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Abstract

We consider the quantum kernelized bandit
problem, where the player observes informa-
tion of rewards through quantum circuits termed
the quantum reward oracle, and the mean re-
ward function belongs to a reproducing ker-
nel Hilbert space (RKHS). We propose a
UCB-type algorithm that utilizes the quantum
Monte Carlo (QMC) method and provide re-
gret bounds in terms of the decay rate of eigen-
values of the Mercer operator of the kernel.
Our algorithm achieves Õ

(
T

3
1+βp log

(
1
δ

))
and

Õ
(

log3(1+β−1
e )/2(T ) log

(
1
δ

))
cumulative regret

bounds with probability at least 1 − δ if the
kernel has a βp-polynomial eigendecay and βe-
exponential eigendecay, respectively. In particular,
in the case of the exponential eigendecay, our re-
gret bounds exponentially improve that of classical
algorithms. Moreover, our results indicate that our
regret bound is better than the lower bound in the
classical kernelized bandit problem if the rate of
decay is sufficiently fast.

1 INTRODUCTION

Quantum machine learning is an emerging research field
that attempts to enhance machine learning methods with
quantum technology [Biamonte et al., 2017, Dunjko and
Briegel, 2018, Schuld and Petruccione, 2018, Gyongyosi
and Imre, 2019]. The primary objective of quantum machine
learning is to accelerate and improve the performance of
classical machine learning algorithms using quantum com-
puting paradigms and techniques. For instance, Grover’s
algorithm [Grover, 1996], which is a well-known quantum
algorithm for solving the problem of finding a unique item

*Alphabetical order.

from an unstructured database of N items, succeeded in re-
ducing the time complexity to O(

√
N), while the classical

method has a time complexity O(N).

The study of quantum algorithms for the bandit problems
has also attracted attention in the field of machine learn-
ing, and there is much interest in the quantum acceleration
of classical algorithms that have been studied so far ([Gy-
ongyosi and Imre, 2019, Biamonte et al., 2017]). Many
quantum algorithms for the classical bandit problems have
been studied for various settings including best-arm identifi-
cation ([Casalé et al., 2020, Wang et al., 2021]), exploration-
exploitation with stochastic environments ([Wan et al.,
2023]), and adversarial environments ([Cho et al., 2023]).

Following Wan et al. [2023], this paper focuses on a sequen-
tial decision-making problem called the quantum bandit
problem. For a given fixed set of actions X , for each round
t = 1, 2, . . . , T , the player chooses an action xt ∈ X . The
objective of the player is to maximize the cumulative reward∑T
t=1 µ(xt), and the performance is measured in terms of

the cumulative regret over T rounds, which is defined as
R(T ) =

∑T
t=1 (µ(x?)− µ(xt)) , where µ : X → [0, 1] is

the mean reward function, and x? ∈ argmaxx∈X µ(x) is
the best action in hindsight. During the game, the player has
a chance to access the unitary operator (quantum circuit)
Ox or its adjoint O†x, referred to as quantum reward oracle,
that encodes the reward distribution associated with the ac-
tion. Invoking the quantum reward oracle and performing a
measurement, the player can obtain the information about
the reward but the number of query calls is limited up to T .
One can apply any classical bandit algorithm to this prob-
lem setting, however, since the player can utilize quantum
algorithms, an algorithm designated for this problem setting
could perform much better. We review the details of the
notion in Sec. 3.2.

Wan et al. [2023] studied the case where the reward function
µ(x) is linear with respect to an action x. By adapting the
quantum Monte Carlo [Montanaro, 2015] (QMC) method,
they proposed an algorithm called QLinUCB that attains
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Table 1: Comparison of the cumulative regret upper bounds with the classical and quantum algorithm, where βp > 1, βe > 0
are constants, δ ∈ (0, 1) is the probability level, and T > 0 is the total number of rounds, α > 0 is any positive number.

Reference Kernel Setting Regret bound

Vakili et al. [2021] βp polynomial eigendecay Classical O

(
T
βp+1

2βp log
1− 1

2βp (T )

)
βe exponential eigendecay Classical O

(
T

1
2 log1+ 1

2βe (T )
)

Wan et al. [2023] d-dimensional linear Quantum O
(
d2 log5/2 log(T )

)
This paper (Theorem 5.4) βp polynomial eigendecay Quantum Õ

(
T

3
1+βp log

(
1
δ

))
βe exponential eigendecay Quantum Õ

(
log3(1+β−1

e )/2(T ) log
(

1
δ

))

O(poly(log T )) regret bound. We extend the work of Wan
et al. [2023] to the case when the mean reward function
belongs to a reproducing kernel Hilbert space (RKHS) asso-
ciated to a kernel k. In the classical setting, the kernelized
bandit problem is also known as Bayesian optimization. In
the literature on the classical bandit problem, researchers
often consider an extension of linear bandits to the kernel-
ized case. This is possible since a confidence interval for
the mean reward estimation is known in the kernelized case
[Srinivas et al., 2010, Chowdhury and Gopalan, 2017], and
can be used to derive regret bound in the same manner as in
the linear case. However, in the quantum kernelized bandit
problem, neither confidence intervals nor theoretical proper-
ties of algorithms designated for this problem setting have
not been well studied.

Contributions. This paper extends the quantum linear
bandit problem [Wan et al., 2023] to the kernelized case. In
this study, we consider the case where the rate of decay of
eigenvalues of the Mercer operator is polynomially or expo-
nentially fast and provides an upper bound of the cumulative
regret. For instance, Matérn-ν kernels have a 1 + 2ν/d poly-
nomial eigendecay, and squared exponential (SE) kernels
have a 1/d exponential eigendecay, if X ⊂ Rd. We show
that the proposed algorithm achieves Õ

(
T

3
1+βp log

(
1
δ

))
regret bound if the kernel k has a βp polynomial eigende-

cay, and Õ
(

log3(1+β−1
e )/2(T ) log

(
1
δ

))
if the kernel k has

a βe polynomial eigendecay. This result indicates that the
proposed method exponentially improves compared with
that of classical algorithms [Valko et al., 2013, Vakili et al.,
2021] under the condition of the exponential eigendecay.
We summarized the relevant study in Table 1. We shall defer
all the omitted proofs to Appendix.

Comparison to Quantum Bayesian Optimization [Dai
et al., 2023] Recently, Dai et al. [2023] extended the lin-
ear reward model [Wan et al., 2023] to the kernelized case,
which is the same problem setting as this paper. Compared
to [Dai et al., 2023], this paper has the following advan-
tages. (i) Theoretical analysis without the unbiasedness
assumption of the QMC estimator. Dai et al. [2023] pro-

vided regret upper bounds (e.g., Õ(log3(d+1)/2(T )) in the
case of squared exponential kernels), however, their proof
implicitly assumes that the quantum Monte Carlo method
[Montanaro, 2015] is an unbiased estimator. As we will
detail in Sec. 6.1.1, this assumption is unlikely to hold.
Our regret bounds do not rely on the unbiasedness assump-
tion. Thus we provide more mathematically rigorous anal-
ysis compared to [Dai et al., 2023]. (ii) Improved regret
bounds. Even under the unbiasedness assumption of the
QMC estimator, our regret bound Õ

(
T

3
1+βp log

(
1
δ

))
is

better than that Õ
(
T

3
βp log

(
1
δ

))
of Q-GP-UCB [Dai et al.,

2023], in the case of the βp-polynomial eigendecay. (iii)
A novel tradeoff parameter η. Both our algorithm (Algo-
rithm 1) and Q-GP-UCB [Dai et al., 2023] extend QLin-
UCB [Wan et al., 2023] to the kernelized case and these
algorithms divide the time interval into several stages. There
is a tradeoff between the total number of stages and regret
incurred in each stage. We not only extend QLinUCB to the
kernelized case, but also introduce a novel tradeoff parame-
ter η, which is a key feature that leads to the aforementioned
improved regret bounds. (iv) A novel proof technique for
bounding the (weighted) information gain. Both this pa-
per and Dai et al. [2023] provide an upper bound of the
“weighted information gain” γQMC (see (3) for definition
and Corollary 5.6), which is an analogue of [Vakili et al.,
2021, Theorem 3]. While Dai et al. [2023] almost repeated
the proof of [Vakili et al., 2021, Theorem 3], we provide a
more generalized result (Proposition 5.5) including these
results. In particular, our proof provides a simple alternative
proof of [Vakili et al., 2021, Theorem 3].

