M6-T: Exploring Sparse Expert Models and Beyond

Anonymous ACL submission

Abstract

Sparse expert models can achieve promising
results with outrageous large amount of param-
eters but constant computation cost, and thus
it has become a trend in model scaling. Still,
it is a mystery how Mixture-of-Experts (MoE)
layers leveraging the parameters with sparse
activation bring quality gains. In this work, we
investigate several key factors in sparse expert
models. We find that load imbalance may not
be a significant problem affecting model qual-
ity, and auxiliary balancing loss can be removed
without significant performance degrade. We
further discover that larger number of sparsely
activated experts k£ may not necessarily bene-
fit the performance on the time basis, and we
observe diminishing marginal utility that the
performance gap gradually narrows with the
increase in k We take a step forward to pro-
pose a simple method called expert prototyping
that splits experts into different prototypes and
applies top-k routing for each prototype in par-
allel. Our experiments demonstrate that the pro-
totyping strategy improves the model quality, in
comparison with further increasing to a larger k
with comparable computation cost to prototyp-
ing. Furthermore, we conduct an exploration on
training extremely large-scale models, and we
figure out that the strategy shows greater effec-
tiveness in training larger models. Notably, we
push the model scale to over 1 trillion parame-
ters on solely 480 NVIDIA V100-32GB GPUs.
The proposed giant model M6-T with expert
prototyping achieves substantial speedup in
convergence over the same-size baseline.

1 Introduction

Large-scale pretraining has been demonstrating
tremendous success across several fields, especially
natural language processing (Devlin et al., 2019;
Radford et al., 2019; Shoeybi et al., 2019; Raffel
et al., 2020; Brown et al., 2020). Recent studies
have shown that scaling model size can bring sig-
nificant quality gains in downstream task perfor-
mance (Shoeybi et al., 2019; Raffel et al., 2020;

Brown et al., 2020), and the model quality scales
as a power law with the data size, model scale, and
amount of computation (Kaplan et al., 2020). This
can be extended to the field of multimodal represen-
tation learning (Lu et al., 2019; Chen et al., 2020),
where models with outrageous numbers of param-
eters (Ramesh et al., 2021; Lin et al., 2021) can
achieve outstanding performance in cross-modal
understanding and generation. However, training
dense models is computationally expensive and it
is hard to train them on super large-scale data with
limited computational resources.

Inspired by the success of Mixture-of-Experts
(MoE) (Shazeer et al., 2017; Ramachandran and
Le, 2019), recent studies have focused on training
large-scale sparse expert models with high training
efficiency (Lepikhin et al., 2021; Fedus et al., 2021;
Lin et al., 2021; He et al., 2021). An MoE layer
consists of multiple experts and thus has a large
model capacity. Each forward computation routes
a token to k experts from N, where k£ < N. Such
routing mechanism allows the combination of data
parallelism and expert parallelism. Previous stud-
ies (Lepikhin et al., 2021; Fedus et al., 2021) show
that it can achieve obvious performance speedup
with the same computational costs. However, train-
ing such large-scale MoE models can be extremely
difficult owing to multiple factors, e.g. system chal-
lenges of communication and load imbalance, and
algorithmic challenges of training instabilities, etc.

In this work, we conduct an analysis of the re-
cent MoE models to figure out which factors in-
fluence the model quality and training efficiency.
We investigate several factors, including load bal-
ance, top-k routing strategies, etc. Our analysis
demonstrates that load imbalance is not a signifi-
cant problem affecting model quality, and the aux-
iliary balancing loss can be removed without sig-
nificant performance drop. We further observe that
the number of sparsely activated experts k in top-k
routing make a difference in this context. Basically,

increasing k from top-1 gating, namely switch gat-
ing (Fedus et al., 2021), contributes to better model
performance. However, larger k for top-k routing
will significantly degrades the training efficiency
as well as convergence efficiency. Diminishing
marginal utility can be discovered that there will
be few performance gains when k is substantially
large.

In this scenario, we propose a simple expert pro-
totyping strategy called Expert Prototyping. Expert
prototyping splits the experts into different groups
and applies top-k routing for each prototype in a
parallel schedule. The parallelism maintains sub-
stantially higher training efficiency in comparison
with the FLOP-matched baselines, and the speed
advantage turns out larger with the increase in k.
We observe that the proposed models achieves obvi-
ously lower convergence on the time basis in com-
parison with the baseline models. Moreover, with
the merits in training efficiency, the models with
expert prototyping can still achieve comparable or
even superior performance over the baselines with
similar computation FLOPs, according to our ex-
periments for upstream and downstream perplexity
evaluation.

For further exploration, we extend the experi-
ments to large-scale models with over 100 billion
parameters respectively. Our findings and propos-
als are applicable to extremely large-scale models,
and results show that expert prototyping has more
significant advantages in training larger models.
To go even further, we push the model scale to
over 1 trillion parameters and successfully imple-
ment it on solely 480 NVIDIA V100-32GB GPUs.
We show that the 1-trillion-parameter model M6-T
with expert prototyping outperforms the baseline
of the identical model scale, and achieves around 5
times of speedup in training convergence.

To summarize, our contributions are as follows:

* We explore key factors inside MoE models,
and find that auxiliary balancing loss is not
necessary, and the number of sparsely acti-
vated experts k can significantly impact the
model performance.

