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Abstract

Sparse expert models can achieve promising
results with outrageous large amount of param-
eters but constant computation cost, and thus
it has become a trend in model scaling. Still,
it is a mystery how Mixture-of-Experts (MoE)
layers leveraging the parameters with sparse
activation bring quality gains. In this work, we
investigate several key factors in sparse expert
models. We find that load imbalance may not
be a significant problem affecting model qual-
ity, and auxiliary balancing loss can be removed
without significant performance degrade. We
further discover that larger number of sparsely
activated experts k£ may not necessarily bene-
fit the performance on the time basis, and we
observe diminishing marginal utility that the
performance gap gradually narrows with the
increase in k We take a step forward to pro-
pose a simple method called expert prototyping
that splits experts into different prototypes and
applies top-k routing for each prototype in par-
allel. Our experiments demonstrate that the pro-
totyping strategy improves the model quality, in
comparison with further increasing to a larger k
with comparable computation cost to prototyp-
ing. Furthermore, we conduct an exploration on
training extremely large-scale models, and we
figure out that the strategy shows greater effec-
tiveness in training larger models. Notably, we
push the model scale to over 1 trillion parame-
ters on solely 480 NVIDIA V100-32GB GPUs.
The proposed giant model M6-T with expert
prototyping achieves substantial speedup in
convergence over the same-size baseline.

1 Introduction

Large-scale pretraining has been demonstrating
tremendous success across several fields, especially
natural language processing (Devlin et al., 2019;
Radford et al., 2019; Shoeybi et al., 2019; Raffel
et al., 2020; Brown et al., 2020). Recent studies
have shown that scaling model size can bring sig-
nificant quality gains in downstream task perfor-
mance (Shoeybi et al., 2019; Raffel et al., 2020;

Brown et al., 2020), and the model quality scales
as a power law with the data size, model scale, and
amount of computation (Kaplan et al., 2020). This
can be extended to the field of multimodal represen-
tation learning (Lu et al., 2019; Chen et al., 2020),
where models with outrageous numbers of param-
eters (Ramesh et al., 2021; Lin et al., 2021) can
achieve outstanding performance in cross-modal
understanding and generation. However, training
dense models is computationally expensive and it
is hard to train them on super large-scale data with
limited computational resources.

Inspired by the success of Mixture-of-Experts
(MoE) (Shazeer et al., 2017; Ramachandran and
Le, 2019), recent studies have focused on training
large-scale sparse expert models with high training
efficiency (Lepikhin et al., 2021; Fedus et al., 2021;
Lin et al., 2021; He et al., 2021). An MoE layer
consists of multiple experts and thus has a large
model capacity. Each forward computation routes
a token to k experts from N, where k£ < N. Such
routing mechanism allows the combination of data
parallelism and expert parallelism. Previous stud-
ies (Lepikhin et al., 2021; Fedus et al., 2021) show
that it can achieve obvious performance speedup
with the same computational costs. However, train-
ing such large-scale MoE models can be extremely
difficult owing to multiple factors, e.g. system chal-
lenges of communication and load imbalance, and
algorithmic challenges of training instabilities, etc.

In this work, we conduct an analysis of the re-
cent MoE models to figure out which factors in-
fluence the model quality and training efficiency.
We investigate several factors, including load bal-
ance, top-k routing strategies, etc. Our analysis
demonstrates that load imbalance is not a signifi-
cant problem affecting model quality, and the aux-
iliary balancing loss can be removed without sig-
nificant performance drop. We further observe that
the number of sparsely activated experts k in top-k
routing make a difference in this context. Basically,



increasing k from top-1 gating, namely switch gat-
ing (Fedus et al., 2021), contributes to better model
performance. However, larger k for top-k routing
will significantly degrades the training efficiency
as well as convergence efficiency. Diminishing
marginal utility can be discovered that there will
be few performance gains when k is substantially
large.

In this scenario, we propose a simple expert pro-
totyping strategy called Expert Prototyping. Expert
prototyping splits the experts into different groups
and applies top-k routing for each prototype in a
parallel schedule. The parallelism maintains sub-
stantially higher training efficiency in comparison
with the FLOP-matched baselines, and the speed
advantage turns out larger with the increase in k.
We observe that the proposed models achieves obvi-
ously lower convergence on the time basis in com-
parison with the baseline models. Moreover, with
the merits in training efficiency, the models with
expert prototyping can still achieve comparable or
even superior performance over the baselines with
similar computation FLOPs, according to our ex-
periments for upstream and downstream perplexity
evaluation.

