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Abstract
Sparse expert models can achieve promising001
results with outrageous large amount of param-002
eters but constant computation cost, and thus003
it has become a trend in model scaling. Still,004
it is a mystery how Mixture-of-Experts (MoE)005
layers leveraging the parameters with sparse006
activation bring quality gains. In this work, we007
investigate several key factors in sparse expert008
models. We find that load imbalance may not009
be a significant problem affecting model qual-010
ity, and auxiliary balancing loss can be removed011
without significant performance degrade. We012
further discover that larger number of sparsely013
activated experts k may not necessarily bene-014
fit the performance on the time basis, and we015
observe diminishing marginal utility that the016
performance gap gradually narrows with the017
increase in k We take a step forward to pro-018
pose a simple method called expert prototyping019
that splits experts into different prototypes and020
applies top-k routing for each prototype in par-021
allel. Our experiments demonstrate that the pro-022
totyping strategy improves the model quality, in023
comparison with further increasing to a larger k024
with comparable computation cost to prototyp-025
ing. Furthermore, we conduct an exploration on026
training extremely large-scale models, and we027
figure out that the strategy shows greater effec-028
tiveness in training larger models. Notably, we029
push the model scale to over 1 trillion parame-030
ters on solely 480 NVIDIA V100-32GB GPUs.031
The proposed giant model M6-T with expert032
prototyping achieves substantial speedup in033
convergence over the same-size baseline.034

1 Introduction035

Large-scale pretraining has been demonstrating036

tremendous success across several fields, especially037

natural language processing (Devlin et al., 2019;038

Radford et al., 2019; Shoeybi et al., 2019; Raffel039

et al., 2020; Brown et al., 2020). Recent studies040

have shown that scaling model size can bring sig-041

nificant quality gains in downstream task perfor-042

mance (Shoeybi et al., 2019; Raffel et al., 2020;043

Brown et al., 2020), and the model quality scales 044

as a power law with the data size, model scale, and 045

amount of computation (Kaplan et al., 2020). This 046

can be extended to the field of multimodal represen- 047

tation learning (Lu et al., 2019; Chen et al., 2020), 048

where models with outrageous numbers of param- 049

eters (Ramesh et al., 2021; Lin et al., 2021) can 050

achieve outstanding performance in cross-modal 051

understanding and generation. However, training 052

dense models is computationally expensive and it 053

is hard to train them on super large-scale data with 054

limited computational resources. 055

Inspired by the success of Mixture-of-Experts 056

(MoE) (Shazeer et al., 2017; Ramachandran and 057

Le, 2019), recent studies have focused on training 058

large-scale sparse expert models with high training 059

efficiency (Lepikhin et al., 2021; Fedus et al., 2021; 060

Lin et al., 2021; He et al., 2021). An MoE layer 061

consists of multiple experts and thus has a large 062

model capacity. Each forward computation routes 063

a token to k experts from N , where k ≪ N . Such 064

routing mechanism allows the combination of data 065

parallelism and expert parallelism. Previous stud- 066

ies (Lepikhin et al., 2021; Fedus et al., 2021) show 067

that it can achieve obvious performance speedup 068

with the same computational costs. However, train- 069

ing such large-scale MoE models can be extremely 070

difficult owing to multiple factors, e.g. system chal- 071

lenges of communication and load imbalance, and 072

algorithmic challenges of training instabilities, etc. 073

In this work, we conduct an analysis of the re- 074

cent MoE models to figure out which factors in- 075

fluence the model quality and training efficiency. 076

We investigate several factors, including load bal- 077

ance, top-k routing strategies, etc. Our analysis 078

demonstrates that load imbalance is not a signifi- 079

cant problem affecting model quality, and the aux- 080

iliary balancing loss can be removed without sig- 081

nificant performance drop. We further observe that 082

the number of sparsely activated experts k in top-k 083

routing make a difference in this context. Basically, 084
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increasing k from top-1 gating, namely switch gat-085