* We propose a simple method called expert
prototyping, which splits experts into & proto-
types and applies top-k activation inside each
prototype. The strategy maintains high train-
ing efficiency while keeping comparable or
superior performance over the FLOP-matched
baselines.

* We advance our models to 1 trillion pa-
rameters and successfully implement it on
solely 480 NVIDIA V100-32GB GPUs. M6-
T with expert prototyping outperforms the
same-scale baseline and achieves substantial
speedup in convergence.

In the following, we introduce background
knowledge about sparse expert models in Section 2,
and we demonstrate our exploration and proposal
in Section 3 and further present our extreme-scale
practice in Section 4. Finally, we present the related
work in Section 5, and we draw the conclusion in
Section 6.

2 Sparse Expert Models

Sparse expert models are regarded as a promising
method for model scaling with high training effi-
ciency. Training dense models requires extremely
high computational costs, while sparse expert mod-
els can converge significantly faster as it iterates
on more data with far higher efficiency on a time
basis. Such mode of large-scale model training
is also more environmentally friendly. In this set-
ting, a large amount of the model weights are dis-
tributed to different workers owing to the architec-
ture of MoE layers, and MoE allows the increase in
parameters while keeping constant computational
costs (Lepikhin et al., 2021; Fedus et al., 2021).
Mixture-of-Experts is essentially a routing algo-
rithm that routes tokens to k specified experts from
N (where kK < N) for forward computation. It
enables expert parallelism so that experts process
input tokens specified by gating functions simul-
taneously. Expert networks, each of which is a
multi-layer perceptron, are distributed across work-
ers. We use a gating function which specifies k
from NV experts for an input token representation x.
The chosen experts process the representation with
forward computation and reduce their results with
weighted summation based on the gating values:

k
i= Z“Ei(l’)

p = softmazx(g)
g = topk(norm(Wyx))

ey

where E; refers to the i-th expert. The most typi-
cal MoE algorithms for large-scale sparse expert
models are Switch Transformer and GShard (Fe-
dus et al., 2021; Lepikhin et al., 2021). Their key

MoE

r3.4

r3.2

3.0

F2.8

Coefficients of Variation
=
o

r2.6

0.2

200k 300k 400k 500k

Train Steps

0 100k

MoE & Auxloss
1.8

: — layer=1
1.6 — layer=2 [34
H — layer=3
1.4 layer=4
k layer=5 F 3.2
1.2 z
x
3 9
1.0 A 3.0 g
a
s, j=2
0.8 1 S
N."'“.u.... 28
0.6 ‘un.,,"v""..”.
4 g [2°

0.2

200k 300k 400k 500k

Train Steps

0 100k

Figure 1: Curves of the developments of coefficients of variation c, at different layers. Here we demonstrate
the development of ¢, of baseline and auxiliary loss at all layers. We also demonstrate their curves of training log
perplexity (see the black dotted curve). Auxiliary loss helps the model gain highly balanced compute loads at every
layer, but the higher balance has not been translated to higher model quality. On the contrary, the behaviors of load
balance in the vanilla MoE model are peculiar. Though ¢, at all layers drop at the beginning, yet some of them even

increase to a high value afterward.

difference lies in their choice of top-k selection,
which applies top-1 and top-2 selection respec-
tively. Switch Transformer (Fedus et al., 2021)
noted that routing a token to 1 expert only is effec-
tive in preserving model quality and reducing com-
putation complexity, contrary to the idea of Shazeer
et al. (2017) that k should be larger than 1 so that
there are non-trivial gradients to the routing func-
tions.

What makes a difference in the performance
and model quality is the actual implementation of
distributed experts. Model parallelism allows the
partitioning of a large tensor across workers, and
our implementation even enables multiple experts
on an identical worker, instead of one expert per
worker. Due to the dynamic nature of top-k routing,
it may cause low efficiency if severe load imbal-
ance happens. A standard implementation to tackle
the problem is the setting of expert capacity (Lep-
ikhin et al., 2021; Fedus et al., 2021; Shazeer et al.,
2018), which is defined as:

k-T

027 v

= @)

where T refers to the number of tokens in a batch
and ~y refers to the capacity factor which is com-
monly larger than 1.0. A larger capacity factor can
provide more buffer for expert capacity. Tokens
are distributed to experts with all-to-all dispatching
operations. The token representations processed by
selected experts are combined with all-to-all com-
munication to their original workers. On the con-

dition of exceeded capacity, token representations
skip forward computation by residual connection.
For experts still having space in their capacities
after dispatching, we add padding tokens to fill in.
Thus the computations and communications costs
are positively related to the number of experts N
and the expert capacity C'. Low expert capacity
can cause a significant amount of dropped tokens if
there is load imbalance on experts, but increasing
expert capacity will correspondingly enhance the
computation and communication costs.

3 Exploration of Sparse Expert Models

To investigate the MoE models, we conduct ex-
periments to observe the effects of several factors,
including auxiliary balancing loss for load balance,
the value of k for sparse activation, etc. Following
Lin et al. (2021), we pretrain the models on the M6-
corpus and we observe their performance on a held-
out training set for upstream evaluation and an im-
age captioning dataset, E-commerce IC in MUGE
benchmark!, for downstream evaluation. We pro-
vide more experimental details in Appendix A.