For further exploration, we extend the experi-
ments to large-scale models with over 100 billion
parameters respectively. Our findings and propos-
als are applicable to extremely large-scale models,
and results show that expert prototyping has more
significant advantages in training larger models.
To go even further, we push the model scale to
over 1 trillion parameters and successfully imple-
ment it on solely 480 NVIDIA V100-32GB GPUs.
We show that the 1-trillion-parameter model M6-T
with expert prototyping outperforms the baseline
of the identical model scale, and achieves around 5
times of speedup in training convergence.

To summarize, our contributions are as follows:

* We explore key factors inside MoE models,
and find that auxiliary balancing loss is not
necessary, and the number of sparsely acti-
vated experts k can significantly impact the
model performance.

* We propose a simple method called expert
prototyping, which splits experts into & proto-
types and applies top-k activation inside each
prototype. The strategy maintains high train-
ing efficiency while keeping comparable or
superior performance over the FLOP-matched
baselines.

* We advance our models to 1 trillion pa-
rameters and successfully implement it on
solely 480 NVIDIA V100-32GB GPUs. M6-
T with expert prototyping outperforms the
same-scale baseline and achieves substantial
speedup in convergence.

In the following, we introduce background
knowledge about sparse expert models in Section 2,
and we demonstrate our exploration and proposal
in Section 3 and further present our extreme-scale
practice in Section 4. Finally, we present the related
work in Section 5, and we draw the conclusion in
Section 6.

2 Sparse Expert Models

Sparse expert models are regarded as a promising
method for model scaling with high training effi-
ciency. Training dense models requires extremely
high computational costs, while sparse expert mod-
els can converge significantly faster as it iterates
on more data with far higher efficiency on a time
basis. Such mode of large-scale model training
is also more environmentally friendly. In this set-
ting, a large amount of the model weights are dis-
tributed to different workers owing to the architec-
ture of MoE layers, and MoE allows the increase in
parameters while keeping constant computational
costs (Lepikhin et al., 2021; Fedus et al., 2021).
Mixture-of-Experts is essentially a routing algo-
rithm that routes tokens to k specified experts from
N (where kK < N) for forward computation. It
enables expert parallelism so that experts process
input tokens specified by gating functions simul-
taneously. Expert networks, each of which is a
multi-layer perceptron, are distributed across work-
ers. We use a gating function which specifies k
from NV experts for an input token representation x.
The chosen experts process the representation with
forward computation and reduce their results with
weighted summation based on the gating values:

k
i= Z“Ei(l’)

p = softmazx(g)
g = topk(norm(Wyx))

ey

where E; refers to the i-th expert. The most typi-
cal MoE algorithms for large-scale sparse expert
models are Switch Transformer and GShard (Fe-
dus et al., 2021; Lepikhin et al., 2021). Their key
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Figure 1: Curves of the developments of coefficients of variation c, at different layers. Here we demonstrate
the development of ¢, of baseline and auxiliary loss at all layers. We also demonstrate their curves of training log
perplexity (see the black dotted curve). Auxiliary loss helps the model gain highly balanced compute loads at every
layer, but the higher balance has not been translated to higher model quality. On the contrary, the behaviors of load
balance in the vanilla MoE model are peculiar. Though ¢, at all layers drop at the beginning, yet some of them even

increase to a high value afterward.

difference lies in their choice of top-k selection,
which applies top-1 and top-2 selection respec-
tively. Switch Transformer (Fedus et al., 2021)
noted that routing a token to 1 expert only is effec-
tive in preserving model quality and reducing com-
putation complexity, contrary to the idea of Shazeer
et al. (2017) that k should be larger than 1 so that
there are non-trivial gradients to the routing func-
tions.

What makes a difference in the performance
and model quality is the actual implementation of
distributed experts. Model parallelism allows the
partitioning of a large tensor across workers, and
our implementation even enables multiple experts
on an identical worker, instead of one expert per
worker. Due to the dynamic nature of top-k routing,
it may cause low efficiency if severe load imbal-
ance happens. A standard implementation to tackle
the problem is the setting of expert capacity (Lep-
ikhin et al., 2021; Fedus et al., 2021; Shazeer et al.,
2018), which is defined as:

k-T

027 v

= @)

where T refers to the number of tokens in a batch
and ~y refers to the capacity factor which is com-
monly larger than 1.0. A larger capacity factor can
provide more buffer for expert capacity. Tokens
are distributed to experts with all-to-all dispatching
operations. The token representations processed by
selected experts are combined with all-to-all com-
munication to their original workers. On the con-

dition of exceeded capacity, token representations
skip forward computation by residual connection.
For experts still having space in their capacities
after dispatching, we add padding tokens to fill in.
Thus the computations and communications costs
are positively related to the number of experts N
and the expert capacity C'. Low expert capacity
can cause a significant amount of dropped tokens if
there is load imbalance on experts, but increasing
expert capacity will correspondingly enhance the
computation and communication costs.