ing (Fedus et al., 2021), contributes to better model086

performance. However, larger k for top-k routing087

will significantly degrades the training efficiency088

as well as convergence efficiency. Diminishing089

marginal utility can be discovered that there will090

be few performance gains when k is substantially091

large.092

In this scenario, we propose a simple expert pro-093

totyping strategy called Expert Prototyping. Expert094

prototyping splits the experts into different groups095

and applies top-k routing for each prototype in a096

parallel schedule. The parallelism maintains sub-097

stantially higher training efficiency in comparison098

with the FLOP-matched baselines, and the speed099

advantage turns out larger with the increase in k.100

We observe that the proposed models achieves obvi-101

ously lower convergence on the time basis in com-102

parison with the baseline models. Moreover, with103

the merits in training efficiency, the models with104

expert prototyping can still achieve comparable or105

even superior performance over the baselines with106

similar computation FLOPs, according to our ex-107

periments for upstream and downstream perplexity108

evaluation.109

For further exploration, we extend the experi-110

ments to large-scale models with over 100 billion111

parameters respectively. Our findings and propos-112

als are applicable to extremely large-scale models,113

and results show that expert prototyping has more114

significant advantages in training larger models.115

To go even further, we push the model scale to116

over 1 trillion parameters and successfully imple-117

ment it on solely 480 NVIDIA V100-32GB GPUs.118

We show that the 1-trillion-parameter model M6-T119

with expert prototyping outperforms the baseline120

of the identical model scale, and achieves around 5121

times of speedup in training convergence.122

To summarize, our contributions are as follows:123

• We explore key factors inside MoE models,124

and find that auxiliary balancing loss is not125

necessary, and the number of sparsely acti-126

vated experts k can significantly impact the127

model performance.128

• We propose a simple method called expert129

prototyping, which splits experts into k proto-130

types and applies top-k activation inside each131

prototype. The strategy maintains high train-132

ing efficiency while keeping comparable or133

superior performance over the FLOP-matched134

baselines.135

• We advance our models to 1 trillion pa- 136

rameters and successfully implement it on 137

solely 480 NVIDIA V100-32GB GPUs. M6- 138

T with expert prototyping outperforms the 139

same-scale baseline and achieves substantial 140

speedup in convergence. 141

In the following, we introduce background 142

knowledge about sparse expert models in Section 2, 143

and we demonstrate our exploration and proposal 144

in Section 3 and further present our extreme-scale 145

practice in Section 4. Finally, we present the related 146

work in Section 5, and we draw the conclusion in 147

Section 6. 148

2 Sparse Expert Models 149

Sparse expert models are regarded as a promising 150

method for model scaling with high training effi- 151

ciency. Training dense models requires extremely 152

high computational costs, while sparse expert mod- 153

els can converge significantly faster as it iterates 154

on more data with far higher efficiency on a time 155

basis. Such mode of large-scale model training 156

is also more environmentally friendly. In this set- 157

ting, a large amount of the model weights are dis- 158

tributed to different workers owing to the architec- 159

ture of MoE layers, and MoE allows the increase in 160

parameters while keeping constant computational 161

costs (Lepikhin et al., 2021; Fedus et al., 2021). 162

Mixture-of-Experts is essentially a routing algo- 163

rithm that routes tokens to k specified experts from 164

N (where k ≪ N ) for forward computation. It 165

enables expert parallelism so that experts process 166

input tokens specified by gating functions simul- 167

taneously. Expert networks, each of which is a 168

multi-layer perceptron, are distributed across work- 169

ers. We use a gating function which specifies k 170

from N experts for an input token representation x. 171

The chosen experts process the representation with 172

forward computation and reduce their results with 173

weighted summation based on the gating values: 174

x̃ =
k∑
i

piEi(x)

p = softmax(g)

g = topk(norm(Wgx))

(1) 175

where Ei refers to the i-th expert. The most typi- 176

cal MoE algorithms for large-scale sparse expert 177

models are Switch Transformer and GShard (Fe- 178

dus et al., 2021; Lepikhin et al., 2021). Their key 179
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Figure 1: Curves of the developments of coefficients of variation cv at different layers. Here we demonstrate
the development of cv of baseline and auxiliary loss at all layers. We also demonstrate their curves of training log
perplexity (see the black dotted curve). Auxiliary loss helps the model gain highly balanced compute loads at every
layer, but the higher balance has not been translated to higher model quality. On the contrary, the behaviors of load
balance in the vanilla MoE model are peculiar. Though cv at all layers drop at the beginning, yet some of them even
increase to a high value afterward.

