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Abstract
World models predict future world states result-
ing from actions, enabling AI agents to perform
planning in diverse environments. We introduce
WorldPrediction, a video-based benchmark for
evaluating world modeling and procedural plan-
ning capabilities of different models. In con-
trast to prior works that focus primarily on low-
level world modeling and robotic motion plan-
ning, WORLDPREDICTION is the first benchmark
that emphasizes actions with temporal and se-
mantic abstraction. Given initial and final world
states, the task is to distinguish the proper action
(WORLDPREDICTION-WM) or the properly or-
dered sequence of actions (WORLDPREDICTION-
PP) from a set of counterfactual distractors. As
such, to prevent models from exploiting low-level
continuity cues in background scenes, we provide
“action equivalents” – identical actions observed
in different contexts – as candidates for selection.
This benchmark is grounded in a formal frame-
work of partially observable semi-MDP, which
ensures better reliability and robustness of the
evaluation. We conduct extensive human filtering
and validation on our benchmark and show that
current frontier models barely achieves 57% ac-
curacy on High-level World Modeling and 38%
on Long-horizon Procedural Planning whereas
humans are able to perfectly solve both tasks.

1. Introduction
Advanced machine intelligence relies critically on two foun-
dational capabilities: world modeling and procedural plan-
ning (LeCun, 2022; Ha & Schmidhuber, 2018). World mod-

*Equal contribution 1Meta FAIR Paris 2The Hong Kong
University of Science and Technology 3Sorbonne Uni-
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Figure 1. Theoretical formulation of WorldPrediction. Latent
world states (s) and high-level actions (a) evolve according to
a hidden transition model T , which is not directly accessible.
Instead, an observation model O maps these latent variables into
visual observations, producing images O(s) depicting states and
video segments O(a) depicting actions.

eling allows agents to internally simulate future world states,
enabling them to optimize their actions without trial-and-
error in the real world or reliance on explicit reward signals.
Procedural planning (Chang et al., 2020) involves determin-
ing ordered sequences of actions to achieve long-horizon
goals. These capabilities represent key steps toward devel-
oping AI systems that can reason effectively, act responsibly,
and interact smartly with complex environments.

Recent advances in low-level world modeling and plan-
ning have achieved significant progress in intuitive physics
understanding (Garrido et al., 2025), robotic motion con-
trol (Zhou et al., 2024a), navigation (Koh et al., 2021; Bar
et al., 2024) and autonomous driving (Wang et al., 2024b).
These scenarios typically involve precise physical dynam-
ics and high-frequency control without any semantic or
temporal abstraction. However, skilled human activities
require reasoning at a higher level, where individual ac-
tions span longer, non-uniform durations and encapsulate
multiple lower-level primitive actions (Sutton et al., 1999).
Abstraction enables efficient long-horizon reasoning in com-
plex tasks by significantly condensing the exponentially
growing search space. It can also reduce the sensitivity to
low-level variations and thereby enhancing generalization.
Moreover, it aligns closely with human cognition, improv-
ing interpretability and facilitating better communication.

We propose WorldPrediction, a benchmark for evalu-
ating high-level world modeling and long-horizon pro-
cedural planning. It consists of two sub-benchmarks:

1



ICML 2025 Workshop on Assessing World Models Submission

(Close the car key) (Open the car key)(Put in the battery)(Take out the battery)

WorldPrediction-WM WorldPrediction-PP

Initial state Final state

States:

Actions:

Initial state Final state

States:

Actions:

(Cut along the edges) (Fix the windmill on the bracket) (Fold the square inward)

…

T

Figure 2. WORLDPREDICTION-WM and WORLDPREDICTION-PP task formulation. For World Modeling, the objective is to select
which action clip depicts the transition from initial to final state. For Procedural Planning, the objective is to select which sequence of
action clips (T ∈ [3, 10]) is correctly ordered to depict the transition from initial to final state. (The actual samples in the benchmark do
not contain any text, here the actions are annotated for vizualisation purposes)

WORLDPREDICTION-WM assesses whether the model
understands the causalities of semantically and tempo-
rally abstract actions in real-world skilled human activities;
WORLDPREDICTION-PP further extend the evaluation to
procedural planning over extended temporal horizons, in
contrast to existing benchmarks that typically focus on short
span of only 3-4 steps (Chang et al., 2020). Key features of
the WORLDPREDICTION benchmark include:

1) Diverse Actions and Tasks. The benchmark covers
a broad spectrum of human activities, such as cooking,
household repair, technical maintenance, furniture assembly,
health care, etc. Samples are sourced from five datasets en-
compassing instructional web videos as well as egocentric
and exocentric recordings of skilled human activities.

2) Discriminative Formulation. The benchmark adopts a
multiple-choice task formulation, where models select cor-
rect action or action sequences from a set of distractors. It
facilitates direct comparisons between diverse world model /
planner architectures (e.g., predictive vs. generative), modal-
ity representations (e.g., VLMs vs. diffusion).

3) Shortcut Mitigation. The benchmark represents states
and actions using observations. To ensure that the WORLD-
PREDICTION evaluates the understanding of action-state
causality and to discourage models from exploiting superfi-
cial continuity cues, we provide “action equivalents”: iden-
tical actions captured in different backgrounds or observed
from different viewpoints as action candidates.

We establish baseline performance on WORLDPREDICTION
using several SOTA approaches, including VLMs, Socratic
LLMs, video diffusion models, and Open-Event Procedural
Planning (OEPP) models (Wu et al., 2024). Overall results
on WORLDPREDICTION demonstrate that while better per-
ception on larger models yield expected improvements, a
substantial gap still remains between the highest-performing
model (57.0% on WORLDPREDICTION-WM and 38.1% on

WORLDPREDICTION-PP) and human performance.