3.1 Development of Load Balance

Recent studies pointed out the significance of bal-
anced routing (Fedus et al., 2021; Lepikhin et al.,
2021; Lewis et al., 2021), and illustrated the impor-
tance of balancing methods such as auxiliary expert
balancing loss. We first conduct experiments on

"https://tianchi.aliyun.com/muge

https://tianchi.aliyun.com/muge

I

Add & LayerNorm]

|

1
Add & LayerNorm]
|

| Self attention I
1

a. Top-k Routing

I

—’[Add & LayerNorm]
f
SRR
| L [l - |
E[En] [Elz]ii[Em] [Ezz]i
SN | S
I
—’[Add & LayerNorm]
i
‘ Self attention I
f

b. k Top-1 Routing for Expert Prototyping

Figure 2: A demonstration of conventional top-2 routing and expert prototyping with 2 top-1 routing. In
top-2 routing, the router selects the top-2 from all the experts and sends the token representation to those experts.
In 2 top-1 routing for expert prototyping, experts are first grouped into 2 prototypes, and there is a router for each
prototype. Each router chooses the top-1 expert and sends the token representation through it. The output from each
prototype is summed up element-wisely for the final output.

the MoE models with and without auxiliary load
balancing loss respectively. We pretrain both mod-
els for 500k steps and compare their performance
in the Perplexity (PPL) evaluation. Experimental
results show that both models achieve similar per-
formance, and the one with auxiliary loss even per-
forms slightly worse in the evaluation of training
log perplexity (2.694 vs. 2.645). These observa-
tions intrigue us to further investigate the relation-
ship between load balance and model quality.

We evaluate the degree of compute load balance
of experts at every layer. Following Shazeer et al.
(2017), we use the coefficient of variation for the
evaluation of load balance. We define the coeffi-
cient of variation for effective compute loads as
that of the number of real tokens computed by the
experts ¢, = %, where 7 refers to tokens com-
puted by experts. This metric reflects the degree
of uniformity of token assignment. We observe
the development of ¢, in the training process to
evaluate the change of load assignment.

We demonstrate the results in Figure 1. For all
layers, significant load imbalance exists at the ini-
tial stage according to the high values of ¢,. No-
tably, the value is generally higher at the top lay-
ers. For the model trained with auxiliary expert
load balancing loss, ¢, at all layers drop drasti-
cally at the initial stage to a low value around 0.3.

This denotes that highly balanced compute loads,?
and they become stable in the following. How-
ever, compute loads are quite different for the MoE
model without auxiliary loss. Though ¢, at all lay-
ers drop at the beginning, yet they fail to reach a
small value, which denotes highly balancing com-
pute loads. Except for that, some even increase to a
high value afterward. These phenomena reflect the
existence of load imbalance. Though auxiliary loss
is advantageous in expert load balancing, such an
advantage has not been translated to performance,
as mentioned above.

3.2 The Effects of Top-k Sparse Activation

Table 1: Speed of models with different top-% routing
strategies (ms/step). We report the training speed of
models with different routing strategies. The compar-
ison between different strategies are conducted under
various model sizes.

Model Size Top-1 Top-4 Top-16 4 Top-4

3-layer 98 199 600 203
16-layer 436 975 3100 980

Previous work (Fedus et al., 2021) pointed out
that top-1 is sufficient for high model quality in

>We manually observe the number of tokens that experts
receive and find that compute loads are highly balanced.

1Top-1
— 1Top-4
52 —— 4Top-4
—— 1Top-16
54.8
=3
)
4.4
S
4
3.6
0 100k 200k 300k 400k

Training Steps

(a) step-basis curve

5.2 — Tors
—— 4Top-4
?48 —— 1Top-16
g
54.4
g
4
3.6
0 200k 400k 600k 800k 1M 1.2M

Training Seconds

(b) time-basis curve

Figure 3: Model performance with different routing strategies under the 3-layer setup. (a) demonstrates
the performance on the step basis and (b) demonstrates that on the time basis. From both figures, increasing k
from 1 to 4 significantly improves convergence. However, further changing the routing strategy to 1 top-16 brings
marginal benefit. In comparison, the model with expert prototyping, namely 4 top-4, achieves a substantially lower

perplexity.?

0 40k 80k
Training Steps

120k

160k

(a) step-basis curve

A
©

&
N

Log Perplexity

w W
N oo b

N
<]

0 ™ 2M 3M 4aM

Training Seconds

(b) time-basis curve

Figure 4: Model performance with different routing strategies under the 16-layer setup. (a) demonstrates the
performance on the step basis and (b) demonstrates that on the time basis. Similar to the results of 3-layer models,
the 4 top-4 model achieves the best performance and it gains a significant advantage on the time-basis evaluation

over the 1 top-16 baseline.

comparison with top-k selection with k£ > 1, while
it has significant advantages in computational effi-
ciency, but the experimental results in Lewis et al.
(2021) show that top-2 still outperforms the top-1
selection. Here we conduct experiments to further
investigate how different top-k£ methods influence
the model quality. We first examine whether larger
k can help the model achieve better performance.
Specifically, we choose k € {1, 4,16} for the eval-
uation, and we implement them on models of differ-
ent scales, where [€ {3,16}. More experimental
details are illustrated in Appendix A.2. We demon-
strate their performance of upstream log perplexity
from different views, including the step-basis* and

*We use the same batch size so that the step basis is essen-
tially equal to sample basis.

time-basis performance.