difference lies in their choice of top-k selection,180

which applies top-1 and top-2 selection respec-181

tively. Switch Transformer (Fedus et al., 2021)182

noted that routing a token to 1 expert only is effec-183

tive in preserving model quality and reducing com-184

putation complexity, contrary to the idea of Shazeer185

et al. (2017) that k should be larger than 1 so that186

there are non-trivial gradients to the routing func-187

tions.188

What makes a difference in the performance189

and model quality is the actual implementation of190

distributed experts. Model parallelism allows the191

partitioning of a large tensor across workers, and192

our implementation even enables multiple experts193

on an identical worker, instead of one expert per194

worker. Due to the dynamic nature of top-k routing,195

it may cause low efficiency if severe load imbal-196

ance happens. A standard implementation to tackle197

the problem is the setting of expert capacity (Lep-198

ikhin et al., 2021; Fedus et al., 2021; Shazeer et al.,199

2018), which is defined as:200

C =
k · T
N

· γ, (2)201

where T refers to the number of tokens in a batch202

and γ refers to the capacity factor which is com-203

monly larger than 1.0. A larger capacity factor can204

provide more buffer for expert capacity. Tokens205

are distributed to experts with all-to-all dispatching206

operations. The token representations processed by207

selected experts are combined with all-to-all com-208

munication to their original workers. On the con-209

dition of exceeded capacity, token representations 210

skip forward computation by residual connection. 211

For experts still having space in their capacities 212

after dispatching, we add padding tokens to fill in. 213

Thus the computations and communications costs 214

are positively related to the number of experts N 215

and the expert capacity C. Low expert capacity 216

can cause a significant amount of dropped tokens if 217

there is load imbalance on experts, but increasing 218

expert capacity will correspondingly enhance the 219

computation and communication costs. 220

3 Exploration of Sparse Expert Models 221

To investigate the MoE models, we conduct ex- 222

periments to observe the effects of several factors, 223

including auxiliary balancing loss for load balance, 224

the value of k for sparse activation, etc. Following 225

Lin et al. (2021), we pretrain the models on the M6- 226

corpus and we observe their performance on a held- 227

out training set for upstream evaluation and an im- 228

age captioning dataset, E-commerce IC in MUGE 229

benchmark1, for downstream evaluation. We pro- 230

vide more experimental details in Appendix A. 231

3.1 Development of Load Balance 232

Recent studies pointed out the significance of bal- 233

anced routing (Fedus et al., 2021; Lepikhin et al., 234

2021; Lewis et al., 2021), and illustrated the impor- 235

tance of balancing methods such as auxiliary expert 236

balancing loss. We first conduct experiments on 237

1https://tianchi.aliyun.com/muge
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a. Top-k Routing b. k Top-1 Routing for Expert Prototyping

Figure 2: A demonstration of conventional top-2 routing and expert prototyping with 2 top-1 routing. In
top-2 routing, the router selects the top-2 from all the experts and sends the token representation to those experts.
In 2 top-1 routing for expert prototyping, experts are first grouped into 2 prototypes, and there is a router for each
prototype. Each router chooses the top-1 expert and sends the token representation through it. The output from each
prototype is summed up element-wisely for the final output.

