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ABSTRACT

Early action prediction seeks to anticipate an action before it fully unfolds, but lim-
ited visual evidence makes this task especially challenging. We introduce EAST,
a simple and efficient framework that enables a model to reason about incomplete
observations. In our empirical study, we identify key components when train-
ing early action prediction models. Our key contribution is a randomized train-
ing strategy that samples a time step separating observed and unobserved video
frames, enabling a single model to generalize seamlessly across all test-time ob-
servation ratios. We further show that joint learning on both observed and fu-
ture (oracle) representations significantly boosts performance, even allowing an
encoder-only model to excel. To improve scalability, we propose a token masking
procedure that cuts memory usage in half and accelerates training by 2x with no
accuracy loss. Combined with a forecasting decoder, EAST sets a new state of the
art on NTU60, SSv2, and UCF101, surpassing previous best work by 10.1, 7.7,
and 3.9 percentage points, respectively. We support future research by releasing
efficient training implementations and pre-trained models.

1 INTRODUCTION

Action recognition enables machines to identify, understand and interpret human activities in
video (Bobick & Davis|, [2001; [Karpathy et al., [2014). Many important applications of this task
require hard real-time inference in order to ensure a timely reaction or a precautionary measure. Ex-
amples include security surveillance (Wren et al.,|1997), human-robot interaction (Breazeal, |2003)),
autonomous driving (Geiger et al [2012), workplace safety, and other safety-critical applications.
This state of affairs motivates a subtask known as early action prediction or early action recogni-
tion (Hu et al., |2019; [Foo et al., 2022} Kong et al.,|2017; |Stergiou & Damen), 2023; Ryoo| 201 1)).

Early action recognition methods classify actions from a partially observed part of the video (Ryoo,
2011). This makes the task challenging since the model should consider upcoming future content
that is inherently a multi-modal distribution (Vondrick et al.,|2016; |Baltrusaitis et al.,|2019). Recent
methods find future action cues using auxiliary methods that do not always benefit early action
classification performance, such as motion forecasting (Pang et al.l [2019; [Liu et al.l [2023), future
residual forecasting (Zhao & Wildes, [2019) or modelling the possible future state using graphs (Wu
et al.,|2021b). Furthermore, the latest methods require separate models for each observation ratio
and therefore require immense training resources.

In this work, we propose EAST (Early Action prediction Sampling strategy with Token masking),
an end-to-end framework that learns to predict actions from partial observations more effectively
and efficiently. The core concept within EAST is a frame sampling strategy that enables training a
single model for all observation ratios. During training, EAST samples partially observed (present)
videos for all observation ratios, as well as full videos (future). Compared to methods that train per
observation ratio models, our strategy simplifies inference and speeds up training 9x when there
are 9 observation ratios. In contrast to previous methods that use auxiliary objectives, we simplify
the learning objective by directly optimizing action prediction performance. Moreover, we greatly
improve training efficiency by masking input patches that change the least over time. Remarkably,
we find that as much as 50% of tokens can be removed without degrading performance. The token
masking is not aimed at real-time inference, but towards efficient training: it reduces total GPU time
and memory footprint by 2x, allowing EAST to train using 2xRTX A6000.



EAST involves three main contributions. First, we propose a framework that trains a single model
based on classifications of common encoder features from dynamically sampled present and future
video frames. We achieve further improvements using a forecasting decoder over present features.
The proposed setup greatly improves efficiency since a single model is tested across all observation
ratios. Second, we improve training efficiency by removing repetitive tokens according to visual
similarity of input patches. Third, we evaluate our contributions through extensive validations on
standard action classification datasets. EAST sets the new state-of-the-art across all evaluation set-
tings for early action prediction on NTU60 (Liu et al.l [2019), Something-Something V2 (Goyal
et al.,[2017) and UCF101 (Soomro et al.,[2012). Code will be made available.

2 RELATED WORK

Action recognition strives to interpret human activities after observing the entire video. The sem-
inal approach by [Karpathy et al.| (2014)) finds temporal structure by combining independent 2D
convolutions, while |Simonyan & Zisserman| (2014) propose separate appearance and motion pro-
cessing. Spatio-temporal features are naturally extracted with 3D convolutions (Ji et al., 2012 [Tran
et al., 2015 [Lin et al., 2019; [Feichtenhofer et al., 2019). These models benefit from ImageNet
by repeating pre-trained 2D convolutional kernels into the temporal dimension (Deng et al.| |2009;
Carreira & Zisserman, |2017). However, convolutional architectures struggle with long-term spatio-
temporal features and excessive model complexity (Wang et al., 2016} [Feichtenhofer et al., 2019;
Xie et al.} 2018 [Tran et al., 2015). Therefore, the most recent work favours transformer-based ap-
proaches (Piergiovanni et al.;,[2023;|Li et al.| 2023 Ryali et al.,|2023; |L1 et al., |2022cbza; [Tong et al.,
2022; Wang et al., 2023} |Srivastava & Sharmal 2024)

ViT token removal. Masked image modelling is an effective self-supervised pretext task (Dosovit-
skiy et al., 2020; |He et al.| 2022} [Zhou et al.l 2022} |Gupta et al.| 2023)). Fortunately, masking input
tokens greatly reduces training time and memory complexity. This is especially important for long
videos due to quadratic complexity of attention. VideoMAE and MAE-ST extend masked image
modelling to video using a very high masking ratio of spatio-temporal cubes known as tubelets (Tong
et al.| [2022} [Feichtenhofer et al., 2022; |Piergiovanni et al., 2023 [He et al., 2022). VideoMAE V2
further applies masking in the decoder (Wang et al., 2023)).

