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ABSTRACT

Machine learning algorithms learned from data with skewed distributions usually
suffer from poor generalization, especially when minority classes matter as much
as, or even more than majority ones. This is more challenging on class-balanced
data that has some hidden imbalanced subpopulations, since prevalent techniques
mainly conduct class-level calibration and cannot perform subpopulation-level
adjustments without subpopulation annotations. Regarding implicit subpopulation
imbalance, we reveal that the key to alleviating the detrimental effect lies in
effective subpopulation discovery with proper rebalancing. We then propose a
novel subpopulation-imbalanced learning method called Scatter and HarmonizE
(SHE). Our method is built upon the guiding principle of optimal data partition,
which involves assigning data to subpopulations in a manner that maximizes the
predictive information from inputs to labels. With theoretical guarantees and
empirical evidences, SHE succeeds in identifying the hidden subpopulations and
encourages subpopulation-balanced predictions. Extensive experiments on various
benchmark datasets show the effectiveness of SHE. The code is available.

1 INTRODUCTION

The imbalance nature inherent in real-world data challenges algorithmic robustness especially when
minority classes matter as much as, or even more than majority ones (Reed, 2001; Zhang et al.,
2023b). It becomes more exacerbated in scenarios where the observed categories are apparently
balanced but the implicit subpopulations1 remain imbalanced (Zhang et al., 2020). Specifically,
such imbalance stays not in the class level but in the implicit subpopulation level, giving rise to
the subpopulation imbalance problem. It is ubiquitous in some sensitive applications, e.g., medical
diagnosis with ethnic minorities or auto-driving decisions in rare weathers, yielding severe fairness
concerns and generalization impairments (Yang et al., 2023).

Typical studies in imbalanced learning (Buda et al., 2018; He & Garcia, 2009; Wang et al., 2021;
Menon et al., 2021; Cui et al., 2021) focus on the class-imbalance setting like Fig. 1(a), employing
the explicit class distribution to calibrate the training of majority and minority classes, which cannot
handle implicit subpopulation imbalance like Fig. 1(b). Other efforts for spurious correlations, which
arise from discrepancies in class distribution across specific attributes compared to the overall class
distribution, aim to make predictions by causally relevant features, while excluding these spuriously
correlated attributes (Nam et al., 2020; Zhang et al., 2022; Seo et al., 2022; Taghanaki et al., 2022).
Our goal for implicit subpopulation imbalance, shares the similar rebalancing spirit with these works
for class imbalance and spurious correlations, but differs in the underlying problems and mechanisms.
We present a comprehensive comparison of these three concepts of imbalanced learning in Tab. 1.

The key challenges to cope implicit subpopulation imbalance problems are twofold. First, the
mixed distribution of multiple subpopulations makes predictions more difficult (compared to a single

1In this paper, the term “subpopulations” pertains to some implicit attributes that differentiate the “classes”
concept and contribute to intra-class variations.
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Figure 1: (a) The number of samples for each category in CheXpert (Irvin et al., 2019). The class
index is sorted by sample numbers in descending order. The imbalance phenomenon of classes
is evident. (b) The imbalanced age subpopulation distribution in CheXpert (Irvin et al., 2019)
with the prediction target of diseases. (c) Within-class feature variance at different subpopulation
numbers. All experiments are conducted on CIFAR-100 with an imbalance ratio IR = 100, and the
within-class variance is calculated as in Papyan et al. (2020). As a comparison, the within-class
variance of our method for the learned subpopulations is much lower than ERM under the mixed
distribution. (d) Many/Medium/Few accuracies of ERM and SHE in COCO. The performance of
minority subpopulations is poor, and our method relatively alleviates this phenomenon.
distribution). This is because vanilla classification models tend to map all training samples of the same
class to identical features (Papyan et al., 2020; Han et al., 2022). However, when there are significant
discrepancies within a class (i.e., sampling from different subpopulations), forcing them to identical
features encounters more obstacles (as illustrated in Fig. 1(c)) and would impair generalization (Ma
et al., 2023a). Second, different subpopulations might have different prediction mechanisms (i.e.,
rely on different features) and machine learning algorithms tend to ignore minority subpopulations,
resulting in degraded performance on these data (as in Fig. 1(d)). Besides, the implicit nature of
subpopulations makes it harder to conduct rebalancing among subpopulations. These difficulties
restrict existing methods from achieving practical effectiveness directly.

To address the above challenges, we propose a novel method to handle implicit subpopulation
imbalance, namely, Scatter and HarmonizE (SHE). Intuitively, we seek to decompose complex
mixed training data into multiple simpler subpopulations, where the prediction mechanisms within
each subpopulation are consistent (Scatter), and then conduct subpopulation balancing (Harmonize).
Specifically, we first introduce the concept of optimal data partition, which divides training data into
subpopulations that can bring the maximum additional prediction ability (Def. 3.1). Then, an empirical
risk that is theoretically consistent with the pursuit of optimal data partition (Eq. (1) and Thm. 3.3), is
proposed. To account for the imbalance nature of subpopulations, we obtain subpopulation-balanced
predictions w.r.t. the learned data partition by simply applying the LogSumExp operation to outputs
(Thm. 3.4). Finally, a practical realization that can be optimized end-to-end without increasing model
capacity is provided (Sec. 3.4). We summarize the contributions as follows:

• We study the practical yet under-explored subpopulation imbalance learning problem that cannot
be efficiently solved by existing methods, and identify the unique challenges, whose key lies in
exploring the implicit subpopulations to facilitate prediction and subpopulation balancing.

• We proposed a novel SHE method that uncovers hidden subpopulations by optimizing the predic-
tion ability and achieves subpopulation-balanced predictions by simply applying a LogSumExp
operation. Theoretical analysis shows promise of SHE under implicit subpopulation imbalance.

• We conduct extensive experiments to comprehensively understand the characteristics of our
proposed SHE, and verify its superiority in improving subpopulation imbalance robustness.

2 RELATED WORK

In this section, we briefly review the related works developed for the typical class imbalance and
spurious correlations, which we summarize as a comparison with our work in Tab. 1.

Class Imbalance. Re-sampling (Buda et al., 2018; Wallace et al., 2011) and Re-weighting (Menon
et al., 2013; He & Garcia, 2009) are the most widely used methods to train on class-imbalanced
datasets. Explorations inspired by transfer learning (Chu et al., 2020; Wang et al., 2021) seek to
transfer knowledge from head classes to tail classes to obtain a more balanced performance. Menon
et al. (2021); Ren et al. (2020) propose logit adjustment (LA) techniques that modify the output
logits by the class-conditional offset terms. The vector-scaling (VS) loss (Kini et al., 2021) instead
of considering the simple additive operation, uses multiplicative factors to adjust the output logits.
Ma et al. (2023b) proposes to use the semantic scale measured by the feature volume rather than
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Table 1: A comparison of different types of imbalance problems, including class-level shifts,
subpopulation-level shifts, assumptions underlying the problem and possible negative impacts.
For class imbalance, the training class distribution is skewed, i.e., pY (y) ≫ pY (y′), where
y = argmaxy∈Y pY (y), y′ = argminy∈Y pY (y). For spurious correlation, it is assumed that sub-
populations and classes are causally independent but there exists s ∈ S that is spuriously correlated
with class y ∈ Y in training. For subpopulation imbalance, the subpopulation distribution of training
data is imbalanced, i.e., pS(s) ≫ pS(s′), where s = argmaxs∈S pS(s), s′ = argmins∈S pS(s).
For simplicity, we use p(⋅) without subscripts in the following sections to adapt to various variables.

Imbalance type Subpopulation shift Class shift Assumption Detrimental Impact on prediction

Class Imbalance – pY (y) ≫ pY (y′) – Predict minority classes as majority classes

Spurious Correlation pY ∣S(y∣s) ≫ pY (y) – S í Y Predict relying on irrelevant features

Subpopulation Imbalance pS(s) ≫ pS(s′) – – Ignore features for minority subpopulations

the sample size of classes to guide the class rebalancing. Cui et al. (2021); Zhu et al. (2022) further
improve the prediction performance under class imbalanced data by combining the contrastive
learning techniques. Some work (Zhou et al., 2022; 2023; Hong et al., 2023; Zheng et al., 2024) has
explored overcoming class imbalance in the context of unsupervised or weakly supervised learning.

Spurious Correlations. The distributionally robust optimization (DRO) framework (Ben-Tal et al.,
2013; Gao et al., 2017; Duchi et al., 2021) has been proposed to improve the worst case generalization.
However, the DRO objective results in excessive attention to worst cases, even if they are implausible.
Group DRO (GDRO) (Sagawa et al., 2019) optimizes a soft version of worst-case performance
over a set of subgroups, which despite effectiveness requires prior subgroup labels available. Some
efforts (Nam et al., 2020; Zhang et al., 2022; Seo et al., 2022) have been made to reduce the reliance
on the group-level supervision, but primarily focus on mitigating spurious correlation instead of
the imbalance among causal factors, namely, removing the false associations between labels and
irrelevant features in training samples. The typical scheme is first detecting a minority group and then
designing an algorithm to promote the detected minority group. Following this framework, a series of
works (Nam et al., 2020; Liu et al., 2021; Zhang et al., 2022) explore the minority discovery, which
assumes that ERM models are prone to rely on spuriously correlated attributes for prediction, and
therefore the failure samples are the minority ones. Some other works (Sohoni et al., 2020; Seo et al.,
2022; Liu et al., 2023) treat the model predictions or feature clustering results directly as spuriously
correlated features, which in combination with ground-truth can yield more fine-grained subgroup
labels. MaskTune (Taghanaki et al., 2022) forces the trained model for more feature exploration by
masking, to indirectly mitigate spurious correlations.

3 METHOD

3.1 PROBLEM FORMULATION

Let X be the input space and Y = {1, 2, ..., C} be the class space. We denote the underlying space of
subpopulations as S = {1, 2, ...,K}. The overall data distribution can be formulated as a mixture of
distributions of latent subpopulations, i.e., p(x, y) = ∑s∈S p(s) ⋅ p(x, y∣s). The training set can be
denoted as D = {(xi, yi, si)}Ni=1 ∈ (X ,Y,S)N , where any input xi is associated with a classifica-
tion label yi and an unobserved subpopulation label si. Here we focus on the implicit subpopulation
imbalance problem, i.e., p(s) is skewed. We assume that subpopulations are heterogeneous with
inconsistant predictive mechanisms. That is, data distribution p(x, y∣s) differs across subpopulations,
and p(y∣x, s) may vary among certain subpopulations. For fair evaluation among all subpop-
ulations, a subpopulation-balanced test distribution pbal(x, y) = ∑s∈S pbal(s)p(x, y∣s), where
pbal(s) = 1

K
,∀s ∈ S , is used for evaluation following imbalanced learning literatures (Menon et al.,

2021; Cao et al., 2019). In a nutshell, the goal is to learn a deep model f ∶ X → p(Y) on D that
minimizes the following subpopulation-balanced error rate (SBER):

min
f

SBER(f) = E(x,y)∼pbal(x,y)1(y ≠ argmax
y′
∈Y

f
y
′

(x)).

