eq. (1) is a valid CDF.

Proof. To show FÊt,i
(·) is valid, we show that it is a right-continuous, non-decreasing function in

the range of [0, 1]. Consider any given t, i. From Eq. (1), one can easily see FÊt,i
(x) ∈ [0, 1] for all

x ∈ [0, 1]. As FEt,i
(·) is right-continuous and max function preserves the right-continuous property,

FÊt,i
(·) is again right-continuous.

Now, we verify the monotonicity of FÊt,i
(·). Since FEt,i

(·) is non-decreasing, we only need to
show FÊt,i

(x) is non-decreasing as a function of FEt,i(x). Let k = L
mt,i

. For the interval of x such
that FEt,i

(x) < k, FÊt,i
(x) is 0, and thus it is non-decreasing. Then we only need to consider the

interval of x such that FEt,i(x) ≥ k. We let y = FEt,i(x), and rewrite the formulation for FÊt,i
(x) as

f(y) = y −
√
2ky(1− y)− k. In this case, f ′(y) = 1−

√
k(1−2y)√
2y(1−y)

. When y ≥ 1
2 , this is obviously

non-negative, and thus f(y) is non-decreasing. Then, we consider the case of y < 1
2 and show that√

2y(1− y) >
√
k(1 − 2y). As y ≥ k, it is enough to show

√
2y(1− y) >

√
y(1 − 2y). This is

equivalent to show 4y2 − 2y − 1 < 0 when y < 1
2 , which can be easily verified.

As the argument holds for all t, i, the lemma thus follows.

Lemma C.1.5 (Restatement of Lemma 3.1.2). With probability at least 1 − δ, for all t ∈ [T ],
Êt ⪰SD D.

Proof. For this proof, we show Êt,i ⪰SD Di for all t, i. Fix t, i. It suffices to show that for all
x ∈ [0, 1], FÊt,i

(x) ≤ FDi
(x). For x = 1, FÊt,i

(x) = FDi
(x) = 1. For x ∈ [0, 1), we have

FÊt,i
(x) = max

{
0, FEt,i

(x)−

√
2FEt,i

(x)(1− FEt,i
(x))L

mt,i
− L

mt,i

}
≤ max {0, FDi

(x)} = FDi
(x),

where the inequality follows from Corollary C.1.3.

Repeating the same argument for all i ∈ [n] completes the proof.

C.2 Lipschitz Property, Monotonicity, and Sharp Derivative for Pandora’s Box

Before proving Lipschitz property and monotonicity for R̃i(σt, z), we first introduce the following
supporting results.
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Definition C.2.1 ((n,D, c)-Pandora’s box instance). We use (n,D, c) to characterize a Pandora’s
box instance where product distribution D = (D1, . . . , Dn) is over n boxes, each of which is
associated with a cost ci.

For any (n,D, c)-Pandora’s box instance, let Wu : [0, 1]n × [0, 1]n → 2[n] be a general threshold
rule with initial value u. Specifically, for any initial value u, threshold σ, and realization x ∼ D,
Wu(σ, x) is the set of opened boxes following rule Wu. For any u, σ, if the initial value u ≥ maxi σi,
then Wu(σ, ·) = ∅, that is, the learner does not open any box and keeps the initial value u. Otherwise,
the learner keeps the initial value u in hand but continues to open boxes by running Algorithm 1 with
Vmax = u and threshold σ. Let

R(σ;x;u;Wv) = max

{
u, max

i∈Wv(σ;x)
xi

}
−

∑
i∈Wv(σ;x)

ci

R(σ;D;u;Wv) = E
x∼D

[R(σ;x;u;Wv)].

Here, R(σ;x;u;Wv) is the utility if the learner adopts rule Wv to run threshold σ with initial value
u over realization x. As shown by Weitzman [1978], for any initial value u, the expected utility
R(σD;D;u;Wu) enjoys the optimality.
Lemma C.2.2 (Monotonicity and 1-Lipschitz Property for Pandora’s Box). For any initial
values u, v, if the learner runs general threshold rules Wu and Wv with u ≥ v, respectively on a
(n,D, c)-Pandora’s Box instance, then we have

0 ≤ E
x∼D

[R(σD;x;u;Wu)]− E
x∼D

[R(σD;x; v;Wv)] ≤ u− v.

Consequenctly, the following 1-Lipschitz property holds: for any u, v,∣∣∣ E
x∼D

[R(σD;x;u;Wu)]− E
x∼D

[R(σD;x; v;Wv)]
∣∣∣ ≤ |u− v|.

Proof. Consider any u ≥ v. For any realization x = (x1, . . . , xn) drawn from product distribution
D, the utility given the initial value s (= u or v) and rule W is

R(σD;x; s;W ) = max

{
s, max

i∈W (σD;x)
xi

}
−

∑
i∈W (σD;x)

ci.

Taking W = Wv , and s = u and v, respectively, we have

E
x∼D

[R(σD;x;u;Wv)]− E
x∼D

[R(σD;x; v;Wv)]

= E
x∼D

[
max

{
u, max

i∈Wu(σD;x)
xi

}
−max

{
v, max

i∈Wu(σD;x)
xi

}]
≥ 0.

Given the initial value u and threshold σD, using rule Wu recovers the Weitzman’s optimal algorithm.
Thus, the corresponding expected utility should be no smaller than that of running rule Wv with
the same threshold σD and initial value u, i.e., Ex∼D [R(σD;x;u;Wv)] ≤ Ex∼D [R(σD;x;u;Wu)],
which implies 0 ≤ Ex∼D [R(σD;x;u;Wu)]− Ex∼D [R(σD;x; v;Wv)].

Taking W = Wu, and s = u and v, respectively, we have

E
x∼D

[R(σD;x;u;Wu)]− E
x∼D

[R(σD;x; v;Wu)]

= E
x∼D

[
max

{
u, max

i∈Wu(σD;x)
xi

}
−max

{
v, max

i∈Wu(σD;x)
xi

}]
≤ u− v.

where the inequality holds since for any x, fx(v) = max{v, x} is 1-Lipschitz with respect to v.