2. Related Works
World Modeling. World Modeling is a fundamental ca-
pability of autonomous intelligent systems (LeCun, 2022),
which consists in leveraging an internal representation of
the world to predict and understand how the state of the
world evolves under different actions. Current works can
be separated into predictive and generative world model-
ing. Models such as I-JEPA (Assran et al., 2023), V-JEPA
(Bardes et al., 2024) or DINO-WM (Zhou et al., 2024a) aim
to predict latent representations of future states of the world,
which has also been shown to develop a basic understand-
ing of intuitive physics (Garrido et al., 2025). On the other
hand, generative world modeling uses denoising backbones
to generate the next world state, a capability better fit for
exploration and simulation of the real world as shown by
Genie (Bruce et al., 2024) or UniSim (Yang et al., 2023).
Due to the complexity of the real world, current world mod-
els have been explored either in synthetic environments
(Kim et al., 2023; Hafner et al., 2023; Garrido et al., 2024;
Gupta et al., 2024), or in real world environments with rel-
atively constrained action spaces such as robotics (Hafner
et al., 2019; Zhou et al., 2024b; Wu et al., 2023; Mendonca
et al., 2023) with manipulation-based actions, autonomous
driving (Guan et al., 2024; Hu et al., 2023; Wang et al.,
2024a;b) with vehicle control actions, and navigation (Shah
et al., 2023; Koh et al., 2021; Bar et al., 2024) with spatial
movement actions.

Procedural Planning. Given an initial and final state, Proce-
dural Planning refers to the ability of predicting a sequence
of actions which would bring the initial state to the final state.
While that formulation is common in robotic control (Sun
et al., 2022; Lynch et al., 2023) for low-level manipulation
tasks, in this work we focus on human-centric procedural
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planning with higher-level actions (e.g., “remove the bat-
tery”, “attach a table leg”) (Ben-Shabat et al., 2021; Damen
et al., 2022), mostly from instructional videos (Chang et al.,
2020; Tang et al., 2019; Zhukov et al., 2019), which inher-
ently involves deeper semantic reasoning and abstraction of
granular actions. Recent work to tackle procedural planning
include using weak supervision from language (Zhao et al.,
2022), encoding intermediate state transitions (Niu et al.,
2024) or using a condensed action state learning method
(Li et al., 2023) Alternatively, text-supervision using LLMs
have shown to be effective (Liu et al., 2023; Wang et al.,
2023a; Islam et al., 2024), as well as diffusion-based ap-
proaches (Wang et al., 2023b). Despite recent attempts
at expanding the scope of procedural planning (Wu et al.,
2024; Patel et al., 2023), the evaluation of the task is still
over-reliant on human annotated text labels of actions to
convey interpretable plans, which motivates the formulation
of WorldPrediction.

3. The WORLDPREDICTION Benchmark
Task Formulation Given two images representing respec-
tively an initial and final state, the objective of WORLDPRE-
DICTION is to select the correct transition that happened as
shown in Fig 2. In WORLDPREDICTION-WM, the candi-
dates are singular video segments depicting various actions,
while in WORLDPREDICTION-PP, the candidates are shuf-
fled sequences or video segments representing a plan of
varying length. All actions are replaced by action equiv-
alents, detailed below. We provide an extensive formal
grounding of WORLDPREDICTION in Appendix B and data
statistics in Appendix C

Data Source We use the official dataset splits for evalu-
ation of 5 different datasets: COIN (Tang et al., 2019),
CrossTask (Zhukov et al., 2019), EgoExo4D (Grau-
man et al., 2024), EPIC-KITCHEN-100 (Damen et al.,
2022), and IKEA-ASM (Ben-Shabat et al., 2021). The
test split for COIN and validation splits for CrossTask,
EPIC-KITCHENS-100, EgoExo4D, and IKEA-ASM. For
WORLDPREDICTION-PP, we use number of action steps
T ∈ {3, 4} for COIN and CrossTask, and T ∈ {3, . . . 10}
for the remaining. The action sequence are sampled using a
sliding window following previous works.

Distractor Sampling. To rigorously test action dis-
crimination, each correct action is presented alongside
three distractors, resulting in four total candidates. For
WORLDPREDICTION-WM, distractors are plausible alter-
native actions drawn from the same task context (i.e., same
video) but incompatible with the observed state transition.
For WORLDPREDICTION-PP, distractors are generated by
shuffling the action sequences, preserving action-level plau-
sibility while disrupting temporal correctness.

World Model / Planner WorldPrediction
-WM

WorldPrediction
-PP

InternVL2.5 (2B) 20.0 21.05
InternVL2.5 (4B) 29.8 27.9
InternVL2.5 (26B) 30.2 30.0
InternVL2.5 (38B) 50.3 31.1

Qwen2.5-VL (3B) 21.6 29.1
Qwen2.5-VL (7B) 45.5 32.5

Qwen2.5-VL (32B) 49.0 33.5

VLMs

Qwen2.5-VL (72B) 57.0 36.7

Llama-3.1 (8B) 48.7 26.7
Llama-3.1 (70B) 49.8 31.2
Llama-3.3 (70B) 52.2 35.1
Llama-4 Scout 52.7 32.8

Llama-4 Maverick 53.6 34.7

Qwen2.5 (3B) 44.0 25.6
Qwen2.5 (7B) 49.1 28.4
Qwen2.5 (32B) 39.2 29.1
Qwen2.5 (72B) 48.5 30.7

DeepSeek-R1 (distilled) 50.8 28.4

Gemini-2.0 55.6 33.5
GPT-4o 52.0 33.7

Socratic
LLMs

Claude-3.5-sonnet 53.3 38.1

I2VGenXL 26.1
I2VGenXL + DINOv2 26.7

CogVideoX 30.1
Video

Diffusion
CogVideoX + DINOv2 30.5

N/A

MLP
N/A

36.8
Transformer 34.2OEPP

PDPP 34.4

Table 1. Performance comparison on WORLDPREDICTION-WM
and WORLDPREDICTION-PP accuracy (%).