Figure 3(a) and Figure 4(a) show that on the
step basis models with larger values of £ can reach
more superior performance. We also observe that
the performance gap between the top-4 routing and
top-16 routing is small especially when the model
is large with 16 layers. This phenomenon demon-
strates diminishing returns with the increase in k,
and the problem becomes more salient when the
scale of model is large.

However, the computation costs for quality is
actually quite large, as training efficiency drops
drastically with the increase in k. Table 1 reports
the training speed of models of different scales
with different routing strategies. It illustrates that
larger k£ will greatly decrease the training speed,

Table 2: Evaluation of perplexity (lower is better) on upstream pretraining and downstream E-commerce IC
task (Lin et al., 2021). Following Radford et al. (2019), we do not perform any fine-tuning for any of these results.
Within each model size, the strategies taken here for comparison are pretrained on almost same budget of training

time and GPU devices.

Model Training Time Steps Training Samples Upstream PPL Downstream PPL
3-layer model

1 top-4 2.33 days 1010K 64.6M 64.07 54.74

1 top-16 2.36 days 340K 21.8M 59.74 51.66

4 Top-4 2.33 days 1010K 64.6M 37.71 33.48
16-layer model

1 top-4 6.21 days 550K 352M 23.10 25.07

1 top-16 6.28 days 175K 112M 27.66 28.78

4 top-4 6.24 days 550K 352M 20.91 24.21

e.g., for the 16-layer model, top-16 routing is al-
most 7 times slower than top-1 routing. The com-
plexity of top-k gating comes from the fact that
token-to-expert multiple assignments are hard to
parallel. Therefore, we hope to figure out a solution
to alleviate this problem of serial computing.

3.3 Expert Prototyping

Previous analysis indicates that k experts play dif-
ferent roles and outcompete a single expert. How-
ever, the looping “argmax’ operation in top-k rout-
ing incurs computation inefficiency. To tackle the
issue of inefficiency, we propose a simple method
called expert prototyping. Expert randomly splits
experts into k prototypes. In each forward compu-
tation, each token is first sent to the k prototypes.
Inside each prototype, it is processed by the ex-
pert selected by top-k routing. Parallel routing is
performed across prototypes. Then the outputs of
prototypes are combined linearly as shown below:

k. m
y=>_Y pijEijx), 3)

i=1 j=1

where m refers to the number of experts inside a
group. This method avoids the looping argmax
operation. Instead, it generates k outputs in a par-
allel fashion and it does not incur training ineffi-
ciency. From Table 1, it can be found that the 4
top-4 has similar performance in training efficiency
compared with the 1 top-4 (980 vs. 975 ms/step).
Expert prototyping makes the gating independent
within each group, which is easy to parallel on
modern devices. Under the parallel optimization
and the same number of experts, the complexity of
conventional top-% routing is O (K), while the com-
plexity of prototyping top-k is O(K/P), where P
is the number of prototyping groups. Consequently,

expert prototyping reduces the gating time linearly
while keeping the same number of experts.

We demonstrate the performance of expert pro-
totyping model on the step and time basis in Fig-
ure 3 and Figure 4. From Figure 3, we find that
for smaller models the 4 top-4 routing model can
greatly outperform all the baselines with a large
gap in log perplexity, on both step and time basis.
From Figure 4, for larger models with around 10
billion parameters, we find that 4 top-4 still achieve
the best performance on the step basis according to
Figure 4(a). However, on the time basis according
to Figure 4(b), we observe that 4 top-4 with an ob-
vious speed advantage can significantly surpass the
1 top-16 baseline. This reflects that our proposed
expert prototyping can help the model maintain
high training efficiency but bring quality gains.

3.4 Evaluation

We demonstrate both the upstream and downstream
PPL of the examined models in Table 2. We also
provide the training time, step, and samples for bet-
ter comparison. It can be found that under the same
computation budget, the proposed expert prototyp-
ing model with 4 top-4 routing can outperform both
the 1 top-4 and 1 top-16 baselines in both upstream
and downstream evaluation with obvious advan-
tages, no matter when the model scale is small (3
layers) or large (16 layers). Furthermore, the 4 top-
4 has similar computation efficiency in comparison
with the 1 top-4. Therefore, it can be trained with
more samples than the 1 top-16 and it naturally
achieves superior performance.

4 Rocketing to Trillion Parameters

In this section, we demonstrate that our findings
and proposals are also applicable to large-scale pre-
trained models, and we finally advance the model

1 Top-1
—2 Top-1
——4 Top-1

o
3

Log Perplexity
w » o
(5] w w

N
33}

0 2k 4k 6k 8k 10k 12k 14k
Training Steps

Figure 5: Performance of 100B models with different
routing strategies. In both cases, expert prototyping
performs better than the MoE baseline, and larger values
of k further benefit model qualities.

scale to 1 trillion parameters.

We validate our findings on extremely large-
scale models. We first scale the model size up
to 100 billion parameters respectively. For simplic-
ity, we validate expert prototyping on the 100B-
parameter models. We report the training log per-
plexity for the model performance. As Figure 5
demonstrates, expert prototyping still have advan-
tages over the MoE baseline, and similarly in both
contexts larger k for expert prototyping can further
benefit the model quality. This shows the effective-
ness of expert prototyping in training models of a
much larger scale.