As Wv is optimal given initial value v and threshold σD, we have Ex∼D [R(σD;x; v;Wu)] ≤
Ex∼D [R(σD;x; v;Wv)], implying Ex∼D [R(σD;x;u;Wu)] − Ex∼D [R(σD;x; v;Wv)] ≤ u − v.
Thus, the lemma follows.
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For any x ∈ [0, 1]n, we define x>i := (xi+1, . . . , xn) and x<i := (x1, . . . , xi−1). Based on the
definition of Ht,i = (D1, · · · , Di, Êt,i+1, · · · , Êt,n), we define

Ht,>i := (Êt,i+1, . . . , Êt,n) and Ht,<i := (D1, . . . , Di−1).

For any z ∈ [0, 1], any x ∈ [0, 1]n, and any σ ∈ [0, 1]n, we define

R̃i(σ;x<i, z) := E
x>i∼Ht,>i

[R (σ; (x1, . . . , xi−1, z, xi+1, . . . , xn))] (15)

= E
x>i∼(Êt,i+1,...,Êt,n)

[R (σ; (x1, . . . , xi−1, z, xi+1, . . . , xn))] ,

where the expectation is taken only for x>i := (xi+1, . . . , xn).

Lemma C.2.3 (Restatement of Lemma 3.2.1). For all t ∈ [T ] and i ∈ [n], the map R̃i(σt; z) is
1-Lipschitz and monotonically-increasing with respect to z in the Pandora’s Box problem.

Proof. For simplicity, we assume without loss of generality that σt,1 ≥ σt,2 ≥ · · · ≥ σt,n. For
any z ∈ [0, 1] and any x ∈ [0, 1]n, if box i is opened at round t, then the map R̃i(σt;x<i, z) is the
expected utility of running σt on (xi+1, . . . , xn) ∼ Ht,>i with initial value max{x1, . . . , xi−1, z}.
A key fact here is that σt = σÊt

and Ht,>i = (Êt,i+1, . . . , Êt,n), which imply that the algorithm
runs the optimal threshold in descending order. Thus Lemma C.2.2 implies that R̃i(σt;x<i, z) is
1-Lipschitz with respect to z and for any u ≥ v, and that R̃i(σt;x<i, u)− R̃i(σt;x<i, v) ∈ [0, u−v].
This, in turn, implies that

R̃i(σt;u)− R̃i(σt; v) = E
x<i∼(D1,··· ,Di−1)

[
R̃i(σt;x<i, u)− R̃i(σt;x<i, v) | Eσt,i

]
∈ [0, u− v].

The 1-Lipschitz property of R̃i(σ; z) is an immediate corollary, and the proof is thus complete.

Lemma C.2.4 (Restatement of Lemma 3.2.2). Suppose that σt,1 ≥ σt,2 ≥ · · · ≥ σt,n. The Pandora’s
Box problem satisfies the following:

0 ≤ ∂

∂z
R̃i(σt; z) ≤

∏
j<i FDj

(z)

Qt,i
, ∀z ∈ [0, σt,i+1) .

Proof. According to Lemma 3.2.1, the map R̃i(σt; z) is monotonically increasing with respect to z,
which implies that 0 ≤ ∂

∂z R̃i(σt; z). Then, we only need to prove for any 0 ≤ v ≤ u < σt,i+1,

R̃i(σt;u)− R̃i(σt; v) ≤ (u− v) ·
∏

j<i FDj (u)

Qt,i
. (16)

To this end, we deduce the following:

R̃i(σt;u)− R̃i(σt; v)

= E
x<i∼(D1,··· ,Di−1)

[
R̃i(σt;x<i, u)− R̃i(σt;x<i, v) | Eσt,i

]
(a)
= E

x<i∼(D1,··· ,Di−1)

[
R̃i(σt;x<i,max {x<i, u})− R̃i(σt;x<i,max {x<i, v}) | Eσt,i

]
≤ E

x<i∼(D1,··· ,Di−1)
[max {x<i, u} −max {x<i, v} | Eσt,i]

(b)
= E

x<i∼(D1,··· ,Di−1)

[
(max {x<i, u} −max {x<i, v}) · I

{
u > max

j<i
xj

}
| Eσt,i

]
≤ (u− v) E

x<i∼(D1,··· ,Di−1)

[
I
{
u > max

j<i
xj

}
| Eσt,i

]
= (u− v) · P

x<i∼(D1,··· ,Di−1)

(
max
j<i

xj < u | Eσt,i

)
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= (u− v) ·
Px<i∼(D1,··· ,Di−1) (maxj<i xj < u,Eσt,i)

Px<i∼(D1,··· ,Di−1) (Eσt,i)

(c)
= (u− v) ·

Px<i∼(D1,··· ,Di−1) (maxj<i xj < u)

Px<i∼(D1,··· ,Di−1) (Eσt,i)

= (u− v)

∏
j<i FDj

(u)

Qt,i
,

where (a) holds since conditioning on Eσt,i (i.e., opening box i), the expected reward remains
unchanged by replacing u (or v) by the maximum so far, the inequality uses the 1-Lipschitz property of
R̃i(σt;x<i, z) with respect to variable z, (b) follows from the fact that max (x<i, u)−max (x<i, v) is
non-zero only when maxj<i xj < u as u ≥ v, and (c) holds due to {maxj<i xj < u} ⊆ Eσt,i where
this containment follows from the fact that u < σt,i+1 ≤ σt,i and Eσt,i = {maxj<i xj < σt,i}.

Thus, the stated claim holds.

C.3 Lipschitz Property, Monotonicity, and Sharp Derivative for Prophet Inequality

In the following, we prove the similar results for Prophet Inequality.
Lemma C.3.1. Consider any two product distributions Du = (u,D2, D3, . . . , Dn) and Dv =
(v,D2, D3, . . . , Dn), where the first box deterministically produces rewards u and v, respectively,
and the remaining boxes share the same distributions. If u ≥ v, then

0 ≤ R(σDu
;Du)−R(σDv

;Dv) ≤ u− v.

As a corollary, we have the following 1-Lipschitz property. For any u, v,

|R(σDu
;Du)−R(σDv

;Dv)| ≤ |u− v|.

Proof. As σDu
is computed by backward induction from Definition A.1, we have R(σDu

;Du) =
σDu,1 = max {u, σDu,2}. Moreover, since the distribution of boxes from 2, . . . , n are the same,
σDu,i = σDv,i for all i ≥ 2. For any u ≥ v,

R(σDu
;Du)−R(σDv

;Dv) = max {u, σDu,2} −max {v, σDv,2} ∈ [0, u− v],

where the inequality holds since max function is 1-Lipschitz and σDu,2 = σDv,2. Thus, the lemma
follows.