In our experiments, we use a subpopulation-balanced test set as an unbiased estimator for SBER.

3.2 MOTIVATION

In Fig. 2, we visualize a toy motivating example whose prediction goal is to distinguish between
circles (semi-transparent) and triangles (non-transparent). For training data, they are sampled from
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Figure 2: Visualization of a toy motivating example, which is a 2D subpopulation-imbalanced
learning problem. The left column illustrates the data distribution of the training set and that of the test
set under 2 classes consisting of 2 subpopulations. The middle column exhibits the model prediction
of ERM. The right column shows the predictions and the learned subpopulations of SHE on the
training set and predictions on the test set. The training set is highly subpopulation-imbalanced with
the imbalance ratio IR = 20 and the test set is balanced (referring to Appx. F.1 for more details).
both Subpopulation 1 (blue) and Subpopulation 2 (red), and the training samples of Subpopulation 2
are much less than those of Subpopulation 1, i.e.,, under subpopulation imbalance. About the test set,
it is balanced sampled from both subpopulations, i.e.,, under subpopulation balance2. According to
the visualization in Fig. 2, x1 is a more important feature in the class prediction for Subpopulation 1,
while in terms of Subpopulation 2, x2 can be a more effective feature in the class prediction.
Unfortunately, due to the subpopulation imbalance, ERM’s predictions rely heavily on x1 and
perform poorly in Subpopulation 2. However, if we can accurately identify the latent subpopulations
in the training data, such a classification problem in a mixed distribution can be transformed into two
simple linear classification problems, and the key features in Subpopulation 2 will not be ignored.
Therefore, the key to alleviating subpopulation imbalance is to discover the potential subpopulations
in the training data that promote prediction and subpopulation rebalancing. In the right column of
Fig. 2, we present the predictions and the learned subpopulations of SHE on the training set and the
corresponding predictions on the test set. As can be seen, SHE successfully discriminates between
two subpopulations on the training data, with the aid of which more accurate predictions are obtained.

3.3 SCATTER AND HARMONIZE

Optimal Data Partition. For data with implicit heterogeneous structures, we resort to a proper data
partition so that each partition has a consistent predictive mechanism during training. Such a way
promotes the prediction ability and helps protect vulnerable subpopulations. In the following, we first
introduce the optimal data partition in Def. 3.1 that learns to assign samples to subpopulations.
Definition 3.1 ((Optimal) Data Partition). Let X and Y be random variables that take values in
X × Y following a fixed joint distribution pX,Y . A data partition is defined as a mapping ν of the
training data and its labels to the subpopulation space, i.e., ν ∶ X × Y → S . So ν(X,Y ) is a random
variable taking values from S and ∣S∣ = K. We then define the optimal data partition based on
information theory as

ν
∗
= argmax

ν
I(X;Y ; ν(X,Y )) = argmax

ν
I(X;Y ∣ν(X,Y )) − I(X;Y ),

where I(X;Y ; ν(X,Y )) denotes the interaction information (McGill, 1954) of X,Y, ν(X,Y ),
I(X;Y ) denotes the mutual information of X and Y , and I(X;Y ∣ν(X,Y )) denotes the conditional
mutual information between X and Y given ν.

In information theory, the mutual information I(X;Y ) can characterize the prediction ability from
input X to class label Y (Cover & Thomas, 2006). The interaction information I(X;Y ; ν(X,Y ))
means the gain of correlation between X and Y given a data partition ν. A larger I(X;Y ; ν(X,Y ))
indicates a greater improvement in the prediction ability of a data partition ν from input X to label

2In practice, it is common to have a subpopulation-imbalanced set for training. And for the test set, we need
to build a subpopulation-balanced counterpart to evaluate the algorithmic robustness w.r.t. latent subpopulations.
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Y . Due to the hierarchical nature of semantics (Deng et al., 2009), the data partition usually comes
with multiple possibilities. Def. 3.1 helps us pursue the optimal data partition ν∗ to maximize the
prediction ability of the training data. Intuitively, the optimal data partition decomposes the prediction
in a complex mixed distribution into several classification problems in multiple simple distributions
partitioned by ν∗. In the following, we remark an advantageous property of the optimal data partition.
Proposition 3.2. The optimal data partition at least does not inhibits the prediction ability, i.e.,
I(X;Y ; ν

∗(X,Y )) ≥ 0.

Prop. 3.2 shows that the optimal data partition can help to improve the prediction ability, and at least
has no negative impact even in the worst case. Please refer to Appx. C.1 for the proof.

Objective. After introducing the above concept and analysis, we explore incorporating the idea of
optimal data partition to improve the prediction ability and achieve a subpopulation-balanced model.
For this reason, we propose the following empirical risk with respect to the training set D, whose
relation with the optimal data partition will be proved and discussed in the subsequent theorem.

R̂(f, ν;D) = −
1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ log fyi
s (xi) − ĤD(Y ∣ν(X,Y )), (1)

where 1(⋅) denotes the indicator function, with value 1 when ⋅ is true and 0 otherwise, fs(x) is the
prediction of x for subpopulation s, i.e., fs ∶ X → p(Y), and ĤD(Y ∣ν(X,Y )) is the empirical
entropy of labels conditioning on the data partition ν with respect to the training set D. We use the
following Thm. 3.3 to discuss the consistency between Eq. (1) and the optimal data partition.

Theorem 3.3. Let f †
= argminf R̂(f, ν;D) be the optimal solution for the empirical risk R̂(D) in

Eq. (1) for any D and ν. Assume that the hypothesis space H satisfies ∀x ∈ X ,∀y ∈ Y,∀f ∈ H,
log f

y(x) > −m, where m > 0. Define a mapping family G = {g ∶ X × Y → R∣g(x, y) =

log f
y(x), f ∈ H} and RN(G) = O( 1√

N
) denotes the Rademacher complexity of G with the sample

size N (Bartlett & Mendelson, 2002) (detailed in Appx. B.3). Then for any δ ∈ (0, 1), we have:

∣(I(X;Y ; ν(X,Y ))) − (−R̂(f †
, ν;D) +B)∣ ≤ m√

N

√
−2 log δ + 4K ⋅RN(G),

with probability at least 1 − δ, where B = −I(X;Y ) is a constant, and K is the number of
subpopulations.
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Figure 3: NMI scores between the learned
subpopulations and the true annotations on
the toy dataset in Fig. 2 during training.

Thm. 3.3 presents an important implication that
minimizing the empirical risk R̂ in Eq. (1) asym-
potitically aligns with the direction of maximizing
I(X;Y ; ν(X,Y )) in Def. 3.1 in a sense of statis-
tical consistency. We kindly refer the readers to
Appx. C.2 for the complete proof. To further verify this,
we trace the Normalized Mutual Information (NMI)
score (Strehl & Ghosh, 2002) between the learned sub-
populations and the true subpopulation annotations dur-
ing training in each epoch and visualize it in Fig. 3. It
can be seen that our method gradually learns the sub-
populations that correlates well to the true annotations. We also visualize the two subpopulations
learned by our method in COCO in Fig. 5 in Appendix. It can be observed that our method uncovers
meaningful subpopulations, i.e., Subpopulation 1: cut up apples or bananas; Subpopulation 2: the
whole apples or bananas. Fig. 3 and Fig. 5 demonstrate the promise of SHE to discover the latent
subpopulation structure inherent in the training samples.

Subpopulation-balanced prediction. With the inferred subpopulations, we discuss how to achieve
subpopulation-balanced predictions. Let zs(x) be the output logits of x for any subpopulation s ∈ S
and fs(x) = softmax(zs(x)). We show that the overall prediction f(x) = softmax(z(x)) with
z(x) = log∑s∈S e

zs(x) is subpopulation-balanced according to the following Thm. 3.4.
Theorem 3.4. Supposing that for any subpopulation s ∈ S , zs can perfectly fit the data distribution
of a given subpopulation s, i.e., p(x, y∣s) ∝ e

z
y
s (x), then z = log∑s∈S e

zs can perfectly fit the

subpopulation-balanced overall distribution, i.e., pbal(x, y) ∝ e
z
y(x).

Thm. 3.4 implies that alongside pursuing the optimal data partition, the LogSumExp operation on
the logits of the learned subpopulations can be directly aggregated into a balanced prediction. We
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kindly refer readers to Appx. C.3 for more details. By contrast, the ordinary learning methods will fit
the distribution p(x, y) = ∑s∈S p(s) ⋅ p(x, y∣s), which is non-robust to subpopulation imbalance.

Discussion. We would like to briefly discuss the core differences between SHE and some related
techniques. Classic clustering methods (Cheng, 1995; Asano et al., 2020; Caron et al., 2020) divide
the input space X into several disjoint clusters, with the goal that the clusters match as closely to the
target classes. Our method, on the other hand, divides the data in a subpopulation level instead of the
class level, with the goal that the partition maximally intervenes with predictions from input to classes.
Some works for spurious correlations (Sohoni et al., 2020; Seo et al., 2022; Liu et al., 2023) use
the predictions of ERM or their feature clustering results as subpopulations, based on an underlying
assumption that data from the same subpopulation will have the same ERM predictions or features
and conversely not. Such an assumption might not be valid, especially when there are not many
spurious associations captured during training. In this case, the clustering learned by these methods
remains at the class level, as the ERM model uses the given classes as supervision. In comparison,
SHE has theoretically and empirically been oriented to learn meaningful subpopulation structures.

3.4 REALIZATION

Optimization for the data partition ν. We use a subpopulation-weight matrix V ∈ {V ∣V ∈

RN×K
+ , s. t.∑K

s=1 vis = 1,∀i = 1, 2, . . . , N} to represent a data partition ν in Eq. (1) with respect to
the training set D. Each vis in V denotes the probability of the i-th data point being sampled from the
subpopulation s, i.e., vis = p(ν(xi, yi) = s). To accelerate the optimization of V , we further propose
a diversity regularization term Div(x) = ∑s1,s2∈S,s1≠s2

∥fs1(x) − fs2(x)∥2, which prevents the
collapse together of different subpopulations. Increasing the diversity among the outputs can also
force the model to learn richer features to help prediction (Brown et al., 2005; Krogh & Vedelsby,
1994; Tang et al., 2006). Thus, the final loss function of our method can be formulated as follows:

L = −
1

N

N

∑
i=1

∑
s∈S

vis ⋅ log f
yi
s (xi) − ĤD(Y ∣V ) − β

1

N

N

∑
i=1

Div(xi) (2)

where β is a hyperparameter that controls the weight of the diversity regularization term.