Token masking also benefits supervised training. NaViT trains on combinations of entire and sub-
sampled image tokens (Dehghani et al.|[2023). DynamicViT hierarchically prunes redundant tokens
in an online manner (Rao et al.l [2021). EVEREST selects uninformative frames and redundant
patches when removing tokens (Hwang et al.,2024)). Other approaches reduce tokens based on their
similarity (Liang et al.l 2022;|Bolya et al., [2023} [Fayyaz et al., 2022} Yin et al., 2022 Haurum et al.,
2023} |Choudhury et al., [2024). DTEM decouples feature representation learning from token merg-
ing (Lee & Hong|, 2024). Our token masking reduces training complexity of early action prediction
while retaining accuracy.

Action anticipation methods predict future actions before they begin. A prominent approach an-
ticipates future frames in unlabeled video (Vondrick et al., [2016). AVT anticipates actions with a
per-frame encoder and a supervised causal decoder (Girdhar & Grauman,|2021). |Fernando & Herath
(2021) supervise feature forecasting using Jaccard similarity between observed and future features.
Our approach does not optimize a feature similarity measure. Instead, we use a video-specific en-
coder and include a novel discriminative loss to the training objective.

Early action prediction considers methods that output action classes from partially observed
videos (Wang et al., 2019). Early work represents actions by modelling dynamics of a bag of visual
words (Ryoo} 2011). A similar effect is achieved using LSTM memory that records early obser-
vations (Hochreiter & Schmidhuber, [1997; Kong et al.,[2018a). ERA finds subtle early differences
between actions with a mixture of experts (Foo et al., 2022} Jacobs et al., [1991). IGGNN+LSTGN
models spatio-temporal object relationships using features around bounding box detections (Wu
et al| 2021a). MSRNN uses soft regression on early frame features to account for future action
uncertainty (Hu et al 2019). TemPr processes a temporal feature pyramid with a transformer
tower (Stergiou & Damen) [2023)). Consensus between the towers delivers improved classification.

Similar to us, some early action prediction methods guide anticipative future representations by
training with entire videos. DBDNet trains a Bi-LSTM that bidirectionally reconstructs present and
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Figure 1: EAST uses both present and future frames in training. ViT encoder processes the observed
frames (blue) and the entire video (blue and red). Decoder D observes present features E° and
forecasts future features F. h classifies actions from decoder features and oracle encoder features
E. We optimize both classification scores but only use ¥4 during inference.

future motion (Pang et al |2019). LST-GCN models spatio-temporal evolution of object relation-
ships using graph convolutional networks (Wu et al.,[2021b). AA-GAN forecasts future representa-
tions by leveraging optical flow (Gammulle et al., |2019). Furthermore, AA-GAN enhances future
representations using adversarial training, where a discriminator discerns between generated and or-
acle future features. Similarly, an action recognition teacher can supervise the student that receives
only early video frames (Wang et al.,[2019). DeepSCN starts by learning enriched features that min-
imize the discrepancy between partial observations and full observations (Kong et al., 2017). Con-
sequently, it learns an SVM model to classify enriched partial features into categorical actions. [Zhao
& Wildes|(2019) propose to forecast the future residuals with a Kalman filter and then recursively in-
tegrate them into feature representations of unobserved frames that are separately classified. Unlike
all previous approaches, we express the recognition of partially forecasted and completely observed
sequences purely using discriminative losses. The classifier infers from pre-trained encoder features
and also from forecasted decoder features within end-to-end training. Most importantly, our training
strategy samples observation ratios when preparing training samples. This procedure enables good
generalization with an arbitrary observation ratio.

3 METHOD

Early action prediction involves making predictions while observing a fraction of the video. There
are T, video frames. The observation ratio p € (0, 1) controls the fraction of observed (present)
frames. Therefore, the model predicts early actions based on frames in [0, p - Ty). In training,
the model has access to all T; frames and one-hot annotations y. In inference, the model makes
predictions based on the first p - Ty frames, where standard practice evaluates using p from 0.1 to
0.9 in increments of 0.1. We follow this setting and apply a unified model to all observation ratios.

There are three main parts in EAST. First, our frame sampling strategy enables training a single
model at all observation ratios by sampling observed and unobserved clips. Second, we optimize an
objective that enforces correct predictions from observed frames and also from entire clips. Third,
we reduce the video transformer training memory using token masking based on visual repetitive-
ness, without compromising accuracy. Next, we explain the details of these steps, beginning with
the most important: frame sampling.

3.1 SAMPLING STRATEGY FOR TRAINING EARLY ACTION PREDICTION

In training, we randomly sample p € {0.1,0.2,0.3,...,0.9}. Using p, we collect observed frames
V¢ ¢ RT¥WxC and unobserved frames V' € RT*¥*W*C g0 that V° temporally precedes p - T,; and
V" succeeds p - Ty. The sampled clip V = V° || V" consists of 27" evenly spaced frames centered
at p - T;. We ensure that there is no gap between frames in V° and V" since that would introduce
unnatural temporal distortion of training samples. Randomizing p in training enables the model to
adapt to variable temporal context length.

Although conceptually simple, this training setup is essential for early action prediction. Our prelim-
inary experiments suggest that training at fixed observation ratios produces models that are subopti-



mal at other values of p. Such setup would require training specialized models and hinder real-world
applications. Furthermore, we find that off-the-shelf action recognition models fail on early action
prediction since they depend on the full context.