In the Prophet Inequality problem, the definition of R̃i(σ; z) takes the same form as in Eq. (6), but
uses the utility function R defined in Eq. (9). Similarly, we follow Eq. (15) to define R̃i(σ;x<i, z),
again using the utility function defined in Eq. (9).

Lemma C.3.2. For all t ∈ [T ], i ∈ [n], R̃i(σ; z) is 1-Lipschitz and monotonically-increasing with
respect to z in Prophet Inequality problem.

Proof. As the order of the boxes is fixed across time, we use Lemma C.3.1 to repeat a similar
argument in Lemma 3.2.1 to complete the proof. The only difference is that conditioning on event
that the learner opens box i, R̃i(σ;x<i, z) can be interpreted as the expected utility of running σt on
(xi+1, . . . , xn) ∼ Ht,>i with xi = z since x1, . . . , xi−1 are discarded.

Lemma C.3.3 (Sharp Bound of Derivative for Prophet Inequality). The Prophet Inequality
problem satisfies

∂

∂z
R̃i(σt; z) = 0, ∀z ∈ [0, σt,i) .

Proof. For any 0 ≤ v ≤ u < σt,i, we have that

R̃i(σt;u)− R̃i(σt; v) = E
x<i∼(D1,··· ,Di−1)

[
R̃i(σt;x<i, u)− R̃i(σt;x<i, v) | Eσt,i

]
= 0,

where the second equality uses the fact that if the learner opens box i and the realized value is smaller
than σt,i, then they will discard it and keep opening subsequent boxes. Thus, the lemma follows.
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C.4 Proof of Õ(
√
nT ) Regret Bound for Pandora’s Box

The analysis in this section conditions on the event that the concentration bounds of Lemma C.1.2
hold with respect to D and Et for all t. Recall from Section 3.2 that regret is bounded by

RegT ≤
T∑

t=1

n∑
i=1

E

[
Qt,i ·

(
E

z∼Êt,i

[
R̃i(σt; z)

]
− E

z∼Di

[
R̃i(σt; z)

])
︸ ︷︷ ︸

=:Termt,i

]
. (17)

Consider any given round t and suppose, without loss of generality, that

σt,1 ≥ σt,2 ≥ · · · ≥ σt,n.

Since R̃i(σt; z) is 1-Lipschitz with respect to z, the map R̃i(σt; z) is absolutely continuous on [0, 1],
which implies that it is differentiable almost everywhere in [0, 1]. By the fundamental theorem of
calculus, for any x ∈ [0, 1], we have that R̃i(σt;x) = R̃i(σt; 0) +

∫ x

0
∂
∂z R̃i(σt; z) dz. Therefore, we

have that

Termt,i = E
z∼Êt,i

[
R̃i(σt; z)

]
− E

z∼Di

[
R̃i(σt; z)

]
= E

z∼Êt,i

[
R̃i(σt; 0) +

∫ z

0

∂

∂t
R̃i(σt; t) dt

]
− E

z∼Di

[
R̃i(σt; 0) +

∫ z

0

∂

∂t
R̃i(σt; t) dt

]
= E

z∼Êt,i

[∫ 1

0

∂

∂t
R̃i(σt; t)I{z ≥ t} dt

]
− E

z∼Di

[∫ 1

0

∂

∂t
R̃i(σt; t)I{z ≥ t} dt

]
=

∫ 1

0

(
1− FÊt,i

(z)
) ∂

∂z
R̃i(σt; z) dz −

∫ 1

0

(1− FDi
(z))

∂

∂z
R̃i(σt; z) dz.

According to the analysis in Section 3.2, we bound

Termt,i ≤
∫ 1

σt,i+1

∣∣∣FDi(z)− FÊt,i
(z)
∣∣∣ dz︸ ︷︷ ︸

At,i

+

∫ σt,i+1

0

(
FDi(z)− FÊt,i

(z)
) ∂

∂z
R̃i(σt; z) dz︸ ︷︷ ︸

Bt,i

.

Now, we complete the bounds on At,i and Bt,i.

Bounding At,i. We have

At,i ≤
∫ 1

σt,i+1

∣∣FDi(z)− FEt,i(z)
∣∣ dz + ∫ 1

σt,i+1

∣∣∣FEt,i(z)− FÊt,i
(z)
∣∣∣ dz

≤ O

(
L

mt,i
+

∫ 1

σt,i+1

√
FDi

(z)(1− FDi
(z))L

mt,i
dz +

∫ 1

σt,i+1

√
FEt,i(z)(1− FEt,i(z))L

mt,i
dz

)

≤ O

(
L

mt,i
+

√
(1− FDi

(σt,i+1))L

mt,i
+

√
(1− FEt,i

(σt,i+1))L

mt,i

)

≤ O

(√
(1− FDi(σt,i+1))L

mt,i
+

L

mt,i

)
, (18)

where the second inequality bounds |FDi
(z)− FEt,i

(z)| by Lemma C.1.2 and bounds |FEt,i
(z)−

FÊt,i
(z)| by the construction Eq. (1), and the third inequality bounds 1− FDi

(z) ≤ 1− FDi
(σt,i+1)

(similar for 1− FEt,i(z)) as z ≥ σt,i+1. The last inequality follows from the following reasoning:√
(1− FEt,i(σt,i+1))L

mt,i

≤

√
(1− FDi(σt,i+1))L+ L

∣∣FEt,i(σt,i+1)− FDi(σt,i+1)
∣∣

mt,i
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≤

√
(1− FDi(σt,i+1))L

mt,i
+

√
L
∣∣FEt,i

(σt,i+1)− FDi
(σt,i+1)

∣∣
mt,i

≤

√
(1− FDi

(σt,i+1))L

mt,i
+

∣∣FEt,i(σt,i+1)− FDi(σt,i+1)
∣∣

2
+

L

mt,i

≤ O

(√
(1− FDi

(σt,i+1))L

mt,i
+

L

mt,i

)
, (19)

where the third inequality uses
√
2ab ≤ a + b for any a, b ≥ 0, and the last inequality bounds∣∣FEt,i(σt,i+1)− FDi(σt,i+1)

∣∣ by Lemma C.1.2.