2 PRELIMINARIES OF QUANTUM
COMPUTATION

Following [Nielsen and Chuang, 2010], we briefly review
the basic notion of quantum computation. Then, we intro-
duce quantum Monte Carlo method [Montanaro, 2015],
which provides quadratic speedup compared to the classical
mean estimator.



2.1 BASICS OF QUANTUM COMPUTATION

Let V be a finite dimensional complex vector space with
an hermitian inner product 〈·, ·〉, i.e., a finite dimensional
Hilbert space over the complex field C. We call a such
space a state space. A state vector (or a quantum state) is
an element of the state space V with a unit norm. Using the
bra-ket notation, we denote a state vector in V by |x〉. For a
state vector |x〉, we denote by the corresponding vector |x〉†
in the dual space of V (which can be identified with V itself)
by 〈x|. For a hermitian operator H : V → V , a state vector
|x〉, and a vector 〈y| in the dual space, we denote the inner
product of 〈y| and H |x〉 by 〈y|H|x〉. For two state spaces
V1,V2, we can naturally regard the tensor product V1 ⊗ V2

as a state space and we simply denote the tensor product
|x1〉 ⊗ |x2〉 by |x1〉 |x2〉, where |x1〉 ∈ V1 and |x2〉 ∈ V2.

A quantum computer (or quantum mechanics) does not
provide us complete information of a state vector. Instead,
one can observe partial information of a state vector by
performing a measurement. More formally, quantum mea-
surements are described by a collection of linear operators
{Mσ : V → V}σ∈Λ called the measurement operators,
where Λ is the space of outcomes (we will provide an exam-
ple below). We assume that the collection of measurement
operators satisfies the following completeness equation:∑
σ∈ΛM

†
σMσ = IV . Here, M†σ denotes the adjoint of the

operator Mσ and IV denotes the identity operator of V . As-
suming that |x〉 represents the state vector immediately be-
fore the measurement, the probability p(σ) that an outcome
σ occurs is given as follows [Nielsen and Chuang, 2010,
Chapter 2.2.3]: p(σ) = 〈x|M†σMσ|x〉, We note that the
completeness equation assures the equality

∑
σ∈Λ p(σ) = 1.

Moreover, the state vector after the measurement is given as
Mσ|x〉√
〈x|M†σMσ|x〉

.

Given an initial state vector |x0〉, a quantum algorithm sends
the vector |x0〉 to UkUk−1 · · ·U1 |x0〉, and performs a mea-
surement to obtain an outcome, where U1, . . . , Uk are uni-
tary operators.

Example 2.1 (Measurements of a qubit in the computational
basis). We provide a simple example of a state space and
measurement operators. Let C2 be the C-Hilbert space with
the canonical inner product and we denote by |0〉 and |1〉
the canonical basis of C2. For a positive integer n ∈ Z≥1,
we define a state space Vn by (C2)⊗n and define the out-
come space Λn the set of binary sequences of length n, i.e.,
Λn = {a1a2 . . . an : ai ∈ {0, 1}, i = 1, . . . , n}. Then, a
set Bn = {|σ〉 ∈ Vn : σ ∈ Λn} forms an orthonormal ba-
sis of Vn, where for σ = a1a2 · · · an ∈ Λn, we define |σ〉
by |a1〉 |a2〉 · · · |an〉. The set of state vectors is given as
{∑σ∈Λn

ασ |σ〉 :
∑
σ∈Λn

|ασ|2 = 1}. For σ = Λn, we de-
fine a linear operator Mσ : Vn → Vn by Mσ = |σ〉 〈σ|, i.e.,
Mσ(|σ′〉) = δσσ′ for σ′ ∈ Λn, where δ denotes the Kro-
necker δ. Then, the collection of operators {Mσ : σ ∈ Λn}

satisfies the completeness equation. With this measurement
operators, for a state vector

∑
σ∈Λn

ασ |σ〉, an outcome σ is
observed with probability |ασ|2 and after the measurement
the state vector collapses into another state.

2.2 QUANTUM MONTE CARLO

Following Rebentrost et al. [2018], we introduce quantum
Monte Carlo methods [Montanaro, 2015]. Let n be a pos-
itive integer, and let Vn and Λn be the state space (C2)⊗n

and the set of binary sequences of length n, respectively as
in Example 2.1. Let v : Λn → [0, 1] be a function. Let y
be a random variable taking values in [0, 1] assume that the
probability P (y = v(σ)) is given as p(σ) for each σ ∈ Λn.
Let us suppose that we are interested in an estimator of the
expectation E [y] =

∑
σ∈Λn

p(σ)v(σ).

We assume that an implementation of the random variable y
is given in a quantum computer. More formally, we assume
that there exists a unitary operatorO(y) acting on Vn+1 and
O(y) |0n+1〉 is given as∑

σ∈Λn

√
p(σ) |σ〉 (

√
1− v(σ) |0〉+

√
v(σ) |1〉) (1)

Here |0n+1〉 = |0〉 · · · |0〉 ∈ Vn+1. By performing a mea-
surement of O(y) |0n+1〉 with the computational basis, we
observe an outcome σ1 with probability v(σ)p(σ) and out-
come σ0 with probability (1− v(σ))p(σ). Therefore, if we
define a random variable By by By = 1 if an outcome is σ1
for some σ ∈ Λn (i.e., the last qubit is 1) and By = 0 oth-
erwise, then we have E [By] = E [y] =

∑
σ∈Λn

p(σ)v(σ).
Thus, by repeating this procedure, and taking an empirical
mean of observations of By, one can obtain an estimator
of E [y]. However, to make the estimation error smaller
than ε, we have to call the unitary operator O(1/ε2) times.
Quantum Monte Carlo methods [Montanaro, 2015] provide
quantum speedup compared to the classical estimator.

Lemma 2.2 (Quantum Monte Carlo Method, Montanaro
[2015]). Let y be a random variable that takes values in
[0, 1] and O(y) the unitary operator as in (1). Let ε > 0
and δ ∈ (0, 1). Then, there exists a constant C > 1 and a
quantum algorithm QMC(O(y), ε, δ) that outputs a mean
estimate ŷ satisfying the following conditions.

1. P (|ŷ − E [y] | ≥ ε) ≤ δ.

2. The quantum algorithm QMC(O(y), ε, δ) queries the
unitary operator O(y) or its adjoint O(y)† at most
C
ε log(1/δ) times.

More precisely, it is assumed that quantum Monte Carlo
methods can operate state vectors in a composite system
Vn ⊗ Vn′ rather than Vn, where n′ ≥ 1 is a fixed integer,
i.e., it is assumed that additional n′ qubits are available.
We note that one can operate the unitary operator O(y) on
Vn ⊗ Vn′ by O(y) ⊗ 1Vn′ . We refer to [Rebentrost et al.,
2018, Montanaro, 2015] for further details.



3 PROBLEM FORMULATION

In this section, we introduce a concept of quantum reward
oracle and provide a formal descriction of the quantum
bandit problem. We also introduce the mean reward function
and the reproducing kernel Hilbert space (RKHS) associated
with the kernel. Finally, we briefly review Mercer’s theorem,
which is a key tool for our theoretical analysis.

3.1 QUANTUM REWARD ORACLE AND
QUANTUM BANDITS

Following [Wan et al., 2023], we introduce a notion of
quantum reward oracle. Let X be a set of actions. We let
n ∈ Z≥1 and consider the space Vn of n qubits and the
set Λn of binary sequences. For each action x ∈ X , let
yx be a random variable taking values in [0, 1] such that
P (yx = vx(σ)) = px(σ) for σ ∈ Λn, where vx : Λn → R
is a function and (px(σ))σ∈Λn is a probability measure on
Λn. As in Sec. 2.2, we assume that a unitary operatorOx on
Vn+1 is given and Ox |0n+1〉 is given as :

∑
σ∈Λn

√
px(σ) |σ〉 (

√
1− vx(σ) |0〉+

√
vx(σ) |1〉).

We assume that the expected reward associated to an action
x ∈ X is given as E [yx] and we define the mean reward
function µ : X → [0, 1] as µ(x) = E [yx]. In Sec. 3.2,
we shall detail assumptions on the mean reward function µ.
Following [Wan et al., 2023], we call the operator Ox or its
adjoint O†x a quantum reward oracle.

