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ABSTRACT

Sparse Mixture of Experts (SMoE) performs conditional computation by selec-
tively activating a subset of experts, thereby enabling scalable parameter growth in
large language models (LLMs). However, the expanded parameter scale exceeds
the memory capacity of a single device, necessitating distributed deployment for
inference. This setup introduces two critical challenges: (1) Communication Is-
sue: Transferring features to devices with activated experts leads to significant
communication overhead. (2) Computational Load Issue: Skewed expert activa-
tion overloads certain GPUs, resulting in load imbalance across devices. Among
these, communication overhead is identified as the main bottleneck in SMoE in-
ference. Nevertheless, reducing communication between devices may exacerbate
computational load imbalance, leading to device idleness and resource waste.
Therefore, we present GRACE-MoE, short for Grouping and Replication with
Locality-Aware Routing for SMoE inference. GRACE-MoE is a co-optimization
framework that jointly reduces communication overhead and alleviates computa-
tional load imbalance. Specifically, the framework comprises two key phases: ①
Grouping & Replication: This phase groups experts based on their affinity to re-
duce cross-device communication. Additionally, dynamic replication is applied to
address load skew, improving computational load balance across GPUs. ② Rout-
ing: This phase employs a locality-aware routing strategy with load prediction.
It prioritizes local replicas to minimize communication overhead and balances re-
quests across remote replicas when necessary. Experiments on diverse models and
multi-node, multi-GPU environments demonstrate that GRACE-MoE efficiently
reduces end-to-end inference latency, achieving up to 3.79× speedup over state-
of-the-art systems. Code for GRACE-MoE will be released upon acceptance.

1 INTRODUCTION

Large language models (LLMs) built on the Transformer architecture (Vaswani et al., 2017) demon-
strate substantial performance gains as the number of parameters increases (Brown et al., 2020).
However, scaling dense models by simply enlarging parameter counts incurs prohibitive compu-
tation and memory costs (Kaplan et al., 2020; Clark et al., 2022). The Sparse Mixture-of-Experts
(SMoE) architecture mitigates this by partitioning parameters into experts and activating only a small
subset per token, thereby enabling “large-parameter but small-computation” scaling (Shazeer et al.,
2017). Recent SMoE systems, such as GShard (Lepikhin et al., 2020) and Switch Transformer (Fe-
dus et al., 2022), have already reached trillion-parameter scales, underscoring this potential.

Unfortunately, the massive parameter scale of SMoE exceeds the memory and computation capac-
ity of a single device1, necessitating distributed deployment with expert parallelism, which is often
combined with data parallelism (Lepikhin et al., 2020; Zhai et al., 2023). In this setting, experts
within each MoE layer are partitioned across GPUs and coordinated through All-to-All communi-
cation. This design introduces two critical bottlenecks for inference: communication overhead and
computational load2 imbalance.

1In this paper, a device refers to an individual computing unit (i.e., a GPU), a node refers to a server that
contains multiple GPUs, and cross-device communication covers both intra-node and inter-node cases.
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Each MoE layer requires two rounds of All-to-All communication, first dispatching tokens to ex-
perts and then aggregating results back. Executed repeatedly across layers, this process continuously
amplifies communication latency, making communication the primary bottleneck in SMoE infer-
ence (He et al., 2022; Gale et al., 2023). In cross-node scenarios, where bandwidth is limited, All-
to-All can account for over 70% of the time within a single MoE layer and around 40% of the overall
end-to-end inference latency (Li et al., 2023a; Hwang et al., 2023). In parallel, the gating network
naturally skews token routing, creating “hot” and “cold” experts. This phenomenon leads to imbal-
anced computational load, which overloads some GPUs while leaving others underutilized (Lewis
et al., 2021; Clark et al., 2022; He et al., 2022). Overloaded GPUs slow down inference, while idle
GPUs waste substantial computing resources. Since parallel inference performance is bounded by
the slowest device, such imbalance further exacerbates communication tail latency (Go & Mahajan,
2025). More critically, prior work typically addresses only one of these two issues, yet optimizing
one often worsens the other. For instance, reducing communication overhead usually aggravates
computational load imbalance. This conflict remains unresolved, and most prior work has focused
on single-node, multi-GPU settings. Scaling SMoE inference to multi-node environments remains
an under-explored challenge, making a joint solution that simultaneously mitigates both issues par-
ticularly critical for cross-node scenarios.