Based on the aforementioned findings and pro-
posals, we move forward to build an extremely
large-scale model with over 1 trillion parameters.
Due to limited computational resources, we attempt
to figure out solutions to implement a 1-trillion-
parameter model on solely 480 NVIDIA V100-
32GB GPUs.

To be more specific, we implement our model
on a cluster of workers connected by RDMA net-
works with a bandwidth of 100Gb. To save memory
usage, we instead turn to Adafactor (Shazeer and
Stern, 2018) for optimization in concern of its sub-
linear memory costs. However, there are a series
of sporadic issues concerning training instabilities.
Through trials and errors, we find that such model
training is highly sensitive to learning rates, espe-
cially when being trained with Adafactor. We did
not use the default one 0.01 due to divergence, but
instead, we use 0.005 to strike a balance between
training stability and convergence speed. Also, we
find that it is essential to lower the absolute val-
ues of initialized weights, which is also illustrated

in Fedus et al. (2021). We specifically reduce the
BERT initialization, a truncated normal distribution
with 4 = 0 and o0 = 0.02, by a factor of 10.

We first evaluate the quality of models with dif-
ferent parameters but similar computation FLOPs
by observing training log perplexity. We compare
the performance of MoE baseline models with 100
billion, 250 billion parameters, and 1 trillion param-
eters, and we observe that the results prove the scal-
ing law that models with larger capacity performs
better, as demonstrated in Figure 6. Then we imple-
ment both 1-trillion-parameter MoE baseline and
our expert prototyping MoE model.”> Still, from
Figure 6 we can figure out the proposal has a strong
advantage over the compared model with 1 trillion
parameters. We observe a substantial speedup in
convergence, where our method is around 5 times
faster than the baseline. However, both models
have similar computational FLOPs, which demon-
strates that our method strikes a far better balance
between computational efficiency and model qual-

ity.
5 Related work

Pretraining has achieved great success in these
years, and it has recently become a common prac-
tice in natural language processing (Peters et al.,
2018; Devlin et al., 2019; Radford et al., 2018;
Yang et al., 2019; Liu et al., 2019; Dong et al.,
2019). In the field of cross-representation learn-
ing, pretraining has also become significant and
pushed the limit of model performance in down-
stream tasks (Lu et al., 2019; Su et al., 2020; Lu
et al., 2020; Chen et al., 2020; Gan et al., 2020;
Li et al., 2020; Yu et al., 2021; Li et al., 2021;
Zhang et al., 2021). Recent studies (Kaplan et al.,
2020) demonstrate the power law of model scale
and performance. With the rapid development in
distributed training and parallelism (Shoeybi et al.,
2019; Rajbhandari et al., 2020; Ren et al., 2021;
Rajbhandari et al., 2021), we have witnessed the
burst of studies in extremely large scale pretrain-
ing in both natural language processing (Brown
et al., 2020; Shoeybi et al., 2019) and multimodal
pretraining (Ramesh et al., 2021; Lin et al., 2021)
and also new state-of-the-art performance in the
recent two years. Though extremely large-scale
dense models are highly effective especially in the

Due to limited computational resources and instabilities
in systems and hardware, the trillion-parameter expert proto-
typing model has been trained for only 30k steps.

4.5

3.5

Log Perplexity

100 billion
—— 250 billion
trillion
trillion& prototype

1

—1

2.5

0 5k 10k 15k
Training Steps

5x Speedup

20k 25k 30k 35k

Figure 6: Performance of baseline models with 100 billion, 250 billion, and 1 trillion parameters, as well as
1-trillion-parameter model with expert prototyping. The curves reflect the scaling law, and also demonstrate the

advantage of expert prototyping for giant models.

context of few-shot learning (Brown et al., 2020),
some researchers have turned to sparse expert mod-
els for efficient large-scale pretraining. Inspired by
the success of Mixture-of-Experts (Shazeer et al.,
2017; Ramachandran and Le, 2019; Shazeer et al.,
2018), recent studies (Lepikhin et al., 2021; Fe-
dus et al., 2021) expand the model size to over
trillion parameters and fully utilize the advantages
of TPUs to build sparse expert models with Mesh-
Tensorflow (Shazeer et al., 2018). They demon-
strate that sparse expert models can perform much
better than dense models with the same compu-
tational FLOPs but their computational costs are
similar. A series of the following work success-
fully implement sparse expert models on NVIDIA
GPU (Lin et al., 2021; Lewis et al., 2021). In this
work, we follow the practice of Lin et al. (2021)
and implement our models on the distributed learn-
ing framework Whale (Wang et al., 2020).

6 Conclusion

In this work, we explore the factors inside sparse
expert models and investigate how they influence
the model quality and computational efficiency. We
find out that load imbalance may not be a signifi-
cant issue affecting model quality, and the auxiliary
balancing loss can be removed without significant
performance drop. We observe that the number
of activated experts k play a significant role in
training MoE models, where larger k£ can help the
model achieve better performance. However, the
increase will enhance computation complexity and

incur training inefficiency. Therefore, we propose
a simple solution called expert prototyping. The
method splits experts into different prototypes and
applies top-k routing. With extensive experiments,
we show that expert prototyping can help maintain
high training efficiency but significantly improve
the model performance in both upstream and down-
stream evaluation. Furthermore, to evaluate its
effects in large-scale training, we extend the ex-
periments to large-scale models with over 100 bil-
lion parameters and demonstrate the effectiveness.
Finally, we push the scale to 1 trillion parameters
and successfully implement the 1-trillion parameter
model M6-T on solely 480 NVIDIA V100-32GB
GPUs. We show that our simple method can ef-
fectively improve the performance of M6-T over
the same-scale baseline, and M6-T gains a 5-time
speedup in convergence.