In this paper, we consider the following sequential decision
making problem. For each round t = 1, . . . , T , a player
selects an action xt ∈ X and incurs an instantaneous regret
µ(x∗)− µ(xt), where x∗ = argmaxx∈X µ(x). During the
process, the player can invoke any unitary operators and per-
form a measurement, however, we assume that the number
of calls of quantum reward oracles Ox,O†x is limited up to
T . The objective of the player is to minimize the cumulative
regret defined as R(T ) =

∑T
t=1 (µ(x∗)− µ(xt)) .

We note that we can apply any classical bandit algorithm for
regret minimization to our problem setting. More precisely,
for each round t and a selected action xt, by invoking the
quantum reward oracle Oxt and performing a measurement,
we observe a random reward µ(xt) + εt ∈ [0, 1] with the
expectation µ(xt). Therefore, based on observed rewards
µ(x1) + ε1, . . . , µ(xt−1) + εt−1, any classical bandit algo-
rithm can select an action xt to minimize the cumulative
regret. However, in our problem setting, the player can per-
form quantum computation with a limited number of oracle
queries. Therefore, an optimal algorithm for quantum ban-
dits potentially could perform much better than classical
bandit algorithms in terms of cumulative regret.

3.2 MEAN REWARD FUNCTION AND RKHS

We make the following assumption on the mean reward
function µ : X → [0, 1] 1. Let k : X × X → R be a
semi-positive definite kernel. We denote byHk the RKHS
corresponding to the kernel k, i.e., Hk is the subspace of
real valued functions on X satisfying the following three
conditions. (i)Hk is a real Hilbert space. (ii) For any x′ ∈
X , the feature vector φ(x′) belongs to Hk, where φ(x′)
is a function on X defined as x 7→ k(x, x′). (iii) For any
f ∈ Hk and x ∈ X , we have 〈f, φ(x)〉 = f(x). The last
property is called the reproducing property. We call the map
X 3 x 7→ φ(x) ∈ Hk the feature map of the RKHS. For
f, g ∈ Hk, we denote the inner product 〈f, g〉 by f>g. We
assume that the mean reward function µ belongs toHk, i.e.,
there exists θ∗ ∈ Hk such that µ(x) = φ(x)>θ∗.

Examples of kernels defined on Rd × Rd includes the
squared exponential (SE) kernels, Matérn-ν kernels, and
rational quadratic (RQ) kernels. Let l > 0 be a length-
scale parameter. A SE kernel kSE is defined by kSE(x, y) =
exp

(
−‖x− y‖22/l

)
, where x, y ∈ Rd. A Matérn ker-

nel kMatérn is defined on Rd × Rd by kMatérn(x, y) =
21−ν

Γ(ν) (a
√

2ν)νKν(a
√

2ν) for x, y ∈ Rd, where ν > 0 is
a smoothness parameter, a = ‖x − y‖2/l, and Kν is the
modified Bessel function of the second kind. A RQ kernel
kRQ is defined by kRQ(x, y) =

(
1 + ‖x− y‖22/(2νl2)

)−ν
for x, y ∈ Rd, where ν > 0 is a parameter.

3.3 MERCER’S THEOREM

As we stated in the introduction, our regret bounds involve
the decay rate of the eigenvalues of the Mercer operator.
Here, following [Steinwart and Christmann, 2008, Chap-
ter 4.5], we briefly review the theoretical properties of the
Mercer operator. Let X be a measurable space and ν be a
finite measure on X , and k : X × X → R be a measurable
kernel. We denote by L2(ν) the space of square-integrable
functions on X with respect to the measure ν. We define
an integral operator Tk : L2(ν)→ L2(ν) called the Mercer
operator by f 7→

∫
X k(·, x)f(x)dν(x). Since Tk is com-

pact, positive, and self-adjoint, by the spectral theorem,
there exists an orthonormal basis {ψi}i∈I of L2(ν) such
that for any f ∈ L2(ν), Tk has the following expansion
Tkf =

∑
i∈I λi〈ψi, f〉L2(ν)ψi. Here, {λi}i∈I is a set of

non-zero eigenvalues of Tk with λ1 ≥ λ2 ≥ · · · > 0. We
refer to [Steinwart and Christmann, 2008, Theorem 4.49
and 4.51] for the following form of Mercer’s theorem.

Theorem 3.1 (Mercer’s Theorem). Let {ψi}i∈I and
{λi}i∈I be defined as above. Assume that X is a compact
metric space, k : X ×X → R is a continuous kernel, and ν
is a finite Borel measure with supp ν = X . Then, we have

1We refer to a remark after Assumption 5.1 for validity of this
assumption.



the following expansion:

k(x, x′) =
∑
i∈I

λiψi(x)ψi(x
′), x, x′ ∈ X .

Here, the convergence is absolute and uniform. Moreover,
{λ1/2

i ψi}i∈I forms an orthonormal basis ofHk.

To discuss the theoretical property of our algorithm (Al-
gorithm 1 in Sec. 4), we introduce the following formal
characteristic of eigendecay as defined in Chatterji et al.
[2019, Definition 11] and Vakili et al. [2021, Definition 1]:

Definition 3.2 (Eigen-decay). Let {λi}i∈I be the eigenval-
ues of the Mercer operator with λ1 ≥ λ2 ≥ · · · > 0 and
I ⊆ Z≥1 as in Theorem 3.1.

1. LetCp > 0 and βp > 1 be constants. We say a kernel k
has a (Cp, βp) polynomial eigendecay, if for all n ∈ I ,
we have λn ≤ Cpn−βp .

2. Let Ce,1 Ce,2 > 0 and βe > 0 be constants. We say a
kernel k has a (Ce,1, Ce,2, βe) exponential eigendecay,
if for all n ∈ I , we have λn ≤ Ce,1 exp(−Ce,2nβe).

If we ignore constants Cp, Ce,1, Ce,2, then we simply say k
has a βp polynomial eigendecay or βe exponential eigende-
cay.

We provide examples of eigendecay of kernels in the case
when X is a compact subset of Rd. It is known that a Matérn
kernel with a smoothness parameter ν > 0 has (2ν + d)/d
polynomial eigendecay [Santin and Schaback, 2016, Theo-
rem 15]. If k is an SE or RQ kernel, then k has 1/d exponen-
tial eigendecay. The latter statement follows from [Santin
and Schaback, 2016, Theorem 15] and [Wendland, 2004,
Theorem 11.22].

4 A UCB-TYPE ALGORITHM AND
CONFIDENCE INTERVAL

In this section, we present a UCB-type algorithm termed
QMCKernelUCB as illustrated in Algorithm 1 for the quan-
tum bandit problem with a kernelized reward function. We
also introduce a confidence interval of our reward estimator
(Proposition 4.2).

4.1 PROPOSED METHOD

To leverage the quadratic speedup of the QMC method
(Lemma 2.2), we divide the time interval into several stages,
which is similar to the doubling trick (c.f., [Lattimore and
Szepesvári, 2020, Chapter 6]). For each stage s = 1, 2, . . . ,
QMCKernelUCB plays an action xs ∈ X , and calls the
QMC method QMC(Oxs , ηεs, δ/M) with the error toler-
ance ηεs, and observes of an output ys of the QMC method,

where xs is an “optimistic estimation” of the best action x?,
and M,η are parameters of QMCKernelUCB. We explain
how to select the error εs, the action xs below (and explain
the parameter η in Section 4.3). Since the QMC method
calls the quantum reward oracleOxs ,O†xs for C

ηεs
log(M/δ)

times, xs is an optimistic estimation of the best action at
stage s, the algorithm plays the same action xs for succes-
sive C

ηεs
log(M/δ) rounds in stage s. Due to the problem

setting, it terminates if it consumes T oracle queries.