In this paper, we propose GRACE-MoE, a hybrid framework that consists of two essential phases:
① Grouping & Replication and ② Routing, which are performed in the offline and online phases,
respectively. During the offline phase, GRACE-MoE groups experts based on their affinity to reduce
cross-device All-to-All communication and selectively replicate frequently activated experts from
the most heavily loaded groups. The number of replicas is determined dynamically according to the
load skew of the heaviest groups. For the online phase, we design a topology-aware routing strategy
to determine which replica executes the computation. This strategy prioritizes local replicas, while
weighted round-robin with load prediction distributes requests across remote replicas when no local
replica is available. Together, these designs reconcile the conflicting objectives of communication
efficiency and load balancing, enabling GRACE-MoE to jointly reduce communication overhead
and alleviate computational load imbalance. Experiments on various MoE models and multi-node,
multi-GPU setups demonstrate that GRACE-MoE significantly reduces communication latency,
mitigates imbalance, and improves end-to-end inference without accuracy degradation. The main
contributions of this work are summarized as follows:

• Non-uniform expert grouping strategy: We propose the first affinity-based non-uniform
grouping scheme that co-locates highly co-activated experts, substantially reducing cross-
device communication overhead compared with existing uniform grouping approaches.

• Dynamic expert replication scheme: We develop a dynamic mechanism that allocates
replicas according to the load skew of the maximum load group in each layer, replicating
only its busiest experts. This alleviates imbalance while avoiding redundant replication.

• Topology-aware routing with prediction: We design a lightweight routing algorithm that
prioritizes local replicas on the same GPU or node as the tokens. When no local replica ex-
ists, weighted round-robin with load prediction distributes requests across remote replicas.

• Joint optimization in multi-node environments: GRACE-MoE is a comprehensive
framework that co-optimizes communication overhead and computational load imbalance
in large-scale multi-node, multi-GPU SMoE deployments, providing a practical solution
for scalable distributed SMoE inference.

2 RELATED WORK

Efficient SMoE Inference Systems. A wide range of systems have been proposed to acceler-
ate SMoE inference, including SE-MoE (Shen et al., 2022), Janus (Liu et al., 2023), Lina (Li
et al., 2023a), MC-SMoE (Li et al., 2023b), APTMoE (Wei et al., 2024), SGLang (Zheng et al.,
2024), MoESys (Yu et al., 2024), Pre-gated MoE (Hwang et al., 2024), Klotski (Fang et al., 2025),
CoServe (Suo et al., 2025) and many others. Among them, DeepSpeed-MoE (Rasley et al., 2020) re-
duces inference latency through architecture and operator optimizations, Tutel (Hwang et al., 2023)
introduces adaptive parallelism and pipelining, and MegaBlocks (Gale et al., 2023) restructures
computation into block-sparse matrix multiplications. In addition, general-purpose inference frame-
works such as vLLM (Kwon et al., 2023) also provide support for distributed SMoE inference.
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(a) Grouping strictness vs. communication traffic.
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(b) Replication type vs. computational load balance.

Figure 1: Grouping strictness and replication strategies. Experiments on OLMoE with 2 nodes
× 2 GPUs/node, metrics reported in tokens. (a) Relaxing grouping strictness reduces communica-
tion compared to Vanilla. (b) Replicating highly activated experts alleviates load imbalance more
effectively than replicating widely collaborative experts, relative to Hierarchical Grouping (HG).

Nevertheless, both communication overhead and computational load imbalance remain unresolved
bottlenecks in expert-parallel inference.

Expert Placement and Routing. Existing studies on expert placement (e.g., grouping, replication)
and routing have attempted to alleviate the bottlenecks in SMoE inference, including FasterMoE (He
et al., 2022), FlexMoE (Nie et al., 2023), Prophet (Wang et al., 2023), ExFlow (Yao et al., 2024),
Lazarus (Wu et al., 2024), MoETuner (Go & Mahajan, 2025), C2R (Zhang et al., 2025), Spec-
ulative MoE (Li et al., 2025), SwiftMoE (Skiadopoulos et al., 2025), EfficientMoE (Zeng et al.,
2025), among others. However, these methods generally target either communication overhead or
computational load imbalance, but rarely both simultaneously. For example, C2R (Zhang et al.,
2025) reduces communication by grouping experts based on collaboration patterns and restricting
the routing space, but this exacerbates load imbalance and degrades accuracy. Moreover, most of
these works remain confined to single-node, multi-GPU settings, leaving the joint optimization of
communication and load balancing in multi-node scenarios largely unexplored.

3 OBSERVATIONS

Motivated by the unresolved challenges of communication overhead and computational load im-
balance in multi-node, multi-GPU scenarios (Section 1), we first conduct a systematic analysis of
communication traffic, breaking it down into both intra-node and cross-node cases. Under the top-k
routing pattern, experts in SMoE models are known to be not activated randomly and independently,
but to exhibit clear co-activation characteristics, indicating the existence of affinity among experts.
? further shows that such relationships are not fixed: some experts tend to be co-activated broadly
with many others, while others are bound to only a few, and such distributions vary across layers. In-
spired by this, we note that grouping experts strictly according to affinity naturally produces uneven
group sizes.

To validate this insight, we design multiple grouping schemes ranging from uniform to fully non-
uniform. As shown in Figure 1a, relaxing the uniformity constraint better exploits expert affinity and
significantly decreases cross-device traffic. Results reveal a key observation: non-uniform grouping
effectively reduces communication. Intuitively, flexible grouping co-locates high-affinity experts
on the same GPU, whereas uniform grouping disrupts this natural affinity and limits optimization,
which is also a key shortcoming of existing methods. Meanwhile, we observe that affinity-based
grouping aggravates the inherent computational load imbalance of SMoE models, especially under
non-uniform grouping. These observations provide important insights for our framework design.