Multi-head strategy. A classical classification model f parameterized by θ consists of a deep
feature extractor ψ and a linear classifier g with the parameter matrix W . The final prediction is
denoted as f(x) = softmax(z(x)), where z is the output logits of x, i.e., z(x) = g(ψ(x)) =

W
⊤
ψ(x). Since we need to obtain separate prediction results for each subpopulation in Eq. (2),

we apply a multi-head strategy following Tang et al. (2020); Vaswani et al. (2017). Specifically,
we equally divide the channels of the feature and the classifier weight into K groups, i.e., ψ(x) =
[ψ1(x), ψ2(x), . . . , ψK(x)],W = [W1,W2, . . . ,WK] and the outputs logits for any subpopulation
s ∈ S is denoted as zs(x) =W⊤

s ψs(x). Thus the final subpopulation-balanced prediction is obtained
by f(x) = softmax(z(x)), where z(x) = log∑s∈S e

zs(x) according to Thm. 3.4. Note that, our
multi-head strategy does not introduce any additional parameters to the network compared with the
network counterpart without considering the subpopulation imbalance. That is to say, we just split
the output features of the penultimate layer and the classifier weights of the last layer into different
groups, and use them to generate the corresponding predictions for multiple subpopulations.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our SHE on COCO (Lin et al., 2014), CIFAR-100 (Krizhevsky et al., 2009),
and tieredImageNet (Ren et al., 2018). For COCO, we follow the ALT-protocol (Tang et al., 2022) to
conduct subpopulation-imbalanced training set and balanced test set. For CIFAR-100, we take the
20 superclasses as classification targets and generate subpopulation imbalances by sampling in the
subclasses of each superclass. Following Cui et al. (2019), we use the exponential sampling with

imbalance ratio IR ∈ {20, 50, 100}, where IR =
maxs∈S ∑(xi,yi,si)∈D 1(si=s)
mins∈S ∑(xi,yi,si)∈D 1(si=s)

. For tieredImageNet,

we take the 34 superclasses as classification targets and generate subpopulation imbalances by
imbalanced sampling in 10 subclasses of each superclass with the imbalance ratio IR = 100.

Baselines. We consider extensive baselines: 1) empirical risk minimization (ERM); 2) imbalanced
learning methods: PaCO (Cui et al., 2021), BCL (Zhu et al., 2022), IFL (Tang et al., 2022), DB (Ma
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Table 2: Performance (Mean ± Std) of methods on COCO, CIFAR-100 with the imbalance ratio
IR ∈ {100, 50, 20} (marked as CIFAR-IRIR), and tieredImageNet. Bold indicates the best results.

Method COCO CIFAR-IR100 CIFAR-IR50 CIFAR-IR20 tieredImageNet

ERM 62.52 ± 0.32% 52.49 ± 0.27% 55.20 ± 0.41% 58.92 ± 0.62% 48.23 ± 0.27%

PaCO 62.59 ± 0.24% 52.89 ± 0.39% 55.47 ± 0.29% 59.15 ± 0.44% 48.72 ± 0.45%
BCL 62.83 ± 0.42% 53.02 ± 0.26% 55.50 ± 0.33% 59.07 ± 0.23% 48.56 ± 0.61%
IFL 62.57 ± 0.15% 52.45 ± 0.33% 55.16 ± 0.42% 59.07 ± 0.51% 48.64 ± 0.18%
DB 62.72 ± 0.48% 52.96 ± 0.21% 55.52 ± 0.27% 59.19 ± 0.37% 48.52 ± 0.13%

TDE 62.64 ± 0.27% 52.67 ± 0.12% 55.34 ± 0.17% 59.10 ± 0.22% 48.36 ± 0.54%
ETF-DR 62.45 ± 0.37% 52.43 ± 0.18% 55.27 ± 0.13% 58.87 ± 0.17% 48.51 ± 0.66%

LfF 62.06 ± 0.83% 52.13 ± 0.52% 54.78 ± 0.64% 58.54 ± 0.52% 47.87 ± 0.23%
Focal 61.67 ± 0.53% 51.77 ± 0.63% 54.64 ± 0.62% 58.33 ± 0.73% 47.68 ± 0.62%
EIIL 62.61 ± 0.33% 52.82 ± 0.17% 55.55 ± 0.32% 59.02 ± 0.35% 48.56 ± 0.33%
ARL 62.48 ± 0.22% 52.67 ± 0.36% 55.32 ± 0.17% 59.03 ± 0.24% 48.55 ± 0.38%

GRASP 62.73 ± 0.25% 52.92 ± 0.41% 55.62 ± 0.30% 59.12 ± 0.27% 48.37 ± 0.24%
JTT 62.32 ± 0.75% 52.37 ± 0.48% 55.02 ± 0.32% 58.61 ± 0.64% 48.04 ± 0.39%

MaskTune 60.23 ± 0.73% 51.63 ± 0.31% 54.35 ± 0.49% 58.03 ± 0.36% 47.56 ± 0.54%

SHE 64.56 ± 0.24% 54.52 ± 0.35% 56.87 ± 0.17% 60.72 ± 0.41% 50.14 ± 0.18%

et al., 2023b), TDE (Tang et al., 2020), and ETF-DR (Yang et al., 2022); 3) methods for spurious
correlations that do not require subpopulation annotation on the training and validation set: LfF (Nam
et al., 2020), Focal (Lin et al., 2017), EIIL (Creager et al., 2021), ARL (Lahoti et al., 2020),
GRASP (Zeng et al., 2022), JTT (Liu et al., 2021), and MaskTune (Taghanaki et al., 2022). Note
that, some imbalance learning methods like LA (Menon et al., 2021), LDAM (Cao et al., 2019), and
CB (Cui et al., 2019) will degrade to the ERM performance when the class level is balanced.

Implementation details. We use 18-layer ResNet as the backbone. The standard data augmentations
are applied as in Cubuk et al. (2020). The mini-batch size is set to 256 and all the methods are trained
using SGD with momentum of 0.9 and weight decay of 0.005 as the optimizer. The pre-defined K is
set to 4 if not specifically stated and the hyper-parameter β in Eq. (2) is set to 1.0. The initial learning
rate is set to 0.1. We train the model for 200 epochs with the cosine learning-rate scheduling.

4.2 PERFORMANCE EVALUATION ON SUBPOPULATION IMBALANCE

Overall performance. In Tab. 2, we summarize the top-1 test accuracies on three datasets, COCO,
CIFAR-100 with imbalance ratio IR = {100, 50, 20} and tieredImageNet. As can be seen, SHE
achieves consistent improvement over all baselines on these benchmark settings. Specifically, we
achieve the gains 1.72% on COCO, 1.50%, 1.35%, 1.53% on CIFAR-100 with three imbalance ratios,
and 1.42% on tieredImageNet compared to the best baseline. In comparision, imbalanced baselines
usually show marginal improvement or perform comparably with ERM, whose gains mainly come
from contrastive representation learning (e.g., PaCO), invariant representation learning (e.g., IFL),
and robust classifier design (e.g., ETF-DR), etc. The baselines regarding spurious correlations, on the
other hand, usually assume that the model tends to fit spurious correlations, leading to performance
degradation when there are no obvious spurious correlations captured by the model during training.

Many/Medium/Few analysis. In Tab. 3, we show the fine-grained per-split accuracies of different
methods on COCO. Note that, the Many/Medium/Few three splits correspond to the training sample
number of the subpopulation that ranks in the top, middle and bottom partitions. As expected,
baselines generally have higher accuracy in dominant subpopulations but perform poorly in tails. On
the Few-split, a gap of 4.42% is achieved between SHE and the best baseline, and we achieve the best
results on Many-split and Medium-split. This shows a merit of SHE that enhances the performance
of minority subpopulations without sacrificing the performance of head subpopulations.

4.3 PERFORMANCE EVALUATION ON RICHER IMBALANCE CONTEXTS

Training under subpopulation imbalance coupled with class imbalance. It is practical to see how
SHE performs when both class and subpopulation imbalances coexist in the data. To verify this, we
follow (Tang et al., 2022) to construct a class and subpopulation imbalanced training set. For CIFAR
and tieredImageNet, we construct the training set by imbalanced sampling with an imbalance ratio
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Table 3: Per-split accuracies on COCO. Many, Medium, and Few are the three splits of the test set
based on the training imbalancedness. Overall means the full test set. MT: the short for MaskTune.
The complete experimental results (Mean ± Std) of all baselines can be found in Appx. F.3.

Method ERM PaCO BCL IFL DB TDE EIIL ARL GRASP JTT MT SHE

Many 67.21% 67.45% 66.89% 67.71% 67.35% 66.32% 66.87% 67.32% 67.13% 66.93% 64.48% 67.71%
Medium 52.22% 53.33% 53.21% 52.17% 52.11% 53.23% 52.79% 53.34% 53.26% 51.24% 50.11% 53.50%

Few 37.10% 36.23% 37.67% 36.82% 37.47% 37.02% 37.06% 37.18% 37.29% 36.48% 33.27% 42.09%
Overall 62.52% 62.59% 62.93% 62.57% 62.72% 62.64% 62.61% 62.48% 62.73% 62.32% 60.23% 64.56%

Table 4: Performance under more imbalance settings. Bold indicates superior results. (Left)
Performance on COCO, CIFAR-100 (IR = 100), and tieredImageNet where both class imbalance
and subpopulation imbalance co-exist (Mean ± Std). (Right) Performance on datasets for spurious
correlations. The worst group accuracy (Worst Acc) and the average accuracy (Mean Acc) is reported.
The second column means whether using the group annotation on the training or validation set.

Setting: both subpopulation and class imbalance (Mean ± Std)

Method COCO CIFAR-IR100 tieredImageNet

ERM 63.57 ± 0.34% 59.24 ± 0.46% 53.65 ± 0.46%
LA 66.47 ± 0.27% 59.73 ± 0.27% 54.12 ± 0.35%

LDAM 66.32 ± 0.33% 59.66 ± 0.26% 54.01 ± 0.51%
CB 66.17 ± 0.21% 59.45 ± 0.36% 53.78 ± 0.21%

PaCO 66.78 ± 0.41% 59.87 ± 0.51% 54.15 ± 0.39%
BCL 66.92 ± 0.26% 59.78 ± 0.37% 54.23 ± 0.27%
IFL 65.34 ± 0.52% 59.44 ± 0.41% 53.88 ± 0.43%
DB 66.43 ± 0.15% 59.81 ± 0.29% 54.14 ± 0.30%

TDE 66.12 ± 0.44% 59.63 ± 0.34% 53.91 ± 0.28%
ETF-DR 65.92 ± 0.26% 59.71 ± 0.18% 54.07 ± 0.31%

SHEw/LA 68.11 ± 0.27% 61.67 ± 0.31% 55.73 ± 0.22%

Setting: spurious correlation (Worst Acc / Mean Acc)

Method Group Info CelebA Waterbirds(Train / Val)

GDRO Yes / Yes 88.3% / 91.8% 91.4% / 93.5%

LfF No / Yes 77.2% / 85.1% 82.1% / 94.3%
SD No / Yes 83.2% / 91.6% 87.3% / 90.3%
JTT No / Yes 81.1% / 88.0% 86.7% / 93.3%
CIM No / Yes 81.3% / 89.2% 77.2% / 95.6%

ERM No / No 47.2% / 95.6% 74.9% / 98.1%
LfF No / No 24.4% / 85.1% 67.5% / 87.5%
JTT No / No 40.6% / 88.0% 71.8% / 92.3%

MaskTune No / No 78.0% / 91.3% 80.7% / 92.1%
SHEw/GDRO No / No 77.9% / 91.7% 81.9%/ 91.3%

IR = 100 on both classes and subpopulations. The classes and subpopulations are both balanced on
the test set. According to the results in Tab. 4 (left), we can see that the imbalance learning baselines
consistently improve test accuracy compared to ERM when class imbalance also exists. When we
combine SHE with a classical imbalanced learning baseline LA (Menon et al., 2021), our SHEw/LA
achieves a 1.19% improvement on COCO, 1.80% on CIFAR and 1.50% on tieredImageNet compared
to the best baseline, showing the potential of SHE on more complex imbalance learning problems.

