Under review as a conference paper at ICLR 2026

ROC-N-REROLL: HOW VERIFIER IMPERFECTION
AFFECTS TEST-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time scaling aims to improve language model performance by leveraging ad-
ditional compute during inference. Many works have empirically studied tech-
niques such as Best-of-N (BoN) and Rejection Sampling (RS) that make use of
a verifier to enable test-time scaling. However, to date there is little theoretical
understanding of how verifier imperfection affects performance — a gap we ad-
dress in this work. Specifically, we prove that the instance-level accuracy of these
methods is precisely characterized by the geometry of the verifier’s ROC curve.
Our theory has two important takeaways, confirmed by experiments with Qwen
and LLama models on GSM8K and MATHS500. First, RS outperforms BoN for
fixed compute, while both methods converge to the same accuracy in the infinite-
compute limit. Second, it is generally impossible to predict the high-compute
performance of either method based on observations in the low-compute regime.

1 INTRODUCTION

Just as further scaling up large language model (LLM) pre-training started to show diminishing
returns, OpenAl released o1, vastly improving upon the state-of-the-art on many challenging bench-
marks (OpenAlL[2024). Instead of spending more compute on pre-training, ol was the first flagship
LLM to prominently improve performance by spending additional compute at test-time. Since then,
interest in test-time scaling has exploded (Muennighoff et al., 2025; |Guo et al.| 2025} Kimi et al.,
2025; |Qu et al., |2025; |Aggarwal and Welleckl 2025; Zaremba et al., [2025; [Kavukcuoglu}, [2025)).

There are two broad approaches to test-time scaling: resampling and “reasoning”. Both approaches
typically use a verifier — a scoring mechanism that evaluates the quality or correctness of an LLM’s
outputs — but at different stages of the pipeline. Resampling methods employ a verifier at test-
time to filter or rank candidate responses after they are generated (Cobbe et al., [2021). In contrast,
reasoning methods employ a verifier to modify how the LLM generates outputs, usually increasing
output quality at the cost of increased response length. Most prominently, the verifier can be used as
a reward for post-training with reinforcement learning (RL) (Guo et al., 2025).

In practice, both test-time scaling approaches have primarily been successful in domains where a
reliable oracle verifier can be implemented — e.g., coding using unit tests and math using ground-
truth numerical solutions. As such, previous theoretical analysis has focused on the scaling behavior
of pass@N, the probability that at least one of the N candidate responses is correct (Brown et al.,
2024; Schaeffer et al., 2025)). In most domains, however, access to a perfectly accurate verifier is not
realistic. Even in coding and mathematics, errors may slip through: insecure code can pass static
tests (Zhou et al. 2024), and flawed reasoning can arrive at the correct numerical answer (Petrov
et al.; [2025). More broadly, there has been an increasing interest in using another language model
as a verifier (Huang et al., [2025a; Song et al., [2025)), an approach that can be applied to any domain,
but has been shown to have far from perfect accuracy (Bavaresco et al.,[2024; Dorner et al.| [2024).

Despite growing interest in verifier-based test-time scaling, the relationship between scaling behav-
ior and the properties of imperfect verifiers remains poorly understood. This work addresses this
gap. We analyze two simple resampling methods for test-time scaling: Rejection Sampling (RS),
which resamples answers until the verifier score exceeds a predetermined threshold, and Best-of-
N (BoN), which samples N answers and returns the highest-scoring one. We provide a series of
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Figure 1: Empirical performance (markers) of RS (middle) and BoN (right) on GSMS8K test question
58, overlaid with theoretical predictions (lines). Different verifiers scale similarly at first, but then
diverge. RS matches BoN accuracy, using less average compute. Generator: Qwen3-1. 7B.

theoretical and empirical results that connect the performance and compute costs of both methods
to a classical concept from machine learning: the Receiver Operating Characteristic (ROC) curve
(Peterson et al.,|[1954])). For a fixed query, the verifier’s ROC curve encodes all possible trade-offs be-
tween two types of errors: false negatives —rejecting correct answers, and false positives — accepting
incorrect answers. Specifically, our contributions are as follows:

* We prove that for a given query, the accuracy of both BoN and RS only depends on the gen-
erator and verifier via the generator’s initial accuracy and the verifier’s ROC curve (Propo-
sitions[TJand[4). Accuracy is agnostic to implementation details beyond that.

* Under weak assumptions, we prove that RS outperforms BoN for fixed compute (Proposi-
tion[5), but converges to the same accuracy as compute increases (Proposition [2]and Theo-
rem|I). Further, extrapolation based on early scaling is impossible in both cases — as seen
in Figure [I] performance at high numbers of test-time samples can vary widely between
verifiers, even if accuracy is identical at small numbers of samples (Propositions 3] and [6).

* Using Qwen3 and LLama models as verifiers, we validate the accuracy of our per-instance
performance predictions on a subset of GSM8K questions (see Figure[I] Figure[3). We also
confirm our high-level takeaways on the full GSM8K and MATHS500 datasets (Figure ).

The rest of this paper is structured as follows: We begin by discussing related work (Section[2)). We
then present our formal setup (Section 3)), followed by our theoretical results for RS (Section4) and
BoN (Section[3)). Lastly, we conclude by presenting our experimental results (Section [6).

2 RELATED WORK

Test-time scaling methods can be broadly divided into two categories: resampling methods that
aggregate multiple LLM outputs - and “reasoning” methods that modify an LLM to elicit longer re-
sponses with “human-like” reasoning steps (see Appendix for additional discussion and |Zhang
et al.| (2025) for a survey). Despite the recent popularity of reasoning methods, resampling is
still prominently applied in industry releases: While OpenAl reports majority voting results (Ope-
nAll |2024), and Anthropic’s Claude 4 uses BoN in its “high compute” mode (Anthropic, [2025),
DeepMind’s AlphaCode (Li et al., [2022) uses test cases to filter generated code, and AlphaE-
volve (Novikov et al.l 2025)) uses numeric feedback to iterate on and refine proposed solutions.

Rejection Sampling RS is routinely used to create synthetic data for model training (Zelikman
et al., 2024} Yehudai et al.|[2024; |Uesato et al.|[2022; [Zhu et al., 2022} Xiong et al., 2025} [Yuan et al.,
2023} |Dorner et al.,|2022)), mostly in settings with a single canonical verifier. However, as a method
for test-time scaling, RS has not received much attention in the literature to date. This is likely due to
two practical disadvantages: Unlike for BoN, the sampling budget can only be controlled indirectly
via choosing a decision threshold, and parallelization is difficult. Still,|Ziegler et al.| (2022) use RS
for safety filtering, while [Song et al.[ (2025) empirically investigate the performance of RS when
generator and verifier are based on the same LLM. Our work precisely characterizes the compute-
scaling of RS performance, based on the ROC curve, and shows that RS (partially) compensates for
its practical disadvantages via improved performance compared to BoN at a fixed compute level.
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Best-of-N For BoN, theoretical work has analyzed the case of perfect verifiers, in which case
BoN performance is equivalent to pass@N: |Brown et al.| (2024) estimate pass@N scaling based
on a per instance closed-form formula for expected accuracy and find aggregate performance to
approximately follow a power law. Meanwhile, Schaeffer et al.| (2025)) point out that the closed-form
solution does not imply power law scaling per instance. The authors reconcile this by hypothesizing
that the observed aggregate power-law scaling is caused by a heavy tail in the distribution of instance
difficulties. That said, BoN can only achieve pass@N performance if the verifier is perfect, which
is not realistic in most practical applications.

Therefore, BoN with imperfect proxy scores f(X) has attracted substantial empirical inter-
est (Cobbe et al.| 2021} |Gao et al.| 2023} |Coste et al., [2024). However, most theoretical work on
BoN has focused on how the number of samples N affects the answer quality as measured by the
verifier score f(X) (Beirami et al.,[2024; |Gui et al., 2024). Instead, our work focuses on how the
ground-truth performance scales for unreliable verifiers. Most related to our work, a recent paper by
Huang et al.[(2025b) provides bounds on BoN performance, based on the mean squared error (MSE)
between the score f(X) and the ground truth reward y(X). Rather than bounding, our work uses
the ROC curve to fully characterize BoN performance in the context of binary ground truth rewards.