3 Exploration of Sparse Expert Models

To investigate the MoE models, we conduct ex-
periments to observe the effects of several factors,
including auxiliary balancing loss for load balance,
the value of k for sparse activation, etc. Following
Lin et al. (2021), we pretrain the models on the M6-
corpus and we observe their performance on a held-
out training set for upstream evaluation and an im-
age captioning dataset, E-commerce IC in MUGE
benchmark!, for downstream evaluation. We pro-
vide more experimental details in Appendix A.

3.1 Development of Load Balance

Recent studies pointed out the significance of bal-
anced routing (Fedus et al., 2021; Lepikhin et al.,
2021; Lewis et al., 2021), and illustrated the impor-
tance of balancing methods such as auxiliary expert
balancing loss. We first conduct experiments on

"https://tianchi.aliyun.com/muge
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Figure 2: A demonstration of conventional top-2 routing and expert prototyping with 2 top-1 routing. In
top-2 routing, the router selects the top-2 from all the experts and sends the token representation to those experts.
In 2 top-1 routing for expert prototyping, experts are first grouped into 2 prototypes, and there is a router for each
prototype. Each router chooses the top-1 expert and sends the token representation through it. The output from each
prototype is summed up element-wisely for the final output.

the MoE models with and without auxiliary load
balancing loss respectively. We pretrain both mod-
els for 500k steps and compare their performance
in the Perplexity (PPL) evaluation. Experimental
results show that both models achieve similar per-
formance, and the one with auxiliary loss even per-
forms slightly worse in the evaluation of training
log perplexity (2.694 vs. 2.645). These observa-
tions intrigue us to further investigate the relation-
ship between load balance and model quality.

We evaluate the degree of compute load balance
of experts at every layer. Following Shazeer et al.
(2017), we use the coefficient of variation for the
evaluation of load balance. We define the coeffi-
cient of variation for effective compute loads as
that of the number of real tokens computed by the
experts ¢, = %, where 7 refers to tokens com-
puted by experts. This metric reflects the degree
of uniformity of token assignment. We observe
the development of ¢, in the training process to
evaluate the change of load assignment.

We demonstrate the results in Figure 1. For all
layers, significant load imbalance exists at the ini-
tial stage according to the high values of ¢,. No-
tably, the value is generally higher at the top lay-
ers. For the model trained with auxiliary expert
load balancing loss, ¢, at all layers drop drasti-
cally at the initial stage to a low value around 0.3.

This denotes that highly balanced compute loads,?
and they become stable in the following. How-
ever, compute loads are quite different for the MoE
model without auxiliary loss. Though ¢, at all lay-
ers drop at the beginning, yet they fail to reach a
small value, which denotes highly balancing com-
pute loads. Except for that, some even increase to a
high value afterward. These phenomena reflect the
existence of load imbalance. Though auxiliary loss
is advantageous in expert load balancing, such an
advantage has not been translated to performance,
as mentioned above.

3.2 The Effects of Top-k Sparse Activation

Table 1: Speed of models with different top-% routing
strategies (ms/step). We report the training speed of
models with different routing strategies. The compar-
ison between different strategies are conducted under
various model sizes.

Model Size  Top-1 Top-4 Top-16 4 Top-4

3-layer 98 199 600 203
16-layer 436 975 3100 980

Previous work (Fedus et al., 2021) pointed out
that top-1 is sufficient for high model quality in

>We manually observe the number of tokens that experts
receive and find that compute loads are highly balanced.
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Figure 3: Model performance with different routing strategies under the 3-layer setup. (a) demonstrates
the performance on the step basis and (b) demonstrates that on the time basis. From both figures, increasing k
from 1 to 4 significantly improves convergence. However, further changing the routing strategy to 1 top-16 brings
marginal benefit. In comparison, the model with expert prototyping, namely 4 top-4, achieves a substantially lower
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Figure 4: Model performance with different routing strategies under the 16-layer setup. (a) demonstrates the
performance on the step basis and (b) demonstrates that on the time basis. Similar to the results of 3-layer models,
the 4 top-4 model achieves the best performance and it gains a significant advantage on the time-basis evaluation

over the 1 top-16 baseline.

comparison with top-k selection with k£ > 1, while
it has significant advantages in computational effi-
ciency, but the experimental results in Lewis et al.
(2021) show that top-2 still outperforms the top-1
selection. Here we conduct experiments to further
investigate how different top-k£ methods influence
the model quality. We first examine whether larger
k can help the model achieve better performance.
Specifically, we choose k € {1, 4,16} for the eval-
uation, and we implement them on models of differ-
ent scales, where [ € {3,16}. More experimental
details are illustrated in Appendix A.2. We demon-
strate their performance of upstream log perplexity
from different views, including the step-basis* and

*We use the same batch size so that the step basis is essen-
tially equal to sample basis.

time-basis performance.