Bounding Bt,i. By Lemma 3.2.2, we bound

Bt,i ≤
∫ σt,i+1

0

∣∣∣FDi(z)− FÊt,i
(z)
∣∣∣
√∏

j<i FDj (z)
√∏

j<i FDj (z)

Qt,i
dz

≤
∫ σt,i+1

0

(∣∣FDi
(z)− FEt,i

(z)
∣∣+ ∣∣∣FEt,i

(z)− FÊt,i
(z)
∣∣∣)
√∏

j<i FDj
(z)

Qt,i
dz, (20)

where the second inequality bounds
∏

j<i FDj (z) ≤
∏

j<i FDj (σt,i+1) ≤
∏

j<i FDj (σt,i) = Qt,i

for all z < σt,i+1.

On the one hand, we use Lemma C.1.2 to bound for any z

∣∣FDi(z)− FEt,i(z)
∣∣ ≤ O

(√
FDi

(z)(1− FDi
(z))L

mt,i
+

L

mt,i

)
≤ O

(√
(1− FDi

(z))L

mt,i
+

L

mt,i

)
.

On the other hand, we use the construction of optimistic distribution Êt,i in Eq. (1) to show for any z

∣∣∣FEt,i(z)− FÊt,i
(z)
∣∣∣ ≤ O

(√
(1− FEt,i

(z))L

mt,i
+

L

mt,i

)
≤ O

(√
(1− FDi

(z))L

mt,i
+

L

mt,i

)
,

where the last inequality repeats the same argument in Eq. (19).

Plugging the two bounds above into Eq. (20), we have that

Bt,i ≤ O

∫ σt,i+1

0

(√
(1− FDi

(z))L

mt,i
+

L

mt,i

)√∏
j<i FDj (z)

Qt,i
dz


= O

∫ σt,i+1

0

√∏j<i FDj (z)(1− FDi(z))L

Qt,imt,i
+

√∏
j<i FDj (z)

Qt,i

L

mt,i

 dz


≤ O

 L

mt,i
+

∫ σt,i+1

0

√∏j<i FDj
(z)(1− FDi

(z))L

Qt,imt,i

 dz


≤ O

 L

mt,i
+

∫ 1

0

√∏j<i FDj
(z)(1− FDi

(z))L

Qt,imt,i

 dz

 ,

where the second inequality follows from√∏
j<i FDj

(z)

Qt,i
≤

√∏
j<i FDj

(σt,i+1)

Qt,i
≤

√∏
j<i FDj

(σt,i)

Qt,i
= 1

based on the fact that z ≤ σt,i+1 and Qt,i =
∏

j<i FDj
(σt,i).
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Regret for round t. From the bounds of At,i and Bt,i, the regret at round t is bounded as

Reg(t) ≤
∑
i∈[n]

Termt,i ≤ O

E

∑
i∈[n]

Qt,i

√
(1− FDi

(σt,i+1))L

mt,i

+
∑
i∈[n]

∫ 1

0

√∏
j<i FDj

(z)(1− FDi
(z))LQt,i

mt,i
dz +

LQt,i

mt,i

 .

The first term is bounded as follows:

E

∑
i∈[n]

Qt,i

√
(1− FDi

(σt,i+1))L

mt,i


≤ E

√∑
i∈[n]

Qt,i(1− FDi(σt,i+1))

√√√√∑
i∈[n]

LQt,i

mt,i

 ≤ E

√√√√∑
i∈[n]

LQt,i

mt,i

 . =,

where the first inequality uses the Cauchy–Schwarz inequality, and the second inequality follows
from the the fact that√∑

i∈[n]

Qt,i(1− FDi
(σt,i+1)) =

√∑
i∈[n]

∏
j<i

FDj (σt,i)(1− FDi(σt,i+1))

≤
√∑

i∈[n]

∏
j<i

FDj (σt,j+1)(1− FDi(σt,i+1))

=

√√√√√∑
i∈[n]

∏
j<i

FDj
(σt,j+1)−

∏
j≤i

FDj
(σt,j+1)


≤ 1.

Here, the first inequality holds since the descending sorted assumption on σt gives σt,j+1 ≥ σt,i for
all j < i, and the last inequality follows from the fact that the summation forms a telescoping sum.

To bound the second term, we show that∑
i∈[n]

∫ 1

0

√∏
j<i FDj

(z)(1− FDi
(z))LQt,i

mt,i
dz

=

∫ 1

0

∑
i∈[n]

√∏
j<i

FDj
(z)(1− FDi

(z))

√
LQt,i

mt,i
dz

≤
∫ 1

0

√∑
i∈[n]

∏
j<i

FDj (z)(1− FDi(z))

√√√√∑
i∈[n]

LQt,i

mt,i
dz

≤

√√√√∑
i∈[n]

LQt,i

mt,i
,

where the first inequality uses the Cauchy–Schwarz inequality, and the last inequality follows from
the fact that

∑
i∈[n]

∏
j<i FDj

(z)(1− FDi
(z)) forms a telescoping sum.

Combining all bounds above, we have

Reg(t) ≤ O

E

√√√√∑
i∈[n]

LQt,i

mt,i
+

LQt,i

mt,i


 .
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Algorithm 4 Proposed algorithm for Prophet Inequality
Input: confidence δ ∈ (0, 1), horizon T .
Initialize: open all boxes once and observe rewards. Set m1,i = 1 for all i ∈ [n].
for t = 1, 2, . . . , T do

For each i ∈ [n], construct an optimistic distribution Êt,i according to Eq. (1).
Use Definition A.1 with distribution Êt to compute σt = (σt,1, . . . , σt,n).
Run Algorithm 3 with σt to open a set of boxes, denoted by Bt and observe rewards {vt,i}i∈Bt

.
Update counters mt+1,i = mt,i + 1, ∀i ∈ Bt and mt+1,i = mt,i, ∀i /∈ Bt.