3 FORMAL SETUP

Throughout the rest of this work, we consider a fixed query ¢ and a generative model gy, (the
generator) that produces responses X € X'. Let Py, denote the probability distribution over X’
induced by sampling from g5 (conditioned on the query ¢). We assume that there is an unknown
ground-truth labeling function y : X — {0,1} where y(X) = 1iff X is a correct answer to the
query ¢. In addition, we have access to a verifier score f : X — [0, 1] that is (supposedly) correlated
with y. For example, this might be another LLM’s assessment of the correctness of the answer X
to the query ¢. Based on f, we can then define a binary classifier A” : X — {0, 1} by thresholding
h™(X) =1[f(X) > 7], where L is the indicator function.

We now define key performance quantities of the generative model gy, and a binary classifier h:

o 1= ACC(gbase) = Py,..[y(X) = 1] : the accuracy of the generative model gpase
* T(gbase, h) = Py,,.[R(X) = 1]y(X) = 1]: the true positive rate (TPR) of the classifier h
* F(gbase, ) = Py [M(X) = 1|y(X) = 0]: the false positive rate (FPR) of the classifier h

Further, for a fixed verification score f, we define H(f) as the set of all classifiers h”, where 7 € R.
We then refer to the classifier that maximizes true positive rate for a given false positive rate F' as

hg == arg max T(gbasev h) M
heH(f): F(gbase,h)<F

With this, we can formally describe the ROC curve of a verifier score f:

Definition 1. (ROC Curve) Given a fixed generator gy, and a score f, the ROC curve
of f is the function T : [0,1] — [0,1] defined by: T(F) = T(gpuse;hr) =
max {T(gbaS€7 ) h e H(f) (gbase7h) < F}

In words, the ROC curve describes the true positive rate of all optimal classifiers Ar and thus the
Pareto optimal tradeoffs between F(gpase, ) and T(gpase, /2). Note that ROC curves T(F') are (non-
strictly) increasing in F. For additional context on ROC curves, see Appendix [B.2]

3.1 Two METHODS FOR TEST-TIME-SCALING

In the following sections, we assume the generator g and score f to be fixed, and analyze the test
time scaling behavior of Rejection Sampling (RS) and Best-of-N (BoN). Both methods induce a new
generative distribution over outputs X.

Rejection Sampling (RS):  We repeatedly draw outputs X ~ P, and apply a classifier hg €
H(f) to each sample X to determine acceptance. The process halts and returns the first sample X
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such that h(X) = 1. RS thus defines a new generative process g"* corresponding to the conditional

distribution of X given hg(X) = 1, i.e.,
Py [X = 2] = Py, [X = x|he(X) = 1]. (2)

Decreasing the false positive rate F or increasing the threshold 7 causes RS outputs X to have higher
verification scores f(X) at the cost of longer running times due to fewer outputs X being accepted.

Best-of-N (BoN): We draw N independent samples Xq,---, XNy ~ P, from the generator
and return the one with the highest score under f, ie., arg max (X }ierw f (X;) with ties broken

randomly. BoN induces a new generator g w With outputs distributed as
P [X =a] = PRl argmax f(X') =], 3)
X'e{X:}ien
where P;Xb’ﬁ denotes the joint distribution of IV independently sampled X; ~ P, . The running
time of BoN can straightforwardly be adapted by increasing IV, improving the average score f(X).

4 REJECTION SAMPLING

In the following section, we characterize how the ROC curve of a fixed verifier f affects the test-
time scaling of the RS in terms of two key quantities: The compute cost of RS, and the accuracy
ACC(g"") of the RS distribution Pyn, defined in () for he € H(f). We begin by deriving how the

accuracy and compute cost of the generative process g"* vary with the false positive rate F.

Compute cost Let N (F) denote the number of samples X drawn from the base distribution P
until /g in (I) accepts, i.e., hp(X) = 1. Then the average compute cost C'(F) of RS — measured in
terms of the number of samples and verifications — corresponds to E[N(F)]. Since N (F) follows a
geometric distribution with success probability P, [he(X) = 1], we have

1 1
Py lhe(X)=1] _ T(F) -7+ F- (1 —7)
where m = ACC(gbase) is the accuracy of the generator ghase. Note that C'(F) = % for a perfect
classifier hg = y, while C(F) — oo when the probability of hr accepting an output « tends to zero.

C(F) =E[N(F)] = )

Accuracy The accuracy ACC(g"F) of RS is equivalent to the precision or positive predictive value
Py [y(X) = 1|he(X) = 1] of the classifier hg. As observed by Song et al.| (2025), modifying
the decmon threshold 7 and thus F and hg induces different accuracies for the output distribution
ACC(g"*). Combining Equation (1) and Deﬁnltlon' as well as the Bayes rule, we can write
- T(F) -7
-~ T(F) m+F-(1-7)
In particular, Af(F) = m(g) when hg(X) is independent of y(X ), while for 7 > 0 and a perfect
classifier hg = y, we get A¢(F) = 1. Because T(F) increases in F, C'(F) defined in Equation (4)
decreases strictly. Thus, the function C'(F) has an inverse F(C'). With this, a change of variables in
Equation (3)) yields an expression for accuracy directly in terms of the expected compute C, i.e.,
T T(F(C)) -
Ar(C) = A (F(O)) =

1O = 4 FO) = TEEy m B O) (1=

Throughout most of this section, we will drop the subscripts and write A(C') and A(F) respectively.

In the next proposition, we derive the slope of the compute-performance curve as a function of the
slope of the ROC curve T(F) and show that concave ROC curves imply monotonous scaling for RS.

A(F) = ACC(g"" ®)

=C -7 -T(F(C)) (6)

Proposition 1. Let f be a score and T : [0,1] — [0,1] be the ROC curve of f. If the derivative
T'(F) exists at F, the derivative of the accuracy-compute curve at C(F) is given by

dA(C)’ _ (1 =m) (T(F) - FT'(F))
dC lc=c(F) 1+ 7T (F)— '

For (strictly) concave ROC curves, d’;‘l(cc)

is (strictly) positive whenever T (F) exists.
‘C:C 5 (strictly) p (F)
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Proposition [T] is proven in Appendix [D.1] Beyond monotonous scaling for concave ROC curves, it
implies that when the ROC curve T(F) is piecewise linear, so is A(C).

4.1 LOW-COMPUTE REGIME

We now analyze the performance of RS in the low-compute regime, which corresponds to using a
classifier with high FPR (e.g., F = 1) that accepts almost all outputs without much filtering. At the
extreme of F = 1 at the top-right corner of the ROC curve, the generative process ¢! induced by the
classifier h; samples exactly once per accepted output, minimizing compute. As we slightly tighten
the classifier by decreasing F from 1, compute increases and performance improves at the rate of

dA(C) (r—1)(1—T(1))

aC lemr T T ao1-aT(@1) ™

In particular, for the minimal possible slope T'(1) = 0, accuracy initially grows with compute at a
rate of 7. On the other extreme, when T’(1) = 1, there is no improvement with increased compute.

10 Verifier ROC curve Inference Time Scaling 10 Verifier ROC curve Inference Time Scaling
) ' RS
038 0.8 05 x BoN
3
o 06 x 06 ® 0.4
& g P
0.4 —— Verifier 1 0.4 ~—— Verifier 1 < 0.3 *
0.2 Verifier 2 ] 02 5 Verifier 2
[ Chance 0.2 [ sdrere ez / Chance 0.2 frorstese s s
0.0 0.0
0.00 0.25 0.50 0.75 1.00 10 20 30 40 0.00 025 050 0.75 1.00 10 20 30 40
FPR Number of Generations FPR Number of Generations
(a) Different small-, same large-scale performance (b) Early scaling reverses at large scale

Figure 2: Performance of RS (line) and BoN (scatter) with different verifiers (synthetic data).