Figure 3(a) and Figure 4(a) show that on the
step basis models with larger values of £ can reach
more superior performance. We also observe that
the performance gap between the top-4 routing and
top-16 routing is small especially when the model
is large with 16 layers. This phenomenon demon-
strates diminishing returns with the increase in k,
and the problem becomes more salient when the
scale of model is large.

However, the computation costs for quality is
actually quite large, as training efficiency drops
drastically with the increase in k. Table 1 reports
the training speed of models of different scales
with different routing strategies. It illustrates that
larger k£ will greatly decrease the training speed,



Table 2: Evaluation of perplexity (lower is better) on upstream pretraining and downstream E-commerce IC
task (Lin et al., 2021). Following Radford et al. (2019), we do not perform any fine-tuning for any of these results.
Within each model size, the strategies taken here for comparison are pretrained on almost same budget of training

time and GPU devices.

Model  Training Time Steps Training Samples Upstream PPL  Downstream PPL
3-layer model

1 top-4 2.33 days 1010K 64.6M 64.07 54.74

1 top-16 2.36 days 340K 21.8M 59.74 51.66

4 Top-4 2.33 days 1010K 64.6M 37.71 33.48
16-layer model

1 top-4 6.21 days 550K 352M 23.10 25.07

1 top-16 6.28 days 175K 112M 27.66 28.78

4 top-4 6.24 days 550K 352M 20.91 24.21

e.g., for the 16-layer model, top-16 routing is al-
most 7 times slower than top-1 routing. The com-
plexity of top-k gating comes from the fact that
token-to-expert multiple assignments are hard to
parallel. Therefore, we hope to figure out a solution
to alleviate this problem of serial computing.

3.3 Expert Prototyping

Previous analysis indicates that k experts play dif-
ferent roles and outcompete a single expert. How-
ever, the looping “argmax’ operation in top-k rout-
ing incurs computation inefficiency. To tackle the
issue of inefficiency, we propose a simple method
called expert prototyping. Expert randomly splits
experts into k prototypes. In each forward compu-
tation, each token is first sent to the k prototypes.
Inside each prototype, it is processed by the ex-
pert selected by top-k routing. Parallel routing is
performed across prototypes. Then the outputs of
prototypes are combined linearly as shown below:

k. m
y=>_Y pijEijx), 3)

i=1 j=1

where m refers to the number of experts inside a
group. This method avoids the looping argmax
operation. Instead, it generates k outputs in a par-
allel fashion and it does not incur training ineffi-
ciency. From Table 1, it can be found that the 4
top-4 has similar performance in training efficiency
compared with the 1 top-4 (980 vs. 975 ms/step).
Expert prototyping makes the gating independent
within each group, which is easy to parallel on
modern devices. Under the parallel optimization
and the same number of experts, the complexity of
conventional top-% routing is O (K), while the com-
plexity of prototyping top-k is O(K/P), where P
is the number of prototyping groups. Consequently,

expert prototyping reduces the gating time linearly
while keeping the same number of experts.

We demonstrate the performance of expert pro-
totyping model on the step and time basis in Fig-
ure 3 and Figure 4. From Figure 3, we find that
for smaller models the 4 top-4 routing model can
greatly outperform all the baselines with a large
gap in log perplexity, on both step and time basis.
From Figure 4, for larger models with around 10
billion parameters, we find that 4 top-4 still achieve
the best performance on the step basis according to
Figure 4(a). However, on the time basis according
to Figure 4(b), we observe that 4 top-4 with an ob-
vious speed advantage can significantly surpass the
1 top-16 baseline. This reflects that our proposed
expert prototyping can help the model maintain
high training efficiency but bring quality gains.

3.4 Evaluation

We demonstrate both the upstream and downstream
PPL of the examined models in Table 2. We also
provide the training time, step, and samples for bet-
ter comparison. It can be found that under the same
computation budget, the proposed expert prototyp-
ing model with 4 top-4 routing can outperform both
the 1 top-4 and 1 top-16 baselines in both upstream
and downstream evaluation with obvious advan-
tages, no matter when the model scale is small (3
layers) or large (16 layers). Furthermore, the 4 top-
4 has similar computation efficiency in comparison
with the 1 top-4. Therefore, it can be trained with
more samples than the 1 top-16 and it naturally
achieves superior performance.