4 METHOD

We propose GRACE-MoE, a hybrid optimization framework built upon profiling of routing behav-
iors. During profiling, per-layer expert selections are recorded to derive expert affinity matrices and
load statistics. Guided by these results, the framework integrates offline non-uniform hierarchical
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Figure 2: Overview of GRACE-MoE. (a) Profiling expert selections to build affinity matrices. (b)
Grouping high-affinity experts on the same device and dynamically replicating hot experts to balance
computational load. (c) Adaptive routing reduces communication by prioritizing local replicas and
balances requests via weighted round-robin with load prediction across remote replicas.

expert grouping (Section 4.1) and dynamic replication based on load skew (Section 4.2) with online
locality-aware routing incorporating load prediction (Section 4.3). This comprehensive design effec-
tively reduces communication overhead while improving computational load balance in multi-node,
multi-GPU SMoE inference, as illustrated in Figure 2.

4.1 EXPERT GROUPING: COMMUNICATION-CENTRIC OPTIMIZATION

The objective of expert grouping is to colocate high-affinity experts on the same GPU to reduce
cross-device communication. We build on spectral clustering to design a hierarchical grouping
scheme tailored for multi-node, multi-GPU topologies.

Non-Uniform Grouping of Experts Based on Intra-Layer Affinity. Spectral clustering naturally
produces groups with dense intra-connections and sparse inter-connections, which aligns well with
our communication-centric objective. As observed in Section 3, affinity-based grouping tends to
form uneven group sizes but better captures co-activation patterns, thereby reducing communication.
We therefore apply spectral clustering on the expert affinity matrix to generate fully non-uniform
groups, with sizes determined solely by affinity.

Although fully non-uniform grouping reduces communication, it leads to computational load imbal-
ance that is even more severe than in the uniform scheme. To mitigate this, we propose controlled
non-uniform grouping, regulated by a non-uniformity ratio r that bounds group-size deviations.
Given an ideal group size E = n

D , where n is the number of experts per layer and D is the number
of groups, actual sizes are restricted to [E − δ, E + δ], where δ = E · r. The choice of r is critical:
too small a value splits high-affinity experts and increases communication, while too large a value
creates substantial group size disparity and worsens load imbalance. We model the selection of r
as an optimization problem that balances affinity utilization against grouping non-uniformity. We
define intra-group affinity utilization U(r) and size deviation S(r) as

U(r) =

∑
C∈C(r)

∑
i<j

i,j∈C
Ai,j∑

i<j Ai,j
, S(r) =

√√√√ 1

D

D∑
d=1

(|Cd| − E)
2
. (1)

where r is the candidate ratio, C(r) = {C1, . . . , CD} denotes the grouping with D groups, and
A ∈ Rn×n is the affinity matrix, with Ai,j denoting the affinity between experts i and j. By plotting

4
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(b) Per-expert load within the heaviest group.

Figure 3: Computational load distribution after hierarchical grouping. (a) Sampled layers show
that affinity clustering concentrates load only on a few groups. (b) In Layer 5, per-expert loads in
the heaviest group reveal that overload comes from a few frequently activated experts, not all.

(S(r), U(r)), we select the knee point as the optimal r, preserving affinity while avoiding excessive
size gaps. The validity of this choice is empirically confirmed in Appendix ??. After determining r,
we refine fully non-uniform grouping by reassigning experts with the lowest intra-group affinity to
candidate groups with higher affinity, yielding a scheme with controlled non-uniformity. Details of
the algorithm are provided in Appendix A.2.

Hierarchical Grouping for Distributed Expert Placement. In multi-node, multi-GPU scenarios,
we adopt a hierarchical grouping strategy. At the inter-node level, experts within each layer are
divided into N large groups mapped to nodes. Since inter-node communication is much more ex-
pensive, we apply fully non-uniform grouping to maximize intra-node affinity and minimize cross-
node traffic. Within each node, these groups are further partitioned into G smaller groups mapped
to individual GPUs, where controlled non-uniform grouping is applied to balance group size while
preserving affinity. This two-level strategy achieves communication optimization across the topol-
ogy: affinity is maximized within GPUs, weaker across GPUs in the same node, and rare across
nodes. As a result, communication overhead is significantly reduced.

4.2 EXPERT REPLICATION: COMPUTATIONAL LOAD BALANCE-CENTRIC OPTIMIZATION

The affinity-based expert grouping scheme reduces communication but also aggravates the inherent
computational load2 imbalance of SMoE models. High-affinity experts are frequently co-activated,
and when grouped together, they tend to overload their hosting GPU. To mitigate this imbalance
while preserving the communication benefits of grouping, we propose dynamic expert replication.