Figure2a]illustrates how the top-right corner determines early scaling: We plot two ROC curves that
behave differently in the top-right corner, but the same in the bottom-left corner. As predicted by
Equation (7), RS scales more quickly when the ROC curve is more “flat” near the top-right corner.
Interestingly, the similarity of the ROC curves near the origin appears to coincide with diminishing
performance differences in the high-compute limit. In the next section, we prove this observation.

4.2 HIGH-COMPUTE REGIME

We now characterize the performance of RS in the high-compute regime, which corresponds
to using highly selective classifiers on the bottom-left corner of the ROC curve that accept few
outputs—i.e., F a2 0. For intuition, consider an ROC that is linear around the origin, i.e. T(F) = oF
for F < 1. In that case, Proposition |1| implies that the derivative of the performance A(C') with
respect to expected compute C' is zero for small F — meaning that performance eventually plateaus
as compute increases. More generally, our next proposition shows that the large-scale performance
of RS is determined by the derivative of the ROC curve at the origin whenever T(0) = 0.

Proposition 2. Let f be a score and T : [0, 1] — [0, 1] be the ROC curve of f. If T(0) = 0 and T(F)
is continuously differentiable in a neighborhood of F = 0, we have

: B T(0)-m
A = T A=

Otherwise if T(0) > 0, C(0) is finite and A(0) = A(C(0)) = lime,c(0) A(C) = 1.

The proof of Proposition[2]follows directly from Equation (6)) using Taylor’s theorem and L’Hospital
(see Appendix [D.3)). Proposition [2]is in line with the large-scale behavior shown in Figure 2a} As
both ROC curves have the same slope at the origin, their large-scale performance is the same. The
opposite is observed in Figure [T} Here, the ROC curves have different slopes near the origin, but are
similar in the top-right corner. As predicted by Proposition 2} RS performs substantially worse in
the high-compute limit when the ROC curves have smaller slope near the origin.
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4.3 CAN RS PERFORMANCE BE EXTRAPOLATED?

So far we established in Equation (7) and Proposition[2)that the scaling in the low- and high-compute
setting is determined by the local geometry of the ROC curve in the top-right vs the bottom-left
corner respectively. As the geometry in neither of the corners puts strong constraints on the geometry
in the other corner, without a priori knowledge of the ROC curve’s behavior near the origin, we
cannot predict large-scale performance based on small-scale performance. Our next proposition
formalizes this intuition.

Proposition 3. Fix a compute budget B < supyp C(F') =: Cyqp with Af(B) > 0, and suppose the
RS accuracy Ay (C') is known for all F with C(F) < B for a fixed, unknown score function f. Then:

1. There exists score functions fo, f1 consistent with the accuracies observed up to compute
B, such that limc_.¢,,,, Af (C) = 0and lime_,c,,,, Af, (C) = 1 respectively.

max max

2. Assuming [ has a concave ROC curve and the left one-sided derivative of A(C) is strictly
positive at C = B, there are consistent score functions fa(py, f1 with concave ROC curves
such that lime ¢ (C) = A(B) and limc_c,,,, A, (C) = 1 respectively.

max

maz Af )

We prove Proposition [3|in Appendix It implies that observing RS performance at small scales,
we can usually not distinguish between the two cases of 1) no further performance gains from scaling
and ii) eventual perfect performance. This can be observed empirically in Figure [T} where both
verifiers lead to the same performance at small compute, but performance diverges at high-compute.
Figure [2b] shows an even more extreme case: While RS initially scales substantially faster for the
blue ROC curve, performance quickly stagnates. Correspondingly, RS with the orange ROC curve
reaches substantially higher performance levels, despite the slower initial scaling.

5 BEST-OF-N

While the scaling of RS has a clear and simple dependence on the ROC curve, the amount of com-
pute used by RS is random, and its expectation only implicitly depends on the chosen threshold
7. Compared to that, BoN gives users the ability to explicitly specify a deterministic amount of
compute V. In this section, we switch our focus to the scaling behavior of Best-of-N (BoN).

As in the previous section, we treat the verifier f as fixed and write g rather than glfv to denote the
output distribution of BoN as defined in (3). The accuracy of BoN is equal to the probability that the
highest-scoring sample X* among N draws is a correct answer, i.e. ACC(gn) = Py, [y(X™*) = 1].
To characterize BoN performance, we make following regularity assumption about the score f(x):

Assumption 1. The distribution of scores f(X) is either discrete or absolutely continuous with
respect to the Lebesgue measure (i.e. has a density).

This allows us to show that the ROC curve of the score f again determines how the accuracy of
BoN scales with compute. While RS is governed by the /ocal geometry of the ROC curve, we will
see that the scaling behavior of BoN depends on the global properties. We begin by defining the
probability that BoN produces a correct answer, conditional on p of the /N samples being correct,

Z y(Xi) =p

H(k,p) = P,,. |V ( arg max f(X7)> =1
S

{Xi}tietk+p

It then follows that the accuracy of BoN can be expressed by
ACC(gn) = Epupir,m[H(N —p,p)], ®)
where B(m, N') denotes the binomial distribution with success probability 7 and N trials.

We note that H(1,1) equals to the area under the ROC curve (AUROC). Inspired by |Scherlis
(2021)), we find that H (k, p) can be written as a weighted integral over the ROC curve for any k and
p. This allows us to cast the BoN accuracy ACC(gy ) as an integral over the ROC curve:
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Proposition 4. Let f be a score with ROC curve T(F') for which Assumption |l| holds. Define
Y(F)=Q—-7)(1—F)+n(l—T(F)). Then for N > 2, the accuracy of BoN is given by

1
ACC(gn) =1— (1 — w)N/ Y(F)NLdF. )
0
If T(F) is concave, the BoN accuracy ACC(gy) is non-decreasing in N.

We prove Proposition ] in Appendix[D.5] Note that in the case of a perfect verifier y = f, we have
T(F) = 1 and thus ¢(F) = (1 —m)(1 — F), such that Proposition[4] yields the well-known formula
1 — (1 — )" for pass@N. In addition, the proposition implies that when the ground truth y(z) is
binary, overoptimization (Gao et al. 2023)—where actual performance worsens as more samples
are used— can only be a problem for BoN when the verifier’s ROC curve is non-concave.

5.1 LOW-COMPUTE REGIME

For N = 2, noting that H(0,2) = 1, H(2,0) = 0, the expectation in Equation (8) is fully deter-
mined by the area under the ROC curve H(1, 1) and the original task performance 7. In this case,
we obtain a simple formula for the performance gain going from Best-of-1 to Best-of-2 sampling:

ACC(gy) — ACC(g1) = * +2r(1 —m)H(1,1) — 7

For a random-equivalent score, H(1,1) = 0.5 such that the performance gain equals zero, while
for the perfect score f = y the gain equals (1 — 7). Notably, this maximal possible “slope” of
(1 — 7) is substantially below the same slope of 7 for RS at C = F' = T = 1, suggesting that RS
might outperform BoN when controlling for compute. Our next proposition confirms this:

Proposition 5. Let [ be a score with concave ROC curve T(F') for which Assumption holds. Set
Fy to be the solution to C(Fxn) = N and fix any N € N for which Fy exists. Then, RS with the
verifier hy,, outperforms BoN, i.e. ACC(g"F~) > ACC(gn).

We prove Proposition [5]in Appendix [D.8] Interestingly, the advantage of RS vanishes in the limit:
In the next subsection, we analyze the large-scale limit of BoN, and show that it matches the perfor-
mance of RS we established in Proposition 2]

5.2 HIGH-COMPUTE REGIME

While the integral formula for the performance of BoN from Proposition[d]is harder to analyze than
the more local formula for the performance of RS from Equation @, our next theorem shows that
both methods still perform the same in the large scale limit.