Summing Reg(t) over all t. The Cauchy–Schwarz inequality gives

RegT ≤ O

E

 T∑
t=1

√√√√∑
i∈[n]

LQt,i

mt,i
+

LQt,i

mt,i





≤ O

E

√√√√T
∑
i∈[n]

T∑
t=1

LQt,i

mt,i
+

T∑
t=1

LQt,i

mt,i


≤ O

√√√√T
∑
i∈[n]

E

[
T∑

t=1

LQt,i

mt,i

]
+ E

[
T∑

t=1

LQt,i

mt,i

] , (21)

where the last inequality uses Jensen’s inequality.

Finally, it remains to bound E
[∑T

t=1 LQt,i/mt,i

]
. Let It,i = I{Eσt,i}.

E

 T∑
t=1

∑
i∈[n]

LQt,i

mt,i

 = E

 T∑
t=1

∑
i∈[n]

LEt[It,i]

mt,i

 = E

 T∑
t=1

∑
i∈[n]

LIt,i
mt,i

 ≤ O (nL log(T )) , (22)

where the second equality holds due to mt,i is deterministic given history before round t.

Combining the bound E
[∑T

t=1 LQt,i/mt,i

]
= O(nL log T ) with Eq. (21) completes the proof of

Theorem 3.1.3.

C.5 Õ(
√
nT ) Regret Bound for Prophet Inequality

The proposed algorithm for the Prophet Inequality problem is shown in Algorithm 4.
Theorem C.5.1. For the Prophet Inequality problem, choosing δ = T−1 for Algorithm 4 ensures

RegT = O
(√

nT log(T ) log(nT ) + n log(T ) log(nT )
)
.

Proof. The analysis conditions on the event that the concentration bounds of Lemma C.1.2 hold with
respect to D and Et for all t. As shown by Guo et al. [2021], the Prophet Inequality satisfies the
same monotonicity as Pandora’s Box. Thus, the analysis follows the same approach as used in the
Pandora’s Box problem to bound RegT ≤

∑T
t=1

∑n
i=1 E [Qt,i · Termt,i] where Termt,i has the same

definition as in Eq. (4) with a new utility function R defined in Eq. (9).

As shown in Lemma C.3.2, the Prophet Inequality problem has both monotonicity and smoothness
properties. Therefore, repeating the same analysis in Section 3.2 (splitting the integral on σt,i instead
of σt,i+1) gives

Termt,i ≤
∫ 1

σt,i

∣∣∣FDi(z)− FÊt,i
(z)
∣∣∣ dz + ∫ σt,i

0

(
FDi(z)− FÊt,i

(z)
) ∂

∂z
R̃i(σt; z) dz

=

∫ 1

σt,i

∣∣∣FDi
(z)− FÊt,i

(z)
∣∣∣ dz︸ ︷︷ ︸

At,i

,
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where the equality applies Lemma C.3.3. We use the same argument as in Eq. (18) to bound At,i:
indeed,

At,i ≤ O

(√
(1− FDi

(σt,i))L

mt,i
+

L

mt,i

)
.

Thus, the regret at round t is bounded by

Reg(t) ≤ O

∑
i∈[n]

Qt,i

√
(1− FDi(σt,i))L

mt,i
+
∑
i∈[n]

Qt,iL

mt,i

 .

In particular, we bound∑
i∈[n]

Qt,i

√
(1− FDi(σt,i))L

mt,i

≤
√∑

i∈[n]

Qt,i(1− FDi
(σt,i))

√√√√∑
i∈[n]

Qt,iL

mt,i

=

√∑
i∈[n]

∏
j<i

FDj (σt,j)(1− FDi(σt,i))

√√√√∑
i∈[n]

Qt,iL

mt,i
≤

√√√√∑
i∈[n]

Qt,iL

mt,i
,

where the equality holds since Qt,i =
∏

j<i FDj
(σt,j) in the Prophet Inequality setting.

By repeating the same argument as in Eq. (21) and Eq. (22), the proof of Theorem C.5.1 is complete.

C.6 High-Probability Regret Bounds

The regret metric now is

Reg′T :=

T∑
t=1

(R(σD;D)−R(σt;D)). (23)

Following the same argument in Section 3.2, we arrive at Eq. (4) without expectation. As σt and Ht,i

are deterministic given history, we have

R(σt;Ht,i−1)−R(σt;Ht,i) = Et[R(σt;Ht,i−1)−R(σt;Ht,i)],

where Et[·] is the conditional expectation given history before round t. Then, we can follow the same

analysis to arrive at
√∑

i,t
Qt,i

mt,i
. To handle this, let Mt,i =

Qt,i−It,i
mt,i

, and {Mt,i}t is martingale
difference sequence. By Freedman’s inequality, with probability at least 1− δ, we have

∑
t Mt,i ≤√

2V log(1/δ)+log(1/δ) where V =
∑T

t=1 Et[M
2
t,i]. Notice that V =

Qt,i−Q2
t,i

mt,i
≤ Qt,i

mt,i
. Thus, we

have
∑

t Mt,i ≤
√
2 log(1/δ)

∑
t Qt,i/mt,i + log(1/δ) ≤ 1

2

∑
t Qt,i/mt,i + 2 log(1/δ) where the

last step uses the AM-GM inequality. Rearranging it gives
∑T

t=1
Qt,i

mt,i
≤ O(log(1/δ) +

∑T
t=1

It,i
mt,i

).
Therefore, by choosing δ properly and applying a union bound, with high probability, the regret is
bounded by Õ(

√
nT ).

C.7 Extension to Subgaussian Rewards

For each box, if the reward distribution is sub-Gaussian, then our algorithms still work with minor
modifications. Specifically, if the reward distribution of box i is Ki-sub-Gaussian, one can set
a range [−Ki

√
2 log(2T 2n),Ki

√
2 log(2T 2n)]. Then, the algorithm updates parameters only if

the received reward of each box i is within range of [−Ki

√
2 log(2T 2n),Ki

√
2 log(2T 2n)]. On

those rounds, the algorithm and its regret analysis coincide exactly with the bounded-reward setting.
Meanwhile, by a union bound on sub-Gaussian tails, the probability that any reward ever exceeds its
range is at most 1/T . Therefore, its contribution to the expected regret is only Õ(1).
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D Omitted Details of Contextual Linear Setting

D.1 Preliminaries

Lemma D.1.1 (DKW Inequality). Given a natural number N , let X1, . . . , XN be i.i.d. samples from
distribution D with cumulative distribution function FD(·). Let FE(·) be the associated empirical
distribution function E such that for all x ∈ R, we define FE(x) := 1

N

∑N
i=1 1{Xi ≤ x}. For every

ε > 0,

P
(
sup
x∈R

∣∣FE(x)− FD(x)
∣∣ > ε

)
≤ 2 exp

(
−2Nε2

)
.