3.2 FORECASTING WITH MAE FEATURES

Encoder. The encoder architecture closely follows Vision Transformers (ViT) with spatio-temporal
positional encodings to account for video (Vaswani et al., [2017; [Dosovitskiy et al., [2020). The
ViT-based encoder £ consists of tokenizer 7 and transformer encoder V. Concretely:

ERDIWAC L RNF - g(Y°) =) oT (V°) = E°. (1)

The model processes input frames with C'=3 RGB channels. The encoder extracts tokens with F'

features. Tokenizer 7 splits the input clip frames into N; = T:QI ZV non-overlapping tubelets of size

dxpxp=2x16x16. Spatio-temporal information is added to tokens via sin-cos embeddings. The
transformer encoder V: RV — RN<F extracts features from the input video clip.

Decoder D forecasts future features F given E°:
D:RVF SRaF D(E°)=FoP,(E°)=F. 2)

The encoded present features E° = £(V°) are input to spatial average pooling P, : RNo<F — Ra*F
that produces a mean token for each time step. Decoder module F processes % present tokens and
forecasts % future tokens.

We produce a strong baseline by setting F to an identity mapping, effectively making the method
decoder-free. We further evaluate the decoder design with two distinct architectures: i) autoregres-
sive and ii) direct transformer. Autoregressive formulation of F observes E° and forecasts tokens
with causal inference. Direct inference concatenates E° with additional [MASK] tokens, and per-
forms a single forward pass through a full attention transformer. Based on the validation results, we
set the direct 4-layer transformer as F within EAST.

3.3 COMPOUND FORECASTING LOSS

Figure|l|contains a diagram of the training setup. The partially observed clip V° is classified using:
¥ = ho P, o Do &(V°). (3)
Here, h produces early action classification logits using a linear layer, and P; denotes mean pooling.

The encoder features should be both discriminative and contain cues about future features. To
achieve this in training, we perform an additional forward pass through £. We compute oracle
encoder features using the entire sampled clip: E = Ps o £(V). Consequently, the common classi-
fier produces two sets of classification logits. The first set yP¢ =h o Pt(]?‘) contains early action
classification logits obtained by forecasting from E°, whereas the second vector ¥ =h o P,(E)
contains classification logits for the entire sampled video clip.

We train the model from end-to-end to minimize the average compound loss £ that sums negative
log-likelihoods:

Lzﬁpred + £0racle _ ENLL (ypred’ y) + ACNLL (yoracle7 y). (4)

We find that the combination of the two losses yields the best early action prediction. This design
is intuitive when considering the loss gradients. Gradients through £P*! directly optimize early
action prediction and enforce discriminative features in both the encoder and the decoder. Gradients
through £ yield discriminative features when observing a full video. This training setup enables
discriminative encoder features under all observation ratios.

3.4 EFFICIENT TOKEN MASKING

To reduce computational costs of attention layers, we propose to mask temporally repeating tokens.
The proposed token masking strategy has been inspired by the Moravec corner detector (Harris
& Stephens, [1988)). This masking strategy primarily reduces the training memory footprint, mak-
ing EAST suitable for training on more affordable GPU setups.



We find repeating tokens according to L1 patch distances throughout time (Choudhury et al., 2024).
Tubelet volume is set by patch size p and tubelet size d. Thus, we extract vectorized non-overlapping
patches py ; ; using:
Pti,j = V[td:td+d,ip:ip+p,jp:jp+p} )

In each frame ¢ from video V, we rank each tubelet according to pixel distance from the last patch
in the next tubelet:

7,05 (V) = IPt.ijjo) = Pe+1,ijia—1lh (6)
Note that we compare the first and the last patch since size d > 1. Finally, we keep the highest
ranking tubelets using:

MGNV) ={pr,i; : rei;(V) =7); 0
k.

r; ; denotes ranking for the k-th quantile at spatial position (1,7). We set k = 50% in our experi-
ments and apply token masking when computing both present and oracle features. Note that masking
with k removes the same number of tokens from each spatial position. In other words, we halve the
number of input tubelets at each spatial position. We refer to ./\/l% as difference masking. In train-
ing, we apply M¢ independently to V° and V" to ensure there is no information leakage. Note that
we use feature extractors pre-trained with MAE (He et al.|, [2022; Tong et al.| [2022)). Therefore, the
encoder is unaffected by masking since there is no distribution shift compared to MAE pre-training.

4 EXPERIMENTS

We compare EAST with related methods on three datasets typically used in the early action predic-
tion setup: Something-Something, versions v2 and sub21 (Goyal et al.,2017), NTU RGB+D (Liu
et al.,[2019) and UCF101 (Soomro et al., 2012). We also include ablation experiments that measure
the influence of proposed components. Refer to the supplement for detailed insights.

4.1 DATASETS

Something-Something v2 (SSv2) is a large-scale video dataset primarily used for action recogni-
tion. The dataset consists of 220 k video samples and 174 classes. There are 169 k training videos
and 20 k validation videos, whereas the remaining unlabeled videos are used for testing. SSsub21
is a Something-Something subset typically used in early action prediction evaluation. It contains 21
action classes across 11 k videos. We include experiments on SSsub21 to compare with most previ-
ous methods. We also include results on the full SSv2 dataset.

NTU RGB+D dataset consists of 60 action classes and has 57k 1920x 1080 RGB videos. Most
samples also include depth maps, infrared frames and skeletal keypoints. We use only the RGB
modality to train EAST. Following previous work, we use cross-subject evaluation in our experi-
ments (Ma et al.l 2016; Kong et al. 2017; Hu et al., 2019; [Wang et al., 2019; [Pang et al. 2019;
Stergiou & Damenl 2023). There are 20 subjects in both training and evaluation sets. This split
provides 40.3 k training examples and 16.5 k testing examples.