Theorem 1. In the setting of Proposition {4} assume that T(F) is continuously differentiable in a
neighborhood of F = 0. Then if T(0) > 0, we have limpy _, .o ACC(gn) = 1. Otherwise if T(0) = 0,

T(0) 7
TO) -7+ (1—-m)

Jim ACClan) =

Theoremis proven in Appendix Intuitively, for large N, ACC(gy) is mostly determined by
the largest values of ¢(F) = (1 — m)(1 — F)) + w(1 — T'(F')), which correspond to small F" and
T(F). Thus, the limiting behavior of BoN is determined by behavior of T'(F) near the origin.

Comparing with Proposition [I} the high-compute limit of BoN performance ACC(gy) is equal to
the high-compute limit for RS. This suggests that Theorem [I] might point to a more fundamental
limit to the performance of resampling with imperfect verifiers. As RL algorithms are often trained
to mimic the resampling distribution (Xiong et al. 2025)), such limit might also extend to RL. In
Appendix [C.T} we further explore this connection, casting the RS distribution as the zero-penalty
limit of KL-constrained RL.
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5.3 CAN BON PERFORMANCE BE EXTRAPOLATED?

As in Section we investigate whether it is possible to extrapolate BoN performance from
observations at low compute without knowing the ROC curve. We again provide a negative result:
Despite its smoother scaling, the limiting performance of BoN remains impossible to predict from
small-scale observations, especially when the ROC curve cannot be guaranteed to be concave.

Proposition 6. Consider a score function f satisfying Assumptignsuch that lim oo ACC( glfv) =
¢ < 1. Then for any n € N and € > 0, there are scores fo, f1 satisfying Assumption [1] such that

IACC(gL,) — ACC(g%i)| < eforall N < nandi € {0,1}, but
3 fO — ; 3 fl —
A}EDOOACC(QN) =0 while ngnooACC(gN) =1

If f has a concave ROC curve, the score fl can be chosen to have a concave ROC curve as well.

We prove Proposition [6] in Appendix [D.T1] Analogously to Proposition [3] it shows that without
further assumptions, any early scaling in BoN is compatible with both zero and perfect performance
ACC(gy) in the large N — oo limit. Even assuming concavity, it remains impossible to derive
meaningful upper bounds on large scale performance by extrapolating from smaller scales.

6 EXPERIMENTS

In this section, we evaluate a series of open-weight instruction-tuned LLMs from the Qwen3 (Yang
et al} 2025 and LLama (Grattafiori et al2024) families as both generators and verifiers on ques-
tions from GSMS8K (Cobbe et al., 2021) and MATHS500 (Hendrycks et al., [2021). To generate an
answer x, we use few-shot prompting with 5 random train examples and temperature ¢ = 1. For
verification, we prompt models to score answer correctness from 0 to 10, after employing a chain
of thought (Tian et al.| [2023; |Cruz et al., 2024) and normalize the scores to lie in [0, 1]. To increase
the resolution of the score, we repeat this process five times per answer and use the average of the
responses as the final score f(X). Further implementation details are described in Appendix [E

In Sections 4] and [5] we rigorously characterized how the per-instance generative accuracy of BoN
and RS scales with test-time compute. Correspondingly, we now validate the theoretical predictions
for BoN and RS on individual queries. For a small set of queries, we sample and score 1000 re-
sponses using different Qwen3 and LLama models as both generators and verifiers. These samples
are used to both i) simulate BoN and RS by resampling and ii) estimate different verifiers’ ROC
curves. We then use these ROC estimates to predict the accuracies for both RS and BoN using
Equation (5) and Equation (9) respectively. Note, that RS often terminates after a small number of
samples, even at the maximal threshold of 7 = 1. To simulate RS for larger numbers of samples, we
thus randomly interpolate between the classifier 4! and the (always rejecting) classifier 22. Due to
Proposition |1} RS with the resulting classifier uses more samples than A, but is no more accurate.

Across the board, our theory predicts both methods’ accuracies with high precision (see results on
additional questions in Appendix [F). Exemplarily, Figure [T| shows the results for a Qwen3 1.7B

Verifier ROC Verifier: Llama-3.2-3B Verifier: Llama-4-17B-16E
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Figure 3: Empirical performance (x markers) of RS (purple) and BoN (olive) on GSM8K test ques-
tion 2, overlaid with theoretical predictions (lines). Dotted: Llama-3.2-3B as verifier (single
COT). Solid: Llama-4-17B-16E as verifier (single COT). Controlling for the number of gener-
ated samples, RS consistently outperforms BoN for both verifiers. Generator: L1ama—-3.2-3B.
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generator on GSM8K question ¢ = 58, which illustrates the issues discussed in Proposition 3] par-
ticularly well. As predicted by Proposition |1} since the ROC curve plateaus near F' = 1 (top-right
portion), early RS scaling follows the same linear trend for all verifiers. Similarly BoN performance
is almost identical up until N' = 3, but diverges at higher compute. This is in line with Proposition[2}
predicting that different ROC slopes at F' = 0 lead to different performance levels at high compute.
Comparing the middle and right panel, we can also see that RS outperforms BoN for fixed compute.

This can be observed more directly in Figure [3] which shows results for a L1ama-3.2-3B gener-
ator on GSMS8K question 7 = 2 with verifiers using a single chain of thought. We plot RS and BoN
performance for the same verifier in the same panel and observe a stark difference between both
methods’ scaling, as predicted by Proposition [5] Notably, RS consistently outperforms BoN, de-
spite some non-concavity in the ROC curve of L1ama-3. 2—-3B. While the relative prediction error
becomes noticeable in the middle panel, the absolute errors remain below one percentage point.

Our theoretical results on the predictability of scaling and the dominance of RS over BoN are tech-
nically restricted to fixed queries. However, one might intuitively expect them to also apply on
aggregate over a larger dataset D of queries. To test this, we run RS and BoN on each query in
the GSM8K and MATHS500 test sets for given thresholds 7 and numbers of BoN samples N. For
practicality, we cap the number of RS samples at 25 and return a ”null” output with y(z) = 0 if no
sample is accepted. Similarly, extending RS compute use via random interpolation on large datasets
would be prohibitively expensive. Thus unlike in the single-query case, we do not plot accuracy
values for RS at numbers of samples beyond those used by the maximal-threshold classifier h'.

MATH500 GSM8K
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Figure 4: Aggregate accuracy of BoN and RS on MATHS500 (left plot) and GSMS8K (right plot). The
rightmost RS points for each verifier represent the maximal threshold 7 = 1. Dotted lines show the
maximal RS performance for the respective verifiers. In both cases, BoN initially underperforms
RS, but matches RS performance at higher compute levels. Verifier models: Qwen3-32B (blue),
Qwen3-4B (orange). Generator: Qwen3—1. 7B. Error bars: Exact 90% ClIs for accuracy.

Figure ] plots both methods’ average accuracy against their respective average number of generated
samples, with error bars indicating 90% confidence intervals for accuracy. The figure replicates
several of our key observations from the single-query setting: On both datasets, controlling for
compute, RS outperforms BoN, but the gap between the methods vanishes at larger compute levels.
Additionally on GSM8K, performance for the Qwen3-4B and Qwen3-32B verifiers is the same at
low compute, but a noticeable gap between the verifiers emerges at larger compute. This indicates
that we cannot rely on extrapolation to predict performance for high levels of test-time compute.

7 CONCLUSION

Our results precisely quantify the limitations of resampling with imperfect verifiers. Both theoretical
and empirical results indicate limited dependence between verifier performance at low and high test-
time compute, cautioning against trend extrapolation as a means to predict performance. Our work
opens up several new lines of inquiry: On the theoretical side, future work could explore how
distributional assumptions on the per-item accuracies 7 of the initial generator gy, and the per-item
ROC curves affect our conclusions regarding extrapolability and the dominance of RS over BoN. On
the methodological side, the consistent improvements of RS over BoN raise the question of whether
there are “hybrid” approaches that combine the practical advantages of BoN with the efficiency of
RS. In addition, the dependency of early and later test-time-scaling on different regions of the ROC
curve motivates future work on training customized verifiers for different test-time budgets.
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8 REPRODUCIBILITY STATEMENT

We clearly document our experimental setup in Section [6] and Appendix [} All code neces-
sary to reproduce experiments is available at the following anonymized repository: https:
//anonymous.4open.science/r/roc—n-reroll.