4 Rocketing to Trillion Parameters

In this section, we demonstrate that our findings
and proposals are also applicable to large-scale pre-
trained models, and we finally advance the model
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scale to 1 trillion parameters.

We validate our findings on extremely large-
scale models. We first scale the model size up
to 100 billion parameters respectively. For simplic-
ity, we validate expert prototyping on the 100B-
parameter models. We report the training log per-
plexity for the model performance. As Figure 5
demonstrates, expert prototyping still have advan-
tages over the MoE baseline, and similarly in both
contexts larger k for expert prototyping can further
benefit the model quality. This shows the effective-
ness of expert prototyping in training models of a
much larger scale.

Based on the aforementioned findings and pro-
posals, we move forward to build an extremely
large-scale model with over 1 trillion parameters.
Due to limited computational resources, we attempt
to figure out solutions to implement a 1-trillion-
parameter model on solely 480 NVIDIA V100-
32GB GPUs.

To be more specific, we implement our model
on a cluster of workers connected by RDMA net-
works with a bandwidth of 100Gb. To save memory
usage, we instead turn to Adafactor (Shazeer and
Stern, 2018) for optimization in concern of its sub-
linear memory costs. However, there are a series
of sporadic issues concerning training instabilities.
Through trials and errors, we find that such model
training is highly sensitive to learning rates, espe-
cially when being trained with Adafactor. We did
not use the default one 0.01 due to divergence, but
instead, we use 0.005 to strike a balance between
training stability and convergence speed. Also, we
find that it is essential to lower the absolute val-
ues of initialized weights, which is also illustrated

in Fedus et al. (2021). We specifically reduce the
BERT initialization, a truncated normal distribution
with 4 = 0 and o0 = 0.02, by a factor of 10.

We first evaluate the quality of models with dif-
ferent parameters but similar computation FLOPs
by observing training log perplexity. We compare
the performance of MoE baseline models with 100
billion, 250 billion parameters, and 1 trillion param-
eters, and we observe that the results prove the scal-
ing law that models with larger capacity performs
better, as demonstrated in Figure 6. Then we imple-
ment both 1-trillion-parameter MoE baseline and
our expert prototyping MoE model.”> Still, from
Figure 6 we can figure out the proposal has a strong
advantage over the compared model with 1 trillion
parameters. We observe a substantial speedup in
convergence, where our method is around 5 times
faster than the baseline. However, both models
have similar computational FLOPs, which demon-
strates that our method strikes a far better balance
between computational efficiency and model qual-

ity.
5 Related work

Pretraining has achieved great success in these
years, and it has recently become a common prac-
tice in natural language processing (Peters et al.,
2018; Devlin et al., 2019; Radford et al., 2018;
Yang et al., 2019; Liu et al., 2019; Dong et al.,
2019). In the field of cross-representation learn-
ing, pretraining has also become significant and
pushed the limit of model performance in down-
stream tasks (Lu et al., 2019; Su et al., 2020; Lu
et al., 2020; Chen et al., 2020; Gan et al., 2020;
Li et al., 2020; Yu et al., 2021; Li et al., 2021;
Zhang et al., 2021). Recent studies (Kaplan et al.,
2020) demonstrate the power law of model scale
and performance. With the rapid development in
distributed training and parallelism (Shoeybi et al.,
2019; Rajbhandari et al., 2020; Ren et al., 2021;
Rajbhandari et al., 2021), we have witnessed the
burst of studies in extremely large scale pretrain-
ing in both natural language processing (Brown
et al., 2020; Shoeybi et al., 2019) and multimodal
pretraining (Ramesh et al., 2021; Lin et al., 2021)
and also new state-of-the-art performance in the
recent two years. Though extremely large-scale
dense models are highly effective especially in the

Due to limited computational resources and instabilities
in systems and hardware, the trillion-parameter expert proto-
typing model has been trained for only 30k steps.
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context of few-shot learning (Brown et al., 2020),
some researchers have turned to sparse expert mod-
els for efficient large-scale pretraining. Inspired by
the success of Mixture-of-Experts (Shazeer et al.,
2017; Ramachandran and Le, 2019; Shazeer et al.,
2018), recent studies (Lepikhin et al., 2021; Fe-
dus et al., 2021) expand the model size to over
trillion parameters and fully utilize the advantages
of TPUs to build sparse expert models with Mesh-
Tensorflow (Shazeer et al., 2018). They demon-
strate that sparse expert models can perform much
better than dense models with the same compu-
tational FLOPs but their computational costs are
similar. A series of the following work success-
fully implement sparse expert models on NVIDIA
GPU (Lin et al., 2021; Lewis et al., 2021). In this
work, we follow the practice of Lin et al. (2021)
and implement our models on the distributed learn-
ing framework Whale (Wang et al., 2020).