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
Tensorflow: A system for large-scale machine learn-
ing. In OSDI 2016, pages 265-283.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS 2020.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed EI
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. UNITER: universal image-text
representation learning. In ECCV 2020, pages 104—
120.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT 2019, pages 4171-4186.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In NeurIPS 2019, pages 13042-13054.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. CoRR,
abs/2101.03961.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu,
Yu Cheng, and Jingjing Liu. 2020. Large-scale adver-
sarial training for vision-and-language representation
learning. In NeurIPS 2020.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang,
Jidong Zhai, and Jie Tang. 2021. Fastmoe: A
fast mixture-of-expert training system. CoRR,
abs/2103.13262.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In CVPR 2016, pages 770-778.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In ICLR 2021.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. BASE layers:
Simplifying training of large, sparse models. CoRR,
abs/2103.16716.

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao
Liu, Jiachen Liu, Hua Wu, and Haifeng Wang. 2021.
UNIMO: towards unified-modal understanding and
generation via cross-modal contrastive learning. In
ACL/IJCNLP 2021, pages 2592-2607.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao.
2020. Oscar: Object-semantics aligned pre-training
for vision-language tasks. In ECCV 2020, pages
121-137.

Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming
Ding, Yichang Zhang, Peng Wang, Ang Wang,
Le Jiang, Xianyan Jia, Jie Zhang, Jianwei Zhang,
Xu Zou, Zhikang Li, Xiaodong Deng, Jie Liu, Jin-
bao Xue, Huiling Zhou, Jianxin Ma, Jin Yu, Yong Li,
Wei Lin, Jingren Zhou, Jie Tang, and Hongxia Yang.
2021. M6: A chinese multimodal pretrainer. CoRR,
abs/2103.00823.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR 2019.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In
NeurIPS 2019, pages 13-23.

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi
Parikh, and Stefan Lee. 2020. 12-in-1: Multi-task vi-
sion and language representation learning. In CVPR
2020, pages 10434-10443.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT 2018, pages 2227-2237.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl

blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In SC
2020, page 20.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
breaking the GPU memory wall for extreme scale
deep learning. In SC °21, pages 59:1-59:14.

Prajit Ramachandran and Quoc V. Le. 2019. Diversity
and depth in per-example routing models. In ICLR
2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation. In ICML 2021, pages 8821-8831.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. 2021. Zero-
offload: Democratizing billion-scale model training.
In ATC 2021, pages 551-564.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake A. Hechtman. 2018.
Mesh-tensorflow: Deep learning for supercomputers.
In NeurIPS 2018, pages 10435-10444.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In ICLR 2017.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In ICML 2018, pages 4603—4611.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. VL-BERT: pre-
training of generic visual-linguistic representations.
In ICLR 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS 2017, pages 5998-6008.

Ang Wang, Xianyan Jia, Le Jiang, Jie Zhang, Yong Li,
and Wei Lin. 2020. Whale: A unified distributed
training framework. CoRR, abs/2011.09208.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS 2019, pages 5754—
5764.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua
Wu, and Haifeng Wang. 2021. Ernie-vil: Knowledge
enhanced vision-language representations through
scene graphs. In AAAI 2021, pages 3208-3216.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual represen-
tations in vision-language models. In CVPR 2021,
pages 5579-5588.

10

A Appendix

A.1 Multimodal Pretraining and Downstream

Evaluation

In practice, we follow Lin et al. (2021) that employs
an extremely large-scale multimodal pretrained
model with MoE architecture in Chinese. Specifi-
cally, we pretrain a model on the image-text pairs
from the dataset M6-Corpus (Lin et al., 2021). In
multimodal pretraining, the pretrained model re-
ceives the inputs of a pair of related image and text
as the input and generates the high-level represen-
tations with layers of Transformer (Vaswani et al.,
2017). In our experiments, we first transform an in-
put image to patch features by splitting it into 4 x 4
patches and extracting patch features with a trained
ResNet (He et al., 2016). We flatten the patch
features of the input image to a sequence of rep-
resentations and concatenate them with the word
embeddings of the text sequence shorter than 128
words. Then we build a feature extractor with multi-
ple layers of transformer consisting of self attention
and feed-forward neural networks (FFN). Notably,
in order to integrate MoE to the model architecture,
we replace the FFN with MoE, where FFN as ex-
perts are distributed across workers. We pretrain
the model with the task of image captioning, where
the model learns to generate words autoregressively
based on the previous context including the patch
features.

To comprehensively evaluate the performance
of the methods, we conduct experiments on im-
age captioning in Chinese, and we follow Lin et al.
(2021) to use the E-commerce IC dataset in MUGE
benchmark®. We focus on the capability of lan-
guage modeling of the pretrained model, and thus
we use teacher forcing and evaluate the perfor-
mance by perplexity (PPL).