UCF101 is a small scale dataset that consists of approximately 13 k videos with 101 action classes.
Videos are divided into 9.5 k training and 3.5 k validation videos. The video resolution is 320x240
with a frame rate of 25 FPS.

4.2 IMPLEMENTATION AND TRAINING DETAILS

Unless otherwise stated, we use the ViT-B/16 video encoder pre-trained on K400 using Video-
MAE (Kay et al., 2017} [Tong et al) |2022). Decoder F is also initialized from VideoMAE pre-
training. This yields slight improvements over random init. We train the entire model end-to-end.

We sample T = 8 frames for both V° and V¥, and train on random 224 x224 crops using MixUp
augmentations (Zhang et al.,2018). We use AdamW with base learning rate 1 x 10~3 and weight de-
cay 0.05. The base learning rate is scaled by ba‘;}‘% and decayed using the cosine rule (Loshchilov
& Hutter, 2016). We set the batch size to 96 in SSv2 and NTU60 experiments. In SSsub21 and
UCF101 experiments, we set the batch size to 128. We train SSv2, NTU60 and UCF101 models for
40, 50 and 100 epochs, respectively. We report results from a single training run that uses a fixed

random seed. We express the computational complexity of a forward pass over a single training



example. We measure this complexity using the number of floating point operations (TFLOP) using
DeepSpeed (Rasley et al., [2020). We train using MixUp, therefore, our measurements reflect the
complexity of processing both augmentations.

We use Nvidia RTX A6000 GPUs and FlashAttention optimizations in all experiments (Dao et al.|
2022). Training with the proposed difference masking M(ch that removes k£ =50% of tokens requires
only 2 x A6000 GPUs. All our experiments use FlashAttention that saves memory by recomputing
the attention matrix in backpropagation. We further reduce training memory by 2 x using M{_, ..
Unless otherwise stated, we set k=0.5.

Since most previous work did not publish source code, evaluation details are not fully disclosed. We
propose a unified protocol for early action prediction via minimal adaptations of action recognition
evaluation. We apply a single model across all nine observation ratios and report top-1 accuracy.
The model is agnostic to the testing observation ratio and processes present frames only. We do
not subsample features pre-computed from entire videos since that would lead to unfair leak of
information. We perform spatial multi-crop inference (Feichtenhofer et al., [2019). On NTU60 and
SSv2, we average predictions when sliding across temporal dimension (Wang et al.,[2016).

4.3 COMPARISON WITH THE STATE OF THE ART

NTUG60. Table [1l shows results on the NTU60 dataset. The first section includes methods that
process multiple modalities (skeletal keypoints or depth). The second section presents methods that
only use RGB input frames. EAST surpasses all methods while using only RGB inputs. The average
improvement over TemPR is 6.8 pp,with the highest improvement of 19.2 pp at p=0.3.

Table 1: Comparison with previous work on the NTU60 dataset. We show top-1 accuracy (%) over
different observation ratios. * denotes reproductions by [Wang et al.| (2019). We highlight input
modalities as video (RGB), depth (D) and human keypoints (KP). The best results are in bold.

Modality Observation ratio p
Method RGB D KP 0.1 0.3 0.5 0.7 0.9
MSRNN (Sadegh Aliakbarian et al.|[2017) v 152 295 51.6 639 689
TS (Wang et al.|[2019) v 278 463 674 776 815

DBDNet (Pang et al.|[2019)

RankLSTM* (Ma et al.,|2016)
DeepSCN* (Kong et al.,|2017)
TemPr (Stergiou & Damenl, 2023)

EAST

v v 28.0 473 685 785 816

115 257 48.0 61.0 66.1
16.8 30.6 488 582 60.0
293 502 70.1 788 84.2

312 694 862 879 879

NES NN ENRNN

Table 2: Comparison with the state-of-the-art results on SSv2 dataset. We show top-1 accuracy (%)
over different observation ratios. The best results are in bold.

Observation ratio p

Method 01 02 03 04 05 06 07 08 09 1FLOP
RACK (Liu ot all 2023) 119 - 150 - - - 230 -

TemPr (Stergiou & Damen, [2023) 20.5 - 286 - 412 - 471 - - 0.5
EAST 25.6 30.1 34.5 41.6 49.0 55.2 59.4 63.0 64.0 05

SSv2. Table [2] presents our results on the Something-Something v2 dataset, where EAST sets the
new state of the art. Average result improvement over TemPr is 28.3 pp. For observation ratios
p=0.1, p=0.3, p=0.5 and p=0.7 we improve the results by 5.1 pp, 5.9pp, 7.8 pp and 12.3 pp,
respectively. Unlike TemPr, we train all parameters end-to-end while achieving similar TFLOP
complexity. Furthermore, the results highlight the benefits of our proposed sampling strategy. Note
that we evaluate a single model whereas TemPr trains a special model for each observation ratio.
Therefore, TemPr requires the observation ratio during model inference, while our model is entirely
agnostic to the observation ratio. Finally, Table [3] presents results on SSsub21, where the average
improvement over TemPr is 22.7 pp across all observation ratios.



Table 3: Comparison with the state-of-the-art results on SSsub21. We present top-1 (%) accuracy. *
refers to results that are presented by |Stergiou & Damen|(2023). The best results are in bold.

