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Abstract—This paper addresses the path planning problem 

of Unmanned Aerial Vehicle (UAV) operating in a three-

dimensional environment populated with obstacles. An 

enhanced Adaptive Budgerigar Optimization (ABO) algorithm 

is designed to navigate the UAV efficiently, ensuring collision 

avoidance while maintaining high solution accuracy. The 

primary innovation of our approach involves modifying the 

iteration update formula of the original Parrot Optimization 

algorithm by incorporating an adaptive adjustment factor. This 

factor dynamically regulates the convergence rate and accuracy, 

thereby enabling the algorithm to escape local optima and 

achieve globally optimal paths effectively. Through 

comprehensive simulation experiments, we compare the 

performance of the ABO algorithm against traditional Particle 

Swarm Optimization (PSO) and the original Budgerigar 

Optimization algorithm. The results demonstrate the superior 

convergence speed and solution quality of the proposed 

algorithm, thereby validating its effectiveness and feasibility. 

Keywords—Path Planning; Adaptive Budgerigar 

Optimization (ABO); Obstacle Avoidance; Unmanned Aerial 

Vehicle 

I. INTRODUCTION  

In recent years, the continuous advancements in robotic 
automation technologies, including visual perception, path 
planning, and intelligent control, have led to the widespread 
adoption of Unmanned Aerial Vehicles (UAVs) across 
various fields. This is largely attributed to their compact size, 
cost-effectiveness, high mobility, and enhanced safety 
features. Among the key technologies enabling UAV 
autonomy and intelligence, path planning has emerged as a 
primary research focus [1-3]. Path planning for UAVs 

involves designing an optimal flight path that adheres to 
specific UAV and terrain constraints while avoiding obstacles, 
no-fly zones, and potential threats along the route. The 
efficiency and safety of UAV mission execution are directly 
influenced by the effectiveness of path planning. By 
optimizing the flight path, UAVs can achieve mission 
objectives in the shortest possible time, thereby enhancing 
overall operational efficiency. 

Path planning methods are generally classified into three 
categories: traditional path planning algorithms, artificial 
intelligence algorithms, and swarm intelligence optimization 
algorithms. Traditional path planning algorithms[4] include 
methods such as the Artificial Potential Field (APF) algorithm 
[5] and the A* algorithm [6]. Artificial intelligence algorithms 
[7-9] primarily utilize techniques like neural networks, 
reinforcement learning, and other machine learning methods 
to address the UAV path planning problem. Swarm 
intelligence optimization algorithms [10] encompass 
approaches such as the Ant Colony Algorithm [11-12], 
Genetic Algorithm [13-14], and Particle Swarm Optimization 
(PSO) [15-17]. Unlike traditional path planning algorithms, 
which often suffer from high computational demands, limited 
applicability, and a propensity to converge to local optima, 
swarm intelligence algorithms are capable of global search, 
enabling the identification of optimal paths more effectively. 
Consequently, swarm intelligence algorithms are widely 
employed in UAV path planning. 

However, it is important to note that current swarm 
intelligence algorithms still face several challenges, including 
limited optimization capabilities and high computational 
resource consumption. Additionally, many path planning 



algorithms are tested in overly simplified scenarios, which 
may not adequately demonstrate their feasibility in more 
complex environments. To address these issues, researchers 
have developed the Parrot Optimization (PO) algorithm [18]. 
While this algorithm exhibits strong optimization 
performance, it continues to suffer from problems such as 
convergence to local optima and significant computational 
resource demands. 

Based on the above analysis, this article conducted in-
depth research on UAV path planning under obstacle 
constraints. The main innovative points are summarized as 
follows: 

(1) A novel path planning scheme based on the Adaptive 
Budgerigar Optimization (ABO) algorithm is designed. This 
scheme enables effective obstacle avoidance in a three-
dimensional environment while maintaining high solution 
accuracy. The UAV navigation efficiency and safety in 
complex environments are enhanced. 

(2) The traditional PO algorithm in [18] is improved by 
introducing a unique adaptive adjustment factor. This factor 
dynamically regulates the convergence rate and accuracy, 
allowing for more effective escape from local optima and 
achievement of globally optimal paths. The enhanced 
algorithm demonstrates superior convergence speed and 
solution quality compared to the PO algorithm, particularly in 
scenarios requiring high-precision path planning. 