9 LLM USAGE

We made use of LLMs for general research support. In particular, we used them as a tool to find
additional relevant literature for related work, and to help with brainstorming proof ideas. Most
relevant to this, GPT-03 suggested the use of the layer-cake trick to deal with some of the integrals
appearing in the BoN analysis, allowing us to substantially simplify some of our proofs. All text,
including proofs, was written by the authors.
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A NOTATION TABLE

Symbol Description
q A query or prompt given to the generator
g A generator model (e.g., an LLM)
P, The distribution induced by a generator g
T A text response sampled from g, i.e., x ~ P,
f: X —10,1] Score function estimating the correctness of
h7(x) Classifier that accepts if f(x) > 7
H(f) The set of all classifier h™ induced by thresholding the score f
gﬁ, Best-of-N sampler (for score f)
gN Best-of-N sampler (when score f is clear from context)
g" Rejection-sampled generator: sample = ~ P, until h(z) =1
y: X —{0,1} Ground-truth label indicating whether x is a correct response
ACC(g) Accuracy of a generator: Pr,p, [y(z) = 1]
T Accuracy ACC(gpase) for the base generator gpase
T(g,h) True positive rate of classifier h under P,
F(g,h) False positive rate of classifier 4 under P,
T(-): [0,1] — [0,1] ROC curve given by T(F) = max {T(gbase; 1) : B € H(f), F(goase, #) = F}.
hg Classifier i with best T, given F: arg maxc4;( ). p(g,n)=r T(9; )
N(F) Number of samples drawn from ¢ until first accepted by hg
C(F) Expected number of samples before acceptance: E(N (F))
A(F) Accuracy ACC(g"r) viewed as a function of F(g, hg) = F
A(C) Accuracy A(F) viewed as a function of C(F)
P(F) Rejection probability (1 — 7)(1 — F) + w(1 — T;(F))
P~ 1(a) Inverse of rejection probability ¢ (a)
=1 (a) Domain-extended version of ¢)~1 (zero when ¢~ (a) is not defined)
l;; Y(a) Hinge function at  (used as a "basis” to approximate convex b
ACC(g¥% 1) Bon accuracy ACC(g%;) parameterized by ¢~

Table 1: Primary Notation

B ADDITIONAL RELATED WORK

B.1 “REASONING” METHODS

Reasoning models that are post-trained via RL and generally use more test-time compute play a
large role in industry (OpenAll 2024} [Kimi1 et al., 2025} |Guo et al., 2025; Kavukcuoglu, [2025)).
While academic efforts to reproduce RL training at smaller scales exist (Zeng et al.|[2025), some of
the more successful reasoning models from academia are based on model distillation (Muennighoff]
et al.| [2025; Team, 2025)). These models are trained via supervised fine-tuning on outputs generated
by larger reasoning models with the goal of learning to copy the larger models’ behavior. Rem-
iniscent of earlier chain-of-thought prompting (Wei et al., 2022; [Kojima et al., [2022) designed to
make models “think step-by-step”, Muennighoft et al. (2025) show that the performance of distilled
models can sometimes be boosted by simple modifications to the generation process: Forcing the
model to generate longer answers by repeatedly replacing the “end-of-thinking” token with the word
“Wait” noticeably improved their model’s performance on the AIME 2024 benchmark.

However, it is not clear whether these methods provide a fundamental improvement compared to
resampling-based scaling methods, or merely allow for inference compute to be partially amor-
tized: |Yue et al| (2025)) show that while reasoning models initially outperform base models, this
trend reverses when resampling methods with perfect verifiers are applied to both models at large
compute budgets.
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B.2 ROC CURVES

Classification algorithms usually operate by learning a score f(z) that induces a set of classifiers
based on applying different decision thresholds to the score. For a given score, the ROC curve
represents possible tradeoffs between the induced classifiers’ false and true positive rate (consider
Fawcett (2006) for a summary of key properties). The area under the ROC curve (AUROC) is a
common metric for classifier performance, and equals the probability of giving a higher score to a
randomly selected positive instance than to a randomly selected negative one. Davis and Goadrich
(2006) note that there is a bijection between ROC curves and precision-recall tradeoffs. While
precision is equivalent to the accuracy of rejection sampling in our setting, we focus on the tradeoff
between precision and the expected number of samples for rejection sampling, rather than recall.

Noting that certain score ranges usually do not have any clinical meaning, |Dodd and Pepel (2003))
suggest to consider the partial area under the ROC curve, focusing on a subinterval of false positive
rates. More recently Shi et al.|(2024) propose the lower-left partial area under the ROC curve that
additionally caps the true positive rate, and show that this metric can be used to provide bounds on
top-k ranking metrics. In contrast, our results establish that the limiting accuracy of both rejection
sampling and BoN are fully determined by the slope of the ROC curve, close to the origin.

C ADDITIONAL RESULTS

We show that for concave ROC curves, we can substantially simplify the integral representation for
ACC(gy) from Proposition

Proposition 7. Let f be a score with concave ROC curve T(F’) for which assumption holds and
denote (F') = (1 —m)(1 — F) +n(1 — T(F')). Then the best-of-N accuracy can be written as

1—7T(0)
ACC(gy) =1— (1 —7)(N? = N) / Y a)a™N ?da. (10)
0

We prove Proposition [/|in Appendix We note that this is closely related to the expectation of
¥~ 1(a) fora ~ B(N — 1, 1), as the beta distribution 3(N — 1, 1) has the density (N — 1)a’¥ 2.

Next, we use that according to PropositionACC(g ~) is linear in the inverse 1)~ 1 of the reweighed
ROC curve ¢(F). This allows us to focus on computing the BoN accuracy for a “basis” of
all possible 1! and then compute ACC(gy) as a linear combination of the “basis” functions’
accuracies. In particular, for piece-wise linear as well as concave ROC curves, we obtain a simple
representation in the following theorem:

Theorem 2. Let | be a score with piece-wise linear concave ROC curve T (F') for which assumption
holds. Then there are positive weights w; with Z?io w; =1, z; < 1and Ziﬁo wlt% < ﬁ such
that for all N

o0

ACC(gn) =1—(1=m) > wiz} " (11)

i=0
Conversely, for any w; and x; respecting the constraints above, there exists a score f with concave
ROC curve T(F) such that Equation holds for all N.

We prove Theorem [2]in Appendix From Equation (11)), it is easy to see that ACC(gy ) is non-
decreasing for piece-wise linear concave ROC curves. Proposition[§]is then proven by approximating
any concave ROC curve with piece-wise linear ones.

C.1 CONNECTION TO RL

For a fixed prompt and outputs = € X discrete, we consider KL-regularized reinforcement learning
with a binary reward r(z), optimizing the objective

arg mﬂang/sRL [r(2)] — BDKLIPyp, [7]]| Poy. [2]]

IRrRL
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for 8 > 0. Due to Rafailov et al.[(2023), g%, has to fulfill

Pog, 1l = %Pgm [z] eXp[%r(z)],

where Z is a normalization constant. We can decompose Z as follows:
1
Z = Z Pgbmsc [x] eXp[*'r(fL')]
~ 8
1
= Y Pl exp(g) + > Pyla]exp(0)

z:r(z)=1 z:r(z)=0

—en(g) X Pt 3 Pl

z:r(x)=1 z:r(z)=0
1
= eXp(B)Pgbasc [r(x) = 1] + Pgbuac [T(x) = 0}'

Now for any = with r(z) = 0, we have

2] = Pgbmc [{L‘]
PQ}%L[ ] exp(%)Pgbase [r(m) = 1] + Py [7“(33) = O]7

which goes to zero for 5 — 0. Similarly, for « with r(x) = 1, we have

exp ( % ) Pgbusc [x]

P B8 [{E] = B
9rL exp(%)Pgbase [T‘(./L‘) = 1] + quase [r('r) = O]
which converges to
Py 7]
= Poe[2]r() = 1]
Py [r(x)=1] =%

as  — 0. Thus, as the KL penalty 3 goes to zero, the probability mass function of the optimal RL
policies gg ;, converge to the probability mass of the conditional distribution Py, [z|r(z) = 1] ina

point-wise sense.