the MoE models with and without auxiliary load238

balancing loss respectively. We pretrain both mod-239

els for 500k steps and compare their performance240

in the Perplexity (PPL) evaluation. Experimental241

results show that both models achieve similar per-242

formance, and the one with auxiliary loss even per-243

forms slightly worse in the evaluation of training244

log perplexity (2.694 vs. 2.645). These observa-245

tions intrigue us to further investigate the relation-246

ship between load balance and model quality.247

We evaluate the degree of compute load balance248

of experts at every layer. Following Shazeer et al.249

(2017), we use the coefficient of variation for the250

evaluation of load balance. We define the coeffi-251

cient of variation for effective compute loads as252

that of the number of real tokens computed by the253

experts cv = σ(T )
µ(T ) , where T refers to tokens com-254

puted by experts. This metric reflects the degree255

of uniformity of token assignment. We observe256

the development of cv in the training process to257

evaluate the change of load assignment.258

We demonstrate the results in Figure 1. For all259

layers, significant load imbalance exists at the ini-260

tial stage according to the high values of cv. No-261

tably, the value is generally higher at the top lay-262

ers. For the model trained with auxiliary expert263

load balancing loss, cv at all layers drop drasti-264

cally at the initial stage to a low value around 0.3.265

This denotes that highly balanced compute loads,2 266

and they become stable in the following. How- 267

ever, compute loads are quite different for the MoE 268

model without auxiliary loss. Though cv at all lay- 269

ers drop at the beginning, yet they fail to reach a 270

small value, which denotes highly balancing com- 271

pute loads. Except for that, some even increase to a 272

high value afterward. These phenomena reflect the 273

existence of load imbalance. Though auxiliary loss 274

is advantageous in expert load balancing, such an 275

advantage has not been translated to performance, 276

as mentioned above. 277

3.2 The Effects of Top-k Sparse Activation 278

Table 1: Speed of models with different top-k routing
strategies (ms/step). We report the training speed of
models with different routing strategies. The compar-
ison between different strategies are conducted under
various model sizes.

Model Size Top-1 Top-4 Top-16 4 Top-4

3-layer 98 199 600 203
16-layer 436 975 3100 980

Previous work (Fedus et al., 2021) pointed out 279

that top-1 is sufficient for high model quality in 280

2We manually observe the number of tokens that experts
receive and find that compute loads are highly balanced.
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Figure 3: Model performance with different routing strategies under the 3-layer setup. (a) demonstrates
the performance on the step basis and (b) demonstrates that on the time basis. From both figures, increasing k
from 1 to 4 significantly improves convergence. However, further changing the routing strategy to 1 top-16 brings
marginal benefit. In comparison, the model with expert prototyping, namely 4 top-4, achieves a substantially lower
perplexity.3
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Figure 4: Model performance with different routing strategies under the 16-layer setup. (a) demonstrates the
performance on the step basis and (b) demonstrates that on the time basis. Similar to the results of 3-layer models,
the 4 top-4 model achieves the best performance and it gains a significant advantage on the time-basis evaluation
over the 1 top-16 baseline.

comparison with top-k selection with k > 1, while281

it has significant advantages in computational effi-282

ciency, but the experimental results in Lewis et al.283

(2021) show that top-2 still outperforms the top-1284

selection. Here we conduct experiments to further285

investigate how different top-k methods influence286

the model quality. We first examine whether larger287

k can help the model achieve better performance.288

Specifically, we choose k ∈ {1, 4, 16} for the eval-289

uation, and we implement them on models of differ-290

ent scales, where l ∈ {3, 16}. More experimental291

details are illustrated in Appendix A.2. We demon-292

strate their performance of upstream log perplexity293

from different views, including the step-basis4 and294

4We use the same batch size so that the step basis is essen-
tially equal to sample basis.

time-basis performance. 295

Figure 3(a) and Figure 4(a) show that on the 296

step basis models with larger values of k can reach 297

more superior performance. We also observe that 298

the performance gap between the top-4 routing and 299

top-16 routing is small especially when the model 300

is large with 16 layers. This phenomenon demon- 301

strates diminishing returns with the increase in k, 302

and the problem becomes more salient when the 303

scale of model is large. 304

However, the computation costs for quality is 305

actually quite large, as training efficiency drops 306

drastically with the increase in k. Table 1 reports 307

the training speed of models of different scales 308

with different routing strategies. It illustrates that 309

larger k will greatly decrease the training speed, 310
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Table 2: Evaluation of perplexity (lower is better) on upstream pretraining and downstream E-commerce IC
task (Lin et al., 2021). Following Radford et al. (2019), we do not perform any fine-tuning for any of these results.
Within each model size, the strategies taken here for comparison are pretrained on almost same budget of training
time and GPU devices.