The remainder of this paper is structured as follows: 
Section 2 presents the modeling of the UAV path planning 
problem in a three-dimensional environment. Section 3 
introduces the ABO algorithm. Section 4 compares the 
proposed algorithm with the traditional PO and PSO algorithm, 
demonstrating its superiority and determining the optimal 
parameters through comparative experiments. Finally, Section 
5 concludes the paper with a summary of the key findings. 

II. PATH PLANNING MODEL CONSTRUCTION 

This section models the UAV mission planning problem 
and outlines the construction of randomly generated three-
dimensional (3D) maps. Additionally, it details the flight 
range constraints and terrain limitations [19] that the UAV 
must adhere to during the path planning process. 

A. The model of task space 

In this paper, we address the UAV path planning problem 
within a mountainous environment. To enhance the 
randomness and demonstrate the adaptability of the algorithm, 
the centers of the peaks are generated randomly. The heights 
of the mountains in this environment are modeled using an 
exponential function, and the corresponding mathematical 
model is represented as follows: 
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where parameter n  represents the number of peaks; ax and

ay  are the center coordinates of the tha  peak; ah  is a 

geographic parameter, which controls the height degree; sax

and
say  are the 

tha  peak's attenuation along the x-axis and y-

axis directions, which control the slope of the peaks. The 
environment model is shown in Figure 1. 

 
Fig. 1. Three-dimensional Map 

B. UAV path representation 

The flight path of a UAV is characterized by an ordered 
set of point coordinates, each interconnected spatial 
coordinate point is associated using a cubic B-spline 
smoothing curve. Assume that the set of sequence points of 

the UAV path is 1 2 3 1, , , , ,nS I I I I T− . The group of node 

sequences are composed of 1N +  nodes; S and T represent 

the starting and the target points of the UAV. The three-
dimensional representation of starting and target point is

( )0 0 0, ,S x y z= and ( ), ,n n nT x y z= , for the intermediate 

nodes in the path, we use ( , , )( 1,2, , 1)a aa aI x y z a n= = −  to 

describe. 

C. Constraints and target function 

The constraints are designed to ensure the planning of 
feasible flight paths. In the context of single UAV path 
planning, two primary constraints are introduced: terrain and 
environment. 

Firstly, to prevent terrain collision during UAV flight, the 
flight altitude of UAV must consistently exceed the terrain 
altitude. Accordingly, the terrain constraints are formulated 
as follows: 

 ( , ); 1,2, , ,aa aZ Z x y a n    =  (2) 

where ( , )a aZ x y  is a terrain function, which can represent the 

height of the terrain at the position ( , )aax y . 

Secondly, to optimize path planning and minimize costs 
during UAV flight, the UAV is restricted to operate within a 
designated area. The environmental constraints are therefore 
defined as follows: 
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For the flyable path, the UAV's voyage obstacles, and 
boundary constraints must be collectively considered, 
enabling the generalization of the UAV's integrated cost 
function as follows: 



 ( ) ( )c c cmin min ,C V T B= + +  (4) 

where 
CV represents voyage cost; 

CT represents terrain cost; 

and 
CB represents boundary cost. 

The voyage cost 
CV  essentially takes into account the 

distance flown by the UAV  which is directly proportional to 
the distance D. It can be expressed as the total distance of the 
UAV from the starting point to the target point. If the total 
trajectory is composed of n waypoints, the voyage cost can 
be represented as 
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The terrain cost 
cV primarily accounts for the threat posed 

by mountain peaks along the UAV's flight path. The presence 
of this terrain cost significantly increases the expense of 
traversing mountainous obstacles, thereby optimizing the 
UAV’s path to avoid such obstacles. It is expressed by the 
following mathematical formula: 
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where the parameter P represents the penalty for collisions 
with obstacles. 

The boundary cost cB  is primarily considered to ensure 

that the UAV operates within the designated spatial region 
during the flight, and is expressed as follows: 
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Similarly, the parameter P represents the penalty for 
increasing the cost if the UAV exceeds its flight range. 