Selection of Experts for Replication. We compare two candidates: highly activated experts and
widely collaborative experts, with a copy of each selected expert placed on every GPU. Figure 1b
shows that replicating the former balances load better, whereas the latter is less effective since wide
collaboration does not necessarily imply selection by most tokens. Thus, we replicate only highly
activated experts. Further tests show that replicating only a few experts provides limited relief,
while a moderate number effectively reduces imbalance. However, excessive replication reverses
the trend and increases load skew. We attribute this to redundant replication, which degrades the
system toward data parallelism and disrupts affinity-based grouping, while also incurring unneces-
sary memory overhead. Hence, the replication scope must be carefully constrained. As illustrated in
Figure 3, after grouping, only a few groups in each layer handle the majority of tokens, and the over-
load mainly stems from a small number of frequently activated experts. We therefore replicate only
these experts within the heaviest group rather than the entire group, preserving intra-group affinity
and communication benefits while avoiding redundancy and wasted resources.

Dynamic Replica Allocation Based on Load Skew. Since expert activation distributions and
grouping results vary across layers, the computational load skew of the heaviest group also differs.
Therefore, we propose a dynamic replica allocation strategy driven by load skew. After generating
the expert groups in each layer, profiling data are used to calculate the load Wi of each group, yield-
ing the maximum Wmax and mean load W . The computational load skew factor (ρ) is defined as

2The computational load is the number of tokens assigned to an expert, or the total over a group or GPU.
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Wmax/W , and the number of replicas is determined by Eq. (2).

nreplica = min (max (1, ⌊ρ⌋) , ngpu − 1) . (2)

Within the heaviest group, experts are ranked by individual load, and those whose cumulative load
exceeds Wmax · nreplica

1+nreplica
are identified as hot experts. These experts are then replicated onto the

nreplica most underutilized GPUs. The original primary replicas remain, while additional replicas
serve only as secondary copies, keeping the grouping structure intact. This mechanism effectively
redistributes the workload of hotspot GPUs while maintaining communication efficiency, signifi-
cantly mitigating the imbalance amplified by grouping.

4.3 ROUTING POLICY: CO-OPTIMIZES COMMUNICATION AND COMPUTATIONAL LOAD

After replication, multiple expert instances exist, and the system must decide which replica executes
computation. The routing policy should balance two objectives: minimizing cross-device commu-
nication and balancing computation load. We explore two complementary strategies.

Weighted Round-Robin with Load Prediction. After replication, each duplicated expert has
nreplica + 1 instances distributed across different GPUs, and routing must decide which instance
processes incoming tokens. To guide this decision, we leverage the pre-replication load statis-
tics from Section 4.2 and predict the post-replication computational load of GPUs. Let Wmax

denote the pre-replication load of the heaviest group and Wr the total load of its replicated ex-
perts. Assuming this load is evenly split across all nreplica + 1 instances, the per-instance load is
Wp = Wmax/(nreplica + 1). The updated loads are then:

W ′
max = Wmax −Wr +Wp, W ′

i = Wi +Wp (3)

where Wi is the pre-replication load of a replica-hosting GPU. Based on these predictions, routing
weights are assigned inversely proportional to the predicted loads, and tokens are dispatched via
weighted random round-robin. This alleviates overload on hotspot GPUs by directing more tokens
to less loaded GPUs. However, randomness can trigger unnecessary cross-device communication,
routing tokens to remote GPUs even when local replicas exist. This limits effectiveness under high
concurrency, especially in multi-node scenarios.

Topology-Aware Routing with Locality Preference. In distributed clusters, communication over-
head exhibits a clear hierarchy: intra-GPU communication overhead is cheapest, followed by intra-
node communication across GPUs, while inter-node communication is the most expensive. This
motivates a routing policy that prioritizes replicas based on locality. The scheme follows a hierar-
chical locality-first policy: (i) If a replica exists on the same GPU as the token, it is selected. (ii)
Otherwise, a replica on another GPU within the same node is chosen. (iii) Only if no intra-node
replica is available, the token is routed to a cross-node replica. Within each tier, if multiple repli-
cas are available, weighted round-robin with load prediction is applied to balance computational
load. While sacrificing some load balance, it significantly reduces communication overhead, which
is the dominant bottleneck in large-scale inference, thereby achieving a practical trade-off between
communication and computation. The details of our routing policies are provided in Appendix A.3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. Models: We evaluate GRACE-MoE on three representative MoE mod-
els, including OLMoE (Muennighoff et al., 2024), DeepSeek-v2-lite-chat (Liu et al., 2024), and
Qwen3-30B-A3B (Yang et al., 2025). Datasets: We use WikiText-2-v1 (Merity et al., 2016),
MATH (Hendrycks et al., 2021), and the GitHub subset of The Pile (Gao et al., 2020), which together
cover text generation, code generation and mathematical reasoning. Table 1 provides additional de-
tails of the model architectures.