Because an output ys with a small estimation error εs is
more informative than those with larger errors, we consider
the following weighted least estimation of the ground truth
vector θ∗ ∈ Hk with weights 1/ε2i :

θ̂s ∈ argmin
θ∈Hk

s∑
i=1

1

ε2i

(
φ(xi)

>θ − yi
)2

+ ρ‖θ‖2Hk , (2)

where εi = ‖xi‖V −1
i−1

for 1 ≤ i ≤ s, ρ > 0 is a regularizing
parameter, and Vs : Hk → Hk is a positive-definite operator
defined as

Vs = ρIs +

s∑
i=1

1

ε2i
φ(xi)φ(xi)

> = ρIs + Φ>s WsΦs,

and Φs, Ys and Ws are defined as follows: Φs =
(φ(x1), φ(x2), . . . , φ(xs))

>
, Ys = (y1, y2, . . . , ys)

>,
Ws = diag

(
1/ε21, 1/ε

2
2, . . . , 1/ε

2
s

)
. Note that the above

weighted least square estimator (2) can be represented as
a closed-form, say, θ̂s = V −1

s Φ>s WsYs. As in the linear
case [Wan et al., 2023], the weighted least estimator is a key
feature of the algorithm to achieve O(poly(log T )) regret
bound (in the case of exponential eigendecay).

As previously mentioned, Algorithm 1 is a UCB-type al-
gorithm and we need to compute an estimation µ̃s(x) :=

φ(x)>θ̂s of µ(x) and an estimation error σ̃s(x) :=
‖φ(x)‖V −1

s
for each x ∈ X . However, naively, computa-

tion of µ̃s(x) and σ̃s(x) requires computation of the linear
operator V −1

s defined on Hk, which is potentially infinite
dimensional. It is well-known that in the unweighted (and
classical) case [Valko et al., 2013, Srinivas et al., 2010], one
can compute estimations of µ(x) and their estimation errors
by using values of kernels and finite dimensional linear alge-
bra (i.e., kernel trick) due to the reproducing property of the
RKHS. The following proposition extends the well-known
result to the weighted case.

Proposition 4.1 (c.f. Dai et al. [2023], Sec. 4.1). For s ∈
Z≥1 and x ∈ X , we define µ̃s(x) = φ(x)>θ̂s and σ̃s(x) :=
‖φ(x)‖V −1

s
. We also define a matrix Ks ∈ Rs×s and a

column vector ks(x) ∈ Rs by (Ks)ij = (k(xi, xj)) and
(ks(x))i = k(x, xi) for 1 ≤ i, j ≤ s. Then, we have the
following.

µ̃s(x) = ks(x)>(ρIs +WsKs)
−1WsYs,

ρσ̃2
s(x) = k(x, x)− ks(x)>(ρIs +WsKs)

−1Wsks(x).



Algorithm 1 QMCKernelUCB

Inputs: fail probability δ ∈ (0, 1), the total number of
rounds T , an upper bound of the total number of stages
M , and a tradeoff parameter η > 0.

1: for each stage s = 1, 2, . . . (terminate when we have
used T queries to all Ox,O†x) do

2: xs ← argmaxx∈X µ̃s−1(x) + βs−1σ̃s−1(x).
3: εs ← σ̃s−1(xs).
4: Run QMC(Oxs , ηεs, δM ) obtain an output ys of

QMC.
5: for the next C

ηεs
log M

δ rounds do
6: play action xs and the player incurs regret µ(x∗)−

µ(xs).
7: end for
8: end for

4.2 CONFIDENCE INTERVAL

The following result provides a confidence interval of the
estimation µ̃s(x).

Proposition 4.2. Let m be the total number of stage of
Algorithm 1 and xs be the action selected by Algorithm 1
for each stage s. We assume that M ≥ m, where M is the
parameter of Algorithm 1. With probability at least 1 − δ,
the following inequality holds for any s = 1, . . . ,m and
x ∈ X :

|µ(x)− µ̃s(x)| ≤ βsσ̃s(x).

Here, βs =
√
ρS + η

√
s with ‖θ‖Hk ≤ S.

In the linear case, Wan et al. [2023] proved a similar result
and in their result, βs is given as O(

√
ds), where d is the

dimension of the linear model. However, since dimHk is
possibility infinite, their result is vacuous in our setting.

Although the proof is quite different, we note that Propo-
sition 4.2 has some similarity to the known confidence in-
terval in the classical setting [Srinivas et al., 2010]. In the
classical setting, it is well-known that a confidence inter-
val of the form |µt(x) − µ(x)| = O(

√
γTσt(x)) holds

[Srinivas et al., 2010, Chowdhury and Gopalan, 2017],
where µt(x) and σ2

t (x) are the posterior mean and posi-
tive variance in the classical setting, and γT is the max-
imum information gain. By Proposition 4.2, we see that
|µ(x)− µ̃s(x)| = O(

√
mσ̃(x)) and as we shall see in Sec.

5, the total number m of stages plays a similar role to the
maximum information gain γT .

4.3 TRADEOFF PARAMETER

Both our algorithm (Algorithm 1) and Q-GP-UCB [Dai
et al., 2023] are UCB-type algorithms that extend QLinUCB
[Wan et al., 2023] to the kernelized case. However, we
introduce a novel tradeoff parameter η that tradeoffs the total

number of stages and regret incurred in each state. Since
we call the reward oracles O( 1

ηεs
) times, if η is larger, then

regret incurred in each stage will be smaller, but the total
number of stages will be larger. We detail the dependence
of the parameter η on the cumulative regret in Proposition
5.2.

5 REGRET ANALYSIS

In this section, we provide upper bounds of the cumulative
regret of Algorithm 1. We present the main claims of the
regret upper bounds in Sec. 5.1, and provide a proof sketch
of the main result in Sec. 5.2. Recall that the complete proofs
are provided in Appendix C.

5.1 MAIN RESULTS

Besides the assumptions introduced in Sec. 3, we make the
following assumptions.

Assumption 5.1. (a) k is a Mercer kernel, i.e., there exist a
sequence of functions {ψi}i∈I ⊂ Hk and positive numbers
{λi}i∈I with λ1 ≥ λ2 ≥ · · · satisfying the statement of
Theorem 3.1. (b) There exists a constant ψ > 0 such that
‖ψi‖∞ ≤ ψ for any i ∈ I . (c) There exists a constant
k > 0 such that supx,x′∈X |k(x, x′)| ≤ k. (d) We assume
that there exists S > 0 such that ‖θ∗‖Hk ≤ S, where θ∗

is the ground truth vector that determines the mean reward
function µ.

Here, assumptions (a), (b), (c) are assumed in the previ-
ous work [Vakili et al., 2021] and the assumption (d) is
a boundedness condition, which is standard in the bandit
literature.

We note that along with the standard bounded assumptions,
we assume the reward function µ is normalized so that
µ(x) ∈ [0, 1] for any x ∈ X in Section 3.2. Since the
standard boundedness assumptions imply that the reward
function is bounded 2, after normalization (or affine trans-
formation) of rewards, the assumption µ(X ) ⊆ [0, 1] can be
satisfied.

First, we introduce a regret upper bound of Algorithm 1
using the total number m of stages. By Lemma 2.2, Propo-
sition 4.2, and a standard proof technique for UCB-type
algorithms, we can easily show that the cumulative regret
of Algorithm 1 is bounded as follows:

Proposition 5.2. Let m be the total number of stages and,
η be a tradeoff parameter of Algorithm 1. We assume that
M ≥ m, where M is the parameter of Algorithm 1. Then,

2By standard the bounded assumptions, the Cauchy-Schwartz
inequality, the reproducing property, we see that |µ(x)| ≤
〈θ∗, φ(x)〉 ≤ ‖θ∗‖Hk‖φ(x)‖Hk ≤ ‖θ

∗‖Hk
√
k.



with probability at least 1 − δ, cumulative regret R(T ) of
the algorithm is bounded by

R(T ) = O
(
m(η−1 +

√
m) log(M/δ)

)
.

We remark that the total number m depends on η. If we take
a large η, then the number of oracle queries by the QMC
method will be smaller, and the total number m of stages
will be larger. By Proposition 5.2, we have to appropriately
select η and provide an upper bound of m.

The following proposition provides upper bounds of m.

Proposition 5.3. Assume T > 1,M ≥ e and let m be the
total number of stages of Algorithm 1.

1. Suppose that k has a (Cp, βp) polynomial eigendecay.
We take η as

η = T
− 1

1+βp .

Then, there exists a constant cp > 0 depending only on
Cp, βp, ρ, k, ψ satisfying the following inequality:

m ≤ cpT
2

1+βp log1−β−1
p (T ).