Training under spurious correlations. We directly apply SHE into GDRO (Sagawa et al., 2019)
(using the learned subpopulations instead of the prior subgroup annotations) to verify the effectiveness
on spurious correlation datasets, CelebA (Liu et al., 2015) and Waterbirds (Sagawa et al., 2019). In
Tab. 4 (right), we compare SHEw/GDRO with a series of baselines, and our method achieves the
promising performance in mitigating spurious correlations when there is no group information avail-
able. Methods that require group annotations (e.g., SD (Pezeshki et al., 2021) and CIM (Taghanaki
et al., 2021)) are also exhibited for reference. Interestingly, more visualization results in Appx. F.2
show that the performance comes from dividing the training data into two meaningful subpopulations:
data w/ and w/o spurious correlations , which is actually different from the prior group annotations.

4.4 ABLATION STUDY AND ANALYSIS

Ablation on varying the latent subpopulation number K. To study the effect of the latent
subpopulation number K in SHE, we conduct ablation on COCO as shown in Fig. 4(a). When K = 1,
Eq. (2) degenerates to the cross-entropy loss, and so is performance. When K > 1, SHE shows a
significant improvement over ERM and is robust to K. At K = 4, our SHE achieves the best results
on average. Similar phenomenon on CIFAR and tieredImageNet can be found in Appx. F.5.

Effect of (a) the diversity term and (b) the entropy term. To study the effect of the diversity term
Div(x) in Eq. (2), we conduct experiments on β on COCO. As shown in Fig. 4(b), even without the
diversity term (β = 0), SHE still significantly outperforms the ERM baseline. The addition of the
diversity term continually enhances the performance to the best on average at β = 1.0, and SHE is
generally robust to the choice of β. We also conduct a comparison with SHE without the entropy
term HD(Y ∣V ) in Eq. (2) (termed as SHEw/o entropy) in Tab. 5, which confirms that the entropy
term consistently and effectively enhances the performance.

Effect of pursuing (a) the optimal data partition and (b) the subpopulation-balanced predic-
tion. In Tab. 5, we present the performance of ERM, ERM with the multi-head strategy (namely
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Figure 4: (a) Performance of SHE and ERM on COCO with varying subpopulation number
K. (b) Performance of SHE and ERM on COCO with varying β. (c) Performance of ERM,
SHEmodel based V , and SHE on COCO, CIFAR-IR20, CIFAR-IR50, and CIFAR-IR100. (d) NMI
scores between the learned subpopulations and the true annotations on Waterbird.

Table 5: Performance of ERM, SHE, and some of their variants on COCO and CIFAR-100.
Method ERM ERMmulti−head SHEEIIL SHEw/o entropy SHE

COCO 62.52 ± 0.32% 62.47 ± 0.28% 62.82 ± 0.27% 64.15 ± 0.27% 64.56 ± 0.24%
CIFAR-IR100 52.49 ± 0.27% 52.53 ± 0.17% 52.63 ± 0.22% 53.96 ± 0.37% 54.52 ± 0.35%
CIFAR-IR50 55.20 ± 0.41% 55.16 ± 0.47% 55.36 ± 0.37% 56.31 ± 0.23% 56.87 ± 0.17%
CIFAR-IR20 58.92 ± 0.62% 58.88 ± 0.36% 59.21 ± 0.48% 60.03 ± 0.38% 60.72 ± 0.41%

ERMmulti-head), and SHE by removing the multi-head network but following the way of EIIL to
utilize the learned subpopulations (namely SHEEIIL). SHE achieves a significant improvement
over ERM and ERMmulti−head, while ERMmulti−head achieves only comparable results to ERM,
showing the necessarity of pursuing the optimal data partition. The component of SHE to pursue
subpopulation-balanced predictions is better (SHE vs. SHEEIIL), which confirms its effectiveness.

Analysis on the optimization approach for subpopulation-weight matrix V . We construct
a variant of SHE uses a model-based approach to learn the data partition from image features,
namely SHEmodel based V . As can be seen in Fig. 4(c), SHEmodel based V shows a clear performance
degradation compared to SHE. A possible reason is that ν in Def. 3.1 is a function of both the input
x and the label y, but SHEmodel based V can only learn the data partition from x.

Quality of the recovered subpopulations. To investigate the capability of SHE in discovering
subpopulations in training data, we conduct a comparative analysis between SHE and baselines based
on subgroup inference (EIIL, ARL, GRASP). Specifically, Fig. 4(d) presents the NMI scores on
Waterbird between the recovered subpopulations and the ground truth annotations. Our SHE exhibits
a remarkable capability to accurately discover the latent structures within the training data.

Fine-tuning from pre-trained models. Foundation models have achieved impressive performance
in numerous areas in recent years (Radford et al., 2021; Rogers et al., 2020; Brown et al., 2020).
Fine-tuning from these pre-trained models using downstream training data is gradually becoming a

Table 6: LoRA fine-tuning of different meth-
ods under three popular pre-trained models
on COCO. The complete results (Mean ±
Std) can be found in Appx. F.4.

Method CLIP ALIGN AltCLIP

Zero-shot 76.59% 78.45% 82.55%
ERM 84.46% 83.23% 84.93%
BCL 84.43% 83.42% 85.01%
IFL 84.49% 83.36% 84.89%
LfF 84.27% 83.05% 84.17%
JTT 84.37% 83.07% 84.55%

MaskTune 83.37% 82.66% 83.92%
SHE 85.34% 84.19% 85.76%

prevalent paradigm. In Tab. 6, we exhibit the results of
different methods fine-tuned on the COCO dataset with
three multimodal pre-training models, i.e., CLIP (ViT-
B/32) (Radford et al., 2021), ALIGN (EfficientNet-
L2 & BERT-Large) (Jia et al., 2021), and AltCLIP
(ViT-L) (Chen et al., 2022). The LoRA (Hu et al.,
2022) technique is used for fine-tuning to speed up
training and prevent overfitting. Despite the notable
improvements obtained through fine-tuning compared
to training from scratch, SHE consistently surpasses all
baselines with different large-scale pre-trained models.

5 CONCLUSION

In this paper, we focus on a hidden subpopulation imbalance scenario and identify its several critical
challenges. To alleviate the subpopulation imbalance problem, we first introduce the concept of
optimal data partition, which splits the data into the subpopulations that are most helpful for prediction.
Then, a novel method, SHE, is proposed to uncover and balance hidden subpopulations in training
data during training. It is theoretically demonstrated that our method converges to optimal data
partition and makes balanced predictions. Empirical evidence likewise demonstrates that our method
uncovers meaningful latent structures in the data. Extensive experiments under diverse settings and
different configures consistently demonstrate the effectiveness of SHE over a range of baselines.
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A BROADER RELATED WORK

A.1 INFORMATION THEORY-GUIDED OBJECTIVE DESIGN

Information Bottleneck. Information Bottleneck Theory (Tishby et al., 2000; Slonim & Tishby,
2000) in deep learning is a concept that has been extensively researched and developed over the years.
It focuses on optimizing neural networks by maximizing the relevant information about the target
while minimizing redundant data. The information bottleneck has gained widespread attention in
recent years within the field of deep learning (Tishby & Zaslavsky, 2015; Goldfeld & Polyanskiy,
2020; Kawaguchi et al., 2023). For instance, gradient-based methods were employed in optimizing
a Deep Neural Network (DNN) to tackle the Information Bottleneck Lagrangian (Alemi et al.,
2017). This approach, known as the deep variational IB (VIB), enables the system to learn stochastic
representation rules, showcasing enhanced generalization capabilities and robustness to adversarial
examples. A similar objective was explored in Achille & Soatto (2018), where the emphasis was on
promoting minimality, sufficiency, and disentanglement of representations. This disentanglement
property was also harnessed for generative modeling purposes, leading to the development of the
β-variational autoencoder (Higgins et al., 2017).

Mutual Information Maximization: Mutual Information Maximization (InfoMax) princi-
ple (Linsker, 1988) is a common training objective designed to enhance the information sharing
between model outputs and target variables. This approach is particularly popular in self-supervised
learning and representation learning and have demonstrated promising empirical results (Hjelm et al.,
2019; Tschannen et al., 2020; Chen et al., 2020; 2021; 2023; Zhao et al., 2024). In general, their
objective is to maximize the mutual information between representations from different views of the
same image. For instance, in DeepInfoMax (Hjelm et al., 2019), g1 extracts overall features from the
entire image, and g2 captures local features from patches, where g1 and g2 are activations in different
layers of the same convolutional network. Extending this idea, Bachman et al. (2019) generate the
two views by using different augmentations of the same image. Contrastive Multiview Coding (Tian
et al., 2020) extends the objective to incorporate multiple views, with each view corresponding to a
different image modality.

Comparision with our work. The information bottleneck and mutual information maximization
techniques involve the mutual information between input, representation, and label variables, aiming
to optimize the network for learning effective classifiers or generalizable representations. In contrast
to these methods, our method, distinctively, models mutual information maximization (Def. 3.1)
with the direct purpose of learning an effective data partition, which further serves the subpopulation
harmonization.

A.2 DOMAIN GENERALIZATION

The objective of domain generalization is to extract knowledge that is invariant across diverse source
domains and generalize it to novel, unseen target domains. A multitude of methods have emerged
for domain generalization, broadly categorized into five groups: domain alignment, meta learning,
domain hallucination, architecture-based methods, and regularization-based methods (Xu et al.,
2023). Domain alignment methods (Li et al., 2018; Zhao et al., 2020b; Grill et al., 2020; Ye et al.,
2023) target on minimizing the discrepancies between source domains to learn domain-invariant
features. Meta-learning-based methods (Balaji et al., 2018; Li et al., 2019; Zhang et al., 2023a)
enhance the generalizability of models to domain shifts by partitioning training domains into distinct
meta-train and meta-test domains. Through meta-optimization, these methods simulate unseen
domain shifts, thereby improving the models’ adaptability to such shifts. Domain hallucination (Zhou
et al., 2021; Xu et al., 2021) aims to augment training samples by transforming the original samples
into specific unseen domains while preserving their underlying semantics. Architecture-based
methods (Chattopadhyay et al., 2020; Chang et al., 2019) typically involve designing domain-specific
modules for different domains. During final testing, these methods aggregate results inferred from all
source domains to achieve a comprehensive outcome. Regularization-based domain generalization
methods (Shi et al., 2020; Carlucci et al., 2019) involve learning general and universal features across
domains through various regularization techniques.