Model Training Time Steps Training Samples Upstream PPL Downstream PPL

3-layer model
1 top-4 2.33 days 1010K 64.6M 64.07 54.74
1 top-16 2.36 days 340K 21.8M 59.74 51.66
4 Top-4 2.33 days 1010K 64.6M 37.71 33.48

16-layer model
1 top-4 6.21 days 550K 352M 23.10 25.07
1 top-16 6.28 days 175K 112M 27.66 28.78
4 top-4 6.24 days 550K 352M 20.91 24.21

e.g., for the 16-layer model, top-16 routing is al-311

most 7 times slower than top-1 routing. The com-312

plexity of top-k gating comes from the fact that313

token-to-expert multiple assignments are hard to314

parallel. Therefore, we hope to figure out a solution315

to alleviate this problem of serial computing.316

3.3 Expert Prototyping317

Previous analysis indicates that k experts play dif-318

ferent roles and outcompete a single expert. How-319

ever, the looping “argmax” operation in top-k rout-320

ing incurs computation inefficiency. To tackle the321

issue of inefficiency, we propose a simple method322

called expert prototyping. Expert randomly splits323

experts into k prototypes. In each forward compu-324

tation, each token is first sent to the k prototypes.325

Inside each prototype, it is processed by the ex-326

pert selected by top-k routing. Parallel routing is327

performed across prototypes. Then the outputs of328

prototypes are combined linearly as shown below:329

y =
k∑

i=1

m∑
j=1

pijEij(x), (3)330

where m refers to the number of experts inside a331

group. This method avoids the looping argmax332

operation. Instead, it generates k outputs in a par-333

allel fashion and it does not incur training ineffi-334

ciency. From Table 1, it can be found that the 4335

top-4 has similar performance in training efficiency336

compared with the 1 top-4 (980 vs. 975 ms/step).337

Expert prototyping makes the gating independent338

within each group, which is easy to parallel on339

modern devices. Under the parallel optimization340

and the same number of experts, the complexity of341

conventional top-k routing is O(K), while the com-342

plexity of prototyping top-k is O(K/P ), where P343

is the number of prototyping groups. Consequently,344

expert prototyping reduces the gating time linearly 345

while keeping the same number of experts. 346

We demonstrate the performance of expert pro- 347

totyping model on the step and time basis in Fig- 348

ure 3 and Figure 4. From Figure 3, we find that 349

for smaller models the 4 top-4 routing model can 350

greatly outperform all the baselines with a large 351

gap in log perplexity, on both step and time basis. 352

From Figure 4, for larger models with around 10 353

billion parameters, we find that 4 top-4 still achieve 354

the best performance on the step basis according to 355

Figure 4(a). However, on the time basis according 356

to Figure 4(b), we observe that 4 top-4 with an ob- 357

vious speed advantage can significantly surpass the 358

1 top-16 baseline. This reflects that our proposed 359

expert prototyping can help the model maintain 360

high training efficiency but bring quality gains. 361

3.4 Evaluation 362

We demonstrate both the upstream and downstream 363

PPL of the examined models in Table 2. We also 364

provide the training time, step, and samples for bet- 365

ter comparison. It can be found that under the same 366

computation budget, the proposed expert prototyp- 367

ing model with 4 top-4 routing can outperform both 368

the 1 top-4 and 1 top-16 baselines in both upstream 369

and downstream evaluation with obvious advan- 370

tages, no matter when the model scale is small (3 371

layers) or large (16 layers). Furthermore, the 4 top- 372

4 has similar computation efficiency in comparison 373

with the 1 top-4. Therefore, it can be trained with 374

more samples than the 1 top-16 and it naturally 375

achieves superior performance. 376

4 Rocketing to Trillion Parameters 377

In this section, we demonstrate that our findings 378

and proposals are also applicable to large-scale pre- 379

trained models, and we finally advance the model 380
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Figure 5: Performance of 100B models with different
routing strategies. In both cases, expert prototyping
performs better than the MoE baseline, and larger values
of k further benefit model qualities.

