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Abstract

Sodium-ion batteries (SIBs) are emerging as a promising solution for grid-scale
energy storage applications due to the widespread availability of sodium and
the anticipated cost-effectiveness. The manufacturing expertise established for
lithium-ion batteries (LIBs) offers a solid foundation for the development of SIBs.
However, to realize their full potential, specific challenges related to the synthesis
and performance of electrode materials in SIBs must be overcome. This work
extracts a large database of challenges limiting the performance and synthesis of
SIB cathode active materials (CAMs) and pairs these challenges with corresponding
proposed mitigation strategies from the SIB literature by employing custom natural
language processing (NLP) tools. The database is meant to help scientists expedite
the development and exploration of SIBs.

Figure 1: NLP Pipeline: We implemented a sequential filtering and visualization approach, employ-
ing sentence classification [1], phrase-level classification, and relationship extraction [2, 3]. The
outcomes are visualized through BERT-based topic modeling [4] in Figure 3 and knowledge graphs
in Figure 4.

1 Introduction

Clean energy transition is crucial to mitigating climate change [5]. Energy storage devices, particularly
compact chemical energy formats like batteries, are essential for managing the intermittent nature of
renewable sources like solar and wind energy [6]. LIBs are a common battery chemistry offering
highest energy density and output voltage compared to alternatives [7]. However, concerns have been
raised regarding the skewed geographic impact of lithium extraction and the price impact of rapid
growth [8]. The development of alternative battery chemistries, such as those based on sodium, could
offer diversification opportunities [9, 10, 11]. SIBs could replace LIBs for grid storage applications.
While SIB fabrication can parallel that of LIBs in terms of cell manufacturing and assembly [12, 13],
the commercialization of SIBs is limited by the performance of cathode active materials for SIBs
[14, 15].
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Tracking scientific developments can be complex as insights across material types are buried in an
enormous corpus of more than 10,000 publications [16]. Therefore, offering a coherent overview and
an ability to efficiently query these insights provides value for battery researchers. NLP-based studies
in materials science have focused on the extraction of quantitative synthesis-related data and materials
properties, enabling training of machine learning models [17, 18, 19, 20]. This approach however,
neglects text-based qualitative rationales formulated by scientists. In contrast, our methodology
focuses on capturing authors’ reasoning regarding structure-property relationships of performance
challenges directly. These are then aligned with the relevant mitigation strategies. We believe that
the intentional focus of our method on textual references to materials engineering methods and
mechanisms, rather than on quantitative data can enhance the understanding of existing approaches.
Our primary contributions are as follows:

• Extraction of a detailed database on SIBs materials challenges and mitigation strategies

• Interactive search tool for scientists to find SIB-related mitigation strategies and linked mechanistic
causes corresponding to observed performance characteristics

• Classifiers and training data for efficient battery literature screening, extendable to LIB research

Our approach uses systematic extraction of challenges and mitigation strategies from the literature
using a two-stage process of sentence and phrase extraction. Moreover, this specialized focus on
SIBs, which are a critical and emerging area in battery technology, fills a specific knowledge gap in
the field. The interactive search tool not only aids in research but also in practical problem-solving,
allowing for a more dynamic and user-friendly way to access complex information.

2 Methods and Framework

Figure 2: Sentence, Phrase and Relationship Extraction: After classifying the sentence to be of
type "Mitigation", phrases and relationships between phrases are identified.

In recent years, there has been a surge in published research papers on SIBs to the order of 104 [16].
It would take over 20,000 uninterrupted hours to manually read and comprehend every single paper,
assuming an average of two hours per paper. Based on our established NLP pipeline, we are able to
process a corpus of 10,000 papers in 6 hours without human intervention. Our methodology builds
upon seminal works in sentence-oriented sentiment analysis [21, 22, 23], sentence-based search
mechanisms [1, 24], open information extraction [3, 2], and topic modeling [4].