A.2 Experimental Setups

For the exploration, we investigate different setups
for both models. Here we point out key configura-
tions of our experimental setups and we demon-
strate the details in Table 3. Following BERT-
Chinese (Devlin et al., 2019), we use the same
vocabulary with 21128 subwords. For the initial-
ization, we use the BERT initialization with y = 0
and o = 0.02 for most cases, and we use an initial-
ization with a smaller standard deviation of 0.002
for the 17" model. As to the expert capacity, we

®https://tianchi.aliyun.com/muge

https://tianchi.aliyun.com/muge

Table 3: Hyperparameters for pretraining the MoE models.

Hparam 3-layer 16-layer 100B 1T
Hidden size 128 128 1024 1024
Intermediate size 512 512 4096 21248
Number of layers 3 16 24 24
Number of attention heads 8 8 16 16
Attention head size 16 16 64 64
Initializer range 0.02 0.02 0.02 0.002
Number of experts 4096 4096 512 960
Number of GPUs 8 8 128 480
Optimizer AdamW AdamW AdamW Adafactor
Learning rate le-4 le-4 8e-5 Se-3
Mixed precision v v v X
FP16 communication v v v X
Params 1.6B 8.6B 103.2B 1002.7B
Table 4: Notation table for Pseudo code.
Variable Definition

D Number of workers

d Number of GPUs per worker (d=1 in this paper)

E Number of total experts

e Number of experts per worker (e*D=E)

C Capacity per expert

M Model size (same as hidden size, same as embedding size)

I Intermediate size

B Batch Size per GPU

L Sequence Length

T Number of tokens (T=B*L)

Z Number of prototypes

F Number of expert per prototype (Z*F=E)

generally use a capacity factor of v = 1.25 for
more buffer. The batch size per GPU is 8 and the
total batch size is equal to the product of the batch
size per GPU and the number of GPUs. We use
AdamW optimizer (Loshchilov and Hutter, 2019)
for optimization except for the 17" model where we
use Adafactor (Shazeer and Stern, 2018) instead.
For Adafactor, we set the learning rate to 5e — 3.
We use warmup schedule with a warmup step of
500. The dropout rate for FFN and attention is 0.1.
We use mixed precision training for FP16 commu-
nication for all models except the 17" one due to
the issue of training instability.

We implement our experiments on Tensorflow
1.15 (Abadi et al., 2016). Different from the orig-
inal implementation of Switch and GShard with
Mesh-Tensorflow (Shazeer et al., 2018), we im-
plement the multimodal pretrained model with

11

the framework Whale (Wang et al., 2020), which
enables data, model, and expert parallelism on
NVIDIA GPU.

A.3 Pseudo Code for Expert Prototyping

The pseudo codes for MoE layer and proposed ex-
pert prototyping in Whale are provided in Figure 7
and Figure 8 respectively. Table 4 illustrates the
notations of specific tensor dimensions.

Amount of All-to-All Communication There
are two operations of all-to-all communication in
each MoE FFN layer in a forward propagation pro-
cess (one for dispatch_inputs and the other for out-
puts in the pseudo code). During the communica-
tion, each entry of the communicated tensor passes
to a worker once. Thus, the total amount of com-
munication, which is O(EdCM)+ O(eDCM) =

O(EdCM) = O(ECM), depends on the number
of experts, capacity and model size.

Amount of Computation For the 1T-scale MoE
model, the total amount of computation in the
MoE FFN layer is mainly dominated by the two
matrix multiplications, which transform the in-
put tensor from the hidden size to the interme-
diate size and then vice versa. The total com-
putation of these two matrix multiplications is
O(DeCMI) + O(DeCIM) = O(ECMI). For
1T model, these two operations hold around 98%
total forward FLOPs of the MoE FEN layer.

12

import whale as wh
import tensorflow as tf

def (inputs, prototype num, num experts, expert_ capacity):
#n# MoE Layer FeedForward. ”"“”
inputs (BLM): Each example is typically a vector of size model_dim,
representing embedded token or an element of Transformer layer output
orig_batch_dim, orig_seq_length, model dim = inputs.size()
total_token num = orig batch dim * orig seq length
Flatten input tokens.
reshaped_inputs = tf.reshape(inputs, [1, total_ token_num, model_dim]) # dTM
Moe Gating.
combine_tensor (dTEC): used for combining expert outputs and scaling with probabilities.
dispatch_mask (dTZFC): used for dispatching input tokens to the correct expert.
combine_ tensor, dispatch_mask, aux_loss = prototype gating(reshaped_inputs, prototype_num,
num_experts, expert_ capacity)

Expand inputs for different prototypes.
reshaped_inputs = tf.broadcast_to(tf.expand dims(reshaped inputs, axis=2),
[1, total_token_num, prototype num, model_dim]) # dTzM

Prepare to dispatch tokens to the correct expert.
dispatch_inputs = tf.einsum(”dTzFC,dTZM->ZFdCM”, dispatch_mask, reshaped_inputs,
name="“dispatch_inputs”)

dispatch_inputs = tf.reshape(
dispatch_inputs,
[num_experts, 1, -1, model_dim]) # ZFdCM -> EdCM

Standard forward.
Whale is able to infer an efficient parallel strategy automatically within the split scope.
It will insert an appropriate all-to-all communication operator in the necessary position.
with wh.split():

All-to-All communication.