D PROOFS

D.1 PROOF OF PROPOSITION[I]

Proof. Since T(F) is increasing, C(F) = m

is a strictly decreasing function and thus

invertible function of F. Correspondingly, we can write F(z) as a well-defined function of z = C(F).
In particular, this means that the performance A(F) can be written as A(F(z)), i.e. a function of the

runtime z = C(F).
We compute the derivative
dA(C) B dA(F(C)) ‘
dC lc=crE  dC lc=cm)
B dA(x) dF(C) ‘
 dx la=r dC lc=cm¥
B dA(x) dF(C) ‘
 dx la=F dC loc=cm
_dA(z) 1

der dC(=)
dx

m:F-

We calculate
dC(x) 7 —1—7T(x)

dr  (x(m —1) — 7T(x))2

16
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and
dA(z) 7 ((nT(z) —z(r —1))T'(z) — (7T'(z) — 7+ 1) T(z))

dr (x(mr—1) — 7T(x))?
plug them back into the original derivative, we have

dA(C) ‘ _ ((#T(F) —F (7 — 1)) T'(F) — (aT'(F) — 7 + 1) T(F))
dC lc=c(F) 7 —1— 7T (F)
_ EQ-m) T'(F) — (1 — ) T(F)
m—1— 7T (F)
_ (-m)TE) -~ (F(1 - )) T'(F)
1+ 7T (F)—7
_ (1= m) (T(F) — FT'(F))
1+ 7T (F) -7

This is positive, if and only if T(F) — FT'(F) > 0. Assuming the ROC curve is concave, it has to be
continuous, while T'(F) is non-increasing.

Thus: .
T(F):/ T'(t)dt > F - T'(F),
0

which implies:
T(F) — FT'(F) > 0,
with both inequalities strict for F > 0 if the ROC curve is strictly concave.

D.2 PROOF OF EQUATION

Proof. We plug in T = F = 1 into the expression of the derivative of the performance—compute
scaling curve and get:

dA(C) _ 7T(F(l — 7)) T'(F) — (1 — 7) T(F)
dC lc=1 m—1—7aT(F) F=T(F)=1
_(=m)T'(1) - (1 -7)
7—1-—7T(1)
T—1—7T'(1)+T(1)
B 7—1—7T'(1)

D.3 PROOF OF PROPOSITION[Z]

Proof. We first focus on the case of T(0) = 0. Using Taylor’s Theorem, we get
dT
T(F) = o lF—0 + o(F) = T'(0)F + o(F),
where the derivative exists and is continuous in a neighborhood of F = 0, by assumption. Now,
lim A(C) = lim A(F)
C—o0 F—0

~ lim - T(F
CFs07m-T(F)+(1—7)-F
— lim 7 T'(0)F n wo(F)
F50m-T'(0)F+0o(F)+(1—7)-F 7 -T(0)F+o(F)+(1—7)-F
. - T'(0)F
F=0 7 - T'(0)F+ o(F) + (1 —7) -F
7 T'(0)

—1
Fo0 - T'(0) + (1 — )

17
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When T(0) > 0, we simply get
. - T(0)ACC(g")
1 AC)=A0) = ———"==1.
500 (€) = A(0) T(0)ACC(g")
D.4 PROOF OF PROPOSITION[3]

We first prove a useful lemma that casts the accuracy of rejection sampling as a function of the ratio

T
o = F:
Lemma 1. Whenever T(F) = «F, the accuracy of the corresponding rejection-sampled distribution
g" is:
- o-T
AF) = ——mM8M—
(F) a -7+ (1—m)

Proof. Plugin T(F) = oF to the expression of A(F), we have:

TN T(F) -7

A(F)_T(F)~7T—|—F-(1—7r)
- oF -m
~aF-7m+F-(1-n)
7()4'7T—|—(1—7T)

O

Proof. For the first part of Claim 1, we simply extend the ROC curve T'(F") to equal zero for all
F < F(B), such that Lemma implies A(F) = 0 for these I'. Because C'(F') is monotonously
falling in F, we get limec_, ¢, ACC(C) = 0.

For the concave case of Claim 1, we extend the ROC curve linearly for F < F(B) using the line
connecting the origin to the point (F(B), T(F(B))). This yields a concave ROC curve: If it did not,
the slope of the newly added segment had to be too small for concavity to hold. We claim that in
this case, the known part of the ROC was not extendable to a concave ROC: A slope larger than the
proposed one on any sub-segment would have T'(F) hit the z—axis before the origin. This would
have forced the ROC curve to equal zero in an interval around F' = 0, precluding concavity because
T(1) =1

max

Now, the extended curve has slope «(F(B)) = T(FF((B%)), around the origin, and applying Proposi-
tion 2] yields
. a(F(B))m
1 AC) = = A(B
olim A a(FB))r + (1 —7) (B),

where the second equality uses Lemmal[]

For claim 2, we note that F(B) > 0 because B < limg_,o C(F'). Meanwhile T(F(B)) > 0 because
A(B) = A(F(B)) > 0. Thus, we simply construct the ROC curve by connecting (F(B), T(F(B)))
to (0, T(F(B))) by a horizontal line. The resulting ROC curve thus has T(0) > 0 and by Proposi-
tion a score with this ROC curve achieves limc_, ¢ (o) A(C) = 1.

If we assume the ROC curve to be concave, we know that its right-sided derivatives exist and are non-
increasing [Rockafellar| (1970). We then linearly extend the ROC curve from (F(B), T(F(B))) with
slope equal to the right-sided derivative T’, (F(B)) at F(B) to obtain the largest possible concave
extension of the ROC curve. There are now three cases: First, this extension hits the x— axis before
the origin. Because 7'(0) > 0, this does not yield a valid ROC curve, showing that the observed
scaling has not been compatible with a concave ROC to begin with. Second, we get 7'(0) > 0. In
that case, we obtain lim¢_, ¢ (o) A(C) = 1 by Proposition In the last case, we get T(0) = 0 and
thus lime_, ¢ 0y A(C') < 1. We claim that this can only happen if the right one-sided derivative of
A vanishes at F(B): For T(0) = 0 to happen, we need

g 1) = TEB)

T(F(B))
z—+FB) x —F(B) '

= TL(F(B)) = g

18
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But with this, we get
A(z) — A(F(B))

1i
v iHB)  x — F(B)
T(z)m B T(F(B))w
—  lim T(z)mr+z(1—m) T(F(B))m+F(B)(1—m)
x—+E(B) x —F(B)

o T@RTEB)T +FB)(1 = ) = TEB) (T ()7 + (1 - 7))
vt (= F(B)(T(R(B))m + F(B)(1 - m)(T (@) + (1 — 7))
. T(a)xF(B)(1 = m) = T(F(B))ra(1 — )

v+ ¥m) (@ — F(B))(T(F(B))r + F(B)(1 — m)(T(a)m + (1 — )

(- lm T(2)F(B) — T(F(B))z

«—=+FB) (x —F(B))(T'(F(B))r + F(B)(1 — m))(T(z)m + (1 — 7))

=(1-mm w_}iI&B)(T(F(B))W +FB)(1—m)(T(z)r + z(1 —m))

T(z)E(B) — T(E(B))z

1
d
e
=
|
pes!
=

 lim T(x)F(B) — T(F(B))z
z—+F(B) (x — F(B))

!

o EB)(T@) ~ T(E(B)) — ( — F(B)T(F(B))
z—+F(B) (r —F(B
=1 —m)n(T(F(B))r +F(B
=(1—-m)n(T(F(B))m +F(B
By the calculations at the start of the proof of Proposition|[I] this implies that the left side derivative
of ACC(C') has to vanish as well.