Action Equivalent Retrieval. To mitigate shortcut learn-
ing from low-level visual continuity cues, we employ action
equivalents: visually different yet semantically identical ac-
tions captured in alternate backgrounds or viewpoints (more
details in B.3). For COIN, CrossTask, EPIC-KITCHENS-
100, and IKEA-ASM, actions sharing the same textual label
constitute equivalents. For EgoExo4D, where explicit tem-
poral boundaries are unavailable, we segment actions by
computing midpoints between consecutive timestamps and
discard segments shorter than 5 seconds. We select the ego-
centric view for actions to clearly observe detailed hand
movements and use exocentric viewpoints for state observa-
tions due to their comprehensive scene coverage.

Sample Filtering. To filter out nosiy observations, we
compute distances between visual features of initial and fi-
nal states using pretrained visual embeddings (DINOv2
(Oquab et al., 2024)). Samples exceeding predefined
thresholds (2.75 for WORLDPREDICTION-WM, 10 for
WORLDPREDICTION-PP) are excluded due to excessively
drastic or incoherent scene transitions. For EgoExo4D, we
additionally remove samples in which critical task-relevant
visual information is obstructed by the human subject by
prompting a VLM (more details in D). We further removed
samples where there are too little difference between its
initial and final states. These samples usually corresponded
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to a static segment in instructional videos, or only slight
body movement in EgoExo4D videos (as shown in Fig. 7).

4. Evaluation Results
Models. We establish initial baseline performance on
WORLDPREDICTION using VLMs, Socratic LLMs, video
diffusion models, and Open-Event Procedural Planning
(OEPP) models. VLMs and Socratic LLMs serve as both
world models and procedural planners due to their flexibility,
while diffusion is tailored to world modeling and OEPP is
only for planning. These baselines cover both widely evalu-
ated open-source models as well as closed-source frontier
models, serving primarily to provide initial reference points
for future research. Additional model information are in
Appendix E.1

Performance Comparison. Table 1 summarizes model
performances on the WORLDPREDICTION benchmark. In
the WORLDPREDICTION-WM task, smaller-scale VLMs
perform near random chance levels, with InternVL2.5 (4B)
and Qwen2.5-VL (3B) model notably struggling to pro-
duce outputs that choose from given options. There is a
significant breakthrough in world modeling performance
past a certain model scale, with a jump of roughly 20%
from 26B to 38B for InternVL2.5, and from 3B to 7B for
Qwen2.5-VL. However, it is interesting to note that long-
horizon procedural planning do not show a significant boost
in performance with model size. Socratic LLMs,using high-
quality captions generated by Qwen2.5-VL (72B), achieve
comparable results to VLMs. The best performing LLMs
are the closed-source Gemini-2.0 for world modeling at
55.6% and Claude-3.5 for procedural planning at 38.1%. In-
terestingly for socratic LLMs, the best performing model at
world modeling does not translate to the best one in procedu-
ral planning, we hypothesize that perception is an important
component for model to be able to extend their single-step
performance to longer-horizon tasks. Additionally, it can
be interpreted as a trade-off between stronger reasoning ca-
pabilities without visual grounding using socratic LLMs,
and better perceptual grounding using VLMs but no explicit
reasoning.

Video diffusion models exhibit comparatively lower per-
formance, with CogVideoX-I2V reaching 30.1% and
I2VGenXL achieving 26.1%. These results suggest pixel-
space generation struggles to effectively capture detailed
action-state causal relationships (diffusion generation are
shown in D and Fig. 9), and that using better image features
(DINOv2 features instead of RGB) for candidate selection
does not have much impact on the results. Another limita-
tion of diffusion models is the absence of a reliable method
for selecting the correct candidate sequence. Although us-
ing the final frames may appear intuitive, it proves inef-
fective in accurately linking the transition to O(st+1) For

the WORLDPREDICTION-PP task, OEPP-based planners
perform at a comparable level with the best zero-shot large
models’ performance, while being significantly smaller.

Human Evaluation and Filtering. To ensure the qual-
ity and robustness of the WORLDPREDICTION benchmark,
we conducted a large-scale human evaluation and filtering
process. We initially constructed 1,500 samples for both
the World Modeling and Procedural Planning tasks. Each
sample was then independently solved by two different an-
notators, following detailed task-specific instructions and
solved example demonstrations, with a total of 80 differ-
ent human annotators to annotate all 3000 samples. We
adopted a conservative filtering criterion: only samples
where both annotators independently provided the correct
answer were retained. After filtering, we obtained 825 high-
quality samples for WORLDPREDICTION-WM and 570
samples for WORLDPREDICTION-PP, ensuring effectively
perfect human performance on WorldPrediction. Notably,
due to the increased complexity of the Procedural Planning
task — which requires reasoning over temporally extended
sequences rather than single transitions — a smaller pro-
portion of samples were kept. These human evaluation
results highlight the difficulty of our benchmark: the current
best models on WORLDPREDICTION-WM, Gemini-2.0 and
Qwen2.5, achieve only 55-57% accuracy, with most mod-
els ranging between 40-50% accuracy as shown in Table 1.
For WORLDPREDICTION-PP, even trained planners such
as OEPP reach only around 35% accuracy, and zero-shot
frontier models around 37%, highlighting a significant gap
between machine and human performance, especially for
procedural planning where compounding errors at longer
horizon are inevitable for current models. Further details
regarding the annotation process, including inter-annotator
agreement scores, annotation instructions, and annotator
workload distribution are provided in Appendix A.

5. Conclusion
In this work, we introduced WorldPrediction, the first bench-
mark designed to assess high-level world modeling and
long-horizon procedural planning from purely visual ob-
servations. Unlike prior efforts that focused on low-level
physical dynamics or short-horizon tasks, WORLDPREDIC-
TION emphasizes semantic and temporal abstraction, better
aligning with the properties of understanding high-level hu-
man activities. Evaluations across SOTA VLMs, LLMs,
diffusion models and procedural planning models suggest
that world modeling and procedural planning are still two
tasks which frontier models largely struggle with, despite
humans easily solving both tasks. Current best performing
models largely rely on textual descriptions to tackle both
tasks, especially procedural planning, whereas humans are
able to solve the task from the observations alone. Filling
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this gap is essential to provide models with a better under-
standing of our world at a higher-level and enable future AI
systems to assist humans in a variety of tasks.