Baselines and Evaluation Metrics. Baselines: We compare against widely used SMoE inference
systems, including DeepSpeed (Rasley et al., 2020), Tutel (Hwang et al., 2023), Megablocks (Gale
et al., 2023), vLLM (Kwon et al., 2023), and the placement optimization method C2R (Zhang et al.,
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Figure 4: End-to-end inference latency and MoE layer time. Evaluation of GRACE-MoE and
all baselines across three models with batch size = 128, prefill length = 64, and decode length = 16.

2025). Metrics: We report communication efficiency, computational load balance, and overall infer-
ence efficiency, measured by All-to-All time, communication traffic, GPU idle time, mean per-layer
standard deviations of GPU computational load, MoE layer time, and end-to-end inference latency.

Implementation Details. Hardware: Experiments are conducted in a multi-node, multi-GPU en-
vironment, with each server equipped with 8 × NVIDIA RTX 3090 (24GB) or 8 × NVIDIA RTX
4090 (48GB). The 3090 GPUs are interconnected through PCIe 1.0 ×16 channels (4 GB/s per di-
rection), whereas the 4090 GPUs use PCIe 4.0 ×16 channels (63 GB/s per direction). Inter-node
communication is supported by a 25 Gb Ethernet connection. Software: We implemented GRACE-
MoE on Megablocks (Gale et al., 2023) with PyTorch 2.5 (Paszke et al., 2019) and Triton 3.0 (Tillet
et al., 2019), enabling inference under combined data and expert parallelism. During communica-
tion, for tokens routed to multiple experts on the same device are transmitted only a single copy.
Within the target device, tokens are distributed hierarchically: duplicated among activated experts
if the target is a GPU, or first across GPUs in the node and then within each GPU if the target is a
node. Parameters and activations are stored in BFloat16 precision during inference. The workload
is configured with batch size 128, prefill length 64, and decode length 16.

5.2 END-TO-END PERFORMANCE

We evaluate GRACE-MoE on the WikiText-2-v1 (Merity et al., 2016) dataset across the three
representative MoE models introduced in Section 5.1. Experiments are conducted on one server
with 8×RTX 3090 GPUs and two servers with 8×RTX 4090 GPUs each, covering single-node (8
GPUs) and multi-node setups (2 nodes×2 GPUs/node and 2 nodes×4 GPUs/node). As shown in
Figure 4, GRACE-MoE consistently outperforms all baselines across models and cluster configu-
rations. It reduces MoE layer time by 2.1–75.5%, shortens end-to-end latency up by 33066 ms, and
achieves overall speedups of 0.95–3.79×. While gains are evident even in single-node setups, the
benefits are especially pronounced in multi-node scenarios. As nodes and GPUs increases, baseline
systems suffer steep latency growth due to rising communication overhead. In contrast, GRACE-
MoE reduces MoE layer time by up to 75.5% and end-to-end latency by up to 73.6%, effectively
suppressing this trend and demonstrating strong scalability. Overall, by integrating non-uniform
hierarchical grouping, dynamic replication, and locality-aware routing, GRACE-MoE jointly opti-
mizes communication overhead and computational load balance, leading to consistently improved
end-to-end inference performance.

5.3 COMPONENT ANALYSIS

In multi-node, multi-GPU SMoE inference, reducing communication overhead often aggravates
computational load imbalance, while mitigating imbalance may increase communication. To study
this trade-off, we evaluate the three models from Section 5.1 on a 2 nodes× 2 GPUs/node setup with
RTX 4090 GPUs using WikiText-2-v1 (Merity et al., 2016), focusing on communication reduction,
computational load balance, and their joint optimization.

Research Question 1: How to Reduce Communication Overhead? In multi-node, multi-GPU
scenarios, All-to-All communication overhead often becomes the primary bottleneck. To mitigate

7
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Figure 5: Component analysis. Grouping, replication and routing schemes are compared across
three models under a 2 node × 2 GPUs/node setup on the WikiText dataset. Abbreviations: Vanilla
(Average Grouping), HG (Hierarchical Grouping), FR (Fixed-Count Replication), DR (Dynamic-
Count Replication), WRR (Weighted Round-Robin with Load Prediction), TAR (Topology-Aware
Routing with Locality Preference).

it, we propose non-uniform hierarchical grouping. As shown in Figure 5, compared with Vanilla,
this scheme reduces All-to-All time by 14.3%, 15.2%, and 7.6% on the three models, while cross-
node communication is cut by 3.3%, 14.6%, 26.0% and intra-node cross-GPU traffic by 10.0%,
25.1%, 35.8%. This demonstrates that non-uniform hierarchical grouping effectively captures ex-
pert affinity. By co-locating experts with high affinity on the same device, this strategy minimizes
cross-device transfers in token dispatching and result aggregation, thereby delivering superior com-
munication efficiency in multi-node, multi-GPU inference.