We extracted a structured database, which enabled us to identify prominent topics from and infer
implications about scalability-informed lab research. The relevant papers were downloaded using
a literature mining pipeline described in [18]. We organized extracted information for 18 cathode
material types across layered metal oxides, Prussian blue analogs, and polyanionics. Figure 1
illustrates the NLP pipeline tasks. Our pipeline can be used for several similar tasks. The sentence
classification, phrase classification and relationship extraction methodology is described below.

Sentence Classification: We distinguish between two main types of sentences:

• Challenge Sentences encapsulate discussions about all performance or materials-related flaws,
their mechanistic origins, and shortcomings in synthesis procedures. (e.g., "Irreversible sodium

loss in sodium-ion batteries results in low specific capacity.")

• Mitigation Sentences involve references to enhancing the material’s key performance indices or
associated properties and methods. (e.g. in Figure 2)
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Figure 3: Exploratory view of extracted mitigation sentences in Sodium Iron Manganese Oxide:
The extracted phrases are embedded using BERT and subsequently clustered and dimensionally
reduced. (a) Mitigation strategy phrases with marked regions showcasing various mitigation strategy
topics (b) Space of extracted challenge phrases. Marked regions showcase various materials related
challenges.

Phrase Classification and Relationship Extraction: To extract relevant context spans from the
sentences, we developed a phrase-level classification scheme. We assess challenges at two scales
for phrase-level classification: macro-challenges and micro-challenges. Macro-challenges are key
performance challenges directly linked to resultant performance like "low specific capacity", "poor

rate capability"., etc. whereas, micro-challenges are mechanistic causes of these macro-challenges
that indicate the underlying phenomena that contribute to macro-challenges like "low redox activity",
"irreversible Na loss", etc. Besides these two types of challenges, we extracted phrases related
to mitigation strategies (e.g., "addition of sacrificial salts"). We also extracted the relationship
among those phrases. Figure 3 visualizes the mitigation strategies space for NFMO (Sodium Iron
Manganese Oxide) clustered using phrases. Extracted challenges and mitigation strategies constitute
challenge-mitigation pairs.

Model Evaluation: For the development of our sentence and phrase classifiers, we benchmarked
with a variety of approaches on our dataset, using stratified data splits and hyperparameter optimiza-
tion. As seen in Table 1, the performance of BERT-based models [25] was commendable. The best
results were attained with SciBERT [26] and MatSciBERT [27], which were both pretrained in the
domain of scientific publications. We also discovered that recent autoregressive Large Language
Models (LLMs), such as GPT-3 [28], yielded promising results, even when only presented with 10
in-context examples [28]. Phrase and relation extraction has been achieved with the Dynamic Graph
Based Information Extraction (DyGIE) model [3].

3 Results and Discussion

Our approach enabled us to create a comprehensive database of materials-specific challenges and their
mechanistic sources that impact material performance, along with corresponding mitigation strategies.
In total, we obtained a database of approximately 31,000 challenge and mitigation sentences. Out of
these, our classifiers identified 9,000 relations. Analyzing the diversity of papers in the final relational
database, we note that 91% of the initial papers are represented in the mitigation sentence database
and 84% in the challenge sentences database, underscoring the comprehensive coverage of our source
material. Domain experts evaluated the informativeness and correctness of the extracted relationships
which yielded a correctness score of 85%. The database can be queried for a variety of challenge-
mitigation pairs using challenge topics to aid in expediting the development of commercial-scale SIBs.
We clustered our mitigation database (Figure 3) using sentence BERT [29] computed embeddings of
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F1 P R

MATSCIBERT 83.1 (1.2) 83.4 (1.1) 83.8 (1.3)
SCIBERT 84.1 (1.7) 84.4 (1.5) 84.2 (1.4)
GPT3 @10 SHOTS 73.2 75.9 72.5

Sentences Phrases Relations

CHALLENGE 84.1 67.5 39.4
MITIGATION 83.1 67.9 50.8

Table 1: Top: Model comparison on the sentence classification task for challenge sentences. Bottom:

F1 scores for sentence classification, phrase classification and relationship extraction. Our hypothesis
is that the comparatively lower scores observed for Challenge relations may be attributed to the
increased complexity inherent in these sentences often describing interrelated materials specific
phenomena.