References
Assran, M., Duval, Q., Misra, I., Bojanowski, P., Vincent,

P., Rabbat, M., LeCun, Y., and Ballas, N. Self-supervised
learning from images with a joint-embedding predictive
architecture. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 15619–
15629, 2023.

Bar, A., Zhou, G., Tran, D., Darrell, T., and LeCun, Y. Nav-
igation world models. arXiv preprint arXiv:2412.03572,
2024.

Bardes, A., Garrido, Q., Ponce, J., Chen, X., Rabbat, M.,
LeCun, Y., Assran, M., and Ballas, N. Revisiting feature
prediction for learning visual representations from video.
Transactions on Machine Learning Research, 2024.

Ben-Shabat, Y., Yu, X., Saleh, F., Campbell, D., Rodriguez-
Opazo, C., Li, H., and Gould, S. The ikea asm dataset:
Understanding people assembling furniture through ac-
tions, objects and pose. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pp. 847–859, 2021.

Bruce, J., Dennis, M. D., Edwards, A., Parker-Holder, J.,
Shi, Y., Hughes, E., Lai, M., Mavalankar, A., Steiger-
wald, R., Apps, C., et al. Genie: Generative interactive
environments. In Forty-first International Conference on
Machine Learning, 2024.

Chang, C.-Y., Huang, D.-A., Xu, D., Adeli, E., Fei-Fei, L.,
and Niebles, J. C. Procedure planning in instructional
videos. In European Conference on Computer Vision, pp.
334–350. Springer, 2020.

Chen, Z., Wu, J., Wang, W., Su, W., Chen, G., Xing, S.,
Zhong, M., Zhang, Q., Zhu, X., Lu, L., et al. Internvl:
Scaling up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 24185–24198, 2024.

Damen, D., Doughty, H., Farinella, G. M., Furnari, A.,
Kazakos, E., Ma, J., Moltisanti, D., Munro, J., Perrett, T.,
Price, W., et al. Rescaling egocentric vision: Collection,
pipeline and challenges for epic-kitchens-100. Interna-
tional Journal of Computer Vision, pp. 1–23, 2022.

Garrido, Q., Assran, M., Ballas, N., Bardes, A., Najman,
L., and LeCun, Y. Learning and leveraging world mod-
els in visual representation learning. arXiv preprint
arXiv:2403.00504, 2024.

Garrido, Q., Ballas, N., Assran, M., Bardes, A., Najman, L.,
Rabbat, M., Dupoux, E., and LeCun, Y. Intuitive physics
understanding emerges from self-supervised pretraining
on natural videos. arXiv preprint arXiv:2502.11831,
2025.

Grauman, K., Westbury, A., Torresani, L., Kitani, K., Ma-
lik, J., Afouras, T., Ashutosh, K., Baiyya, V., Bansal, S.,
Boote, B., et al. Ego-exo4d: Understanding skilled hu-
man activity from first-and third-person perspectives. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19383–19400, 2024.

Guan, Y., Liao, H., Li, Z., Hu, J., Yuan, R., Li, Y., Zhang, G.,
and Xu, C. World models for autonomous driving: An
initial survey. IEEE Transactions on Intelligent Vehicles,
2024.

Gupta, S., Wang, C., Wang, Y., Jaakkola, T., and Jegelka, S.
In-context symmetries: Self-supervised learning through
contextual world models. Advances in Neural Informa-
tion Processing Systems, 37:104250–104280, 2024.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2019.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Hong, W., Ding, M., Zheng, W., Liu, X., and Tang, J.
Cogvideo: Large-scale pretraining for text-to-video gen-
eration via transformers. In The Eleventh International
Conference on Learning Representations, 2022.

Hu, A., Russell, L., Yeo, H., Murez, Z., Fedoseev, G.,
Kendall, A., Shotton, J., and Corrado, G. Gaia-1: A
generative world model for autonomous driving. arXiv
preprint arXiv:2309.17080, 2023.

Islam, M. M., Nagarajan, T., Wang, H., Chu, F.-J., Kitani, K.,
Bertasius, G., and Yang, X. Propose, assess, search: Har-
nessing llms for goal-oriented planning in instructional
videos. In European Conference on Computer Vision, pp.
436–452. Springer, 2024.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

Kim, Y., Singh, G., Park, J., Gulcehre, C., and Ahn, S.
Imagine the unseen world: a benchmark for systematic

5



ICML 2025 Workshop on Assessing World Models Submission

generalization in visual world models. Advances in Neu-
ral Information Processing Systems, 36:27880–27896,
2023.

Koh, J. Y., Lee, H., Yang, Y., Baldridge, J., and Anderson, P.
Pathdreamer: A world model for indoor navigation. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 14738–14748, 2021.

LeCun, Y. A path towards autonomous machine intelligence
version 0.9. 2, 2022-06-27. Open Review, 62(1):1–62,
2022.

Li, Z., Geng, W., Li, M., Chen, L., Tang, Y., Lu, J., and Zhou,
J. Skip-plan: Procedure planning in instructional videos
via condensed action space learning. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 10297–10306, 2023.

Liu, J., Li, S., Wang, Z., Li, M., and Ji, H. A language-
first approach for procedure planning. In Rogers, A.,
Boyd-Graber, J., and Okazaki, N. (eds.), Findings of the
Association for Computational Linguistics: ACL 2023,
pp. 1941–1954, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.122. URL https://aclanthology.
org/2023.findings-acl.122/.

Lynch, C., Wahid, A., Tompson, J., Ding, T., Betker, J.,
Baruch, R., Armstrong, T., and Florence, P. Interactive
language: Talking to robots in real time. IEEE Robotics
and Automation Letters, 2023.

Mendonca, R., Bahl, S., and Pathak, D. Structured world
models from human videos. 2023.