2. Suppose that k has a (Ce,1, Ce,2, βe) exponential
eigendecay. We take η = 1. Then, there exists a con-
stant ce > 0 depending only on Ce,1, Ce,2, βe, ρ, k, ψ
satisfying the following inequality:

m ≤ ce log1+1/βe (T ) .

In Proposition 5.3, in the case of the polynomial eigendecay,
we select η so that η−1 and the upper bound of

√
m have

the same order of T and in the case of the exponential
decay, we select η = 1. We note that upper bounds provided
in Proposition 5.3 have similarity to upper bounds of the
maximum information gain γT [Vakili et al., 2021, Corollary
1]. Actually, Dai et al. [2023] showed that the total number
m of stages with the tradeoff parameter η = 1 has the same
bound as γT 2 . Due to the appropriate choice of the tradeoff
parameter, our results (Proposition 5.3) improves their result
Õ(T 2/βp) in the case of the polynomial eigendecay.

Therefore, by Proposition 5.3 and Proposition 5.2, we obtain
the following theorem, which is the main result of this paper.

Theorem 5.4 (Upper Bounds of Algorithm 1). Assume T >
1. Suppose that Assumption 5.1 holds.

1. Suppose that the kernel k has a βp polynomial eigen-
decay. Let η and cp be as in Proposition 5.3. Then,
with probability at least 1− δ, the cumulative regret of
Algorithm 1 with M = cpη

−2 is bounded as

R(T ) = O

(
T

3
1+βp log3(1−β−1

p )/2(T ) log

(
T

δ

))
.

2. Suppose that the kernel k has a βe exponential eigende-
cay. Then with probability at least 1−δ, the cumulative
regret of Algorithm 1 with M = ce log1+1/βe (T ) and
η = 1 is bounded as

R(T ) = O

(
log3(1+β−1

e )/2(T ) log

(
log T

δ

))
,

where ce is the constant provided in Proposition 5.3.

Theorem 5.4 indicates that our regret upper bound exponen-
tially improves that of the classical algorithms [Valko et al.,
2013, Vakili et al., 2021] if k has an exponential eigendecay.
Moreover, our regret upper bound is better than the classical
bounds if a polynomial eigendecay with large βp. More-
over, we note that our regret upper bound improves that
of [Dai et al., 2023] in the case of polynomial eigendecay.
More precisely, in the case of a βp-polynomial eigendecay,
while the regret upper bound of [Dai et al., 2023] is given as
Õ
(
T

3
βp log

(
1
δ

))
, that of ours is Õ

(
T

3
1+βp log

(
1
δ

))
. We

also note that our regret bound is better than the regret bound
Õ(T 1/2+1/βp) of GP-UCB [Srinivas et al., 2010] whenever
GP-UCB has sublinear regret (i.e., βp > 2), while that of
Q-GP-UCB [Dai et al., 2023] is not necessarily better than
GP-UCB.

5.2 SKETCH OF THE PROOF

As previously mentioned, providing the upper bounds of the
total number of stages m is a key step to prove the main
result Theorem 5.4. In this section, we provide a sketch of
the proof of Proposition 5.3. Following [Wan et al., 2023],
we first relatem to the log-determinant γQMC of the positive
operator ρ−1Vm. Then, by considering a projection onto a
finite dimensional subspace of Hk, we provide an upper
bound of γQMC.

Let Km,Wm ∈ Rm×m be matrices and Qm : Hk → Hk
be the positive semi-definite operator defined in Sec. 4.

Qm =

m∑
s=1

ε−2
s φ(xs)φ(xs)

>.

We define γQMC > 0 by

log det
(
Im + ρ−1K ′

)
= log det

(
IHk + ρ−1Qm

)
, (3)

where K ′ = W
1/2
m KmW

1/2
m . We note that (3) holds by

the Weinstein-Aronszajn identity. If the weight matrix is
the identity matrix, then the definition of γQMC is almost
identical to that of the maximum information gain γT de-
fined as γT = supξ1,...,ξT∈X log det (IT +K(ξ)) , where
K(ξ) = (k(ξi, ξj))1≤i,j≤T ∈ RT×T . However, unlike γT ,
γQMC depends on the matrix size m trivially. More pre-
cisely, it can be proved that γQMC = m log 2 (Lemma
C.5). Therefore, to bound m, it is sufficient to bound γQMC.



If the RKHS Hk is finite dimensional, [Wan et al., 2023,
Lemma 2] provides an upper bound of γQMC of the form
O(dimHk log(T )). However, this bound is vacuous since
dimHk can be infinite. In an attempt of deriving an upper
bound of the maximum information gain γT , there was a
similar issue. Vakili et al. [2021] resolved the issue by con-
sidering a projection ofHk to a finite dimensional subspace
and we take a similar approach.

We recall that a set of functions {λ1/2
i ψi}i∈I forms an or-

thonormal basis of the RKHS Hk (Theorem 3.1), where
I = {1, 2, · · · ,dimHk} if Hk is finite dimensional and
I = Z≥1 otherwise. For a positive integer D, we de-
fine an orthogonal projection PD : Hk → Hk by f 7→∑D
i=1〈f, λ

1/2
i ψi〉Hkλ

1/2
i ψi. Then, PD(f) gives an approx-

imation of f in the finite dimensional subspace PD(Hk). To
bound γQMC, one can mimic the proof of [Vakili et al., 2021,
Theorem 3], however, we provide a more generalized result.
Below, we show that our upper bounds of γQMC (Corollary
5.6) can be derived from the following proposition. We also
note that the proof of the following proposition provides a
simple alternative proof of [Vakili et al., 2021, Theorem 3].

Proposition 5.5. Let π : Hk → Hk be a projection op-
erator of finite rank and U : Hk → Hk be a positive
semi-definite operator of finite-rank. We assume that the
range (image) Ranπ of π is D-dimensional with D <∞.
Then, the following inequality holds:

log det(I+U) ≤ D log

(
1 +

TrUπ

D

)
+TrU(I−π).

We apply Proposition 5.5 to the case when π = PD, U =
ρ−1Qm. We can bound TrQmPD by TrQmPD ≤
TrQm = TrW

1/2
m KmW

1/2
m ≤ kTrWm. To compute

TrQm(I − PD), it is sufficient to compute t(i, x) :=

λ
1/2
i ψ>i φ(x)φ(x)>λ

1/2
i ψi for each i ∈ I and x ∈ X . By

the reproducing property, we have t(i, x) = λiψ
2
i (x) ≤

λiψ
2
. Therefore,

TrQm(I − PD) =
∑
i>D

m∑
s=1

ε−2
s t(i, xs)

≤
∑
i>D

λiψ
2
m∑
s=1

ε−2
s = δD TrWm,

where δD is defined as
∑
i∈I,i>D λiψ

2
. Thus, we obtain the

following.

Corollary 5.6. We define E by
∑m
s=1 ε

−2
s , i.e., E =

TrWm. Then, for any D ∈ Z≥1, the following inequality
holds:

γQMC ≤ D log

(
1 +

k

Dρ
E

)
+
δD
ρ
E.

Then, by Corollary 5.6 and using the same argument as
the proof of [Vakili et al., 2021, Corollary 1], we can
bound γQMC in terms of E. Since the total number of or-
acle queries of Algorithm 1 is limited up to T , we have
T & η−1

∑m
i=1 ε

−1
i ≥

√
E. Therefore, we can bound the

γQMC in terms of ηT . By selecting the η−1 as the same
order as an upper bound of γQMC, we can provide an up-
per bound of γQMC in terms of T . By γQMC = m log 2
(Lemma C.5), we have the assertion of Proposition 5.3.

6 LITERATURE OVERVIEW

This section consists of two parts: a comparison of this study
with Dai et al. [2023], and a review of existing work on
kernelized bandits and quantum online learning algorithms.

6.1 COMPARISON TO QUANTUM BAYESIAN
OPTIMIZATION

6.1.1 Bias of the QMC Estimator

As stated in Section 1, the present paper deals with the
same problem setting as Dai et al. [2023]. In particular,
Dai et al. [2023] provided a similar confidence interval to
Proposition 4.2 under the following assumption. We discuss
the validity of this assumption below.

Assumption 6.1 (Subgaussian Error Assumption of QMC).
Let y be a random variable taking values in [0, 1] and O(y)
the unitary operator corresponding to y as in Lemma 2.2. Let
ŷ be an output of the QMC method QMC(O(y), ε, δ) intro-
duced in Lemma 2.2. Then, the error y− ŷ is ε-subgaussian.