Comparision with our work. The main distinctions between domain generalization and the sub-
population imbalance problem discussed in our paper are as follows: (1) In domain generalization,
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domain labels are accessible during training, whereas subpopulation annotations are not visible. (2)
The goal of domain generalization is to exhibit strong generalization performance on unseen domains,
while the problem of subpopulation imbalance aims for a comprehensive performance across all
encountered subpopulations. Furthermore, the concepts of domain and subpopulation differ in that
domains are more akin to image styles unrelated to semantics, while subpopulations represent a kind
of semantic abstraction distinct from the class dimension. Therefore, domain generalization methods
typically aim to learn domain-invariant features. In contrast, our method separates the learning of
subpopulations with different prediction mechanisms and then balancing them.

A.3 ALGORITHMIC FAIRNESS

Fairness is a critical and extensively studied aspect in algorithmic decision-making. When dealing
with biased data, algorithms tend to make decisions based on attributes that is sensitive or should
be protected(e.g., race and gender), raising concerns about fairness (Kearns et al., 2018). Various
approaches in algorithmic fairness aim to mitigate this issue by introducing fair constraints during
the training procedure, such as demographic parity or equalized odds (Hardt et al., 2016; Jiang et al.,
2019; Calmon et al., 2017). Additionally, alternative fairness criteria include accuracy parity (Zhao
et al., 2020a; Sagawa et al., 2020) (ensuring uniform accuracy across subgroups), small prediction
variance (Li et al., 2020; 2021) (maintaining minimal prediction variations among subgroups) and
small prediction loss for all subgroups (Zafar et al., 2019; Hashimoto et al., 2018). Some work
introduces independence constraints to the objective to ensure that decisions do not rely on sensitive
attributes (Madras et al., 2018; Song et al., 2019).

Comparision with our work. In the algorithmic fairness problem, the protected attribute annotations
are sometimes visible and sometimes not. When attribute annotations are invisible, the algorithmic
fairness problem bears some similarities to our problem. The key difference is that algorithmic
fairness often aims to protect specific sensitive attributes, preventing the model from using them in
decision-making. In our case, different subpopulations have different decision mechanisms, and we
want to preserve features of minority subpopulations. In essence, while algorithmic fairness tends to
learn fewer features (excluding protected attributes), we aim to learn more features (safeguarding
features of the disadvantaged subpopulations). Additionally, the evaluation metrics differ between
the algorithmic fairness and our problem.

A.4 COMPARISION WITH CREAGER ET AL. (2021) AND LAHOTI ET AL. (2020)

EIIL(Creager et al., 2021) and ARL(Lahoti et al., 2020) infer subgroup membership based on
the violation degree under the invariant learning principle or the stability of the loss space, and
then perform group-invariant learning or reweighting. In comparison, SHE aims to optimize the
predictive ability, specifically the interaction information, by partitioning data into subpopulations
and concurrently rebalancing predictions among these subpopulations. Besides, these works assume
that the subpopulation distribution is causally independent of the predicted target, which may not
always hold in our scenario.

B SUPPLEMENTARY EQUATIONS

B.1 MUTUAL INFORMATION AND ENTROPY

Mutual Information. In probability theory and information theory, the mutual information (MI) of
two random variables is a measure of the mutual dependence between the two variables. The mutual
information of two jointly random variables X (continuous) and Y (discrete) is defined as

I(X;Y ) = ∑
y∈Y

∫
X
p(x, y) log( p(x, y)

p(x)p(y))dx. (3)

Relation to entropy. Mutual information can be equivalently expressed as

I(X;Y ) = H(Y ) −H(Y ∣X) = H(X) −H(X∣Y ), (4)
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where H(Y ) and H(X) are (marginal) entropies, and H(Y ∣X) and H(X∣Y ) are conditional
entropies.

Entropy. The entropy H for a discrete continuous variable X and a continuous variable Y can be
defined as follows, respectively.

H(X) = −∫
X
p(x) log(p(x))dx (5)

H(Y ) = − ∑
y∈Y

p(y) log(p(y)) (6)

Empirical Entropy. Here we provide the equation for the empirical entropy in Eq. (1):

ĤD(Y ) = ∑
y∈Y

πD(y) log πD(y),

ĤD(Y ∣ν(X,Y )) = ∑
s∈S

π D(s) ∑
y∈Y

πD(y∣s) log πD(y∣s),
(7)

where πD(y) =
1
N
∑N

i=1 1(yi = y), πD(s) =
1
N
∑N

i=1 1(ν(xi, yi) = s), πD(y∣s) =

∑N
i=1 1(yi=y)1(ν(xi,yi)=s)
∑N

i=1 1(ν(xi,yi)=s)
are empirical frequencies in the training set.

B.2 NORMALIZED MUTUAL INFORMATION (NMI) SCORE

The Normalized Mutual Information (NMI) (Strehl & Ghosh, 2002; Li et al., 2024; 2023) between
the learned data partition ν (for simplicity here we will use ν to denote ν(X,Y ).) and the ground
truth subpopulation S is defined as:

NMI(S, ν) = 2I(S; ν)
H(S) +H(ν) , (8)

which is a normalization of the Mutual Information (MI) score to scale the results between 0 (no
correlation) and 1 (perfect correlation). We use the empirical score of NMI in our experiments.

B.3 RADEMACHER COMPLEXITY IN THM. 3.3

The Rademacher complexity (Bartlett & Mendelson, 2002) is a concept used in statistical learning
theory and machine learning to measure the complexity of a class of functions. It provides a way to
quantify how well a function class can fit random noise, which in turn helps in understanding the
capacity of the class to overfit training data.

Consider a sample space X ×Y and a class of real-valued functions G defined on X ×Y → R. For a
sample set D′

= {(x1, y1), (x2, y2), ..., (xN , yN)} drawn i.i.d. from X × Y , introduce Rademacher
random variables σ1, σ2, ..., σN , which are independent and take values +1 or -1 with equal probability
1/2.

The empirical Rademacher complexity of the function class G with respect to the sample is defined
as the expected value of the supremum (maximum) of the average sum of the product of g(xi, yi)
and σi over all functions g in G. Mathematically, it’s expressed as:

R̂N(G) = Eσ [sup
g∈G

1

N

N

∑
i=1

σig(xi, yi)] (9)

The Rademacher complexity RN(G) of the class G is the expectation of the empirical Rademacher
complexity over all sample set of size N drawn from the space X × Y .

RN(G) = ED′ [R̂N(G)] (10)
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B.4 MCDIARMID’S INEQUALITY

McDiarmid’s Inequality (McDiarmid et al., 1989) is a concentration inequality which provides bounds
on the probability that a function of independent random variables deviates significantly from its
expected value.

Let X1, X2, . . . , Xn be independent random variables taking values in X . Consider a function
f ∶ XN

→ R satisfying the following bounded difference condition:

For each i ∈ {1, 2, . . . , n} and for any x1, . . . , xn, x
′
i ∈ Xn,

»»»»»f(x1, . . . , xi−1, xi, xi+1, . . . , xn) − f(x1, . . . , xi−1, x′i, xi+1, . . . , xn)
»»»»» ≤ ci (11)

where ci is a constant.

Then, for any ϵ > 0,

Pr [f(X1, X2, . . . , Xn) − E[f(X1, X2, . . . , Xn)] ≥ ϵ] ≤ exp(− 2ϵ
2

∑n
i=1 c

2
i

) (12)

and similarly,

Pr [f(X1, X2, . . . , Xn) − E[f(X1, X2, . . . , Xn)] ≤ −ϵ] ≤ exp(− 2ϵ
2

∑n
i=1 c

2
i

) (13)

This inequality is particularly useful in scenarios where one wishes to control the deviations of a
function of several independent variables from its expected value, especially in the context of machine
learning and statistical learning theory.

C THEORETICAL PROOFS

C.1 PROOF OF PROP. 3.2

Proof of Prop. 3.2.
For a data partition ν ′ that satisfies ν ′ í X,Y , we have

I(X;Y ∣ν ′(X,Y )) = I(X;Y ) (14)

For the optimal data partition ν∗, according to Def. 3.1, we have

I(X;Y ; ν
∗(X,Y )) ≥ I(X;Y ; ν

′(X,Y )) = 0 (15)

C.2 PROOF OF THM. 3.3

Lemma C.1. H(Y ∣X) = inff Ex,y − log f
y(x), where the infimum is achieved when fy(x) =

p(y∣x).

Proof for Lem. C.1 follows the same strategy as Proposition 1 in Xu et al. (2020).

Proof of Lem. C.1.

inf
f

Ex,y − log f
y(x)

= inf
f

ExEy∣x log
p(y∣x)

fy(x)p(y∣x)
= inf

f
Ex(KL(p(Y ∣x)∣∣f(x)) +H(Y ∣x))

=ExH(Y ∣x) = H(Y ∣X),

(16)
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where the infimum is achieved when fy(x) = p(y∣x).

Corollary C.2.

1. H(Y ) = inff Ex,y − log f
y(0), where 0 denotes the empty input and the infimum is

achieved when fy(0) = p(y).

2. H(Y ∣X; ν(X,Y )) = inff Ex,y ∑s∈S −1(ν(x, y) = s) log fys (x), where the infimum is
achieved when fys (x) = p(y∣x; s).

3. H(Y ∣ν(X,Y )) = inff Ex,y ∑s∈S −1(ν(x, y) = s) log fys (0), where the infimum is
achieved when fys (0) = p(y∣s).

4. ĤD(Y ∣ν(X,Y )) = inff ∑N
i=1 ∑s∈S −1(ν(xi, yi) = s) log fys (0), where the infimum is

achieved when fys (0) =
∑N

i=1 1(ν(xi,yi)=s)1(yi=y)
∑N

i=1 1(ν(xi,yi)=s)
.

The proof of Cor. C.2 is similar to proof of Lem. C.1.

Proof of Thm. 3.3.
Define a function T for any training set D:

T (D) = ∣(I(X;Y ; ν(X,Y ))) − (−R̂(f †
, ν;D) +B)∣ (17)

According to Lem. C.1 and Cor. C.2, we have:

T (D) = ∣I(X;Y ∣ν(X,Y )) − I(X;Y ) − 1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ log fyi
s (xi) − ĤD(Y ∣ν(X,Y )) −B∣

= ∣I(X;Y ∣ν(X,Y )) − 1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ log f †yi
s (xi) − ĤD(Y ∣ν(X,Y ))∣

= ∣ − inf
f

Ex,y ∑
s∈S

−1(ν(x, y) = s) log fys (x) + inf
f

Ex,y ∑
s∈S

−1(ν(x, y) = s) log fys (0)

+ inf
f

−
1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ log fyi
s (xi) − inf

f

N

∑
i=1

∑
s∈S

−1(ν(xi, yi) = s) log fys (0)∣

≤ sup
f

∣Ex,y ∑
s∈S

−1(ν(x, y) = s) log fys (x) −
1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (xi)

− Ex,y ∑
s∈S

1(ν(x, y) = s) − log f
y
s (0) +

1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (0)∣

(18)

We define Q(D) as

Q(D) ∶= sup
f

∣Ex,y ∑
s∈S

−1(ν(x, y) = s) log fys (x) −
1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (xi)

− Ex,y ∑
s∈S

1(ν(x, y) = s) − log f
y
s (0) +

1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (0)∣

(19)
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Let D and D′ be two identical data sets except that the j-th data point is different.