III. ADAPTIVE BUDGERIGAR OPTIMIZATION ALGORITHM 

Similar to other swarm intelligence optimization 
algorithms, the ABO algorithm is inspired by the natural 
behaviors of budgerigars. Previous studies have identified 
four distinct behavioral traits in budgerigars: searching, 
staying, communicating, and escaping. These behaviors serve 
as the foundational inspiration for the design of the ABO 
algorithm.  

A. Searching behavior 

During searching behavior in ABO, the budgerigars 
determine the approximate location of the food by observation, 

and then fly towards the estimated location. The population of 
budgerigar is assumed to be N  and the maximum number of 

iterations of the algorithm is iter , the behavior can be 

described by the following equation: 
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In the equation (8), t

iP  represents the current position, 1t

iP +  

represents the position of the next momentary update. t

meanP

represents the average position of all individuals in the 

current population. bestP  represents the optimal position 

searched so far. (0,1)rand  represents a random number 

generated from 0 and 1. ( )Levy n  represents Levy flight 

strategy, where n represents the number of intermediate 
points selected throughout the path planning process. t  

denotes the number of iterations so far. 

For the parameter   in equation (8), is a dependency 

coefficient. The dependency coefficient is used to regulate 
the degree of dependency of an individual on the global 
search. By adjusting the size of the dependency factor, we can 
change the search weights of individuals globally and locally, 
which in turn gives better results. 

The average position of all individuals can be calculated 

using the following equation： 
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The Levy flight strategy can be represented by the 
following equation: 
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B. Staying behavior  

The budgerigar is highly social, it may randomly explore 
a certain location and stay there for a while based on 
existing experience, therefore, its behavior can be expressed 
by the following equation: 

 1 ( ) (0,1) (1, ),t t

i i bestP P P Levy n rand ones n+ = +  +   (11) 

where (1, )ones n  represents the all-1 vector of dimension n. 

( )bestP Levy n represents the behavior of its exploration and 

(0,1) (1, )rand ones n represents the process of staying at a 

random location. 



C. Communicating behavior 

As a natural social animal, budgerigar’s behavior is 
inextricably linked to communication in a group. There are 
two types of budgerigar communication: flying back into the 
group and communicating with a single companion. We 
assume in the ABO algorithm that the two modes of 
communication have the same probability of occurring and 
consider the average position of all individuals in the 

population t

meanP   to be the center of the population, we can 

express these two modes in the following two equation: 
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where k  in the equation is a random number from 0 to 1, 

which is used to randomly select which communication 

behavior occurs. 0.2 (0,1) ( ) ( )t t
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t
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i
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e
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t r
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represents the process of individuals flying back to the center 
of the population for communication and 
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 denotes the 

process by which an individual communicates directly with 
other individuals.  , like  in equation (9), represents the 

dependency coefficient, which can be adjusted artificially. 

D. Escaping behavior 

As a bird, Budgerigars has a natural fear of unfamiliar 
environments. When budgerigar is confronted with sudden 
dangers and situations, it will actively engage in evasion and 
return to a position it is familiar with and safe. Based on this 
behavior, we get the following equation: 
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where (0,1) (0.5 ) ( )t
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process of flying back to a safe position, and
2
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process of escaping a dangerous and unfamiliar environment. 

E. Explanation of the ABO algorithm 

The optimization formula presented above is derived 
from the four behavioral traits of budgerigars. In the ABO 
algorithm, the behavior that an individual performs is 
determined by an identifier, known as the flag, which takes a 
positive integer value between 1 and 4, with each value 
having an equal probability of occurrence. Unlike traditional 
meta-heuristic algorithms, the ABO algorithm does not 
differentiate between the exploration and exploitation phases. 
Instead, individuals randomly select one of the four behaviors, 

resulting in a straightforward algorithm with strong 
optimization capabilities. 