Dai et al. [2023] claimed that this assumption is assured by
Lemma 2.2, however, Lemma 2.2 only states that |y − ŷ|
is bounded by ε with a high probability. Noting that the
subgaussian property implies that the error y− ŷ is unbiased,
their argument implies the QMC estimator is unbiased.

An implementation of the QMC method calls the quan-
tum phase estimation algorithm repeatedly, obtains esti-
mated phases Θ̂1, . . . , Θ̂n ∈ [0, 2π], computes a median
Θ̂ = Median(Θ̂1, . . . , Θ̂n), and outputs an estimation
(1 − cos(Θ̂/2))/2 of E [y] (c.f., Rebentrost et al. [2018]).
Since each phase estimation Θ̂i includes an approximation
error due to a finite number of qubits, and the function
(1− cos(x))/2 is non-linear, to the best of our knowledge,
there is no evidence that indicates the QMC estimator is
unbiased.

Although there are some recent methods for mitigating the
bias of the QMC (or Quantum Amplitude) estimator, to the
best of our understanding, these improved methods are still
biased and require a larger number of oracle queries (see
[Miyamoto, 2023] or references therein).



6.1.2 Improved Regret Bounds

As we discussed in the introduction and the remark after
Theorem 5.4, in the case of polynomial eigendecay our
regret bound improves that of [Dai et al., 2023] even under
the unbiasedness assumption of the QMC estimator.

6.1.3 Tradeoff Parameter

Both our algorithm (Algorithm 1) and Q-GP-UCB [Dai
et al., 2023] are UCB-type algorithms that extend QLinUCB
[Wan et al., 2023] to the kernelized case. As we discussed in
Section 4.3, we introduced a novel parameter η that tradeoffs
the total number of stages and regret incurred in each state,
which provides aforementioned improved regret bounds.

6.1.4 Proof Technique for Bounding the (weighted)
Information Gain

We note that [Vakili et al., 2021, Theorem 3] can be derived
by Proposition 5.5 by a similar argument when deriving
Corollary 5.6. In particular, the proof of Proposition 5.5 and
analysis provided Section 5.2 provide a simple alternative
proof to [Vakili et al., 2021, Theorem 3]. Although Dai et al.
[2023] proved the same result as Corollary 5.6, we can say
Proposition 5.5 is a more general since both [Vakili et al.,
2021, Theorem 3] and Corollary 5.6 are corollaries of this
proposition.

6.2 RELATED WORK

In the classical setting, Valko et al. [2013] discussed a kernel-
ized UCB algorithm as an a non-linear extension of LinUCB
[Li et al., 2010], and provided a cumulative regret bound
based on a notion of the effective dimension. The effective
dimension of an RKHS is essential same as the information
gain [Vakili et al., 2021, Remark 1]. Vakili et al. [2021]
derived general upper bounds of the information gain under
conditions on the eigendecay of the kernel.

As for the prior works on bandit problems in the quan-
tum setting, Wan et al. [2023] studied a quantum multi-
armed bandits and stochastic linear bandits with linear re-
ward model and introduced a quantum algorithm that enjoys
quadratic speedup compared to the best possible classical
result. Dai et al. [2023] extended the work [Wan et al., 2023]
to the case of a non-linear reward model and proposed a sim-
ilar algorithm based on kernelization under the unbiasedness
assumption of the QMC estimator. Besides these studies,
Li and Zhan [2022] studied a quantum bandit convex op-
timization problem and Wang et al. [2021] studied a best
arm identification problem in the quantum multi-arm bandit
setting. The algorithms proposed in these studies are also
stage-based as in the present study and have been shown
to achieve a quantum speedup compared to the classical

algorithms. However, these algorithms are quite different
from ours due to the different problem settings.

7 CONCLUSION

In this paper, we proposed a UCB-type algorithm for quan-
tum bandit problems where the reward function is non-linear
with respect to an action. By employing Mercer’s theorem,
we provided a theoretical analysis that the proposed algo-
rithm achievesO(poly(log T )) regret bound when the decay
rate of Mercer operator decreases exponentially fast. A lim-
itation of this study is that the proposed method calls a
Quantum Monte Carlo method in each round, which would
require waiting for the advent of a fault-tolerant quantum
computation. For future research direction, it would be in-
triguing to investigate the possibility of designing an algo-
rithm that does not necessitate the computation of matrix
inversion, such as Langevin Monte Carlo Thompson Sam-
pling (LMC-TS) [Xu et al., 2022] which is based on noisy
gradient descent updates. Moreover, the optimality of our
algorithm remains unknown, and thus exploring a lower
bound of the cumulative regret in this problem setting is an
important open problem.
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APPENDIX

A NOTATION

We list the notation that is used in this paper in Table 2

Symbol Meaning
V a finite-dimensional Hilbert space over C
|x〉 a state vector in V
〈x| a corresponding state vector |x〉† in the dual space of V

Mσ : V → V a measurement operator
k : X × X → R a semi-positive definite kernel

Hk a RKHS corresponding to the kernel k
X a set of actions

µ : X → [0, 1] a mean reward function
Vn = (C2)⊗n a state space of n qubits

Λn a set of binary sequences of length n
T a time horizon

φ : X → Hk a feature map
m a maximum stage of our algorithm
M an input parameter of Algorithm 1
Gs a finite-dimensional subspace ofHk spanned by φ(x1), . . . , φ(xs)
‖ · ‖p `p norm (1 ≤ p ≤ ∞)
‖ · ‖F Frobenius norm of a matrix
σmax(·) the spectral norm of a matrix
A|G the restriction of an operator A on a domain G

RanA the range (image) of an operator A
ρ a regularizing parameter

{λi}i∈I eigenvalues of the Mercer operator Tk
{ψi}i∈I eigenfunctions of the Mercer operator Tk

Table 2: Notation
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B REMARKS ON OPERATOR DETERMINANT AND TRACE

In Sec. 5.2, we consider the log determinant of the operator IHk + ρ−1Qm : Hk → Hk. In this section, we note that there is
no difficulty in defining the determinant since Qm is a finite-rank operator. In this paper, we define determinants and traces
of a specific form of operators as follows.

Definition B.1. Let A : Hk → Hk be a finite rank operator. We define the determinant det(IHk +A) and trace TrA as

det(IHk +A) = det(IG +A|G), TrA = TrA|G ,

where G is a finite dimensional subspace ofHk such that RanA ⊆ G, and A|G denotes the restriction of A on G. Moreover,
these definitions do not depend on the choices of G satisfying the same property.

To show the last statement, it is sufficient to prove that det(IG +A|G) = det(IRanA +A|RanA) and TrA|G = TrA|RanA,
but they can be easily verified by considering the matrix representation of A|G in the finite dimensional subspace G.

We also remark that in this special case, the above determinant is identical to the Fredholm determinant [Simon, 2005],
which can be defined for the trace class. However, we only consider det(IHk +A) with a finite-rank operator A, the above
definition suffices for our purpose.

C PROOFS

C.1 PROOF OF PROPOSITION C.1

We also refer to [Dai et al., 2023, Appendix A] for the proof.

To emphasize Proposition C.1 holds for any weights and sequence x1, x2, · · · , we prove the following.

Proposition C.1. Let n ∈ Z≥1, x1, . . . , xn ∈ X , ω1, . . . , ωn > 0, y1, . . . , yn ∈ R. Define a self-adjoint operator
S : Hk → Hk as S = ρ1 +

∑n
i=1 ωiφ(xi)φ(xi)

>. We put Yn = (y1, · · · , yn)> ∈ Rn, ω = diag(ω1, . . . , ωn), and define
K ∈ Rn×n as Kij = k(xi, xj). Then for any x ∈ X , we have

φ(x)>S−1
n∑
i=1

ωiyiφ(xi) = k(x)>(ρIn + ωK)−1ωYn,

ρ‖φ(x)‖2S−1 = k(x, x)− k(x)>(ρIn + ωK)−1ωk(x).

Here, k(x) ∈ Rn is a column vector defined by (k(x))i = k(x, xi) for 1 ≤ i ≤ n.