Niu, Y., Guo, W., Chen, L., Lin, X., and Chang, S.-F.
Schema: State changes matter for procedure planning
in instructional videos. In The Twelfth International Con-
ference on Learning Representations, 2024.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec,
M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-
Nouby, A., et al. Dinov2: Learning robust visual features
without supervision. Transactions on Machine Learning
Research Journal, pp. 1–31, 2024.

Patel, D., Eghbalzadeh, H., Kamra, N., Iuzzolino, M. L.,
Jain, U., and Desai, R. Pretrained language models as
visual planners for human assistance. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 15302–15314, 2023.
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A. Additional Information on Human Annotations
A.1. Human Annotation Statistics

In this section, we provide additional information concerning the human evaluation setup. A total of 34 annotators for
World Modeling and 46 annotators for Procedural Planning were asked to solve the initial total of 1500 samples for each
tasks, while ensuring that each sample will be solved by two different annotator. We ask that annotators should work on
a minimum of 20 samples to have time to acclimate themselves to each task, and a maximum of 100 samples to avoid
diminishing attention and quality. This resulted in each annotator solving an average of 88 samples for World Modeling,
and 65 samples for Procedural Planning, which is effectively more difficult and time-consuming to solve. We provide the
inter-annotator agreement on the original split of the benchmark for both tasks in table 2, with 73% on World Modeling and
65% on Procedural Planning, showing substantial agreement and reliability of the annotation results.

Dataset # Annotators Avg. # Samples per Annotator Inter-Annotator Agreement

WorldPrediction-WM 34 88 0.73
WorldPrediction-PP 46 65 0.65

Table 2. Number of annotators, average number of samples evaluated per annotator and inter-annotator agreement for the human evaluation
and filtering.

A.2. Human Annotation Setting

Before starting the annotation task, as the tasks can be conceptually confusing for humans due to the use of action equivalents,
each annotator is given four solved examples of World Modeling and two solved examples of procedural planning along
with the explanation of how to choose the correct candidate. One solved example for World Modeling is shown in Figure
A.3 and a solved example for Procedural Planning is shown in Figure A.3. Along with the solved examples, the annotators
are given the following in-depth instructions:

World Modeling Instruction for Human Annotation

For the World Modeling task, you’ll see two images showing a “before”, as context, and an “after”, as goal, situation
(for example, an empty cooking pot as “before”, and a cooking pot containing water as “after”). Your job is to
select which one of the four provided videos correctly shows the action performed to transition from the first
initial state image to the second final state image. Please pay attention to the action itself instead of the visual
background (scenery or objects). We intentionally sampled the videos to depict the actions performed in a completely
different environment (continuing the last example, the correct video answer could be showing a different liquid, like
milk, being poured in a different pot: what matters is the performed action itself, here it would have been “Pouring
liquid into container”).

Procedural Planning Instruction for Human Annotation

For the Procedural Planning task, you’ll see two images showing a “before”, as context, and an “after”, as goal,
situation (for example, ingredients laid out separately, and then a finished sandwich). Your job is to select which one
of the provided sequences of videos (each consisting of several short video clips) correctly shows the correct order
of action sequence to transition from the first initial state to the second final state image. Please pay attention to
the actions themselves instead of the visual background (scenery or objects), as we intentionally selected videos
depicting the correct actions but performed in completely different environments (continuing the last example, the
correct sequence could be something like (1) put the ham on some bread (2) put the cheese (3) close the sandwich,
but each action could be depicted in a different environment)

8



ICML 2025 Workshop on Assessing World Models Submission

A.3. Human Annotation Solved Examples

We show here the solved examples that were presented to the human annotators to better understand the task. Each solved
example was provided with a detailed explanation on how to solve the sample in question. Each annotator had 4 solved
examples of WorldPrediction-WM and 2 solved examples of WorldPrediction-PP shown to them, according to which task
they were annotating.

(a) Solved Example with Rationale for the World Modeling task

(b) Solved Example with Rationale for the Procedural Planning task

Figure 3. (a) and (b) illustrate the solved examples and rationales for WorldPrediction-WM and WorldPrediction-PP that were shown to
annotators to guide their evaluations.
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B. WorldPrediction Theoretical Formulation
B.1. Semi Partially-Observable Markov Decision Process Framework for WorldPrediction

We begin by formally defining a mathematical framework that provides the foundation for building the WorldPrediction
benchmark. This formulation integrates elements from Partially Observable MDPs (Kaelbling et al., 1998) and Semi-MDPs
(Sutton et al., 1999) to accurately capture the complex dynamics inherent in human activity videos. Formally, we represent
this framework as a tuple ⟨S,A, T ,O⟩:

World States s ∈ S constitute the continuous latent space representing the full underlying configuration of the environment.
These states, although comprehensive, cannot be directly accessed and must instead be inferred from partial visual
observations. Crucially, not all elements of a state are equally relevant to a given task: we distinguish between task-relevant
components, which directly affect the causal outcomes of actions and are essential for achieving goals, and task-irrelevant
components, representing background details or contextual information that do not influence the task.

(High-level) Actions A = {A1, A2, . . . , AN} represent the vocabulary of all possible actions. Here, “high-level” is
characterized by both semantic and temporal abstraction, differentiating them from low-level continuous controls
executed at fixed intervals. Each high-level action encapsulates several lower-level motor primitives or sub-actions. This can
be modeled by options in Semi-MDPs, which is defined by a policy over low-level primitives, a termination condition, and
a set consisting world states that allows that specific action. All components are dependent on the current environmental
states, ensuring adaptation to varying contexts, as illustrated in Fig. 8. To distinguish from abstract action categories, we use
the notation a ∈ A to represent an action instance performed in a specific context s (e.g., Ai represents “cut potato” and
a ∈ Ai is the muscle motion sequence of cutting potato in one particular kitchen settings).

Transition Model T specifies the true underlying mechanism governing how world states evolve over time – after an
action at being taken at st, the world state transit to a new state st+1 with a probability of T

(
st+1 | st, at

)
. In real-world,

non-simulated environments, this transition mechanism is hidden and thus inaccessible; agents must approximate it by
learning a world model. It enables reasoning and planning without relying directly on explicit reward signals or costly
trial-and-error interactions in the real world.