Research Question 2: How to Mitigate Computational Load Imbalance? As illustrated in Fig-
ure 5, the non-uniform hierarchical grouping scheme increases both GPU idle time and computa-
tional load imbalance, while achieving the lowest communication overhead. This occurs because
high affinity often coincides with frequent co-activation, so clustering such experts overloads the
hosting GPU. Although it moderates non-uniformity within nodes and partly alleviates skew, GPU
idle time still rises by 0.13×, 2.31×, and 1.47×, and the average per-layer standard deviations of
GPU load grows by 37.5%, 75.2%, and 11.1%, leaving some devices persistently underutilized. To
address this, we design a dynamic expert replication based on load skew, and a routing policy which
dispatch tokens via weighted round-robin with load prediction. Compared with hierarchical group-
ing without replication, this strategy lowers idle time by 43.3%, 32.3%, 37.8% and reduces average
load deviation by 44.8%, 48.0%, 58.3%, significantly improving utilization. For comparison, we
also evaluate a simpler fixed-replica scheme that assigns one replica of the overloaded experts in
the heaviest group of each layer to the least-loaded GPU, which reduces GPU idle time by 42.2%,
39.1%, 35.7% but yields only limited improvements. Overall, our dynamic scheme achieves the low-
est GPU idle time and the best computational load balance by dynamically allocating replica counts
according to load skew and routing tokens through load-aware weighted polling, underscoring the
effectiveness of adaptive adjustment.

Research Question 3: How to Achieve Joint Optimization of Communication Overhead and
Computational Load Balance? Results in Figure 5 demonstrate that dynamic replication with
weighted round-robin routing efficiently mitigates computational load imbalance but its random-
ized nature introduces unnecessary cross-device transfers. On average across the three models, it
increases cross-node and intra-node communication by 17.7% and 2.8%, offsetting part of the com-
munication gains from grouping optimization. To overcome this limitation, we propose topology-
aware routing with locality preference. Compared with pure weighted round-robin, this strategy
reduces All-to-All time by 2.8%, 8.3%, and 10.0%, lowers cross-node communication by 6.3%,
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Algorithm 1 Controlled Non-uniform Grouping

Require: Affinity A∈Rn×n, number of groups D, non-uniformity ratio r, number of experts Ne

1: E ← ⌊Ne/D⌋; δ ← max(1, round(E · r))
2: nummin ← max(1, E − δ); nummax ← E + δ
3: Initialize grouping L← {L1, . . . , LD} as D empty lists.
4: Initial clusters {Cd}Dd=1 ← SPECTRALCLUSTERING(A, D); Ω← ∅
5: for d = 1 to D do
6: if |Cd| > nummax then
7: keep top-nummax by

∑
j∈Cd

Aij as Ld; push rest to Ω
8: else
9: Ld ← Cd

10: end if
11: end for
12: for each e ∈ Ω do
13: d⋆ ← argmaxd: |Ld|<nummax

INTRASCORE(A, Ld ∪ {e})
14: Ld⋆ ← Ld⋆ ∪ {e}
15: end for
16: need[d]← max(0, nummin − |Ld|) for d = 1..D; S ←

∑D
d=1 need[d]

17: if S > 0 then
18: Collect weakest affinity experts from |Ld| > nummin

19: Reassign them to needy groups maximizing INTRASCORE
20: end if
21: return {Ld}Dd=1

11.6%, and 35.2%, and decreases intra-node cross-GPU communication average by 6.7%, while
GPU idle time and average load deviation rise only marginally by 5.25% and 21.4% on average.
This topology-aware scheme prioritizes local replicas on the same GPU as the token, and resorts to
weighted round-robin with load prediction only when no local replica exists. By reducing cross-
device communication while maintaining reasonable computational load balance, it achieves a more
favorable trade-off. Although absolute load uniformity is slightly compromised, communication
overhead remains the dominant bottleneck in practical multi-node, multi-GPU inference, making
this trade-off well suited for high-performance inference. As shown in Figure 4, under the 2-node
× 2-GPU/node setup, the proposed strategy reduces end-to-end latency by up to 66.5%, 54.7%,
and 64.5% across the three models, achieving maximum speedups of 2.98 ×, 2.21 ×, and 2.81 ×,
respectively, compared to baselines.

6 CONCLUSION

This paper introduces GRACE-MoE, a framework designed to tackle the dual challenges of com-
munication overhead and computational load imbalance in distributed SMoE inference. Its core
components include non-uniform hierarchical grouping based on affinity, dynamic replication driven
by load skew, and routing strategies combining topology awareness with load prediction. Without
compromising model accuracy, it improves end-to-end inference efficiency and demonstrates strong
scalability, offering a practical solution for large-scale SMoE deployment.

While GRACE-MoE is effective, two directions remain for future work. First, its reliance on expert
replication increases memory demands, which may limit deployment on memory-constrained GPUs.
Techniques such as model splitting or expert sharing could avoid this. Second, our evaluation has
been confined to academic hardware setups and moderate models. Extending GRACE-MoE to
larger models and industrial-scale clusters will further validate its efficiency and scalability.