scale to 1 trillion parameters.381

We validate our findings on extremely large-382

scale models. We first scale the model size up383

to 100 billion parameters respectively. For simplic-384

ity, we validate expert prototyping on the 100B-385

parameter models. We report the training log per-386

plexity for the model performance. As Figure 5387

demonstrates, expert prototyping still have advan-388

tages over the MoE baseline, and similarly in both389

contexts larger k for expert prototyping can further390

benefit the model quality. This shows the effective-391

ness of expert prototyping in training models of a392

much larger scale.393

Based on the aforementioned findings and pro-394

posals, we move forward to build an extremely395

large-scale model with over 1 trillion parameters.396

Due to limited computational resources, we attempt397

to figure out solutions to implement a 1-trillion-398

parameter model on solely 480 NVIDIA V100-399

32GB GPUs.400

To be more specific, we implement our model401

on a cluster of workers connected by RDMA net-402

works with a bandwidth of 100Gb. To save memory403

usage, we instead turn to Adafactor (Shazeer and404

Stern, 2018) for optimization in concern of its sub-405

linear memory costs. However, there are a series406

of sporadic issues concerning training instabilities.407

Through trials and errors, we find that such model408

training is highly sensitive to learning rates, espe-409

cially when being trained with Adafactor. We did410

not use the default one 0.01 due to divergence, but411

instead, we use 0.005 to strike a balance between412

training stability and convergence speed. Also, we413

find that it is essential to lower the absolute val-414

ues of initialized weights, which is also illustrated415

in Fedus et al. (2021). We specifically reduce the 416

BERT initialization, a truncated normal distribution 417

with µ = 0 and σ = 0.02, by a factor of 10. 418

We first evaluate the quality of models with dif- 419

ferent parameters but similar computation FLOPs 420

by observing training log perplexity. We compare 421

the performance of MoE baseline models with 100 422

billion, 250 billion parameters, and 1 trillion param- 423

eters, and we observe that the results prove the scal- 424

ing law that models with larger capacity performs 425

better, as demonstrated in Figure 6. Then we imple- 426

ment both 1-trillion-parameter MoE baseline and 427

our expert prototyping MoE model.5 Still, from 428

Figure 6 we can figure out the proposal has a strong 429

advantage over the compared model with 1 trillion 430

parameters. We observe a substantial speedup in 431

convergence, where our method is around 5 times 432

faster than the baseline. However, both models 433

have similar computational FLOPs, which demon- 434

strates that our method strikes a far better balance 435

between computational efficiency and model qual- 436

ity. 437

5 Related work 438

Pretraining has achieved great success in these 439

years, and it has recently become a common prac- 440

tice in natural language processing (Peters et al., 441

2018; Devlin et al., 2019; Radford et al., 2018; 442

Yang et al., 2019; Liu et al., 2019; Dong et al., 443

2019). In the field of cross-representation learn- 444

ing, pretraining has also become significant and 445

pushed the limit of model performance in down- 446

stream tasks (Lu et al., 2019; Su et al., 2020; Lu 447

et al., 2020; Chen et al., 2020; Gan et al., 2020; 448

Li et al., 2020; Yu et al., 2021; Li et al., 2021; 449

Zhang et al., 2021). Recent studies (Kaplan et al., 450

2020) demonstrate the power law of model scale 451

and performance. With the rapid development in 452

distributed training and parallelism (Shoeybi et al., 453

2019; Rajbhandari et al., 2020; Ren et al., 2021; 454

Rajbhandari et al., 2021), we have witnessed the 455

burst of studies in extremely large scale pretrain- 456

ing in both natural language processing (Brown 457

et al., 2020; Shoeybi et al., 2019) and multimodal 458

pretraining (Ramesh et al., 2021; Lin et al., 2021) 459

and also new state-of-the-art performance in the 460

recent two years. Though extremely large-scale 461

dense models are highly effective especially in the 462

5Due to limited computational resources and instabilities
in systems and hardware, the trillion-parameter expert proto-
typing model has been trained for only 30k steps.
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Figure 6: Performance of baseline models with 100 billion, 250 billion, and 1 trillion parameters, as well as
1-trillion-parameter model with expert prototyping. The curves reflect the scaling law, and also demonstrate the
advantage of expert prototyping for giant models.