6 Conclusion

In this work, we explore the factors inside sparse
expert models and investigate how they influence
the model quality and computational efficiency. We
find out that load imbalance may not be a signifi-
cant issue affecting model quality, and the auxiliary
balancing loss can be removed without significant
performance drop. We observe that the number
of activated experts k play a significant role in
training MoE models, where larger k£ can help the
model achieve better performance. However, the
increase will enhance computation complexity and

incur training inefficiency. Therefore, we propose
a simple solution called expert prototyping. The
method splits experts into different prototypes and
applies top-k routing. With extensive experiments,
we show that expert prototyping can help maintain
high training efficiency but significantly improve
the model performance in both upstream and down-
stream evaluation. Furthermore, to evaluate its
effects in large-scale training, we extend the ex-
periments to large-scale models with over 100 bil-
lion parameters and demonstrate the effectiveness.
Finally, we push the scale to 1 trillion parameters
and successfully implement the 1-trillion parameter
model M6-T on solely 480 NVIDIA V100-32GB
GPUs. We show that our simple method can ef-
fectively improve the performance of M6-T over
the same-scale baseline, and M6-T gains a 5-time
speedup in convergence.
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A Appendix

A.1 Multimodal Pretraining and Downstream

Evaluation

In practice, we follow Lin et al. (2021) that employs
an extremely large-scale multimodal pretrained
model with MoE architecture in Chinese. Specifi-
cally, we pretrain a model on the image-text pairs
from the dataset M6-Corpus (Lin et al., 2021). In
multimodal pretraining, the pretrained model re-
ceives the inputs of a pair of related image and text
as the input and generates the high-level represen-
tations with layers of Transformer (Vaswani et al.,
2017). In our experiments, we first transform an in-
put image to patch features by splitting it into 4 x 4
patches and extracting patch features with a trained
ResNet (He et al., 2016). We flatten the patch
features of the input image to a sequence of rep-
resentations and concatenate them with the word
embeddings of the text sequence shorter than 128
words. Then we build a feature extractor with multi-
ple layers of transformer consisting of self attention
and feed-forward neural networks (FFN). Notably,
in order to integrate MoE to the model architecture,
we replace the FFN with MoE, where FFN as ex-
perts are distributed across workers. We pretrain
the model with the task of image captioning, where
the model learns to generate words autoregressively
based on the previous context including the patch
features.

To comprehensively evaluate the performance
of the methods, we conduct experiments on im-
age captioning in Chinese, and we follow Lin et al.
(2021) to use the E-commerce IC dataset in MUGE
benchmark®. We focus on the capability of lan-
guage modeling of the pretrained model, and thus
we use teacher forcing and evaluate the perfor-
mance by perplexity (PPL).

A.2 Experimental Setups

For the exploration, we investigate different setups
for both models. Here we point out key configura-
tions of our experimental setups and we demon-
strate the details in Table 3. Following BERT-
Chinese (Devlin et al., 2019), we use the same
vocabulary with 21128 subwords. For the initial-
ization, we use the BERT initialization with y = 0
and o = 0.02 for most cases, and we use an initial-
ization with a smaller standard deviation of 0.002
for the 17" model. As to the expert capacity, we

®https://tianchi.aliyun.com/muge


https://tianchi.aliyun.com/muge

Table 3: Hyperparameters for pretraining the MoE models.

Hparam 3-layer 16-layer 100B 1T
Hidden size 128 128 1024 1024
Intermediate size 512 512 4096 21248
Number of layers 3 16 24 24
Number of attention heads 8 8 16 16
Attention head size 16 16 64 64
Initializer range 0.02 0.02 0.02 0.002
Number of experts 4096 4096 512 960
Number of GPUs 8 8 128 480
Optimizer AdamW AdamW AdamW Adafactor
Learning rate le-4 le-4 8e-5 Se-3
Mixed precision v v v X
FP16 communication v v v X
Params 1.6B 8.6B 103.2B  1002.7B
Table 4: Notation table for Pseudo code.
Variable Definition

D Number of workers

d Number of GPUs per worker (d=1 in this paper)

E Number of total experts

e Number of experts per worker (e*D=E)