7 ETHICS STATEMENT

This work does not involve human subjects, sensitive data, or other ethical issues. To the best of our
knowledge, it does not raise any concerns as outlined in the ICLR Code of Ethics.
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8 REPRODUCIBILITY STATEMENT

We have taken measures to ensure the reproducibility of our results. Section 4 of the main paper
provides a detailed description of GRACE-MoE and the design of each module. Section 5.1 further
specifies the models, datasets, baselines, evaluation metrics, hardware and software environment
used in our experiments, as well as the implementation details of the framework. Additional infor-
mation, including model architecture details and the corresponding GPU hardware configurations,
is provided in Appendix A.4. The information included in the paper and supplementary materials
should be sufficient for an independent researcher to reproduce our work. We plan to make the full
source code publicly available to facilitate reproducibility.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-
mann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling
laws for routed language models. In International conference on machine learning, pp. 4057–
4086. PMLR, 2022.

Zhiyuan Fang, Yuegui Huang, Zicong Hong, Yufeng Lyu, Wuhui Chen, Yue Yu, Fan Yu, and Zibin
Zheng. Klotski: Efficient mixture-of-expert inference via expert-aware multi-batch pipeline. In
Proceedings of the 30th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, pp. 574–588, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304,
2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Seokjin Go and Divya Mahajan. Moetuner: Optimized mixture of expert serving with balanced
expert placement and token routing. arXiv preprint arXiv:2502.06643, 2025.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li. Faster-
moe: modeling and optimizing training of large-scale dynamic pre-trained models. In Proceed-
ings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 120–134, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts at scale. Proceedings of
Machine Learning and Systems, 5:269–287, 2023.

Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao, and Mao Yang.
Pre-gated moe: An algorithm-system co-design for fast and scalable mixture-of-expert inference.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp.
1018–1031. IEEE, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. Accelerating distributed {MoE}
training and inference with lina. In 2023 USENIX Annual Technical Conference (USENIX ATC
23), pp. 945–959, 2023a.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023b.

Yan Li, Pengfei Zheng, Shuang Chen, Zewei Xu, Yuanhao Lai, Yunfei Du, and Zhengang Wang.
Speculative moe: Communication efficient parallel moe inference with speculative token and
expert pre-scheduling. arXiv preprint arXiv:2503.04398, 2025.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Juncai Liu, Jessie Hui Wang, and Yimin Jiang. Janus: A unified distributed training framework for
sparse mixture-of-experts models. In Proceedings of the ACM SIGCOMM 2023 Conference, pp.
486–498, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue, Lingxiao Ma, Gang Cao, and
Bin Cui. Flexmoe: Scaling large-scale sparse pre-trained model training via dynamic device
placement. Proceedings of the ACM on Management of Data, 1(1):1–19, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3505–3506, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang Hao, Yangfan Bai, HuaChao Wu, Xinxuan Wu,
Jiang Bian, Haoyi Xiong, Dianhai Yu, et al. Se-moe: A scalable and efficient mixture-of-experts
distributed training and inference system. arXiv e-prints, pp. arXiv–2205, 2022.

Athinagoras Skiadopoulos, Mark Zhao, Swapnil Gandhi, Thomas Norrie, Shrijeet Mukherjee, and
Christos Kozyrakis. Accelerating mixture-of-experts training with adaptive expert replication.
arXiv preprint arXiv:2504.19925, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiashun Suo, Xiaojian Liao, Limin Xiao, Li Ruan, Jinquan Wang, Xiao Su, and Zhisheng Huo.
Coserve: Efficient collaboration-of-experts (coe) model inference with limited memory. In Pro-
ceedings of the 30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pp. 178–191, 2025.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Wei Wang, Zhiquan Lai, Shengwei Li, Weijie Liu, Keshi Ge, Yujie Liu, Ao Shen, and Dongsheng
Li. Prophet: Fine-grained load balancing for parallel training of large-scale moe models. In 2023
IEEE International Conference on Cluster Computing (CLUSTER), pp. 82–94. IEEE, 2023.

Yuanxin Wei, Jiangsu Du, Jiazhi Jiang, Xiao Shi, Xianwei Zhang, Dan Huang, Nong Xiao, and
Yutong Lu. Aptmoe: Affinity-aware pipeline tuning for moe models on bandwidth-constrained
gpu nodes. In SC24: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14. IEEE, 2024.

Yongji Wu, Wenjie Qu, Tianyang Tao, Zhuang Wang, Wei Bai, Zhuohao Li, Yuan Tian, Jiaheng
Zhang, Matthew Lentz, and Danyang Zhuo. Lazarus: Resilient and elastic training of mixture-of-
experts models with adaptive expert placement. arXiv preprint arXiv:2407.04656, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Jinghan Yao, Quentin Anthony, Aamir Shafi, Hari Subramoni, and Dhabaleswar K DK Panda. Ex-
ploiting inter-layer expert affinity for accelerating mixture-of-experts model inference. In 2024
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 915–925. IEEE,
2024.

Dianhai Yu, Liang Shen, Hongxiang Hao, Weibao Gong, Huachao Wu, Jiang Bian, Lirong Dai,
and Haoyi Xiong. Moesys: A distributed and efficient mixture-of-experts training and inference
system for internet services. IEEE Transactions on Services Computing, 17(5):2626–2639, 2024.