Observation Model O maps latent world states or performed actions to corresponding sensory signals, i.e., an image O(st)
and a video segment O(at). Due to intrinsic limitations of perception devices (e.g., occlusions, resolution, or viewpoint
constraints), they only provide imperfect views of the underlying true state or the performed action, and also contain
excessive amount of task-irrelevant background information. To address these challenges brought by partial observability,
our benchmark incorporates two strategies detailed in §B.3: observability filtering, which excludes samples lacking sufficient
visual evidence of action outcomes, and action equivalents, which mitigate the shortcut based on superficial background
continuity cues.

Given the tuple ⟨S,A, T ,O⟩, we can formally characterize the underlying data generative process of human activity videos
as follows. Beginning from an initial latent state s0, a human agent decided to perform an action a0 ∈ Ai. The transition
model T subsequently generates the next latent state s1 conditioned on s0 and a0. This process iterates over multiple steps.
Through the observation model O, each latent state st and action at is mapped to visual observations, yielding the observed
video sequence: [O(s0),O(a0),O(s1),O(a1), . . . ,O(sT )].

B.2. Benchmark Objectives
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Figure 4. Discriminative task formulation of WorldPrediction. Each sample includes a pair of visual observation of states along with a
set of candidate actions or action sequences. Models must identify the correct one responsible for the observed state transition among
distractors. Note that every O(a) is substituted by its action equivalent to avoid trivial background continuity shortcut.
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Our primary goal is to measure a model’s ability to understand real-world state transitions and the causal factors that drive
them. Concretely, we focus on capturing how an initial world configuration evolves to a new configuration when subjected to
a particular high-level action. This predictive ability, known as world modeling, is formalized by having a learned function
W to approximate the true underlying transition model T . Under a suitable divergence metric D, the performance of a
world model can be naturally defined as:

D (W(st+1 | st, at) ∥ T (st+1 | st, at)) . (1)

Intuitively, a high-performing world model assigns higher likelihood to correct state transitions (st, at) → st+1 and lower
likelihood to incorrect transitions involving counterfactual combinations of states and actions. Formally, given a learned
transition model W , this implies the inequality W(st+1 | st, at) > W(st+1 | st, aj) for any counterfactual action aj ̸= at.
Because we specifically focus on evaluating understanding of high-level actions rather than low-level primitives, we define
this criterion at the action-category level: given the true action category A∗ corresponding to the correct action at, we
empirically approximate the theoretical divergence by verifying whether the model assigns the highest likelihood to the
correct action category responsible for the observed transition:

A∗ ?
= argmax

A∈A
W(st+1 | st, A). (2)

This formulation probes a model’s approximation of the hidden transition model T by evaluating how well the causal
relationship between (st, a) and st+1 is captured. To have a robust approximation of T , world models should learn to
capture and discriminate the various ways in which actions transform the latent world state, rather than simply matching
superficial or spurious correlations between states and actions, which we ensure in our design detailed later in section B.3.

This argmax formulation of evaluation also enables a natural extension to multi-step procedural planning evaluation, where
a plan consisting sequence of actions can be viewed as a single “macro-action”, linking distant initial and final states.
Specifically, given an initial state sinit and a final state sfinal separated by T high-level actions, the objective is to select the
correct ordered sequence of actions P∗ = (a1, . . . , aT ) responsible for this long-horizon transition:

P∗ ?
= argmax

P ∈AT

W
(
sfinal | sinit, P

)
, (3)

where P̂ = (â1, . . . , âT ) denotes the correct action sequence that transit sinit to sfinal, and AT denotes candidate plans of all
possible arrangement of T -step action sequence. In principle, if all intermediate states (s2, . . . , sT−1) were known, solving
procedural planning would reduce to solving T successive world modeling steps. However, since these intermediate states
are unobserved, the model must internally infer them, effectively reasoning about the entire multi-step causal chain.

B.3. Benchmark Design

Task Formulation. We now outline the design of our benchmark. As the true underlying states and transitions in real-world
scenarios are not directly accessible, our benchmark instead leverages visual observations— images or video clips—as cues
to infer the true states and actions. We present WorldPrediction-WM and WorldPrediction-PP, two benchmarks respectively
evaluating world modeling (Eq. 2 ) and procedural planning (Eq. 3) capabilities. Concretely, each sample consist of:

• State Observations: Static images capturing the environment’s configuration before and after the action(s) being taken,
denoted as O(st), O(st+1) for WorldPrediction-WM and O(sinit), O(sfinal) for WorldPrediction-PP.

• Action / Plan Candidates: The search space of the argmax operation in Eq. 2 and Eq. 3, containing one ground truth
(A∗ or P∗) and many distractors. To enhance computational efficiency, the candidate pool can be limited to a small
subset of the complete action space A or plan space AT .

Models must select which action (or action sequence) accounts for the observed change in O(st) → O(st+1) or O(sinit) →
O(sfinal) providing a clear evaluation of world modeling and procedural planning. This discriminative multiple-choice
(illustrated in Fig. 4) setup directly aligns with our theoretical grounding (Eq. 2 and Eq. 3), and also offers several

11



ICML 2025 Workshop on Assessing World Models Submission

practical advantages. It universally accommodates different types world models and planners (e.g., models using different
architectures, generating different modalities to represent the predicted states). Additionally, by using only raw visual
observations, we remove the reliance on human annotated text labels as done in previous benchmarks (Chang et al., 2020),
ensuring an unbiased evaluation1.