Observation ratio p
Method 01 02 03 05 07 09

MS-LSTM*(Sadegh Aliakbarian et al.,2017) 169 16.6 16.8 16.7 169 17.1
MSRNN* (Sadegh Aliakbarian et al.|[2017) 20.1 20.5 21.1 225 240 27.1

mem-LSTM* (Kong et al., [2018a) 149 172 181 204 232 245
GGN (Wu et al., [2021b) 212 215 233 277 302 30.6
IGGN (Wu et al., |2021a) 22.6 - 25.0 283 322 341
TemPr (Stergiou & Damen, 2023) 284 348 379 413 458 486
EAST 40.8 44.7 512 664 758 79.3

Table 4: Comparison with the state-of-the-art results on the UCF101 dataset. We show top-1 ac-
curacies (%) over different observation ratios. * denotes results reproduced by |[Kong et al.| (2017).
TemPr entry with 1 presents original paper results that are irreproducible using the published source
code. I represents our corrected reproduction.

Observation ratio p

Method 01 02 03 04 05 06 07 08 09
MSSC* (Cao et al.,[2013) 34.1 53.8 583 57.6 62.6 619 635 643 62.7
MTSSVM* (Kong et al.|[2014) 40.1 72.8 80.0 822 824 832 834 83.6 83.7
DeepSCN (Kong et al.| [2017) 450 777 83.0 854 85.8 86.7 87.1 874 875
MSRNN (Sadegh Aliakbarian et al.,|2017) 68.0 87.2 88.2 88.8 89.2 89.7 89.9 90.3 904
mem-LSTM (Kong et al.,[2018a) 51.0 81.0 85.7 85.8 88.4 88.6 89.1 89.4 89.7
AAPNET (Kong et al.||2018b) 599 80.4 86.8 86.5 86.9 883 883 899 90.9
RGN-KF (Zhao & Wildes, [2019) 83.3 85.2 87.8 90.6 91.5 923 92.0 93.0 929
DBDNet (Pang et al.|[2019) 82.7 86.6 88.4 89.7 90.6 91.1 91.7 919 92.0
AA-GAN (Gammulle et al.,[2019) - 842 - - 856 - - - -
TS (Wang et al.| [2019) 83.3 87.1 88.9 899 909 91.0 913 91.2 91.3
GGNN (Wu et al.}[2021b) 84.1 88.5 89.8 - 909 - 914 - 91.8
IGGN (Wu et al.[[2021a)) 80.2 - 89.8 - 929 - 941 - 944
JVS (Fernando & Herath, 2021} - 91.7 - - - - - - -
ERA (Foo et al.}[2022) 89.1 - 924 - 942 - 955 - 957
RACK (Liu et al.,|2023) 87.6 87.6 894 - - - - - -
TempPr' (Stergiou & Damenl, 2023)movine: 88.6  93.5 94.9 949 954 952 953 96.6 96.2
TempPr* (Stergiou & Damen| 2023)movine:  85.1 - 904 - 925 - 928 - 932
EASTvigeoMAE 88.6 914 922 93.1 934 93.6 93.7 93.8 93.8
EASTMoviNet 91.3 932 93.8 947 955 96.1 964 96.5 96.5

UCF101. We present our UCF101 results in Table ] Since TemPr uses a MoViNet (Kon-
dratyuk et al.l 2021)) encoder pretrained on K600 (Carreira et al., 2018), we include results with
the same backbone. These results highlight the benefits of training under our proposed framework.
EAST with MoViNet sets the new state-of-the-art results for all observation ratios on UCF101. Av-
erage result improvements over ERA and TemPr are 1.3 pp and 3.9 pp, respectively. These results
show that our method does not depend on the backbone, and that improvements come from the
proposed training strategy.

Results on all three datasets showcase that EAST generalizes in both small and large-scale datasets.
Most importantly, we train one model for all observation ratios. We found that training separate
models for each p does not yield any accuracy improvements but requires 9x more training time.

4.4 ABLATIONS AND ANALYSES

We validate EAST on SSv2, unless otherwise specified.

Overlooked baseline EAST:.  Table [5| presents early action classification performance
when the VideoMAE ViT-B/16 model is trained on entire action classification sequences.



EAST¢ trains the same model but uses
our proposed sampling. Unlike EAST,
EASTs does not have a decoder. When
comparing EAST¢ to VideoMAE, there
is a noticeable difference for smaller ob-
servation ratios. For p = 0.1, Video-
MAE achieves only 9.9 % accuracy com-

Table 5: Top-1 SSv2 accuracy over all observa-
tion ratios. VideoMAE denotes pre-trained ViT-B/16
model performance finetuned for action classification.
EAST¢ trains ViT-B/16 with our proposed sampling
without a decoder.

Observation ratio p

pared to an encoder-only EAST¢ which
achieves 23.9 %. Accuracy differences are
less prominent at higher observation ra-
tios. This is expected since high observa-
tion ratios include more context. Never-
theless, the results indicate the critical impact of appropriate sampling strategy. We establish a
new early action prediction baseline that clearly outperforms the current state-of-the-art on SSv2,
achieving an average gain of 5.4 pp.