Yan Zeng, Chengchuang Huang, Yipeng Mei, Lifu Zhang, Teng Su, Wei Ye, Wenqi Shi, and Sheng-
nan Wang. Efficientmoe: Optimizing mixture-of-experts model training with adaptive load bal-
ance. IEEE Transactions on Parallel and Distributed Systems, 2025.

Mingshu Zhai, Jiaao He, Zixuan Ma, Zan Zong, Runqing Zhang, and Jidong Zhai. {SmartMoE}: Ef-
ficiently training {Sparsely-Activated} models through combining offline and online paralleliza-
tion. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pp. 961–975, 2023.

Mohan Zhang, Pingzhi Li, Jie Peng, Mufan Qiu, and Tianlong Chen. Advancing MoE efficiency:
A collaboration-constrained routing (C2R) strategy for better expert parallelism design. In Luis
Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations
of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 6815–6825, Albuquerque, New Mexico, April 2025.
Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.
naacl-long.347. URL https://aclanthology.org/2025.naacl-long.347/.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

12

https://aclanthology.org/2025.naacl-long.347/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE STATEMENT

In preparing this paper, a large language model (LLM) was used solely for grammar checking and
language polishing. The design and implementation of all algorithms and experiments, as well as
the analysis of results and conclusions, were independently conducted and written by the authors.

A.2 ALGORITHM FOR CONTROLLED NON-UNIFORM GROUPING

For completeness, we provide the detailed pseudocode of our grouping scheme. Algorithm 2 defines
the intra-group affinity score used to evaluate candidate assignments, while Algorithm 3 gives the
full procedure for controlled non-uniform grouping with non-uniformity ratio r.

Algorithm 2 Calculate Affinity Score Intra Group

1: function INTRASCORE(Affinity A∈Rn×n, list of experts S)
2: return

∑
i∈S

∑
j∈S Aij

3: end function

Algorithm 3 Controlled Non-uniform Grouping

Require: Affinity A∈Rn×n, number of groups D, non-uniformity ratio r, number of experts Ne

1: E ← ⌊Ne/D⌋; δ ← max(1, round(E · r))
2: nummin ← max(1, E − δ); nummax ← E + δ
3: Initialize grouping L← {L1, . . . , LD} as D empty lists.
4: Initial clusters {Cd}Dd=1 ← SPECTRALCLUSTERING(A, D); Ω← ∅
5: for d = 1 to D do
6: if |Cd| > nummax then
7: keep top-nummax by

∑
j∈Cd

Aij as Ld; push rest to Ω
8: else
9: Ld ← Cd

10: end if
11: end for
12: for each e ∈ Ω do
13: d⋆ ← argmaxd: |Ld|<nummax

INTRASCORE(A, Ld ∪ {e})
14: Ld⋆ ← Ld⋆ ∪ {e}
15: end for
16: need[d]← max(0, nummin − |Ld|) for d = 1..D; S ←

∑D
d=1 need[d]

17: if S > 0 then
18: Collect weakest affinity experts from |Ld| > nummin

19: Reassign them to needy groups maximizing INTRASCORE
20: end if
21: return {Ld}Dd=1

A.3 ALGORITHM FOR TOPOLOGY-AWARE ROUTING WITH LOAD PREDICTION

We present two routing policies for replica assignment. Algorithm 4 specifies the weighted polling
strategy, while Algorithm 5 incorporates it into a topology-aware routing policy. Together, these
ensure that replicas are selected with minimal cross-device communication overhead while main-
taining balanced computational load.

A.4 EXPERIMENT CONFIGURATIONS

Details of the model architectures used for evaluation are summarized in Table 1.
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Algorithm 4 Weighted Round-Robin with Load Prediction

1: function CHOOSEBYPOLLINGWEIGHT(polling weights)
2: gpus← keys(polling weights), weights← values(polling weights)
3: selected gpu id←WeightedRandomChoice(gpus, weights)
4: return selected gpu id
5: end function

Algorithm 5 Topology-Aware Routing with Locality Preference

Require: token gpu id, token node id ▷ GPU and Node ID that the token belongs to
Require: replica gpus ▷ List of GPU IDs where replicas reside
Require: polling weights: {gpu id→ weight}

1: local gpu replicas← { g ∈ replica gpus | g = token gpu id }
2: local node replicas← { g ∈ replica gpus | Node(g) = token node id }
3: if local gpu replicas ̸= ∅ then
4: return token gpu id
5: else if local node replicas ̸= ∅ then
6: local weights← polling weights restricted to local node replicas
7: return CHOOSEBYPOLLINGWEIGHT(local weights)
8: else
9: return CHOOSEBYPOLLINGWEIGHT(polling weights)

10: end if

Table 1: Model architecture details used in experiments.

Model Top k Experts MoE Layers Params

OLMoE 8 64 16 6.92B
DeepSeek-v2-lite-chat 6 64 26 15.7B
Qwen3-30B-A3B 8 128 48 30.5B
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