Proof. Let x ∈ X . Since for 1 ≤ i ≤ n ,

Sφ(xi) = ρφ(xi) +
∑
j

ωjk(xi, xj)φ(xj) =
∑
j

(ρδij + ωjk(xi, xj))φ(xj),

we have
(Sφ(x1), · · · ,Sφ(xn)) = (φ(x1), · · · , φ(xn)) (ρIn + ωKn).

Thus, we see that S∑i aiφ(xi) =
∑
i ωiyiφ(xi), where a ∈ Rn is given as (ρIn + ωK)−1ωYn. Therefore, we have the

first statement of the proposition by the reproducing property.

Similarly, we have the following equality:

(Sφ(x1), · · · , Sφ(xn), Sφ(x)) = (φ(x1), · · · , φ(xn), φ(x))

(
ρIn + ωK ωk(x)

0 ρ

)
.

Define b ∈ Rn by (ρIn + ωK)−1ωk(x). Then,

(Sφ(x1), · · · , Sφ(xn), Sφ(x))

(
−b
1

)
= (φ(x1), · · · , φ(xn), φ(x))

(
ρIn + ωK ωk(x)

0 ρ

)(
−b
1

)
= ρφ(x).



Thus, it follows that

S
(
φ(x)−

n∑
i=1

biφ(xi)

)
= ρφ(x),

Therefore, we have the following.

ρ‖φ(x)‖2S−1 = ρφ(x)>S−1φ(x) = φ(x)>

(
φ(x)−

n∑
i=1

biφ(xi)

)
= k(x, x)− k(x)>b.

Here, the last equality holds from the reproducing property. This completes the proof.

C.2 PROOF OF PROPOSITION 4.2

For any x ∈ X , we have

|µ(x)− µ̃s(x)| = |φ(x)>θ∗ − φ(x)>θ̂s| ≤ ‖φ(x)‖V −1
s

∥∥∥θ∗ − θ̂s∥∥∥
Vs

=
∥∥∥θ∗ − θ̂s∥∥∥

Vs
σ̃s(x).

Thus, Proposition 4.2 follows from the following lemma.

Lemma C.2. Let m be the total number of stage of Algorithm 1 and assume that M ≥ m. Then, with probability at least
1− δ, the following inequality holds for any s = 1, . . . ,m:∥∥∥θ∗ − θ̂s∥∥∥

Vs
≤ βs.

Here, βs =
√
ρS + η

√
s.

Proof. This can be proved similarly to [Wan et al., 2023, Lemma 3]. However, since a naive application of their proof would
lead to a bound involving the dimension of the RHKSHk, we bound

∥∥∥θ∗ − θ̂s∥∥∥
Vs

as follows.

Define an event E as
E = {|µ(xs)− ys| ≤ εs, 1 ≤ s ≤ m} .

Since there are m stages in Algorithm 1 and M ≥ m, by taking a union bound,

P (E) ≥ 1− m

M
δ ≥ 1− δ.

In the rest of the proof, we assume that the event E holds. By the same proof as [Wan et al., 2023, Lemma 3], i.e., by
replacing xs by φ(xs) in their proof, with probability at least 1− δ, we have

‖θ∗ − θ̂s‖Vs ≤ ρ‖θ∗‖V −1
s

+ ‖Φ>s W 1/2
s Γs‖V −1

s
. (4)

Here, Γs = W
1/2
s (Φsθ

∗ − Ys) ∈ Rs. Then, by Lemma 2.2, we have ‖Γs‖∞ ≤ η. We note that Φs is a linear operator
from Hk to Rs defined by Hk 3 f 7→ (φ(x1)>f, · · · , φ(xs)

>f) = (f(x1), · · · , f(xs)) ∈ Rs. Similarly, Φ>s is a linear
operator from Rs to Hk defined by (ai)1≤i≤s 7→

∑s
i=1 aiφ(xi). Therefore, we note that ΦsV

−1
s Φ>s is a linear operator

from Rs → Rs, i.e., a matrix in Rs×s. Since the trace norm is dual to the spectral norm with respect to the inner product of
the space of symmetric matrices defined as (A,B) 7→ TrAB, we have

‖Φ>s W 1/2
s Γs‖2V −1

s
= Γ>s W

1/2
s ΦsV

−1
s Φ>s W

1/2
s Γs

= Tr ΓsΓ
>
s W

1/2
s ΦsV

−1
s Φ>s W

1/2
s

≤ Tr
(
ΓsΓ

>
s

)
σmax

(
W 1/2
s ΦsV

−1
s Φ>s W

1/2
s

)
≤ η2s σmax

(
W 1/2
s ΦsV

−1
s Φ>s W

1/2
s

)
.

Here, σmax denotes the spectral norm and the last inequality follows from ‖Γs‖∞ ≤ η. We put Φ̃s = W
1/2
s Φs. Then, noting

that
(ρI + Φ̃>s Φ̃s)Φ̃

>
s = Φ̃>s (ρI + Φ̃sΦ̃

>
s ),



we have the following (c.f., Valko et al. [2013]):

Φ̃>s (ρI + Φ̃sΦ̃
>
s )−1 = (ρI + Φ̃>s Φ̃s)

−1Φ̃>s .

Thus, we have

σmax

(
W 1/2
s ΦsV

−1
s Φ>s W

1/2
s

)
= σmax

(
Φ̃s

(
ρI + Φ̃>s Φ̃s

)−1

Φ̃>s

)
= σmax

(
Φ̃sΦ̃

>
s (ρI + Φ̃sΦ̃

>
s )−1

)
≤ 1.

Therefore, we see that ‖Φ>s W 1/2
s Γs‖V −1

s
≤ η√s. Noting that ‖θ∗‖V −1

s
≤ ρ−1/2‖θ∗‖Hk , we have our assertion by (4).

C.3 PROOF OF PROPOSITION 5.2

Proof. This can be proved by a standard argument for the analysis of UCB-type algorithm, Lemma 2.2, and Propo-
sition 4.2. We let E be an event on which the inequalities in Proposition 4.2 hold and assume that E holds. Let
x∗ = argmaxx∈X φ(x)>θ∗. By definition of xs and Proposition 4.2, we have

µ(x∗)− µ(xs) ≤ µ̃s−1(x∗) + βs−1σ̃s−1(x∗)− µ̃s−1(xs) + βs−1σ̃s−1(xs)

≤ 2βs−1σ̃s−1(xs) = 2βs−1εs.

Thus, by Lemma 2.2, the regret that the player incurs in the stage s is at most

2βs−1εsC log(M/δ)
1

ηεs
= 2C(

√
ρSη−1 +

√
s− 1) log(M/δ) ≤ 2C(

√
ρSη−1 +

√
m) log(M/δ).

Therefore, with probability at least 1− δ, the cumulative regret R(T ) is bounded as

R(T ) ≤ 2Cm(
√
ρSη−1 +

√
m) log(M/δ) = O(m(η−1 +

√
m) log(M/δ)).

C.4 PROOF OF PROPOSITION 5.5

Proof. As we remarked in Sec. B, we note that there is no difficulty in defining log det(I + U) since U is of finite-rank.
We decompose Hk as Hk = H1 ⊕ H2 by the projection π, where H1 = Ranπ and H2 = Ran(I − π). We define
U11 : H1 → H1, U22 : H2 → H2, and U12 : H2 → H1 by U11 = πU |H1 , U22 = (I − π)U |H2 , U12 = (I − π)U |H2 . That

is, with respect to the decompositionH1 ⊕H2, U can be represented by a matrix
(
U11 U12

U>12 U22

)
. Since

(
I 0

−U>12(I + U11)−1 I

)(
I + U11 U12

U>12 I + U22

)(
I −(I + U11)−1U12

0 I

)
=

(
I + U11 0

0 I + U22 − U>12(I + U11)−1U12

)
and noting that they are finite-rank operators, we have

log det(I + U) = log det(I + U11) + log det(I + U22 − U>12(I + U11)−1U12).

We introduce the following well-known matrix inequalities (for the first inequality, we refer to [Vakili et al., 2021, Lemma
1]). For a positive semi-definite matrix A ∈ Rn×n, we have

log det(I +A) ≤ n log(1 + TrA/n), log det(1 +A) ≤ TrA.

Noting that dimH1 = D and these matrix inequalities hold for finite rank operators, we see that

log det(I + U) ≤ D log(1 + TrU11/D) + Tr
(
U22 − U>12(I + U11)−1U12

)
≤ D log(1 + TrU11/D) + TrU22.