Q(D) −Q(D′)

≤ sup
f
(∣Ex,y ∑

s∈S
−1(ν(x, y) = s) log fys (x) −

1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (xi)

− Ex,y ∑
s∈S

1(ν(x, y) = s) − log f
y
s (0) +

1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (0)∣

− ∣Ex,y ∑
s∈S

−1(ν(x, y) = s) log fys (x) −
1

N

N

∑
i=1

∑
s∈S

1(ν(x′
i, y

′
i) = s) ⋅ − log f

y
′
i

s (x′
i)

− Ex,y ∑
s∈S

1(ν(x, y) = s) − log f
y
s (0) +

1

N

N

∑
i=1

∑
s∈S

1(ν(x′
i, y

′
i) = s) ⋅ − log f

y
′
i

s (0)∣)

≤ sup
f

∣ 1
N

log f
yj

ν(xj ,yj)(xj) −
1

N
log f

yj

ν(xj ,yj)(0) −
1

N
log f

y
′
j

ν(x′
j ,y

′
j)
(x′

j) +
1

N
log f

y
′
j

ν(x′
j ,y

′
j)
(0)∣

≤
2m

N
(20)

According to McDiarmid’s inequality (McDiarmid et al., 1989) (also introduced in Appx. B.4),
∀δ ∈ (0, 1) we have:

Q(D) ≤ EDQ(D) + m√
N

√
−2 log δ (21)

with probability at least 1 − δ.

For simplicity of writing, we define

A = Ex,y ∑
s∈S

−1(ν(x, y) = s) log fys (x) − Ex,y ∑
s∈S

1(ν(x, y) = s) − log f
y
s (0)

ÂD =
1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (xi) −

1

N

N

∑
i=1

∑
s∈S

1(ν(xi, yi) = s) ⋅ − log f
yi
s (0)

(22)
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So Q(D) ≤ supf ∣A −AD∣, and we have:

EDQ(D)
= ED sup

f
∣A − ÂD∣

= ED sup
f

∣ED′ÂD′ − ÂD∣

≤ ED sup
f

ED′∣ÂD′ − ÂD∣

≤ ED,D′ sup
f

∣ÂD′ − ÂD∣

≤ ED,D′,σ sup
f

∣ 1
N

N

∑
i=1

σi(− log f
y
′
i

ν(x′
i,y

′
i)
(x′

i) + log f
y
′
i

ν(x′
i,y

′
i)
(0) + log f

yi

ν(xi,yi)(xi) − log f
yi

ν(xi,yi)(0))∣

≤ ED,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
yi

ν(xi,yi)(xi)∣ + ED′,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
y
′
i

ν(x′
i,y

′
i)
(x′

i)

+ ED,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
yi

ν(xi,yi)(0)∣ + ED′,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
y
′
i

ν(x′
i,y

′
i)
(0)∣

= 2ED,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
yi

ν(xi,yi)(xi)∣ + 2ED,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
yi

ν(xi,yi)(0)∣

≤ 4ED,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
yi

ν(xi,yi)(xi)∣

≤ 4 ∑
s∈S

ED,σ sup
f

∣ 1
N

N

∑
i=1

σi log f
yi
s (xi)∣

= 4KRN(G),
(23)

where σi, i = 1, 2, . . . N is the Rademacher variable that is uniformly sampled in {−1,+1}. Combin-
ing Eq. (17), Eq. (18), Eq. (21), Eq. (23), ∀δ ∈ (0, 1), we have:

∣(I(X;Y ; ν(X,Y ))) − (−R̂(f †
, ν;D) +B)∣ ≤ m√

N

√
−2 log δ + 4K ⋅RN(G) (24)

with probability at least 1 − δ.

C.3 PROOF OF THM. 3.4

Proof of Thm. 3.4.
If zs can perfectly fit the data distribution of a given subpopulation s, i.e., p(x, y∣s) ∝ e

z
y
s (x). Let

p(x, y∣s) = w ⋅ ez
y
s (x), w > 0. We can get

p(y∣x; s) = p(x, y∣s)
∑y′ p(x, y′∣s)

= softmax(zys (x)) (25)
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For the subpopulation-balanced distribution, pbal(s) = 1
K
,∀s ∈ S. We have

pbal(x, y) = ∑
s∈S

p(x, y∣s)pbal(s)

=
1

K
∑
s∈S

p(x, y∣s)

=
1

K
∑
s∈S

w ⋅ e
z
y
s (x)

∝ e
z
y(x)

(26)

And we have

p(y∣x) = p(x, y)
∑y′ p(x, y′)

= softmax(zy(x)) (27)

C.4 AN EXTENSION OF THM. 3.4

We can extend Thm. 3.4 to make SHE handle an arbitrary specified target distribution over the
latent subpopulation ptest(x, y) = ∑s∈S ptest(s)p(x, y∣s), in the form of a weighted variant of
LogSumExp.

Proposition C.3. Supposing that for any subpopulation s ∈ S, zs can perfectly fit the data dis-
tribution of a given subpopulation s, i.e., p(x, y∣s) ∝ e

z
y
s (x), then z = log∑s∈S ptest(s)e

zs can

perfectly fit the subpopulation-balanced overall distribution, i.e., ptest(x, y) ∝ e
z
y(x).

The proof shares the same spirit as the proof of Thm. 3.4.

D ADDITIONAL DISCUSSIONS OF EQ. (2)

Here we would like to explain more about the intuitive understanding of Eq. (2). For ease of reading,
here we restate Eq. (2) as follows:

L = −
1

N

N

∑
i=1

∑
s∈S

vis ⋅ log f
yi
s (xi) − ĤD(Y ∣V ) − β

1

N

N

∑
i=1

Div(xi).

With respect to V , the first term of Eq. (2) increases the weight of the subpopulation that predicts
accurately for each sample. The second term makes the classes in each subpopulation as balanced as
possible, which prevents the subpopulation from collapsing to the prediction target. And the third
term prevents each subpopulation from collapsing to exactly the same prediction and accelerate the
optimization. The second and third terms somewhat prevent V from falling into the trivial solutions.

E THE EFFICIENCY AND SCALABILITY OF OPTIMIZING V

As stated in Sec. 3.4, the subpopulation-weight matrix V has size ofN×K. To improve the efficiency
of optimizing V and to increase the scalability of our method on large datasets (where N grows
larger), we design a batch-specific update approach for V . This means that during each iteration,
only the elements of V corresponding to the samples in each mini-batch (i.e., BatchSize × K
elements) are updated, while the remaining elements are kept fixed. This approach significantly
reduces the number of updated elements in V to BatchSize × K, which is far smaller than the
number of parameters in a modern neural network, allowing for scalability even when dealing with
large datasets.
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F DETAILED SUPPLEMENT FOR EXPERIMENTS

F.1 SUPPLEMENTAL DESCRIPTION OF THE EXPERIMENTAL SETUP

F.1.1 TOY MOTIVATING EXAMPLE (FIG. 2)

In Fig. 2, we visualize a toy motivating example whose prediction goal is to distinguish between
circles (semi-transparent) and triangles (non-transparent). For training data, they are sampled from
both subpopulation 1 (blue) and subpopulation 2 (red), and the training samples of subpopulation 2
are much less than those of subpopulation 1, i.e.,, under subpopulation imbalance. About the test set,
it is sampled equally from both subpopulations, i.e.,, under subpopulation balance. Specifically, each
class in each subpopulation is sampled from the following normal distributions: N([1, 3], [0.2, 0.2])
(subpopulation 1, class 1), N([2, 3], [0.2, 0.2]) (subpopulation 1, class 2), N([1.5, 1], [0.2, 0.2])
(subpopulation 2, class 1), and N([1.5, 2], [0.2, 0.2]) (subpopulation 2, class 2), respectively. The
sample size of the training set is 200, 200, 10, 10 in the corresponding order. The sample size of the
test set for each normal distribution is 100. We use a two-layer MLP with 5 hidden neurons as the
model for the toy study. The batch size is set to 512. The toy models are trained using SGD with
momentum of 0.9. We train the models for 60 epochs with initial learning rate 0.2.

F.1.2 TRAINING UNDER SUBPOPULATION IMBALANCE COUPLED WITH CLASS IMBALANCE

For COCO, we conduct training set with both subpopulation imbalance and class imbalance and both
balanced test set following the GLT-protocol in Tang et al. (2022). For CIFAR and tiredImageNet, we
shuffle the subcategories in the dataset randomly and then sample them in an imbalanced manner, so
that they are imbalanced at both the category and subpopulation levels.

F.1.3 TRAINING UNDER SPURIOUS CORRELATIONS

CelebA (Liu et al., 2015) and Waterbirds (Sagawa et al., 2019) are two datasets that have been
widely used to benchmark the robustness of machine learning algorithms to spurious correlations.
In the CelebA dataset, there is a high correlation between gender = {male, female} and hair color
= {blond, dark}, meaning that the feature gender might be used as a proxy to predict the hair color.
In Waterbirds, there is a high correlation between y = {land bird, water bird} and background
= {land, water}. The baselines for comparison include GDRO (Sagawa et al., 2019), LfF (Nam
et al., 2020), SD (Pezeshki et al., 2021), JTT (Liu et al., 2021), CIM (Taghanaki et al., 2021), and
MaskTune (Taghanaki et al., 2022).

We strictly follow the experimental setup in Taghanaki et al. (2022). For the Waterbirds dataset, we
train an ImageNet pre-trained ResNet50 with a batch size of 128 for 100 epochs decaying the learning
rate by 0.1 after every 30 epochs. For the CelebA dataset, we train an ImageNet pre-trained ResNet50
with a batch size of 512 for 20 epochs with a learning rate of 10−4. For our SHE , the pre-defined K
is set to 2. When the group information is unknown for all methods, we utilize the overall accuracy
on a validation set that shares the same distribution as the training set as the selection metric.

F.1.4 LINEAR PROBING

We train a linear classifier on a frozen pre-trained backbone and measure the quality of the represen-
tation through the test accuracy. To eliminate the effect of the skewed distribution in the fine-tuning
phase, the classifier is trained on a subpopulation-balanced dataset. Specifically, the performance
of the classifier is reported on the basis of pre-trained representations for different amounts of data,
including full-shot, 100-shot, and 50-shot. In the fine-tuning phase, we train the linear classifier for
500 epochs with SGD of momentum 0.7 and weight decay 0.0005. The batch size is set to 1000.
The learning rate decays exponentially from 10

−2 to 10
−6. The loss function is set to the ordinary

cross-entropy loss.
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Subpopulation 1 Subpopulation 2

Apple Banana

Subpopulation 1 Subpopulation 2

Figure 5: Visualization of learned subpopulations in COCO. To ease the visualization and analysis,
we set the number of subpopulations as K = 2. Then, after training, we randomly selected 8 images
from the two subpopulations we learned about the classes ”apple” and ”banana” in COCO.
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Figure 6: More visualization of learned subpopulations in COCO. To ease the visualization and
analysis, we set the number of subpopulations as K = 2. Then, after training, we randomly selected
9 images from the two subpopulations we learned about the classes ”apple”, ”banana”, ”pizza”,
”hotdog”, and ”person” in COCO.