Lemma D.1.2. Let D = (D1, . . . , Dn) be a product distribution, and for each i, let ENi,i be the
empirical distribution built from Ni i.i.d. samples of Di. With probability at least 1− δ/2, for any
i ∈ [n], any Ni ∈ [T ],

sup
z∈R

∣∣FDi
(z)− FENi,i

(z)
∣∣ ≤√ log(4Tnδ−1)

2Ni
. (24)

Proof. We first fix any i and Ni and apply Lemma D.1.1. Then, the lemma follows by using a union
bound over all i ∈ [n] and Ni ∈ [T ].

Lemma D.1.3. With probability at least 1− δ/2, for any t > 0 and any i ∈ [n],

∥∥∥θi − θ̂t,i

∥∥∥
Vt,i

≤ αδ, where αδ = 1 +

√
2 log(2n/δ) + d log

(
1 +

T

d

)
.

Proof. Fix any i ∈ [n]. Since the noise distribution of each box is 1
4 -subgaussian, and {xt,i}t is a

Rd-valued stochastic process such that xt,i is measurable with respect to the history, [Lattimore and
Szepesvári, 2020, Theorem 20.5] directly gives the claimed result for the fixed i. Using a union
bound over all i ∈ [n] completes the proof.

Lemma D.1.4 (Elliptical Potential Lemma (see, e.g., Lemma 11 in [Abbasi-Yadkori et al., 2011])).
Let I ∈ Rd×d be an identity matrix and a sequence of vectors a1, . . . , aN ∈ Rd with ∥ai∥2 ≤ 1 for
all i ∈ [N ]. Let Vt = I +

∑
s≤t asa

⊤
s . Then, for all N ∈ N, we have

N∑
t=1

min
{
1, ∥at∥2V −1

t−1

}
≤ 2d log

(
1 +

N

d

)
.

Definition D.1.5 (Definition of D̃t). Let D̃t = (D̃t,1, . . . , D̃t,n) where each D̃t,i is an empirical
distribution which assigns mt,i i.i.d. noise samples from Di with equal probability mass 1/mt,i.

Definition D.1.6 (“Nice" event). Let E be the nice event that the concentration bounds in
Lemma D.1.2 for D, D̃t hold for all t ∈ [T ], and the concentration bounds in Lemma D.1.3 hold
simultaneously.

Lemma D.1.7. Suppose that E holds. For any context x ∈ X and any round t ∈ [T ],∣∣∣〈x, θ̂t,i − θi

〉∣∣∣ ≤ βt+1
i (x).

Proof. For any t, i, x, one can show that∣∣∣〈x, θ̂t,i − θi

〉∣∣∣ ≤ ∥x∥V −1
t,i

∥∥∥θi − θ̂t,i

∥∥∥
Vt,i

≤ αδ ∥x∥V −1
t,i

= βt+1
i (x),

where the first inequality follows from the Cauchy–Schwarz inequality and the second inequality
uses Lemma D.1.3.

33



D.2 Algorithms and Õ(nd
√
T ) Bounds for Pandora’s Box and Prophet Inequality

The omitted algorithm for both the Pandora’s Box and Prophet Inequality problems is presented in
Algorithm 5. Unlike the non-contextual case (see Eq. (1)), we use a slightly different construction
for the optimistic distribution. This is because the Bernstein-type construction requires access to the
CDF of an empirical distribution based on i.i.d. samples, which is unavailable in our setting. As a
result, we use the following approach instead.

Optimistic distribution Êt,i. Let L = 1
2 log(4nT/δ). The CDF of Êt,i is constructed as follows:

FÊt,i
(x) =

{
1, x = 1;

max
{
0, FEt,i

(x)−
√

L
mt,i

}
, 0 ≤ x < 1.

(25)

Now, we prove Lemma 4.1 which shows that the optimistic distribution Êt stochastically dominates
Dt for all t.

Lemma D.2.1 (Restatement of Lemma 4.1). Suppose that E holds. For all t ∈ [T ], Êt ⪰SD Dt.

Proof. For this proof, we show Êt,i ⪰SD Dt,i for all i, t. Fix a box i ∈ [n] and a round t ∈ [T ]. If
c ≥ 1, then

PX∼Êt,i
(X ≤ c) = PX∼D̂t,i

(X ≤ c) = 1.

For any c < 1, we have that

PX∼Êt,i
(X ≤ c) = max

{
0,PX∼Et,i

(X ≤ c)−

√
L

mt,i

}
≤ max

{
0,PZ∼Dt,i (Z ≤ c)

}
= PZ∼Dt,i

(Z ≤ c) ,

The inequality holds due to the following reason:

PX∼Et,i
(X ≤ c)−

√
L

mt,i

=
1

m

m∑
j=1

I
{
ηti(j),i + µti(j),i − LCBt

i(θ̂t−1,i, xti(j),i) + UCBt
i(θ̂t−1,i, xt,i) ≤ c

}
−

√
L

mt,i

≤ 1

m

m∑
j=1

I
{
ηti(j),i + UCBt

i(θ̂t−1,i, xt,i) ≤ c
}
−

√
L

mt,i

≤ 1

mt,i

m∑
j=1

I
{
ηti(j),i ≤ c− µt,i

}
−

√
L

mt,i

≤ PX∼Di (X ≤ c− µt,i)

= PZ∼Dt,i (Z ≤ c) ,

where the first inequality follows from the facts that µti(j),i − LCBt
i(θ̂t−1,i, xti(j),i) ≥ 0, the second

inequality uses the fact that UCBt
i(θ̂t−1,i, xt,i) ≥ µt,i, and the last inequality follows from the

concentration bound given by E .

Conditioning on the “nice" event, the argument holds for all i and t. The proof is complete.