Action Equivalents. Due to being purely observation-based, an important challenge in the construction of our benchmark is
to prevent models from exploiting trivial continuity cues to identify the correct action or sequence. Specifically, if the same
camera viewpoint, background objects, or other task-irrelevant visual elements are preserved across the state observations
as well as the ground-truth action segment, then a model might simply match low-level features without learning the true
causal relationship between action content and state transitions. Such an approach would results in models failing to capture
the semantic and temporal abstractions of high-level actions. To mitigate this shortcut, we employ action equivalents
(shown in Appendix, Fig. 8). For each high-level action category Ai, there exits a set of observations which depict it being
performed in visually different environments or from a significantly different viewpoint (e.g., egocentric vs exocentric).
Concretely, we use that set to replace the ground-truth observation action with one of its action equivalent and re-sample
distractors from the same environment of the action equivalent for WorldPrediction-WM, and re-shuffle the new sequence of
equivalent actions for WorldPrediction-PP.

Observability Filtering. Under the partial observability assumption, task-relevant elements of the environment can
sometimes fail to be captured in state observations. When the evidence needed to infer what changed—and thus which
action caused the transition— is missing, the ambiguity increases significantly and the task becomes nearly impossible even
for humans. There are two main causes for failing to capture the action-relevant state observation: noisy observation due to
video edits or drastic camera field-of-view shifts, and occlusions due to different entities blocking the view of task-relevant
objects. In this section, we present our solutions for filtering out those low-quality samples.

To remove samples with noisy observation, we employ an assumption that the noisy observation usually causes larger changes
in semantic feature space. Specifically, we compute the distance d between the visual features for both state observations
d = ∥ϕ(O(sinit))− ϕ(O(sfinal))∥2 using a pretrained vision encoder ϕ(·) and we only keep pairs (O(sinit),O(sfinal)) whose
similarity score is smaller than certain threshold, thus removing samples where the scene changes so drastically that no
coherent causal link can be reliably inferred. The left side in Fig. 7 provide example of this filtering.

This filtering process can be seen as a coarse classifier that eliminates a large portion of the bad state observations by relying
on the assumption that observations which are too different are highly likely to miss task-relevant information in at least
one of the two states. This assumption also aligns with the POMDP formulation: consecutive observations of the same
environment should not appear uncorrelated if they reflect smoothly evolving states in the real-world.

Additionally, we filter out exocentric state observation where the human performing the action has his back turned toward
the camera (or otherwise heavily obstructing the view, as shown in the bottom-right of Fig. 7), as in such cases it becomes
exceedingly difficult to discern the critical objects or interactions relevant to the action. Consequently, the remaining samples
more consistently capture the essential task-relevant cues for modeling and evaluating high-level transitions, aligning with
the partial observability principle in a controlled yet realistic setting.

1Although models can still generate captions from visual observations (as in Socratic LLM baselines provided in §4), we view them as
models’ internal perceptual representations.
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C. Additional Dataset Information

Dataset WorldPrediction-WM WorldPrediction-PP

# Samples # Unique Actions Avg. Duration (s) # Samples # Unique Actions Avg. Duration (s)

COIN 236 532 13.16 243 285 14.70
CrossTask 109 194 9.17 58 65 7.53
IKEA ASM 159 185 9.02 136 43 6.48
EgoExo4D 128 128 11.71 76 180 11.23
EPIC-KITCHENS-100 193 561 6.25 57 176 3.47

WorldPrediction (All) 825 1800 10.02 570 749 9.38

Table 3. WorldPrediction dataset statistics (number of samples, actions, and average action duration) for both tasks

Dataset Sources. WorldPrediction incorporates five publicly available datasets to ensure broad coverage and representativity
of skilled human activities:

• COIN (Tang et al., 2019): provides instructional web videos covering diverse procedural tasks, such as cooking and
household repairs.

• CrossTask (Zhukov et al., 2019) consists of instructional web videos capturing diverse everyday activities.

• EgoExo4D (Grauman et al., 2024) provides temporally-aligned egocentric and multi-view exocentric videos. We focus
specifically on the cooking and healthcare subsets, which emphasize procedural human activities.

• EPIC-KITCHENS-100 (Damen et al., 2022): is a large-scale egocentric dataset of kitchen tasks with detailed
annotations, capturing fine-grained interactions.

• IKEA-ASM (Ben-Shabat et al., 2021) features clear exocentric instructional videos of furniture assembly, providing
structured action sequences in controlled environments.

For the WorldPrediction-WM task, we show the average duration of the ground truth action vs the average duration of
the distractor actions per dataset split in Figure 5.a and the number of unique actions that appear as ground truth and as
distractors per dataset split in Figure 5.b. Similarly for the WorldPrediction-PP task, as the distractors are shuffled version of
the same actions, we directly show the unique actions and average duration per dataset split in Figure 5.c.

EPIC-KITCHENS-100 have relatively shorter action observations for both World Modeling and Procedural Planning, this
is expected as the original dataset contain a limited amount of samples but extremely fine-grained annotation of actions
(e.g., pick up, put down, open) while actions in dataset like COIN and EgoExo4D are more macroscopic (e.g. add, mix,
boil). This is also interesting for obtaining more robust results on our benchmark, as the duration of the action clips is not
standardized and hence does not favor any types of models.

The number of unique action in IKEAASM and CrossTask is smaller than other datasets for two reasons: first because
the number of samples are smaller as shown in 3 due to the human filtering, but also because for IKEAASM for example,
the action space is very limited as the dataset only contains four different types of furnitures, so the action overlap is
significant. This is not a problem in our benchmark as the assembly domain is proportionally well represented, and some of
the CrossTask domains overlap with COIN’s domains. Finally, we show the number of samples per plan length in Figure
5.d, with a majority of plans of length 3 and 4 to reflect current planning datasets, but with a uniform number of samples for
plans from 5 to 10 with a bit more than 30 on average.