context of few-shot learning (Brown et al., 2020),463

some researchers have turned to sparse expert mod-464

els for efficient large-scale pretraining. Inspired by465

the success of Mixture-of-Experts (Shazeer et al.,466

2017; Ramachandran and Le, 2019; Shazeer et al.,467

2018), recent studies (Lepikhin et al., 2021; Fe-468

dus et al., 2021) expand the model size to over469

trillion parameters and fully utilize the advantages470

of TPUs to build sparse expert models with Mesh-471

Tensorflow (Shazeer et al., 2018). They demon-472

strate that sparse expert models can perform much473

better than dense models with the same compu-474

tational FLOPs but their computational costs are475

similar. A series of the following work success-476

fully implement sparse expert models on NVIDIA477

GPU (Lin et al., 2021; Lewis et al., 2021). In this478

work, we follow the practice of Lin et al. (2021)479

and implement our models on the distributed learn-480

ing framework Whale (Wang et al., 2020).481

6 Conclusion482

In this work, we explore the factors inside sparse483

expert models and investigate how they influence484

the model quality and computational efficiency. We485

find out that load imbalance may not be a signifi-486

cant issue affecting model quality, and the auxiliary487

balancing loss can be removed without significant488

performance drop. We observe that the number489

of activated experts k play a significant role in490

training MoE models, where larger k can help the491

model achieve better performance. However, the492

increase will enhance computation complexity and493

incur training inefficiency. Therefore, we propose 494

a simple solution called expert prototyping. The 495

method splits experts into different prototypes and 496

applies top-k routing. With extensive experiments, 497

we show that expert prototyping can help maintain 498

high training efficiency but significantly improve 499

the model performance in both upstream and down- 500

stream evaluation. Furthermore, to evaluate its 501

effects in large-scale training, we extend the ex- 502

periments to large-scale models with over 100 bil- 503

lion parameters and demonstrate the effectiveness. 504

Finally, we push the scale to 1 trillion parameters 505

and successfully implement the 1-trillion parameter 506

model M6-T on solely 480 NVIDIA V100-32GB 507

GPUs. We show that our simple method can ef- 508

fectively improve the performance of M6-T over 509

the same-scale baseline, and M6-T gains a 5-time 510

speedup in convergence. 511
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A Appendix 691

A.1 Multimodal Pretraining and Downstream 692

Evaluation 693

In practice, we follow Lin et al. (2021) that employs 694

an extremely large-scale multimodal pretrained 695

model with MoE architecture in Chinese. Specifi- 696

cally, we pretrain a model on the image-text pairs 697

from the dataset M6-Corpus (Lin et al., 2021). In 698

multimodal pretraining, the pretrained model re- 699

ceives the inputs of a pair of related image and text 700

as the input and generates the high-level represen- 701

tations with layers of Transformer (Vaswani et al., 702

2017). In our experiments, we first transform an in- 703

put image to patch features by splitting it into 4×4 704

patches and extracting patch features with a trained 705

ResNet (He et al., 2016). We flatten the patch 706

features of the input image to a sequence of rep- 707

resentations and concatenate them with the word 708

embeddings of the text sequence shorter than 128 709

words. Then we build a feature extractor with multi- 710

ple layers of transformer consisting of self attention 711

and feed-forward neural networks (FFN). Notably, 712

in order to integrate MoE to the model architecture, 713

we replace the FFN with MoE, where FFN as ex- 714

perts are distributed across workers. We pretrain 715

the model with the task of image captioning, where 716

the model learns to generate words autoregressively 717

based on the previous context including the patch 718

features. 719

To comprehensively evaluate the performance 720

of the methods, we conduct experiments on im- 721

age captioning in Chinese, and we follow Lin et al. 722

(2021) to use the E-commerce IC dataset in MUGE 723

benchmark6. We focus on the capability of lan- 724

guage modeling of the pretrained model, and thus 725

we use teacher forcing and evaluate the perfor- 726

mance by perplexity (PPL). 727

A.2 Experimental Setups 728

For the exploration, we investigate different setups 729

for both models. Here we point out key configura- 730

tions of our experimental setups and we demon- 731

strate the details in Table 3. Following BERT- 732

Chinese (Devlin et al., 2019), we use the same 733

vocabulary with 21128 subwords. For the initial- 734

ization, we use the BERT initialization with µ = 0 735

and σ = 0.02 for most cases, and we use an initial- 736

ization with a smaller standard deviation of 0.002 737

for the 1T model. As to the expert capacity, we 738

6https://tianchi.aliyun.com/muge
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Table 3: Hyperparameters for pretraining the MoE models.