Here, the second inequality holds since U>12(I + U11)−1U12 is positive semi-definite. We have our assertion by noting that
TrU11 = TrUπ and TrU22 = TrU(I − π).



C.5 PROOF OF PROPOSITION 5.3

To prove Proposition 5.3, first, we relate
∑m
s=1

1
ε2s

to ηT .

Lemma C.3. Let m be the total number of stages of Algorithm 1. We assume that M ≥ e, where M is a parameter of
Algorithm 1. Then, we have

m∑
s=1

1

ε2s
≤ (ηT )2.

Proof. Essentially, this was proved in [Wan et al., 2023, Lemma 2] and easily follows from Lemma 2.2 and our problem
setting. Since the number of queries of quantum reward oracles is limited up to T , by C > 1 and Lemma 2.2, we have

T ≥
m∑
s=1

log(M/δ)

ηεs
≥ η−1

m∑
s=1

1

εs
≥ η−1

√√√√ m∑
s=1

1

ε2s
.

This completes the proof.

We can prove the following lemma by Corollary 5.6 and the proof of [Vakili et al., 2021, Corollary 1].

Lemma C.4. Let m be the total number of stages of Algorithm 1 and put E =
∑m
s=1

1
ε2s

.

1. Suppose that k has (Cp, βp) polynomial eigendecay with Cp > 0, βp > 1. Then, there exists a constant c′p > 0

depending only on Cp, βp, ρ, k, ψ satisfying the following inequality:

γQMC ≤ c′pE1/βp log1−1/βp(E + 1).

2. Suppose that k has (Ce,1, Ce,2, βe) exponential eigendecay with Ce,1, Ce,2, βe > 0. Then, there exists a constant
c′e > 0 depending only on Ce,1, Ce,2, βe, ρ, k, ψ such that

γQMC ≤ c′e log1+1/βe (E + 1) .

Proof. First, suppose that k has (Cp, βp) polynomial eigendecay. Then, by proof of [Vakili et al., 2021, Corollary 1], we
have δD ≤ CpD1−βpψ

2
. By Corollary 5.6, we obtain

γQMC ≤ D log

(
1 +

k

Dρ
E

)
+
Cpψ

2

ρ
D1−βpE ≤ D log

(
1 +

k

ρ
E

)
+
Cpψ

2

ρ
D1−βpE.

Taking D = dE1/βp log−1/βp
(

1 + k
ρE
)
e, we see that γQMC . E1/βp log1−1/βp(E + 1), where notation . ignores

constants depending only on Cp, βp, ρ, k, ψ. Next, suppose that k has (Ce,1, Ce,2, βe) exponential eigendecay. Then, by
proof of [Vakili et al., 2021, Corollary 1], there exists a constant c′′e > 0 depending only on Ce,1, Ce,2, βe, ψ such that
δD ≤ c′′e exp

(
−C ′e,2Dβe

)
, where C ′e,2 = Ce,2 if βe = 1 and C ′e,2 = Ce,2/2 if βe 6= 1. Thus, by Corollary 5.6, we see that

γQMC ≤ D log

(
1 +

k

Dρ
E

)
+
c′′e
ρ

exp
(
−C ′e,2Dβe

)
E.

By taking D = C
′1/βe
e,2 dlog1/βe(E+ 1)e, we have γQMC . log1/βe+1(E+ 1), where notation . hides constants depending

only on Ce,1, Ce,2, βe, ρ, k, ψ.

Similarly to [Wan et al., 2023], we relate γQMC to m.

Lemma C.5. Let m be the total number of stages of Algorithm 1 and γQMC be as in (3). Then, we have γQMC = m log 2.



Proof. We let Gs be a finite dimensional subspace ofHk spanned by {φ(x1), . . . , φ(xs)} andQs =
∑s
i=1 ε

−2
i φ(xi)φ(xi)

>.
By Definition B.1 and its remark, we have

γQMC = log det(I + ρ−1Qm) = log det(I + ρ−1Qm|Gm).

Therefore, the proof can be reduced to the finite dimensional case (i.e., the finite dimensional space Gm) and by [Wan et al.,
2023, Lemma 3], we have the following for each s ≥ 1:

det(I + ρ−1Qs|Gm) = 2 det(I + ρ−1Qs−1|Gm).

Since Q0 = 0, we have the assertion of the lemma.

Proof of Proposition 5.3. If k has an exponential eigendecay and η = 1, then the statement of the proposition follows from
Lemma C.3, C.4, C.5. Let us suppose k has βp polynomial eigendecay. Then, by Lemma C.3, C.4, C.5, for any α > 0, we
have m . (ηT )2β−1

p log1−β−1
p (1 + ηT ). By Proposition 5.2, we take η so that η−1 and (ηT )β

−1
p have the same order, i.e.,

η = T−1/(1+βp). This completes the proof.

C.6 PROOF OF THEOREM 5.4

Proof. Theorem 5.4 follows from Proposition 5.2 and Proposition 5.3.

D EXPERIMENTS

Proposition 5.3 and Theorem 5.4 imply that our regret bounds are better than that of [Dai et al., 2023] in the case of
polynomial eigendecay due to the tradeoff parameter η. We note that Algorithm 1 with η = 1 is identical to Q-GP-UCB
[Dai et al., 2023] and Proposition 5.3 suggests that the regret bound can be improved if we take the parameter η as an
appropriate small value. In this section, we empirically verify this in a simple synthetic environment using the quantum
simulator provided by the qiskit library Javadi-Abhari et al. [2024].

In this environment, we define the quantum reward oracle Ox as a quantum circuit representing a
Bernoulli random variable with mean µ(x) ∈ [0, 1], where the implementation is provided by the
tutorial of qiskit-finace https://qiskit-community.github.io/qiskit-finance/tutorials/00_
amplitude_estimation.html. For an implementation of QMC, we used the iterative amplitude estimation (IAE)
[Grinko et al., 2021] implemented in the qiskit-algorithms library. Here, similar to [Dai et al., 2023], we used a theoretical
upper bound of the number of oracle calls rather than the actual number of oracle calls of IAE. We consider a simple
environment, where T = 3000, X = [0, 1]d with d = 1, k is the Matèrn-ν kernel with ν = 1.5 and the length-scale 0.3, µ is
given as x 7→ k(x, x0) with x0 = 0.2.

Since our algorithm in the case when η = 1 is identical to Q-GP-UCB [Dai et al., 2023], we have conducted an ablation study
of the parameter η. Regarding the parameter of Algorithm 1, we take ρ = 1.0, δ/M = 10−2, S = 1. We run Algorithm 1 in
the synthetic environment 10 times for each η = 1.0, 10−1, 10−2, 10−3 and plot the cumulative regret in Figure 1, where
the error bands represent 95% confidence intervals of cumulative regret. The experimental result supports our theoretical
findings, i.e., by taking an appropriate (small) value of the parameter η, Algorithm 1 can achieve a better performance than
the existing method [Dai et al., 2023]. Moreover, discussion in Section 4.3 suggests that by setting η to a small value, the
total number of stages decreases. In fact, in this experimental setting, the mean total number of stages when η = 1 is given
as 200.8 (std 0.4) and that when η = 10−2 is given as 18.6 (std 0.49).

For a better empirical performance, we introduce an exploration parameter v > 0 to the UCB

µ̃s−1(x) + vβs−1σ̃s−1(x). (5)

We note that the case when v = 1 is identical to Algorithm 1. We conducted experiments using the UCB (5) with
v = 0.5, 0.1, 0.05 with the same experimental setting and show cumulative regret in Figures 2 to 4. These experimental
results also indicate that with an appropriate choice η, we have an improvement over Q-GP-UCB [Dai et al., 2023].

https://qiskit-community.github.io/qiskit-finance/tutorials/00_amplitude_estimation.html
https://qiskit-community.github.io/qiskit-finance/tutorials/00_amplitude_estimation.html
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Figure 1: Ablation study of the parameter η. The case when η = 1 is identical to the existing method [Dai et al., 2023].
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Figure 2: Ablation study of the parameter η with the exploration parameter v = 0.5
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Figure 3: Ablation study of the parameter η with the exploration parameter v = 0.1
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Figure 4: Ablation study of the parameter η with the exploration parameter v = 0.05
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