F.2 MORE VISUALIZATION OF LEARNED SUBPOPULATIONS

F.2.1 COCO

We present the visualizations of the subpopulations discovered by SHE using the COCO dataset, as
depicted in Fig. 5. We also make reference to these visualizations in Sec. 3.3. Here we show more
visualizations in Fig. 6. It can be seen that samples from different subpopulations of the same class
have obvious semantic differences, further demonstrating that our SHE is able to discover meaningful
hidden subpopulation structures in the training data.

F.2.2 WATERBIRDS

We show some visualizations of the subpopulations learned by SHE on the Waterbirds dataset in
Fig. 7. In the Waterbirds dataset, group annotations are constructed based on classes (land bird/water
bird) and backgrounds (land/water). The spurious correlation is exhibited by that most of the birds
on the land background are land birds and most of the birds on the water background are water
birds. If we distinguish subpopulations based on their background, then category imbalance in each
subpopulation will still lead the model to learn spurious correlations. Fortunately, however, SHE
divide the training data into two meaningful subpopulations: 1) data with spurious correlations and 2)
data without spurious correlations, which actually is different from the prior group annotations, as
shown in Fig. 7. Such a result may be due to the second term ĤD(Y ∣V ) of Eq. (2), which increases
the entropy of the classes in each subpopulation to make the classes in each subpopulation as balanced
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Land Bird Land BirdWater Bird Water Bird

Subpopulation 1 Subpopulation 2

Figure 7: Visualization of learned subpopulations in Waterbirds. We randomly selected 16 images
from the two subpopulations we learned about the classes ”land bird”, and ”water bird” in Waterbirds.

Table 7: Per-split accuracies on COCO (Mean ± std).

Method Many Medium Few Overall

ERM 67.21 ± 0.24% 52.22 ± 0.17% 37.10 ± 0.42% 62.52 ± 0.32%
PaCO 67.45 ± 0.31% 53.33 ± 0.21% 36.23 ± 0.28% 62.59 ± 0.24%
BCL 66.89 ± 0.31% 53.21 ± 0.42% 37.67 ± 0.24% 62.83 ± 0.42%
IFL 67.71 ± 0.13% 52.17 ± 0.24% 36.82 ± 0.18% 62.57 ± 0.15%
DB 67.35 ± 0.32% 52.11 ± 0.25% 37.47 ± 0.36% 62.72 ± 0.48%

TDE 66.32 ± 0.22% 53.23 ± 0.28% 37.02 ± 0.33% 62.64 ± 0.27%
ETF-DR 67.93 ± 0.17% 51.34 ± 0.22% 37.59 ± 0.12% 62.45 ± 0.37%

LfF 66.74 ± 0.34% 52.34 ± 0.26% 36.01 ± 0.38% 62.06 ± 0.83%
Focal 66.23 ± 0.42% 52.41 ± 0.28% 35.79 ± 0.36% 61.67 ± 0.53%
EIIL 66.87 ± 0.18% 52.79 ± 0.32% 37.06 ± 0.28% 62.61 ± 0.33%
ARL 67.32 ± 0.25% 53.34 ± 0.17% 37.18 ± 0.24% 62.48 ± 0.22%

GRASP 67.13 ± 0.11% 53.26 ± 0.16% 37.29 ± 0.32% 62.73 ± 0.25%
JTT 66.93 ± 0.26% 51.24 ± 0.35% 36.48 ± 0.27% 62.32 ± 0.75%

MaskTune 64.48 ± 0.31% 50.11 ± 0.35% 33.27 ± 0.19% 60.23 ± 0.73%
SHE 67.71 ± 0.32% 53.50 ± 0.26% 42.09 ± 0.28% 64.56 ± 0.24%

as possible. Such two subpopulations plus further subpopulation rebalancing can effectively prevent
the model from relying on spuriously correlated features for prediction.

F.3 COMPLETE RESULTS OF TAB. 3

We provide the complete experimental results (Mean ± Std) of all baselines of Tab. 3 in Tab. 7.

F.4 COMPLETE RESULS OF TAB. 6

We provide the complete experimental results (Mean ± Std) of Tab. 6 in Tab. 8.

F.5 MORE RESULTS ON VARYING THE LATENT SUBPOPULATION NUMBER K

In Fig. 4(a), we show ablation study on K on COCO. Here we give the complete experimental
results on more dataset, i.e., CIFAR-IR100, CIFAR-IR50, CIFAR-IR20, and tiredImageNet, in
Fig. 8. When K = 1, Eq. (2) degenerates to the cross-entropy loss, and our SHE degenerates to the
ERM performance. When K > 1, SHE has a significant improvement over ERM and shows some
robustness to the value of K in general.
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Table 8: LoRA fine-tuning under pre-trained models on COCO (Mean ± std).

Method CLIP ALIGN AltCLIP

Zero-shot 76.59 ± 0.00% 78.45 ± 0.00% 82.55 ± 0.00%
ERM 84.32 ± 0.14% 83.38 ± 0.12% 84.85 ± 0.07%
PaCO 84.38 ± 0.11% 83.54 ± 0.15% 85.06 ± 0.16%
BCL 84.48 ± 0.06% 83.32 ± 0.11% 85.06 ± 0.05%
IFL 84.55 ± 0.06% 83.40 ± 0.05% 84.83 ± 0.06%
DB 84.46 ± 0.11% 83.14 ± 0.13% 84.14 ± 0.40%

TDE 84.37 ± 0.10% 83.42 ± 0.05% 84.51 ± 0.19%
ETF-DR 84.26 ± 0.15% 83.36 ± 0.09% 84.78 ± 0.05%

LfF 84.17 ± 0.05% 83.12 ± 0.07% 84.20 ± 0.02%
Focal 83.87 ± 0.10% 82.77 ± 0.12% 83.84 ± 0.14%
EIIL 84.23 ± 0.12% 83.21 ± 0.07% 84.34 ± 0.05%
ARL 84.02 ± 0.08% 82.97 ± 0.17% 84.07 ± 0.07%

GRASP 84.32 ± 0.16% 83.14 ± 0.04% 84.44 ± 0.13%
JTT 84.45 ± 0.09% 83.09 ± 0.02% 84.40 ± 0.15%

MaskTune 83.27 ± 0.10% 82.54 ± 0.13% 83.52 ± 0.20%
SHE 85.39 ± 0.06% 84.23 ± 0.06% 85.69 ± 0.11%
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Figure 8: Performance of SHE and ERM with varying subpopulation number K on CIFAR-IR100,
CIFAR-IR50, CIFAR-IR20, and tiredImageNet.
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Table 9: A series of baselines by combining different strategy permutations
Method Clustering Rebalancing Training strategy

abbreviation K-means OT Prediction Resample Reweight Simultaneous Sequential

K-1 ✓ ✓ ✓
K-2 ✓ ✓ ✓
K-3 ✓ ✓ ✓
K-4 ✓ ✓ ✓
O-1 ✓ ✓ ✓
O-2 ✓ ✓ ✓
O-3 ✓ ✓ ✓
O-4 ✓ ✓ ✓
P-1 ✓ ✓ ✓
P-2 ✓ ✓ ✓
P-3 ✓ ✓ ✓
P-4 ✓ ✓ ✓

Table 10: Comparison with more clustering and rebalancing components. Bold indicates superior
results. The meaning of some method abbreviations can be found in Tab. 9.

Method COCO CIFAR-IR100 CIFAR-IR50 CIFAR-IR20

ERM 62.52 ± 0.32% 52.49 ± 0.27% 55.20 ± 0.41% 58.92 ± 0.62%
K-1 61.59 ± 0.41% 51.43 ± 0.34% 54.56 ± 0.47% 57.97 ± 0.35%
K-2 62.63 ± 0.35% 52.57 ± 0.40% 55.03 ± 0.18% 59.03 ± 0.28%
K-3 61.77 ± 0.57% 51.71 ± 0.26% 54.29 ± 0.37% 58.21 ± 0.32%
K-4 62.48 ± 0.27% 52.52 ± 0.34% 55.27 ± 0.27% 58.81 ± 0.27%
O-1 62.56 ± 0.39% 52.52 ± 0.44% 55.13 ± 0.42% 58.85 ± 0.20%
O-2 62.49 ± 0.21% 52.44 ± 0.42% 55.22 ± 0.21% 58.85 ± 0.49%
O-3 62.54 ± 0.32% 52.47 ± 0.35% 55.15 ± 0.38% 58.90 ± 0.51%
O-4 62.58 ± 0.36% 52.43 ± 0.30% 55.08 ± 0.58% 58.99 ± 0.44%
P-1 61.32 ± 0.28% 51.27 ± 0.37% 54.31 ± 0.42% 57.62 ± 0.31%
P-2 62.47 ± 0.46% 52.25 ± 0.43% 54.96 ± 0.49% 58.71 ± 0.26%
P-3 61.58 ± 0.14% 51.53 ± 0.29% 54.00 ± 0.18% 58.13 ± 0.55%
P-4 62.30 ± 0.38% 52.47 ± 0.33% 55.25 ± 0.26% 58.57 ± 0.33%

SHE-RS 64.03 ± 0.27% 53.97 ± 0.38% 56.17 ± 0.50% 60.25 ± 0.54%
SHE-RW 63.82 ± 0.22% 53.90 ± 0.41% 56.05 ± 0.27% 60.19 ± 0.27%

SHE 64.56 ± 0.24% 54.52 ± 0.35% 56.87 ± 0.17% 60.72 ± 0.41%

F.6 COMPARISON WITH MORE CLUSTERING AND REBALANCING COMPONENTS

To further demonstrate the superiority of SHE, we compare it with a series of clustering and rebalanc-
ing strategies. The clustering strategies include K-means, optimal transport clustering, and direct
using the ERM predictions. The rebalancing strategies include reweighting and resampling. And
the training strategies include: 1) the simultaneous strategy: at each epoch of training, the clustering
results and rebalancing weights are updated; 2) the sequential strategy: first train an ERM model and
obtain clustering results, then conduct rebalancing to retrain a model based on the clustering results.
We construct a series of baselines by combining these strategy permutations, which are presented
in Tab. 9. To confirm the effectiveness of the subpopulation-balanced prediction by Thm. 3.4, we
also construct two variants of SHE: SHE-RS (dynamic resampling based on the learned subpopu-
lations during training), and SHE-RS (dynamic reweighting based on the learned subpopulations
during training). We show the performance of all these baselines and SHE on COCO, CIFAR-R100,
CIFAR-R50, and CIFAR-R20 in Tab. 10. Our method still achieves the best results very clearly,
demonstrating the superiority of our method for subpopulation discovery and rebalancing.