Hparam 3-layer 16-layer 100B 1T

Hidden size 128 128 1024 1024
Intermediate size 512 512 4096 21248
Number of layers 3 16 24 24
Number of attention heads 8 8 16 16
Attention head size 16 16 64 64
Initializer range 0.02 0.02 0.02 0.002
Number of experts 4096 4096 512 960
Number of GPUs 8 8 128 480
Optimizer AdamW AdamW AdamW Adafactor
Learning rate 1e-4 1e-4 8e-5 5e-3
Mixed precision ✓ ✓ ✓ ×
FP16 communication ✓ ✓ ✓ ×
Params 1.6B 8.6B 103.2B 1002.7B

Table 4: Notation table for Pseudo code.

Variable Definition
D Number of workers
d Number of GPUs per worker (d=1 in this paper)
E Number of total experts
e Number of experts per worker (e*D=E)
C Capacity per expert
M Model size (same as hidden size, same as embedding size)
I Intermediate size
B Batch Size per GPU
L Sequence Length
T Number of tokens (T=B*L)
Z Number of prototypes
F Number of expert per prototype (Z*F=E)

generally use a capacity factor of γ = 1.25 for739

more buffer. The batch size per GPU is 8 and the740

total batch size is equal to the product of the batch741

size per GPU and the number of GPUs. We use742

AdamW optimizer (Loshchilov and Hutter, 2019)743

for optimization except for the 1T model where we744

use Adafactor (Shazeer and Stern, 2018) instead.745

For Adafactor, we set the learning rate to 5e − 3.746

We use warmup schedule with a warmup step of747

500. The dropout rate for FFN and attention is 0.1.748

We use mixed precision training for FP16 commu-749

nication for all models except the 1T one due to750

the issue of training instability.751

We implement our experiments on Tensorflow752

1.15 (Abadi et al., 2016). Different from the orig-753

inal implementation of Switch and GShard with754

Mesh-Tensorflow (Shazeer et al., 2018), we im-755

plement the multimodal pretrained model with756

the framework Whale (Wang et al., 2020), which 757

enables data, model, and expert parallelism on 758

NVIDIA GPU. 759

A.3 Pseudo Code for Expert Prototyping 760

The pseudo codes for MoE layer and proposed ex- 761

pert prototyping in Whale are provided in Figure 7 762

and Figure 8 respectively. Table 4 illustrates the 763

notations of specific tensor dimensions. 764

Amount of All-to-All Communication There 765

are two operations of all-to-all communication in 766

each MoE FFN layer in a forward propagation pro- 767

cess (one for dispatch_inputs and the other for out- 768

puts in the pseudo code). During the communica- 769

tion, each entry of the communicated tensor passes 770

to a worker once. Thus, the total amount of com- 771

munication, which is O(EdCM)+O(eDCM) = 772
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O(EdCM) = O(ECM), depends on the number773

of experts, capacity and model size.774

Amount of Computation For the 1T-scale MoE775

model, the total amount of computation in the776

MoE FFN layer is mainly dominated by the two777

matrix multiplications, which transform the in-778

put tensor from the hidden size to the interme-779

diate size and then vice versa. The total com-780

putation of these two matrix multiplications is781

O(DeCMI) + O(DeCIM) = O(ECMI). For782

1T model, these two operations hold around 98%783

total forward FLOPs of the MoE FFN layer.784
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Figure 7: Pseudo code of the MoE Transformer layer in Whale.
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Figure 8: Pseudo code of the Expert Prototyping (an example on top-1 gating).
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