Next, we present the following lemma, whose proof is in the next subsection.
Lemma D.2.2. Suppose that E holds. For both the Pandora’s Box and Prophet Inequality problems,
we have that

RegT ≤
T∑

t=1

n∑
i=1

O

E

Qt,i

√ L

mt,i
+

1

mt,i

mt,i∑
j=1

∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣
 .
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Algorithm 5 Proposed algorithm for contextual linear model
Input: confidence δ ∈ (0, 1), horizon T .
Initialize: observe context {x0,i}i∈[n] for each box, open each box, observe rewards {v0,i}i∈[n], and

update counters {m1,i}i∈[n] and parameters {θ̂0,i}i∈[n] where θ̂0,i =
(
I + x0,ix

⊤
0,i

)−1
x0,iv0,i.

for t = 1, 2, . . . , T do
Observe contexts (xt,1, . . . , xt,n) and compute µ̂t,i =

〈
θ̂t−1,i, xt,i

〉
for each i ∈ [n].

For each i ∈ [n], use Eq. (25) to construct an empirical distribution Êt,i by using samples{
vs,i − LCBt

i(θ̂t−1,i, xs,i) + UCBt
i(θ̂t−1,i, xt,i)

}
s<t:i∈Bs

.

if Pandora’s Box then
Compute σt = (σt,1, . . . , σt,n) where σt,i is the solution of Ex∼Êt,i

[(x− σt,i)+] = ci.
Run Algorithm 1 with σt to open a set of boxes, denoted by Bt to observe rewards {vt,i}i∈Bt

.
else if Prophet Inequality then

Use Definition A.1 with distribution Êt to compute σt = (σt,1, . . . , σt,n).
Run Algorithm 3 with σt to open a set of boxes, denoted by Bt to observe rewards {vt,i}i∈Bt .

Update counters mt+1,i = mt,i + 1, ∀i ∈ Bt and mt+1,i = mt,i, ∀i /∈ Bt.
Update estimate for each i ∈ Bt:

Vt,i = I +
∑

s≤t:i∈Bs

xs,ix
⊤
s,i where θ̂t,i = V −1

t,i

∑
s≤t:i∈Bs

xs,ivs,i.

With Lemma D.2.2 in hand, we are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. The analysis conditions on event E which is defined in Definition D.1.6 and
occurs with probability at least 1 − δ. Recall that It,i = I{Eσt,i}. For the first term, we take the
iterated expectation and use the facts that Qt,i = Et[It,i] and mt,i is deterministic given the history
to get

T∑
t=1

n∑
i=1

E

[
Qt,i

√
L

mt,i

]
=

T∑
t=1

n∑
i=1

E

[
It,i

√
L

mt,i

]
≤ O(n

√
TL).

Next, we bound the summation of the second term. To this end, we show that∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣
= min

{
1,
∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣}
= min

{
1,
∣∣∣ηti(j),i + µt,i −min

{
1, vti(j),i − LCBt

i(θ̂t−1,i, xti(j),i) + UCBt
i(θ̂t−1,i, xt,i)

}∣∣∣}
≤ min

{
1,
∣∣∣vti(j),i − LCBt

i(θ̂t−1,i, xti(j),i) + UCBt
i(θ̂t−1,i, xt,i)− ηti(j),i − µt,i

∣∣∣}
≤ min

{
1,
∣∣∣vti(j),i − LCBt

i(θ̂t−1,i, xti(j),i)− ηti(j),i

∣∣∣+ ∣∣∣UCBt
i(θ̂t−1,i, xt,i)− µt,i

∣∣∣}
= min

{
1,
∣∣∣µti(j),i − LCBt

i(θ̂t−1,i, xti(j),i)
∣∣∣+ ∣∣∣UCBt

i(θ̂t−1,i, xt,i)− µt,i

∣∣∣}
= min

{
1,
∣∣∣〈xti(j),i, θi − θ̂t−1,i

〉
+ βt

i (xti(j),i)
∣∣∣+ ∣∣∣〈xt,i, θi − θ̂t−1,i

〉
+ βt

i (xt,i)
∣∣∣}

≤ min
{
1, 2βt

i (xti(j),i) + 2βt
i (xt,i)

}
≤ min

{
1, 2βt

i (xti(j),i)
}
+min

{
1, 2βt

i (xt,i)
}
, (26)

where the first equality holds due to ztti(j),i, ẑ
t
ti(j),i

∈ [0, 1], the first inequality uses |b−min{1, a}| ≤
|a− b| for b ∈ [0, 1], and the third inequality follows from Lemma D.1.7.
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Using Eq. (26), we have that
T∑

t=1

n∑
i=1

E

Qt,i

mt,i

mt,i∑
j=1

∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣


≤ 2

T∑
t=1

n∑
i=1

E

Qt,i

min
{
1, βt

i (xt,i, δ)
}
+

1

mt,i

mt,i∑
j=1

min
{
1, βt

i (xti(j),i, δ)
} .

For the second term on the right hand side, we have that
T∑

t=1

n∑
i=1

E

Qt,i

mt,i

mt,i∑
j=1

βt
i (xti(j),i, δ)


≤ αδ

T∑
t=1

n∑
i=1

E

Qt,i

mt,i

mt,i∑
j=1

min
{
1,
∥∥xti(j),i

∥∥
V −1
t−1,i

}
≤ αδ

T∑
t=1

n∑
i=1

E

Qt,i

mt,i

mt,i∑
j=1

min

{
1,
∥∥xti(j),i

∥∥
V −1
ti(j)−1,i

}
≤ αδ

T∑
t=1

n∑
i=1

E

Qt,i

mt,i

√√√√mt,i

mt,i∑
j=1

min

{
1,
∥∥xti(j),i

∥∥2
V −1
ti(j)−1,i

}
≤ O

(
αδ

T∑
t=1

n∑
i=1

E

[
Qt,i

√
d log(1 + T/d)

mt,i

])
≤ O

(
αδ · n

√
dT log(1 + T/d)

)
,

where the second inequality follows from Vt−1,i ⪰ Vti(j)−1,i for all t and i, the third inequality uses
Cauchy–Schwarz inequality, and the fourth inequality follows from Lemma D.1.4.