Method 0.1 02 03 04 05 06 0.7 0.8 09

VideoMAE 9.9 14.8 20.3 29.4 39.5 49.2 52.2 61.5 63.4
EASTe 23.9 28.3 32.7 39.1 46.1 56.0 56.5 59.6 60.7

Token masking and computational efficiency. Table E] validates our token masking method M¢
and compares it to a random masking M on NTU60. We measure performance using three
different masking ratios k € {25%,50%, 75%}. Difference masking performs consistently better
compared to random masking with the same masking ratio. This highlights the importance of re-
taining patches that contain most motion. We measure peak training memory (GB) for batch size 24
and count operations (TFLOP) for a forward pass given one training example. As expected, mask-
ing k=0.75 of patches requires the least amount of computation and memory, but it does not achieve
state-of-the-art results. Although M$_, ,. model achieves highest accuracy, we choose M -
since this setup offers best balance between efficiency and performance.

Table 6: Average NTUGO top-1 accuracy using o
difference masking M¢ and random masking
M4 [ denotes percentage of masked tokens.
We report complexity with one training sample 50
and peak training memory with batch size 24.

60

40

accuracy

30

Masking avg. acc. TFLOP peak mem. (GB) o2
M 640 ®
: 2 10.4

My s 719 +1.9 0 0 10

rand 01 02 03 04 05 06 07 08 09
Micos 713 = 0.5 19.2 b
My, 743 430
M T34 08 279 Figure 2: Comparison between EAST and mod-
MYy o5 752 +1.8 ’ ’ els trained for a single observation ratio on
no mask  75.1 11 36.7 SSv2. Each line denotes accuracy of a differ-

ent model at each observation ratio.

Table 7: Contributions of the proposed losses and modules to SSv2 validation accuracy. D denotes
the choice of the decoder. id denotes a model where decoder D is set to the identity mapping.
Our encoder-only approach already surpasses the previous state-of-the-art. Joint £P¢ and Lol
optimization benefits both encoder-only and encoder-decoder models.

Lconde pred pop—=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 avg
v id 239 283 327 391 461 560 565 59.6 60.7 44.8
v/ v/ id 253 294 336 403 480 545 592 626 639 463
v/ 261 304 345 412 483 541 582 610 618 462
Vo / v/ 256 301 345 41,6 490 552 594 630 640 469

Encoder-only vs encoder-decoder. The first row in Table[/|shows the accuracy of an encoder-only
baseline. This corresponds to the EAST¢ entry from Table [5] The second row in Table [7] shows
that training encoder-only EAST¢ using both £P® and £°® gains additional 1.5 pp. An encoder-



Table 8: Validation of the decoder, loss choice, and classification head on SSv2 against top-1 accu-
racy across different p.

a) Direct decoder Dy;; consis- b) The inclusion of an L5 loss ¢) The shared classifer h
tenly outperforms autoregres- in EAST yields no further per- slightly outperforms separate

sive decoder D,,. formance gains. classification heads.
Observation ratio p Observation ratio p Observation ratio p
D 0.1 03 05 07 Ly 01 03 05 07 clsh 0.1 03 05 07
Dy 25.0 342 48.2 58.8 X 256 345 49.0 594 shared 25.6 34.5 49.0 594
Dair 25.6 34.5 49.0 59.4 v 257 344 482 59.1 separated 25.7 34.3 48.3 59.2

decoder model trained using £P" and £ yields EAST, improving the average accuracy by 0.6 pp
over EASTg. Training without £°%® decreases results in both encoder-only and encoder-decoder
setup. The results highlight the benefits of training using the proposed compound loss in both cases.

Choice of the decoder. AVT (Girdhar & Grauman, |2021)) suggests that autoregressive prediction
is natural in modelling temporal action progression for action anticipation. However, our findings
in Table[8|a) show that forecasting with direct decoder outperforms forecasting with autoregressive
decoder by an average of 0.6 pp. Both approaches are viable since they surpass the current best
method. Due to slightly better results, we chose direct forecasting in EAST.

L2 loss. Alignment between observed and oracle features is a natural choice in guiding anticipative
behaviour. However, Table[§|b) shows that adding an L2 loss between oracle and predicted features
lowers accuracy by an average of 0.3 pp. We noticed that the L2 loss minimizes at the start of
training. Our hypothesis is that strong feature alignment neglects some important temporal patterns.

Shared vs separate classifiers. Table[§|c) shows the contribution of the shared classification head.
The shared classifier slightly outperforms two independent classifiers by an average of 0.3 pp, with
a maximum improvement of 0.7 pp at p = 0.5. Parameter sharing enforces a consistent decision
boundary between observed and predicted features. It also reduces overall complexity of the model.

Wall clock time. We compare the time duration of one training epoch between EAST and TemPr.
We use the same 4 x A6000 server, and turn off all CPU-GPU communication, such as loss log-
ging. Our mean measurements on UCF-101 are 80 seconds for EAST and 173 seconds for TemPr.
EAST without masking trains an epoch in 180 seconds, highlighting the token masking efficiency.

One vs per p model. Figure 2] compares EAST with 9 models that specialize in a single obser-
vation ratio. Although specialized models mostly perform better at their respective training-time
observation ratio, they fail in most other setups. The results indicate that training with EAST yields
sufficient capacity to learn discriminative cues across different observation ratios, which plays a
crucial role in improving model performance. See supplement for more insights.

5 CONCLUSION

Early action prediction is essential for timely decision making in safety-critical domains. This work
identified the main components of a successful early action prediction system. We introduced a
novel training framework that samples observation ratios in order to adapt the model to variable
context length. Unlike the previous best method, this strategy enables training a single model that
requires 9x less compute and excels across all observation ratios. We further improved our base-
line model by jointly training classification from forecasted and oracle features. Finally, we have
proposed a training optimization that removes the visually repetitive half of the inputs, thus halv-
ing the training memory. Our results demonstrate that training can be significantly simplified and
still outperform the previous state-of-the-art on SSv2, NTU60 and UCF101 using consumer-grade
hardware. Future research directions include unsupervised training and finding a unified method for
both action anticipation and early action prediction.