Figure 4: Knowledge-graph representation of some mitigation strategies linked to the macro-
challenges of ’Rate Capability’ and ’Cycling Stability’ which are the two most commonly reported
macro-challenges. These graphs were constructed by utilizing our relationship extractor to get
"challenge-mitigation pairs". (a.1) and (a.2) are for NaFeMnO type materials, (b) is for NaNiMnO
type materials and (c) is for NaNiMnCoO type materials.

the strategies, revealing a holistic map of the diverse mitigation strategies space. We also created
knowledge graphs as shown in Figure 4 to identify "challenge-mitigation pairs" of interest.

To make the database more accessible for researchers, we integrated the large database with Chat-
GPT’s custom GPT creator [30] to create a ‘Sodium-Ion Battery Builder’ chatbot (Figure 5) that
can be queried to find relevant mitigation strategies for a given macro- or micro-challenge. The
chatbot can also handle queries for retrieving linked micro-challenges for a given macro-challenge.
Additionally, it can be used to supply users with Digital Object Identifiers (DOI) linked to the
scientific information it retrieves, enhancing reliability and reducing the risk of providing inaccurate
information. Our database adopts a selective approach, concentrating on segments of the paper that
address specific challenges and their respective mitigation strategies for SIBs that would not exceed
the context window limitations of generative language models. Constructing specialized LLMs by
incorporating entire research papers is impractical given the extensive quantity and size of these
documents. Our targeted filtration enables efficient querying for this Retrieval Augmented Generation
chatbot.

4 Limitations and Future Outlook

SIBs are a promising energy storage option due to the use of abundant and affordable element-
containing precursors. NLP-extracted databases of synthesis and mitigation strategies have the
potential to accelerate future research and industrialization, bringing the field closer to realizing the
full potential of commercial SIBs. However, our methodology poses certain limitations. Firstly,
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Figure 5: ‘Sodium-ion Battery Builder’ GPT Snapshot of the chatbot to interact with the extracted
database using OpenAI custom GPTs. The chatbot can be queries to understand underlying mecha-
nistic causes of challenges encountered in battery development as well as strategies to address them
from reliable sources.

NLP-extracted databases depend heavily on the quality and representativeness of the source data.
There’s a risk of bias as the literature used might disproportionately represent certain types of research
over others. Secondly, the field of battery technology is rapidly evolving. Strategies identified as
optimal today may become obsolete tomorrow as the field continues to develop a better understanding.
Finally, transitioning from identifying Challenge-Mitigation patterns to selecting the optimal strategy
remains a complex task necessitating human expertise. While NLP can identify patterns and suggest
strategies, it lacks the intuition and expertise of human researchers. Using a human-in-loop approach,
our NLP tool can be used to select strategies that can be economically viable at scale by integrating
techno-economic cost-modeling approaches. Similarly, the tool can also be used to integrate with the
assessment of other metrics like life cycle analyses for comparing mitigation strategies and synthesis
pathways.

Furthermore, future applications may involve transferring the developed classifiers to the domain of
LIB literature. Extracting related materials modification strategies from LIB literature, the established
database could be augmented by LIB related mitigation strategies. This can potentially enable
cross-domain knowledge transfer to SIB development by leveraging suitable mitigation strategies
from LIBs.

5 Data Availability

The extracted database and classifiers are available at github.com/olivettigroup/NLP4SIB. Sodium
Ion Battery Builder GPT built on OpenAI’s ChatGPT platform as a custom GPT is available here:
chat.openai.com/g/g-2gOTffBeL-sodium-ion-battery-builder.
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