We also provide a visualization of the 50 most frequent actions appearing in both the World Modeling and the Procedural
Planning tasks in Figure 6. As the original filtering to deem a World Modeling sample valid vs. a Procedural Planning
sample valid differs, the distribution for the action frequency is also different. The action annotations are also provided in
the benchmark dataset for researchers interested in only specific domains, tasks or actions. Due to the very small action
space of IKEAASM, we choose not to display the actions belonging to the aforementioned split for the figure to be easier to
read. The action information concerning IKEAASM can be found on the released dataset benchmark.
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(a) Average duration of action per split (WM) (b) # unique actions per split (WM)

(c) Average duration and # actions per split (PP) (d) # Samples per Plan Length (PP)

Figure 5. Additional dataset information: average duration of actions and number of actions per split for both tasks, and number of
samples per plan length in Procedural Planning.
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(a) Top-50 Actions appearing in WorldPrediction-WM

(b) Top-50 Actions appearing in WorldPrediction-PP

Figure 6. Top-50 most frequent actions across WorldPrediction-WM and WorldPrediction-PP datasets (excluding IKEA ASM due to the
small action space yielding very high frequency of assembly actions).
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D. Additional information on Sample Filtering & Action Equivalents
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Figure 7. Sample Filtering in WorldPrediction. Samples are retained only if state observations clearly show meaningful environmental
changes resulting from actions. Samples are filtered out if they exhibit excessive viewpoint shifts, only contain minor body movements
without clear environmental changes, or severe occlusions, which all makes causal inference challenging.

For samples with different camera angles (mostly present in EgoExo4D), we further filter samples in which the human
subject is obstructing the task-relevant objects, in which case it is impossible to either see the action or the conse-
quences of the action on the object states. We further these samples by simply prompting a VLM (Qwen2.5-VL 72b)
with: "Is the main person not showing their back and what they are doing with hands
being clearly visible?". Note that this is done prior to the human validation round to discard completely impos-
sible samples and reduce human annotator’s workload, but the human annotation round would have very likely filtered these
samples out anyways.

We show some action equivalents in Fig. 8 and the generation for a sample of WorldPrediction-WM using CogVideoX-I2V
in Fig. 9. Despite minor artifacts, the generations themselves make sense. As for generation models, hallucination still
happens quite often. For ”Add Ice” for example, the model seems to understand some form of liquid –most probably alcohol,
although square ice is probably what was meant in the original label. The final mixture color is also not entirely correct, but
these artifacts are not the main source of errors for diffusion models. The current evaluation principle naively compares the
last generated frame with the final state observation, which is not assured by any hyperparameters.
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Figure 8. High-level Actions in WorldPrediction. The action
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Figure 9. Video generated by diffusion world model. Example
of the generation from CogVideoX-I2V of the four action prompt
given O(st).
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E. Additional Information on Models & Evaluations
E.1. Models
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Figure 10. Baseline models. VLMs directly encode visual observations, while Socratic LLMs first generate textual captions describing
state changes and candidate actions, then select the action through text-only reasoning. Video diffusion models generate future observations
conditioned on action captions, selecting the action by comparing final generated frame and the desired O(st+1).

VLMs. We use two state-of-the-art open-source VLMs families: Qwen2.5-VL (Yang et al., 2024) and InternVL2.5
(Chen et al., 2024). As shown in Fig. 10, to perform the WorldPrediction multi-choice task, models are prompted with a
structured multimodal query comprising images depicting the initial and final world states, video segments representing the
candidate actions, along with textual instruction explaining the task and specifying the desired output format. We frame the
task explicitly by instructing the model to select the most plausible action or the sequence of actions that cause the observed
state transition.

Socratic LLMs. We evaluate the performance of Socratic LLMs (Zeng et al., 2022), which decouple perception and
reasoning into two distinct stages. Visual inputs are translated into textual descriptions through a VLM, then a text-only
instruct-tuned LLM is prompted with these captions along with instructions, including structured task explanations and
candidates. The LLM then employs textual reasoning to identify the action or sequence of actions most plausibly causing
the observed state transitions. To obtained the textual description, we utilized Qwen 2.5-VL (72B). For text-only LLM, we
evaluated five different LLM families with varying sizes, including Llama 3.1-Instruct (8B, 70B, 405b), Qwen 2.5-Instruct
(3B, 7B, 14B, 72B), DeepSeekR1 (distilled version Qwen-32B), GPT-4o and Claude-3.5-Sonnet.

Video Diffusion Models. To assess generative world modeling capabilities, we also evaluate two image-conditioned
video diffusion models: I2VGenXL (Zhang et al., 2023) and CogVideoX-I2V (Hong et al., 2022) which directly generates
the future state in pixel space. For inference, we provide the initial state observation O(st) as the grounding image, and
perform action captioning using a VLM to get a text description of each action candidates. The generated video is a visual
representation of the state transition towards the final state observation O(st+1). We select the most likely action candidate
by identifying the generated segment whose last frame exhibits the smallest pixel-wise distance to O(st+1).

OEPP Models. We reimplement OEPP models (Wu et al., 2024) and incorporate them into the WORLDPREDICTION-PP
task. OEPP performs planning using VideoCLIP (Xu et al., 2021) embeddings. Given initial and final observations, a
planning model (either MLP, Transformer (Vaswani et al., 2017), or PDPP (Wang et al., 2023b)) is trained to generate T
text embeddings corresponding to a sequence of T predicted actions. We embed all candidate plans into the same text
embedding space and select the candidate that minimizes the distance with the generated embeddings.
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E.2. Ablation on Captions for Socractic LLMs

InternVL2.5 Qwen2.5VLCaptioner 4B 8B 26B 3B 7B 72B
Oracle

Captions

WORLDPREDICTION-WM 33.3 39.0 46.3 35.2 40.3 48.5 56.0

Table 4. Comparing different captioners for Socratic LLM (Qwen2.5-72B-Instruct). Larger VLMs enable higher accuracy (%) on
WORLDPREDICTION-WM, but still a major gap remains to human-annotated action labels (oracle captions).

To further investigate the impact of caption quality on Socratic LLM performance, we conducted an ablation study
summarized in Table 4. Specifically, we varied the VLM model used for generating textual descriptions of states and actions.
As the captioning VLM model size increases, we observe a clear improvement in Socratic LLM performance, confirming
that richer and more accurate textual captions significantly facilitate better textual reasoning. However, there is still a
significant gap between best captioner Qwen2.5-VL (72B) and oracle captions (human-annotated labels).
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