6 REPRODUCIBILITY STATEMENT

We make reproducibility a priority. Our paper includes a conceptual outline of the proposed method.
All datasets used are publicly available and appropriately cited. For computational experiments,
once the discussion forums are open, we will make a comment directed to the reviewers and area
chairs and put a link to an anonymous repository. Main experiments are run with a fixed seed and
single run to ensure reproducibility. We further test robustness of our method to random seeds and
report these results in the appendix. Hyperparameters, hardware and evaluation protocols are fully
specified. Our software requirements follow the publicly available VideoMAE repository, enabling
independent researchers to reproduce our findings with reasonable effort. The full implementation
will be publically released under a research-friendly license upon publication.
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A APPENDIX

This appendix is organized as follows. We begin by discussing the method limitations. Next, we
validate the decoder depth and measure the sensitivity to training with different random seeds. Fur-
thermore, we demonstrate the effectiveness of the proposed framework using a different backbone.
Finally, we present comprehensive results of our method across all observation ratio values p. Most
of these results are presented in the main paper. However, due to limited space, the main paper does
not contain results under all observations ratios.

A.1 LIMITATIONS

While EAST improves training efficiency and predictive performance, several limitations remain.
Since the proposed token masking benefits training rather than inference, the inference speed of
ViT encoders limits real-time applications due to the high computational cost. Although we moved
the needle towards practical use cases by training a single model agnostic to observation ratios,
the model still requires a GPU to operate near real time. Moreover, our encoder does not perform
causal inference, which necessitates sliding-window inference over the temporal dimension. This
introduces two challenges: i) the minimum decision latency is bounded by the window length 7',
and ii) it prevents streaming inference, which would better capture natural temporal progression and
long-term context. Note that evaluating streaming approaches is currently infeasible due to short
video duration in existing early action prediction benchmarks.

A.2 ABLATION ON DECODER DEPTH

Table 9] validates the number of transformer blocks in the decoder D. We evaluate depths of 1, 4 and
12 blocks. The experiments show that decoder depth is an important design choice. The decoder
with 4 layers consistently achieves the best accuracy, improving by 0.1 pp over both 1 and 12 layers
on the SSv2 dataset. On the UCF101 dataset, the advantage is more pronounced, with improvements
of 0.8 pp over 1 layer and 1.3 pp over 12 layers. A 4 layer decoder is expressive enough to transform
the encoded features into accurate predictions, yet not too complex to avoid potential overfitting.

A.3 ROBUSTNESS OF EAST TO RANDOM SEED

Our main results in Section 4 use a fixed seed within a single training run. We have found this to
be common practice in prior work. Nonetheless, we demonstrate that our method is not sensitive
to random seed selection. We perform additional training runs on Something-Something v2 with
two more random seeds. Table [_115] reports means;q over three runs to confirm low sensitivity to
randomness in training.

Table 9: Top-1 accuracy of EAST on SSv2 and UCF101 for three different decoder depths: 1, 4 and
12. The best results are in bold.

Observation ratio p
Dataset Depth 0.1 02 03 04 05 06 07 08 09 avg

1 254 299 341 412 48.6 551 595 63.0 64.0 46.8
SSv2 4 256 301 345 41.6 490 552 594 63.0 640 46.9
12 25.6 300 342 414 487 551 596 627 641 468

1 90.5 924 931 943 947 950 956 954 955 94.1
UCF101 4 91.3 932 938 947 955 96.1 964 965 96.5 949
12 90.3 92.0 928 93,6 943 946 949 949 949 93.6

A.4  VALIDATION OF EAST USING A MOVINET BACKBONE
The first row in Table[TT|shows the accuracy of an encoder-only model with a MoViNet backbone.

The second row in Table [T1] shows that training encoder-only EAST¢ with MoViNet backbone
using both £P"¢ and £°7!® gains additional 1.2 pp. Training an encoder-decoder model using £P¢
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Table 10: Top-1 accuracy (%) of EAST over all observation ratios for the SSv2, reported as the
mean+stq over three random seeds.

Observation ratio p
Dataset 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SSv2 255402 29.840.3 34.2403 41.140.4 48.610.4 55.040.2 59.340.1 62.710.3 63.710.3

Table 11: Contributions of the proposed losses and modules to UCF101 validation accuracy with
MoViNet encoder. D denotes the choice of the decoder, id denotes an identity mapping (encoder-
only), whereas v'uses the proposed decoder D.

coede peed pp=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 avg

v/ id 883 904 912 914 921 925 927 928 929 91.6
v v id 887 907 918 926 938 944 943 944 945 928
4 v v 913 932 938 947 955 961 964 965 965 94.9

and £°% (¢f EASTwmovinet from Table [4)) further improves the average accuracy by 2.1 pp. The
results highlight the benefits of training using the proposed compound loss in both cases, regardless
of the backbone. Note that training with MoViNet limits the batch size to 32 since token masking is
not applicable. In comparison, ViT-B/16 supports a larger batch size of 128 on the same GPUs.

A.5 EAST RESULTS PER p ON NTU60 AND SSSUB21

Table [T2] reports top-1 accuracy EAST obtains at each observation ratio on the NTU60 and SS-
sub21 datasets. We provide a detailed performance comparison across the full range of evaluated
observation ratios.