C Capacity per expert

M Model size (same as hidden size, same as embedding size)

I Intermediate size

B Batch Size per GPU

L Sequence Length

T Number of tokens (T=B*L)

Z Number of prototypes

F Number of expert per prototype (Z*F=E)

generally use a capacity factor of v = 1.25 for
more buffer. The batch size per GPU is 8 and the
total batch size is equal to the product of the batch
size per GPU and the number of GPUs. We use
AdamW optimizer (Loshchilov and Hutter, 2019)
for optimization except for the 17" model where we
use Adafactor (Shazeer and Stern, 2018) instead.
For Adafactor, we set the learning rate to 5e — 3.
We use warmup schedule with a warmup step of
500. The dropout rate for FFN and attention is 0.1.
We use mixed precision training for FP16 commu-
nication for all models except the 17" one due to
the issue of training instability.

We implement our experiments on Tensorflow
1.15 (Abadi et al., 2016). Different from the orig-
inal implementation of Switch and GShard with
Mesh-Tensorflow (Shazeer et al., 2018), we im-
plement the multimodal pretrained model with
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the framework Whale (Wang et al., 2020), which
enables data, model, and expert parallelism on
NVIDIA GPU.

A.3 Pseudo Code for Expert Prototyping

The pseudo codes for MoE layer and proposed ex-
pert prototyping in Whale are provided in Figure 7
and Figure 8 respectively. Table 4 illustrates the
notations of specific tensor dimensions.

Amount of All-to-All Communication There
are two operations of all-to-all communication in
each MoE FFN layer in a forward propagation pro-
cess (one for dispatch_inputs and the other for out-
puts in the pseudo code). During the communica-
tion, each entry of the communicated tensor passes
to a worker once. Thus, the total amount of com-
munication, which is O(EdCM )+ O(eDCM) =



O(EdCM) = O(ECM), depends on the number
of experts, capacity and model size.

Amount of Computation For the 1T-scale MoE
model, the total amount of computation in the
MoE FFN layer is mainly dominated by the two
matrix multiplications, which transform the in-
put tensor from the hidden size to the interme-
diate size and then vice versa. The total com-
putation of these two matrix multiplications is
O(DeCMI) + O(DeCIM) = O(ECMI). For
1T model, these two operations hold around 98%
total forward FLOPs of the MoE FEN layer.
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import whale as wh
import tensorflow as tf

def (inputs, prototype num, num experts, expert_ capacity):
#n# MoE Layer FeedForward. ”"“”
# inputs (BLM): Each example is typically a vector of size model_dim,
# representing embedded token or an element of Transformer layer output
orig_batch_dim, orig_seq_length, model dim = inputs.size()
total_token num = orig batch dim * orig seq length
# Flatten input tokens.
reshaped_inputs = tf.reshape(inputs, [1, total_ token_num, model_dim]) # dTM
# Moe Gating.
# combine_tensor (dTEC): used for combining expert outputs and scaling with probabilities.
# dispatch_mask (dTZFC): used for dispatching input tokens to the correct expert.
combine_ tensor, dispatch_mask, aux_loss = prototype gating(reshaped_inputs, prototype_num,
num_experts, expert_ capacity)

# Expand inputs for different prototypes.
reshaped_inputs = tf.broadcast_to(tf.expand dims(reshaped inputs, axis=2),
[1, total_token_num, prototype num, model_dim]) # dTzM

# Prepare to dispatch tokens to the correct expert.
dispatch_inputs = tf.einsum(”dTzFC,dTZM->ZFdCM”, dispatch_mask, reshaped_inputs,
name="“dispatch_inputs”)

dispatch_inputs = tf.reshape(
dispatch_inputs,
[num_experts, 1, -1, model_dim]) # ZFdCM -> EdCM

# Standard forward.
# Whale is able to infer an efficient parallel strategy automatically within the split scope.
# It will insert an appropriate all-to-all communication operator in the necessary position.
with wh.split():

# All-to-All communication.

# Inputs are split across the experts dimension (1lst) and dispatched to correct experts.

# Workers gather tokens sent by other workers along the workers dimension (2nd).

# dispatch_inputs: EdCM -> eDCM

# inter experts forward.

# inter expert weights (eMI): Each expert has its own unique set of weights.
intermediate = tf.einsum('eDCM,eMI->eDCI', dispatch_inputs, inter expert_weights,

name="dispatched inter outputs")

activated inters = activation_fn(intermediate) # eDCI

# Output experts forward.
# out_expert weights (eIM): Each expert has its own unique set of weights.
outputs = tf.einsum(
'eDCI,eIM->eDCM', activated_inters, out_expert weights, name="dispatched outputs")