Inputs are split across the experts dimension (1lst) and dispatched to correct experts.

Workers gather tokens sent by other workers along the workers dimension (2nd).

dispatch_inputs: EdCM -> eDCM

inter experts forward.

inter expert weights (eMI): Each expert has its own unique set of weights.
intermediate = tf.einsum('eDCM,eMI->eDCI', dispatch_inputs, inter expert_weights,

name="dispatched inter outputs")

activated inters = activation_fn(intermediate) # eDCI

Output experts forward.
out_expert weights (eIM): Each expert has its own unique set of weights.
outputs = tf.einsum(
'eDCI,eIM->eDCM', activated_inters, out_expert weights, name="dispatched outputs")

All-to-All communication.
Outputs are split across the workers dimension (2nd) and switched back to experts.
Workers gather outputs sent by other workers along the experts dimension (1lst).
outputs: eDCM -> EdCM
Multiply outputs of experts by the routing probability.
combined_outputs = tf.einsum(
'dTEC,EdCM->dTM', combine_tensor, outputs, name="combined outputs")

Convert the outputs back to input shape.
outputs = tf.reshape(combined_outputs,

[orig_batch dim, orig_seq length, model_dim]) # dTM -> BLM
return outputs, aux_loss

Figure 7: Pseudo code of the MoE Transformer layer in Whale.

13

import tensorflow as tf

def

(inputs, prototype_num, num_experts, expert_capacity):
Produce the combine and dispatch tensors used for dispatching and
receiving tokens from their highest probability expert in each prototype.

wun

, total token_num, model_dim = inputs.size()
inputs = tf.broadcast_to(tf.expand dims(inputs, axis=2),
[1, total_token_num, prototype_num, model_dim]) # dTzM
gating weights (M2ZF): weights for each expert, shared across experts.
logits = tf.einsum(’'dTzM,MZF->dZTF’, inputs, gating weights)

Probabilities and indices for each token of what expert

it should be sent to in each prototype.

raw_gates = tf.nn.softmax(logits) # along expert dim, dzTF

_, expert_index = tf.math.top_k(raw_gates, k=1) # dzTk k=1

expert_index = tf.squeeze(expert_index, [3]) # dzT

expert_mask = tf.one_hot(expert_index, num_experts // prototype num,
dtype=inputs.dtype) # dzTF

density_ proxy = raw_gates # dzTF

importance = tf.ones_like(expert mask[:, :, :, 0]) # daT

gate = tf.einsum(’'dzTF,dZTF->dZT’, raw_gates, expert _mask) # dzT

We compute cumulative sums of assignment indicators for each expert

index i \in 0..F-1 for each prototype independently.

First occurrence of assignment indicator is excluded.

position_in_expert = tf.cumsum(expert_mask, exclusive=True, axis=2) # dzTF

density[:, :, 1] represents assignment ratio (num assigned / total) to

expert i as top expert without taking capacity into account.

density denom = tf.reduce mean(importance, axis=2)[:, :, tf.newaxis] + le-6
density = tf.reduce mean(expert mask, axis=2) / density_denom

density proxy[:, :, 1] represents mean of raw_gates for expert i, including
those of examples not assigned to i with top_k.

density proxy = tf.reduce mean(density proxy, axis=2) / density_denom

with tf.name_scope('aux loss'):
The MOE paper (https://arxiv.org/pdf/1701.06538.pdf) uses an aux loss of
reduce_mean(density proxy * density proxy). Here we replace one of
the density proxy with the discrete density following mesh_tensorflow.
aux_loss = tf.reduce mean(density proxy * density) # element-wise
aux_loss *= (num_experts // prototype num) *
(num_experts // prototype num) * loss_coef

Make sure that not more than expert capacity tokens can be dispatched to each expert.
capacity = tf.cast(expert_capacity, dtype=position_in_expert.dtype))

expert_mask *= tf.cast(tf.less(position_in_expert, capacity, dtype=expert mask.dtype)
position_in expert = tf.einsum(‘dzTF,dzTF->dzT’, position_in_expert, expert_mask)
mask_flat = tf.einsum(’dzZTF->dZT’, expert_mask)

gate *= mask_flat

Construct combine tensor and dispatch mask.
b = tf.one_hot(tf.cast(position_in_ expert, dtype=tf.int32), expert capacity,
dtype=inputs.dtype) # dzTC
a = tf.expand dims(gate * mask_flat, -1) *
tf.one_hot(expert_index, num_experts // prototype num, dtype=inputs.dtype) # dzTF
combine_tensor = tf.einsum('dzTF,dzTC->dTZFC', a, b, name='combine tensor') # dTZFC

dispatch_mask = tf.cast(tf.cast(combine_ tensor, tf.bool), inputs.dtype,
name=‘dispatch_mask’) # dTZFC
dispatch mask = tf.reshape(dispatch_mask,
[1, total_token num, prototype num, -1, expert capacity]) # dTZFC

combine tensor = tf.reshape(combine tensor,
[1, total_token_num, num experts, expert_capacity]) # dTEC

return combine_tensor, dispatch_mask, aux loss

Figure 8: Pseudo code of the Expert Prototyping (an example on top-1 gating).

14