Table 12: Extended Tables 1 and 3 from the main paper. Top-1 accuracy (%) of EAST over all
observation ratios for the NTU60 and SSsub21 datasets.

Observation ratio p
Dataset 01 02 03 04 05 06 07 08 09

NTU60 312 496 694 813 862 876 879 88.0 879
SSsub21 40.8 44.7 512 592 664 720 758 783 793

Table 13: Extended Table E] from the main paper. Top-1 accuracy of EAST on NTU60 over all
reported observation ratios for different masking setups. MY and M™¢ denote difference masking
and random masking, respectively. k£ denotes percentage of masked tokens. w/o denotes no masking
of video frames. TFLOP denotes the number of floating point operations. Peak mem. denotes the
maximum amount of GPU memory allocated at any point during execution.

Observation ratio p
Masking 0.1 02 03 04 05 06 0.7 08 0.9 avg TFLOP peak mem. (GB)

M 233 365 563 70.3 76.5 77.9 78.4 78.5 785 640  0.24 10.4
MU . 284 464 659 78.3 84.0 85.6 86.1 86.1 86.1 71.9

M 286 457 66.1 78.3 83.5 84.6 85.0 85.1 850 71.3 0.5 19.2
M. 312 49.6 69.4 81.3 862 87.6 87.9 88.0 87.9 74.3

M 311 483 67.9 79.8 85.1 86.8 87.2 87.3 87.3 73.4 0.8 27.9
MY L. 319 51.0 70.8 81.9 86.7 88.3 88.6 88.7 88.6 75.2

w/omask 32.6 50.7 70.3 82.1 86.9 88.1 88.4 88.5 88.5 75.1 1.1 36.7
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A.6 RESULTS OF DIFFERENT MASKING SETUPS FOR EACH p

Table (13| shows that our chosen masking strategy M$_, . demonstrates a clear and consistent ad-
vantage across all observation ratios p. By selectively retaining the most informative tokens, it
effectively balances predictive accuracy and computational cost. This approach serves as an optimal
middle ground, delivering strong performance while avoiding the excessive resource demands.

A.7 EAST ABLATION RESULTS ACROSS ALL OBSERVATION RATIOS

Table [T4] shows the accuracy of EAST for every observation ratio p when using different decoders.
Direct decoder Dgy;; shows consistent improvement for all observation ratios in comparisons to au-
toregressive decoder D,,. On average, the direct decoder yields a 0.3 pp improvement in accuracy.

Table [T5] shows the accuracy EAST obtains when training with £ loss in conjunction with the
proposed classification losses. We notice only marginal accuracy increase of 0.1 pp for p = 0.1.
At other observation ratios there is no benefit of using the £5 loss. On average, using only the
classification losses improves accuracy by 0.3 pp.

Table [T6]shows the accuracy of EAST for every observation ratio p when we use one classification
head and when we use separate classification heads. We notice minimal gain in accuracy of 0.1 pp for
observation ratio p = 0.1. Using a single classification head clearly improves the average accuracy
by 0.3 pp.

Table 14: Extended Table [§|a) from the main paper. Top-1 accuracy of EAST on SSv2 for each p.
Direct decoder Dy;; consistenly outperforms autoregressive decoder D,;.

Observation ratio p
D 01 02 03 04 05 06 07 08 09 avg

Dgir 256 30.1 345 416 49.0 552 594 63.0 640 469
Dy 250 295 342 409 48.1 545 588 624 633 463

Table 15: Extended Table |8 b) from the main paper. Top-1 accuracy of EAST on SSv2 over all
reported observation ratios when using £ in addition to classification loss.

Observation ratio p
L, 01 02 03 04 05 06 07 08 09 avg

X 256 301 345 416 49.0 552 594 63.0 64.0 46.9
v 257 298 344 409 482 547 591 626 637 46.6

Table 16: Extended Table [§| c) from the main paper. Top-1 accuracy of EAST on SSv2 over all
reported observation ratios when using shared classification head vs separate classification heads for
different set of features.

Observation ratio p
#clsh 01 02 03 04 05 06 07 08 09

1 256 301 345 416 49.0 552 594 63.0 64.0
2 25.7 300 343 410 483 547 592 625 635
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Table 17: Numerical values for the Figure |2|in the main paper. Top-1 accuracy on SSv2 over all
observation ratios when we train one model for each p vs EAST. Results for the matching training p
are shown in bold.

Observation ratio p
model 01 02 03 04 05 06 07 08 09

EAST 25.6 30.1 345 416 49.0 552 594 630 64.0

p=01 271 274 292 292 271 271 243 220 20.1
p=02 247 325 330 359 378 378 362 335 310
p=03 222 302 349 396 427 441 431 426 39.0
p=04 210 28.0 341 411 465 499 509 50.1 484
p=05 184 254 316 403 50.1 538 569 554 550
p=06 157 220 278 446 470 545 585 585 60.1
p=07 13.0 19.0 253 423 447 539 59.6 627 62.7
p=08 10.7 16.1 198 310 41.7 51.6 588 63.7 64.7
p=09 97 159 19.1 286 388 493 573 640 64.9

A.8 PERFORMANCE OF EAST VS SINGLE MODEL FOR SINGLE p

Table [I"/] shows that training one model for each p can match or occasionally surpass our perfor-
mance at its own observation ratio p. However, its accuracy deteriorates noticeably when applied to
other ratios, with the decline becoming more severe as the evaluation ratio diverges from the train-
ing ratio. In contrast, EAST maintains consistently strong performance across all observation ratios,
demonstrating greater robustness to changes in p.
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