# All-to-All communication.
# Outputs are split across the workers dimension (2nd) and switched back to experts.
# Workers gather outputs sent by other workers along the experts dimension (1lst).
# outputs: eDCM -> EdCM
# Multiply outputs of experts by the routing probability.
combined_outputs = tf.einsum(
'dTEC,EdCM->dTM', combine_tensor, outputs, name="combined outputs")

# Convert the outputs back to input shape.
outputs = tf.reshape(combined_outputs,

[orig_batch dim, orig_seq length, model_dim]) # dTM -> BLM
return outputs, aux_loss

Figure 7: Pseudo code of the MoE Transformer layer in Whale.
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import tensorflow as tf

def

(inputs, prototype_num, num_experts, expert_capacity):
Produce the combine and dispatch tensors used for dispatching and
receiving tokens from their highest probability expert in each prototype.

wun

_, total_ token_num, model_dim = inputs.size()
inputs = tf.broadcast_to(tf.expand dims(inputs, axis=2),
[1, total_token_num, prototype_num, model_dim]) # dTzM
# gating weights (M2ZF): weights for each expert, shared across experts.
logits = tf.einsum(’'dTzM,MZF->dZTF’, inputs, gating weights)

# Probabilities and indices for each token of what expert

# it should be sent to in each prototype.

raw_gates = tf.nn.softmax(logits) # along expert dim, dzTF

_, expert_index = tf.math.top_k(raw_gates, k=1) # dzTk k=1

expert_index = tf.squeeze(expert_index, [3]) # dzT

expert_mask = tf.one_hot(expert_index, num_experts // prototype num,
dtype=inputs.dtype) # dzTF

density_ proxy = raw_gates # dzTF

importance = tf.ones_like(expert mask[:, :, :, 0]) # daT

gate = tf.einsum(’'dzTF,dZTF->dZT’, raw_gates, expert _mask) # dzT

# We compute cumulative sums of assignment indicators for each expert

# index i \in 0..F-1 for each prototype independently.

# First occurrence of assignment indicator is excluded.

position_in_expert = tf.cumsum(expert_mask, exclusive=True, axis=2) # dzTF

# density[:, :, 1] represents assignment ratio (num assigned / total) to

# expert i as top expert without taking capacity into account.

density denom = tf.reduce mean(importance, axis=2)[:, :, tf.newaxis] + le-6
density = tf.reduce mean(expert mask, axis=2) / density_denom

# density proxy[:, :, 1] represents mean of raw_gates for expert i, including
# those of examples not assigned to i with top_k.

density proxy = tf.reduce mean(density proxy, axis=2) / density_denom

with tf.name_scope('aux loss'):
# The MOE paper (https://arxiv.org/pdf/1701.06538.pdf) uses an aux loss of
# reduce_mean(density proxy * density proxy). Here we replace one of
# the density proxy with the discrete density following mesh_tensorflow.
aux_loss = tf.reduce mean(density proxy * density) # element-wise
aux_loss *= (num_experts // prototype num) *
(num_experts // prototype num) * loss_coef

# Make sure that not more than expert capacity tokens can be dispatched to each expert.
capacity = tf.cast(expert_capacity, dtype=position_in_expert.dtype))

expert_mask *= tf.cast(tf.less(position_in_expert, capacity, dtype=expert mask.dtype)
position_in expert = tf.einsum(‘dzTF,dzTF->dzT’, position_in_expert, expert_mask)
mask_flat = tf.einsum(’dzZTF->dZT’, expert_mask)

gate *= mask_flat

# Construct combine tensor and dispatch mask.
b = tf.one_hot(tf.cast(position_in_ expert, dtype=tf.int32), expert capacity,
dtype=inputs.dtype) # dzTC
a = tf.expand dims(gate * mask_flat, -1) *
tf.one_hot(expert_index, num_experts // prototype num, dtype=inputs.dtype) # dzTF
combine_tensor = tf.einsum('dzTF,dzTC->dTZFC', a, b, name='combine tensor') # dTZFC

dispatch_mask = tf.cast(tf.cast(combine_ tensor, tf.bool), inputs.dtype,
name=‘dispatch_mask’) # dTZFC
dispatch mask = tf.reshape(dispatch_mask,
[1, total_token num, prototype num, -1, expert capacity]) # dTZFC

combine tensor = tf.reshape(combine tensor,
[1, total_token_num, num experts, expert_capacity]) # dTEC

return combine_tensor, dispatch_mask, aux loss

Figure 8: Pseudo code of the Expert Prototyping (an example on top-1 gating).
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