Analogously, we take the iterated expectation and use the fact that Qt,i = Et[It,i] and ∥xt,i∥V −1
t−1,i

is
deterministic given the history to conclude that

T∑
t=1

n∑
i=1

E
[
Qt,iβ

t
i (xt,i, δ)

]
≤ αδ

T∑
t=1

n∑
i=1

E
[
Qt,i min

{
1, ∥xt,i∥V −1

t−1,i

}]
= αδ

n∑
i=1

E

[
T∑

t=1

It,i min
{
1, ∥xt,i∥V −1

t−1,i

}]

= αδ

n∑
i=1

E

mT,i∑
j=1

min

{
1,
∥∥xti(j),i

∥∥
V −1
ti(j)−1,i

}
≤ αδ

n∑
i=1

E

√√√√mT,i

mT,i∑
j=1

min

{
1,
∥∥xti(j),i

∥∥2
V −1
ti(j)−1,i

}
≤ O

(
αδ · n

√
dT log(1 + T/d)

)
.

Combining the bounds above completes the proof of Theorem 4.2.

D.3 Proof of Lemma D.2.2

We follow a similar analysis of the non-contextual case to focus on the regret bound at each round
and then sum them up together. Let us consider a round t. For Pandora’s Box problem, we assume
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W.L.O.G. that σt,1 ≥ σt,2 ≥ · · · ≥ σt,n. Similar to the non-contextual analysis, we define for all t, i

Ht,0 = Êt, and Ht,i =
(
Dt,1, · · · , Dt,i, Êt,i+1, · · · , Êt,n

)
.

We have Ht,n = Dt based on this definition. As Lemma 4.1 ensures the stochastic dominance and
both problems enjoy a certain monotonicity, we follow the same analysis in Section 3.2 to show that

Reg(t) = E [R(σD;D)−R(σt;D)]

≤
n∑

i=1

E

Qt,i E
x∼Ht,i−1

[R (σt;x) | Eσt,i]− E
y∼Ht,i

[R (σt; y) | Eσt,i]︸ ︷︷ ︸
Termt,i

 .

Now, we define

• Ĥt,i :=
(
Dt,1, · · · , Dt,i−1, D̂t,i, Êt,i+1, · · · , Êt,n

)
, and

• H̃t,i :=
(
Dt,1, · · · , Dt,i−1, Et,i, Êt,i+1, · · · , Êt,n

)
.

Based on the definitions of Ht,i, Ĥt,i, H̃t,i, we compute the following decomposition:

Termt,i = E
x∼Ht,i−1

[R (σt;x) | Eσt,i]− E
y∼Ht,i

[R (σt; y) | Eσt,i]

= E
x∼Ht,i−1

[R (σt;x) | Eσt,i]− E
x∼H̃t,i

[R (σt;x) | Eσt,i]︸ ︷︷ ︸
(I)

+ E
x∼H̃t,i

[R (σt;x) | Eσt,i]− E
x∼Ĥt,i

[R (σt;x) | Eσt,i]︸ ︷︷ ︸
(II)

+ E
x∼Ĥt,i

[R (σt;x) | Eσt,i]− E
x∼Ht,i

[R (σt;x) | Eσt,i]︸ ︷︷ ︸
(III)

.

In the remaining analysis, we retain the same definition of R̃i(σt; z) as in Eq. (6). The analysis
conditions on this history before round t, and thus Dt is a product distribution.

Bounding (I). By using the fact that Eσt,i is independent of i-th box’s reward, we can bound

(I) = E
x∼Ht,i−1

[R (σt;x) | Eσt,i]− E
x∼H̃t,i

[R (σt;x) | Eσt,i]

= E
z∼Êt,i

[
R̃i(σt; z)

]
− E

z∼Et,i

[
R̃i(σt; z)

]
=

∫ 1

0

(
1− FÊt,i

(z)
) ∂

∂z
R̃i(σt; z) dz −

∫ 1

0

(
1− FEt,i

(z)
) ∂

∂z
R̃i(σt; z) dz

=

∫ 1

0

(
FEt,i

(z)− FÊt,i
(z)
) ∂

∂z
R̃i(σt; z) dz

≤
∫ 1

0

∣∣∣FEt,i
(z)− FÊt,i

(z)
∣∣∣ dz

≤ O

(√
L

mt,i

)
,

where the first inequality follows from the fact that R̃i(σt; z) is 1-Lipschitz for both Pandora’s Box
and Prophet Inequality problems (see Lemma 3.2.1 and Lemma C.3.2, respectively), and the last
inequality uses the construction of Êt,i in Eq. (25).

37



Bounding (II). One can show that

(II) = E
x∼H̃t,i

[R (σt;x) | Eσt,i]− E
x∼Ĥt,i

[R (σt;x) | Eσt,i]

= E
z∼Et,i

[
R̃i(σt; z)

]
− E

z∼D̂t,i

[
R̃i(σt; z)

]
=

1

mt,i

mt,i∑
j=1

R̃i

(
σt; ẑ

t
ti(j),i

)
− 1

mt,i

mt,i∑
j=1

R̃i

(
σt; z

t
ti(j),i

)

≤ 1

mt,i

mt,i∑
j=1

∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣ ,
where the inequality again the fact that R̃i(σt; z) is 1-Lipschitz for both Pandora’s Box and Prophet
Inequality problems.

Bounding (III). Then, we have

(III) = E
x∼Ĥt,i

[R (σt;x) | Eσt,i]− E
x∼Ht,i

[R (σt;x) | Eσt,i]

= E
z∼D̂t,i

[R̃i(σt; z)]− E
z∼Dt,i

[R̃i(σt; z)]

=

∫ 1

0

(
FDt,i

(z)− FD̂t,i
(z)
) ∂

∂z
R̃i(σt; z) dz

≤
∫ 1

0

∣∣∣FDt,i
(z)− FD̂t,i

(z)
∣∣∣ dz

=

∫ 1

0

∣∣∣FDi
(z − µt,i)− FD̃t,i

(z − µt,i)
∣∣∣ dz

≤ O

(√
L

mt,i

)
,

where the first inequality follows from the fact that ∂
∂z R̃i(σt; z) ∈ [−1, 1] due to 1-Lipschitzness,

and the last inequality follows from the concentration bound given by E .

Putting together. Combining all bounds above, we have

Reg(t) ≤
n∑

i=1

O

E

Qt,i

√ L

mt,i
+

1

mt,i

mt,i∑
j=1

∣∣∣ztti(j),i − ẑtti(j),i

∣∣∣
 .

Summing over all t ∈ [T ], we complete the proof of Lemma D.2.2.
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