31



Published as a conference paper at ICLR 2024

full-shot 100-shot 50-shot
Superclasses

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

ur
ac

y

SHE
ERM

full-shot 100-shot 50-shot
Subclasses

0.25

0.30

0.35

0.40

0.45

0.50

A
cc

ur
ac

y

SHE
ERM

Figure 9: Linear probing performance of SHE and ERM on CIAFR-IR100 superclasses (left) and
subclasses (right) under different shot settings.

Table 11: Worst-case performance on CIFAR-IR100/50/20.
Method ERM PaCO BCL IFL DB TDE ETF-DR LfF Focal JTT MT SHE

CIFAR-IR100 22.34% 23.49% 23.83% 22.17% 22.87% 22.53% 22.96% 20.74% 19.45% 21.38% 19.78% 27.48%
CIFAR-IR50 26.47% 27.17% 27.58% 26.71% 26.93% 26.68% 27.43% 23.67% 23.16% 24.58% 23.17% 31.24%
CIFAR-IR20 37.10% 38.14% 38.07% 27.45% 37.77% 37.29% 37.93% 34.73% 34.25% 35.28% 34.64% 41.19%

Table 12: Compared with other alternative ways of doing inference.

Method COCO CIFAR-IR100 CIFAR-IR50 CIFAR-IR20

ERM 62.52 ± 0.32% 52.49 ± 0.27% 55.20 ± 0.41% 58.92 ± 0.62%
SHEEIIL 62.82 ± 0.27% 52.63 ± 0.22% 55.36 ± 0.37% 59.21 ± 0.48%

SHESimAvg 64.54 ± 0.17% 54.44 ± 0.41% 56.78 ± 0.28% 60.66 ± 0.32%
SHE 64.56 ± 0.24% 54.52 ± 0.35% 56.87 ± 0.17% 60.72 ± 0.41%

F.7 LINEAR PROBING PERFORMANCE

To quantitatively evaluate the representation quantity of different methods, we conduct linear probing
experiments on CIFAR-IR100 following the literature of self-supervised learning (Chen et al., 2020;
He et al., 2020). To eliminate the subpopulation imbalance effect, the linear classifier is trained
on a balanced dataset on top of the fixed feature extractor. In Fig. 9, we show the linear probing
performance of both superclasses and subclasses on CIFAR-IR100 under different shots. As can
be seen, our SHE consistently exceeds the ERM baseline for all settings, especially for the linear
probing performance of fine-grained classes with the improvement of 1.13%, 1.81%, and 2.45%
on full-shot, 100-shot, and 50-shot. This indicates that our SHE actually captures better and more
generalized representations.

F.8 WORST CASE PERFORMANCE.

To further validate the efficacy of our SHE in enhancing the learning capability of rare samples, we
present the worst case performance on CIFAR-IR100, CIFAR-IR50, and CIFAR-IR20 in Tab. 11. It
is evident that our method has achieved significantly superior results compared to other baselines,
further substantiating its remarkable effectiveness in mitigating the issue of subpopulation imbalance.

F.9 MORE EXPLORATION ON ALTERNATIVE WAYS OF DOING INFERENCE

Regarding alternative ways of doing inference, we validate some simple variants like applying group-
invariant learning on the learned subpopulation (marked as ‘SHEEIIL’) or just averaging the logits
across fs (marked as ‘SHESimAvg’). As shown in Tab. 12, SHE significantly outperforms SHEEIIL,
while achieving comparable results with SHESimAvg. This is because, applying the Normalized
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Table 13: Compatision between w/ or w/o LA on COCO where both class imbalance and subpopula-
tion imbalance co-exist.

Method Acc

ERM 63.57 ± 0.34%
SHE 65.13 ± 0.22 %
LA 66.47 ± 0.27%

SHEw/ LA 68.11 ± 0.27%

Table 14: Compared with other alternative ways of optimizing V .

Method COCO CIFAR-IR100 CIFAR-IR50 CIFAR-IR20

ERM 62.52 ± 0.32% 52.49 ± 0.27% 55.20 ± 0.41% 58.92 ± 0.62%
SHEmodel based V 63.22 ± 0.13% 53.28 ± 0.36% 55.81 ± 0.17% 59.72 ± 0.38%

SHEEM 64.52 ± 0.31% 54.47 ± 0.26% 56.88 ± 0.22% 60.65 ± 0.33%
SHE 64.56 ± 0.24% 54.52 ± 0.35% 56.87 ± 0.17% 60.72 ± 0.41%

Table 15: Performance on datasets for spurious correlations.

Method Group Info CelebA Waterbirds(Train / Val)

GDRO Yes / Yes 88.3% / 91.8% 91.4% / 93.5%
SHEw/goldlabels Yes / Yes 88.4% / 91.3% 91.6% / 93.2%

ERM No / No 47.2% / 95.6% 74.9% / 98.1%
SHE No / No 77.7% / 92.0% 82.0% / 91.3%

SHEw/GDRO No / No 77.9% / 91.7% 81.9%/ 91.3%

Weighted Geometric Mean (NWGM) approximation (Baldi & Sadowski, 2013; Xu et al., 2015),
LogSumExp can be approximated as simple summation, which is equivalent to simple averaging the
logits. Here, we use LogSumExp because of its advantage of being more theoretically rigorous with
its numerical stability.

F.10 MORE EXPLORATION ON THE OPTIMIZATION APPROACH FOR V

In terms of alternative approaches for optimizing V , we examined different variations of SHE. Firstly,
we utilized a 2-layer MLP to learn V from image features, referred to as SHEmodel based V . Sec-
ondly, we employed an EM-style approach to alternately learn V and fs, referred to as SHEEM. As
indicated in Table 14, SHEmodel based V exhibits a noticeable performance degradation compared
to SHE. This can be attributed to the fact that ν in Definition 3.1 is dependent on both the input x
and the label y, whereas SHEmodel based V can only learn the data partition from x. On the other
hand, SHEEM demonstrates comparable results with SHE, yet SHE is simpler and superior, thus
confirming the effectiveness of the proposed optimization approach.

Since SHEmodel based V , which learns V solely fromX , does not satisfy our formulation, we similarly
construct SHEmodel based V from X,Y to learn V from both X and Y . The experimental results are
presented in Tab. 16. SHEmodel based V from X,Y outperforms the variant that solely learn V from
X , as it aligns better with our formulation. However, due to the batch-wise updates of the network
learning V under both variants, it is challenging to accurately compute the subpopulation allocation
for samples not in the batch, yielding the inaccuracy when calculating the entropy term in Eq. (2) and
thus the performance degradation compared to SHE.
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Table 16: Performance of two variants of model-based methods to learn V .
Method CIFAR-IR100 CIFAR-IR50 CIFAR-IR20

ERM 52.49% 55.20% 58.92%
SHEmodel based V from X 53.28% 55.81% 59.72%

SHEmodel based V from X,Y 54.08% 56.23% 60.14%
SHE 54.52% 56.87% 60.72%

F.11 MORE ANALYSIS ON RICHER IMBALANCE CONTEXTS

SHE is primarily designed to address subpopulation imbalance issues and optimize overall per-
formance under subpopulation balanced distributions. However, it does not specifically focus on
class imbalance and worst-case performance. Therefore, we combined SHE with LA or GDRO in
the presence of class imbalance and spurious correlation, as discussed in Sec. 4.3. In this context,
we present additional results of using SHE alone when dealing with class imbalance and spurious
correlation settings in Tab. 13 and Tab. 15, respectively.

From Tab. 13, it is evident that our SHE achieves significant improvements whether applied on top
of ERM or LA. The results in Tab. 15 demonstrate that SHE achieves comparable performance to
SHEw/ GDRO. We report the results of SHEw/ GDRO in Sec. 4.3 to maintain consistency with the
objective of the spurious correlation task.

F.12 COMPUTATIONAL COST

Considering the computational cost, SHE (according to Eq. (2)) and Appx. E)incurs additional
computational overhead compared to ERM due to: 1) Weighted summation of the cross-entropy loss,
2) Computation of empirical entropy and the regularization term, and 3) Updating a matrix of size
BatchSize×K. The computational expenses for these three components are all far smaller than the
training cost of a modern deep neural network. Tab. 17 presents a comparison of training duration for
different methods.

Table 17: Training time of 200 epochs on CIFAR100-IR100.

Method Training time (Minutes) ∆ ERM

ERM 89 -
PaCo 104 +16.8%
BCL 110 +23.6%
DB 102 +14.6%

TDE 95 +6.7%
IFL 142 +60%
JTT 101 +13.5%
LfF 100 +12.4%

MaskTune 105 +17.9%
SHE 98 +11.1%

F.13 BALANCED-CASE PERFORMANCE

We provide the result of SHE and ERM under the subpopulation balanced senario (both train and
test) in Tab. 18. Our SHE get slightly better performance even in the balanced case.

Table 18: Balanced case performance.

Method CIFAR tieredImageNet

ERM 74.32% 68.26%
SHE 74.75% 68.83%
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Figure 10: T-SNE visualization of 5 subpopulations whin the same class on CIFAR100. Models are
trained on CIFAR-IR20.

F.14 IN-DISTRIBUTION PERFORMANCE

We present results in Tab. 19 under the scenario where the test set shares the same distribution as
the training set, indicating that SHE achieves comparable or slightly better results than ERM in this
situation.

Table 19: Performance when the test set shares the same distribution as the training set.

Method CIFAR-IR100 CIFAR-IR50 CIFAR-IR20

ERM 71.21% 70.51% 68.94%
SHE 71.07% 70.72% 69.25%

F.15 REVERSE-DISTRIBUTION PERFORMANCE

Although Prop. C.3 tells the direction of handling an arbitrary specified target distribution. a challenge
in application lies in correctly aligning the learned subpopulations with their corresponding test
distributions. To validate the effectiveness of Proposition B.3, we construct an experimental scenario
where the test distribution is the reverse imbalanced distribution of the training set. Therefore, we
can correspondingly reverse-sort the learned subpopulations by sample size to align with the test
distribution. Tab. 20 illustrates the results.

Table 20: Reverse-Distribution Performance.
Method CIFAR-IR100 CIFAR-IR50 CIFAR-IR20

ERM 38.37% 42.96% 50.70%
SHE 43.53% 46.74% 53.82%

SHEw/ test distribution 45.64% 48.02% 54.64%

F.16 T-SNE FEATURE VISUALIZATION OF SUBPOPULATIONS

In Fig. 10, we illustrate the t-SNE features of five subpopulations within the same category on
CIFAR100. This demonstrates that SHE is effective in preventing minority subpopulations(orange
and blue) from being overshadowed by others.
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G LIMITATIONS AND FUTURE EXPLORATIONS

Similar to some clustering methods (e.g., K-means), our method relies on a predefined number of
subpopulations K. Choosing an inappropriate value of K may lead to overfitting or underfitting
of the subpopulation structure and affect the performance and interpretability of the method. We
study the scenario in this paper where all subpopulation annotations are invisible. When part of the
subpopulation annotations are visible, how to further improve the performance and robustness of
machine learning algorithms by leveraging partially labeled data to refine the subpopulation structure
needs to be further explored.
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