O

D.5 PROOF OF PROPOSITION[4]

Proof. We will first prove the integral formula, and prove the monotonicity statement, as
Proposition 8. Let f be a score with concave ROC curve T (F') for which Assumptionholds. Then
BoN accuracy ACC(gn) is non-decreasing in N.

later in Appendix

For the integral formula, we first notice that H(k,p) can be written as an integral involving the
ROC curve:

Lemma 2. Let f be a score for which Assumption[I| holds, and T : [0, 1] +— [0, 1] be the ROC curve
induced by f. Then we have

H(k,p) = {’16 Jo (1= (1 =T(F)?)(1 - F)’f—ldpg::oo

Proof. We prove the lemma for the case of absolutely continuous scores f(x) with a density func-
tion. The extension to discrete scores f(x) will be discussed later in Appendix
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Let Sy = {x1, -+ ,xn} be a set of N iid samples from the generator. We analyze the probability
that the selected output under Best-of-/N sampling is correct, conditional on exactly p of the IV
samples being positive (i.e., y(x;) = 1 for p values of 7). Denote k = N — p as the total number of
negative samples. Define S}, ..., Sz‘f as i.i.d. draws from the score distribution f(x) conditioned

ony(x) =1,and S7,...,S, analogously for y(x) = 0.

Then the conditional accuracy given p positives is:
E ly (arg [r]r;?x f(%)) > ylw) =p
1€

To compute this, observe that:

=Pr (maxSi+ > maij> .
i€[p] JE[K]

Pr <maxSi+ > z> =1-Pr(ST <2)?, Pr <maij < z> =Pr(S™ < 2)~.
i€[p] J€(k]

Assuming the density pg- (2) exists, the density of max; S} is:
Pmax - (Z) =k- Pr(Si < Z)kil "Ps- (Z)
Thus the conditional probability becomes:

Pr (max S;" > max S-_>
i€[p] jelk] 7

= /Pr (maxS+ > Z) * Pmax S— (Z) dz

= k:/ (1 —Pr(ST <2)?) - Pr(S™ < 2)F ' ps—(2)dz.

We use the ROC-based expressions:

FNR(z) = Pr(S* < 2), TNR(z) = Pr(S~ < 2),F(z) = 1 — TNR(2), T(F(z)) = 1 — FNR(z2),
and change variables by setting u = TNR(z) = 1 — F(z). Since 3—: = —pr(z), the change of
variables gives:

b= @ TED)) (- FE) s () ds
— k/l (1—(1—=T(F)?)(1-F)*1dF.
0

This final integral matches the definition of H(k, p), and averaging over p ~ Bin(V, ) yields the
desired result:

ACC(Q}C) = Ep~Bin(N,7r) [H(N —p,p)].
O
We now set a(F) :== (1 —F)(1 —x), b(F) :== w(1 — T(F)) such that ’(F') = a(F') + b(F'). We then
simplify

ACC(gn) = EpuB(r,n)H(n —p,p) (change of variable k = n — p)
=Epen(i—m)n)H(k,n — k)

-y (Z) ()R (1 — w)* H (k,n — k)
k=0

n 1

— " N =k — o)k 1 n—k\(1 _ mk—1

—nr+ 3 ()t =0t - 0= TEr 0 B

k=1
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= na” +Z( ) Bl — )k <1—k/ol((l—T(F))n-ku—F)k—ldF)

n 1
=nr"+1-nr" = (k> (m)" R (1 — w)kk/ (1= T(F)" (1 - F)F~1aF

k=1 0

. / > () (m)" (1 — ) (1 — T(R)™ (1 — B dF
(- /0 > (>

i kzlk(Db(F)"—ka(F)’f—ldF
1 n k(

(7" (1 = m) (1= T(E)" (1 — B L

=1-(1-m)
—1-(1— W)n/ Z)b(F)"’“a(F)kldF
0
n—1
—1-(1—m)n b(F F)F~1dF EW =02
w3 > ( L Jocer (=G
:1—(1—7r)n/0 Z("_1>b k=1 (F)k R
(binomial expansion: 37—, ("2 1)b" 1 Fa* = (a +b)" 1)
- (1—7T)n/0 (b(F) + a(F))"dF
1
=1-(1- W)n/o (¢(F))" ! dF.

D.6 PROOF OF THEOREM[I]

Proof. We divide the proof into two cases: Case 1, when T(0) > 0, and Case 2, when T(0) = 0.

Case 1: T(0) > 0. In this case, there is a threshold 7, such that F(7) = 0 while T(7) > 0. This
implies that all outputs x with f(z) > 7 are true positives (y(z) = 1) and that at least one such x has
positive probability Pr,.4[y = z] = ¢ > 0. This means that whenever our N samples contain one
of these x, Best-of-N will return a correct answer with y(z) = 1. But the probability that none of N
independent samples contains one of these x is at most (1 —c)?¥, which decays to zero exponentially.

Case 2: T(0) = 0. In this case, our objective is to show that the asymptotic performance of the
Best-of-V strategy is determined by the slope of the ROC curve T(F) near the origin.

Proof sketch: Recall that the expected performance is given by E[H (n—p, p)], where p ~ Bin(n, 7).
This expression is difficult to analyze directly due to the randomness of p, so our strategy is to
approximate it using the deterministic surrogate H(E[n — p],E[p]) = H((1 — 7m)n,mn) and then
argue in the limit (n — 00), these two expressions converge to the same value, namely

Jim E[H(n—p.p)] = lim H(E[n—pl.Ep)) = mg—

We now proceed to the complete proof. Recall the expression for H (k, p) as
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H(k,p) = k/o (1—(1=T(F)?)(1 -F)*1dF
— k/l(l —F)*1dF — k/l(l —T(F))?(1 — F)*" 1 dF
0 0

=1- k/l(l —T(F))P(1 — F)*" ! dF
0

Now consider H(n — p, p) with p ~ Bin(n, 7). Since E[p] = nx, we have:

H(E[n —p],E[p]) =1- n(l — 71')/0 (1 _ T(F))nﬂ'(l - F)n(l_ﬂ)_l JF.

We first show that when n — oo, the deterministic approximation H (E[n — p], E[p]) converges to a
closed-form expression that depends only on the initial slope of the ROC curve T'(0) and the class
prior 7:

Lemma 3. Let T: [0,1] — [0, 1] denote the true positive rate as a function of the false positive rate
(i.e., the ROC curve), and assume T(0) = 0 and that T is differentiable at 0. Then,

i H(Efn — ) Elp) = g 07—

where T'(0) denotes the derivative of the ROC curve at the origin (i.e., its initial slope), and & €
(0, 1) is the class prior probability of a positive instance.

Proof. To analyze the limit of H(E[n — p], E[p]), we first perform a change of variables. Let u =
n(1l — m)F, so that du = n(1 — ) dF, and rewrite the integral as:

1
H(]E[n *P},E[p}) =1- n(l — 71')/0 (1 _ T(F))”ﬂ(l . F)n(lfw)fl dF

We extend the upper limit of the integral to infinity by introducing an indicator function:

H(E[n — p],E[p])

To justify exchanging the limit and the integral as n — oo, we apply the Dominated Convergence
Theorem. The indicator function is bounded above by 1, and for the other terms, we use the inequal-

(i) o ()=

tyl—z < e
(1 _ n(1u_7r))n(l_ﬂ)_1 < exp (_W> |

The product of the two terms is thus dominated by an exponential function with a negative exponent,
which is integrable over u € [0, c0). Thus, we may take the limit inside the integral:
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Tim_ H(E[n — p],E[p]) =1 - /OOO Tim. (1 -T <n(1“_7r)>)m (1 - n(lu_ﬁ))n(”)l du.