F. Flowchart of the ABO algorithm 

The path planning process for the UAV using the ABO 
algorithm can be outlined in the following steps. First, the 
algorithm begins with the initialization of parameters, where 
the values of the hyperparameters are input. Next, the 
positions of the population are initialized, and the current 
value of the fitness function is calculated. Subsequently, the 
four behaviors of budgerigars are employed to update the 
positions, with the selection of behaviors determined by the 
random parameter flag. These behaviors optimize an 
individual's position by utilizing information such as the 
current optimal position and the average position of the 
population. The optimization process continues iteratively 
until the predefined stopping conditions are satisfied. The 
specific flowchart of the ABO algorithm is presented below:  

 
Fig. 2. the flowchart of the ABO algorithm 

IV. SIMULATION EXPERIMENT AND ANALYSIS 

To verify the performance and advantage of the ABO 
algorithm in solving the UAV path planning problem, this 
paper takes the MATLAB environment for experimental 
simulation. Meanwhile, we compare the ABO algorithm with 
the traditional PSO algorithm. The superiority of the ABO 
algorithm can be seen from the results. Also to get the 
influence of hyperparameters and  on the path planning 

results, several sets of different values of  and   are taken 

for comparison experiments to get the optimal parameter 
values. 
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A. Simulation experiment based on ABO algorithm  

In this part, we aim to demonstrate that the ABO algorithm 
is suitable for solving the UAV path planning problem. To 
achieve this, task scenarios are randomly generated to validate 
the algorithm's generalization capability. Additionally, the 
optimization performance of the ABO algorithm is assessed 
through comparative experiments with the PSO algorithm. 

Simulation parameter settings: the number of intermediate 
points is three, the number of populations is set to 200, the 
number of iterations is set to 100, the coordinates of the 
starting point is [1,1,1], the coordinates of the target point is 
[85,80,40], and the three-dimensional coordinates are limited 
to [100,100,100]. The values of the adaptive parameters 
and  are both chosen to be 1. The number of peaks n is taken 

to be 25.In the environment of MATLAB 2022a, based on the 
ABO and PSO algorithm for UAV path planning we can get 
the following results: 

 

Fig. 3. The ABO algorithm path planning results 

 

Fig. 4. The PSO algorithm path planning result 

 

Fig. 5. Convergence curve by ABO and PSO algorithm 

 Figure 3 illustrates the UAV path planning results obtained 
using the ABO algorithm, while Figure 4 presents the results 
generated by the traditional PSO algorithm. Figure 5 displays 
the convergence curves for both the ABO and PSO algorithms, 
where the theoretical optimum represents the straight-line 
distance between the starting point and the target point. The 
simulation experimental results demonstrate that the ABO 
algorithm is a viable solution for the UAV path planning 
problem. Furthermore, the convergence curves in Figure 5 
indicate that the optimization performance of the ABO 
algorithm surpasses that of the traditional PSO algorithm. 

B. Simulation experiments on adaptive parameter selection 

of  the ABO algorithm 

The previous simulation results have demonstrated the 
feasibility of the ABO algorithm in solving the UAV path 
planning problem. The next step involves conducting 
multiple sets of comparison experiments to determine the 
optimal adaptive parameters. Given that the maps used earlier 
were randomized, different trials could produce varying maps, 
potentially impacting the accuracy of the results. To address 
this, a fixed map will be used in the subsequent experiments 
to ensure consistency and accuracy. 

The other parameters of the experiment are kept constant 
and only the values of the adaptive parameters   and   are 

changed. Selecting 4 different sets of values of  and   , 

we can get the following results. 

 
Fig. 6. Optimization results for different parameters 

Figure 6 illustrates the optimization results of selecting 
four different sets of values of   and  .The red curve in 

Figure 6 is the case  =  =1; the green curve is the case 

=1,  =2; the pink curve is the case  =2,  =1 and the 

yellow curve is the case  =  =2. From the results, we can 

see that with enough iterations, it is still the case of  =  =1 

that is optimized optimal.  

V. CONCLUSION 

This paper has addressed the UAV path planning 
problem in three-dimensional environments with obstacles. 
An enhanced ABO algorithm, which efficiently navigates the 
UAV while ensuring collision avoidance and high solution 
accuracy is proposed. By incorporating an adaptive 
adjustment factor into the iteration update formula, the 
algorithm effectively escapes local optima and achieves 
globally optimal paths. Simulation results demonstrated the 
ABO al orith ’s superior co ver e ce speed a d solutio  



quality compared to traditional methods, validating its 
effectiveness. Future research will focus on multi-UAV 
cooperative path planning to further optimize coordination 
and efficiency. 
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