We now compute the pointwise limit of the integrand. The key term is:

(i)

Claim 1. Let T be differentiable at 0 with T(0) = 0. Then:

(i) o (2m)

Proof. We rewrite using the exponential:

(1)) e (e (-7 ()

Letting t = %L and applying L’Hopital’s Rule:

U 7 log (1—T(—1tj‘ﬂ)) .
lim nmlog (1 -T <()> = lim (change of variable t = 1)
n

n— oo 1-— 71') t—0 t n
— - (hm 4 1og (1 -7 ( fu ))) (L’Hopital's Rule)
t—0 dt 1—m
. uT' ()
T S - TE))
. uT' ()
=T
~_uT'(0)
(1—m)
U
T I- WT/(O)
0

The second term converges similarly:

u n(l—m)—1 -
1l—-— —e v
n(l —m)

U

lim H(E[n —p],E[p]) =1 —/ e T T O g gy
0

n— o0
=1 —/ exp (— (1 T T'(0) + 1) u) du (Claim[T)
0 — T

Putting it all together:

1
=1
ﬁT/(O) +1
T (0)m
TOr+1-—7
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To complete the proof, it remains to show that
Jim E(H(n —p,p)) = lim H(E[n —p],E[p])

We approach this by conditioning on the event that the random variable p ~ Bin(n, 7) concentrates
near its expectation. Fix an arbitrary ¢ > 0, and define the high-probability event

Et:{p_nE[p] <t},

which corresponds to the event that the empirical frequency of positive samples deviates from its
mean by less than ¢. Conditioned on this event, we can decompose the expectation in the following
way:

E[H(n —p,p)| = Pr(Ey) - E[H(n — p, p) | E¢] + Pr(=Ey) - E[H(n — p,p) | E4].

To proceed, we use the following lemma, which shows that the success probability H(n — p,p)
increases with the number of positive samples p:

Lemma 4. For fixedn, H(n —p,p) =1— (n —p) fol(l — T(F))P(1 — F)"~P~LdF increases in p.
Proof. For integer values of p, this follows from the definition of

H(n —p,p) =Pr <max.5'i+ > max S)

i€lp] j€ln—p] 7

<Pr<max Si+> max S-)

i€lp+1] j€n—p] 7
< Pr ( max Sj > max Sv>
i€[p+1] j€ln—p-1] 7
by strict inclusion of the events in the corresponding probabilities.
For non-integer values of p, we define the random variables ST and S via
Pr(S¥ > 2) = Pr(S* > 2)°,

and assume them to be independent from the Sii. Then

Pr (max{m&{u}c St.SH} > z) =1-Pr(ST < 2)Pte,
1€|p

Pr (max{ max S , ST z) = Pr(S~ < z)"Pte,

Jj€[n—p]

Assuming the density pg- (z) exists, the density of S,

= max{max;e[, 5 S; ;S }} thus
equals:

n—p-+e

Pmaxs: (’Z) = (n_p+€) 'PI‘(S_ < Z)n_p_1+8 *Ps— (Z)

n—p+e
Repeating the steps from Lemma 2} we get

Hn—p—e,p+e)="Pr (max{maxS , ST} > max{ max S, S })
i€[p] j€ln—p—1]

for any positive integer p and £ € (0,1). For any positive integers p, ¢ such that p + ¢ < n and
€ (0,1), we then have

Hn—-p—q—¢ep+q+e)="Pr (max{ max S, SF} > max{ max Sj_’Sl_e})
i€[p+q] j€[n—p—q—1]

ZPr(max Si+> max Sf)

i€[p+q] jE€n—p—q| J

> Pr (maxS+> max S )

i€lp] Jj€[n—p] d
= H(?’L _pap)a

24



Under review as a conference paper at ICLR 2026

where the second step uses that we can couple S;,_, . and S, such that the latter is larger

with probability one, due to its CDF being larger at any point. An analogous argument works for
p — q — &, establishing monotonicity. O
Recall the decomposition of the expectation as:

E[H(n —p,p)l = E[H(n —p,p) | Ei] - P(Ey) + E[H(n —p,p) | ~Ei] - P(=Ey).

By Hoeffding’s inequality, P(E;) — 1 as n — oo for any fixed ¢t > 0. Since H(n — p,p) € [0,1],
the second term vanishes in the limit. Hence, for any ¢ > 0

limsup E[H (n — p,p)] = limsup E[H (n — p,p) | £
n—oo n—oo

and
liminf E[H(n — p,p)] = iminf E[H(n — p,p) | E¢].
n— oo

n— oo

Now, fix t > 0 and consider the conditional expectation over £y = { |¥’ < t}. Since H(n—p, p)
is monotone increasing in p (by Lemmaf)), on E; we always have:

Hn(l —7+1t),n(r—t)) < H(n—p,p) < Hn(l — 7 —t),n(r +1)).

Therefore,
H(n(1 = 7 +t),n(r — 1)) < E[H(n — p,p) | Bi] < Hn(1 = 7 — ), n(x +1)).

This means that
limsup E[H (n — p, p)] = limsup E[H (n — p,p) | Et]

n— 00 n—oo
<limsup H(n(1 — 7 —t),n(x +t))
n— oo
= lim Hn(l—m —t),n(r +1))
n—oo

T'(0) (7 +t)
T'(0)(mr+t)+1— (T +1)

n—oo n— o0

> liminf H(n(l — 7 +t),n(x —t))

n— oo

)
)

liminf E[H (n — p,p)] = liminf E[H(n — p,p) | F¢]
(

= lim Hn(l —7+1t),n(r —1t))

 TOE-1
S TO)(r—t)+1—(7m—t)

But as % is continuous in 7 and ¢ > 0 was chosen arbitrarily, we get

. T (0)7 .
hrflﬂjol;p E[H(n—p,p)] < TOr+1-r < liminf E[H (n —p, p)]
and thus ‘)
T(0)m
lim E[H(n — =\
A EH =20 = T 11—

D.7 PROOF OF PROPOSITION[]]

We make use of the following Lemma.

Lemma 5 (Layer-cake reformulation for 1)(F)N=1). Let ¢ : [0,1] — [0,1] be a convex and de-
creasing function and N > 2. Set M = maxp 1(F). Then:

1 M
P(F)N"1dF = (N - 1) Y~ Ya)-aN "2 da.

0 0
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Proof of Lemmald] Since v is convex and decreasing, it is continuous on (0, 1]. Furthermore, as the
exact value of ¢(0) does not affect the integral, we can without loss of generality assume that ¢ is
continuous on the whole interval [0, 1]. This means that the inverse 1) ~! is a continuous function
defined on [0, M]. We now begin by applying the layer-cake representation to the non-negative
function ¥ (F)N =1, Since (F) is decreasing and bounded in [0, 1], we can write:

1
0

/11/1(F)N‘1dF :/ Pl (FYN=1 > o) da
0

MV 1
= /0 Pl (F)N =1 > a] da + /MN—I Ply(F)N~! > a]da

MY
= / Y (aN=Y) da + 0.
0

The last step uses that for the left term o)(F)N ! > a is equivalent to F' < ¢~ (a*/(N=1) since ¢
is decreasing. For the right term, we use that ¢»(F)N~! < MN~1 with probability one.

Now we perform a change of variables. Let u = a'/(N=1), so that a = wN~' and da = (N —
1)u™N =2 du. Then:

MY M
[ e @ e [ e ) (V- R
0 0

M
:(N—l)/o qpfl(u)-uN72du.

We now prove Proposition [7lusing Lemma 5}
Proof of Proposition[/] By Proposition[d] we have
1
ACC(gn) =1— (1 —m)N / Y(F)N-1dF,
0

where Y(F) = (1 —m)(1 — F) + n(1 — T(F')) is convex and decreasing with ¢(1) = 0 and
¥(0) = 1 — 77°(0). Lemma[5]then gives us

1
ACC(gn) =1—(1— w)N/O (PN AR

1—7T(0)
:1—(1—7T)N(N—1)/ Y~ Ya) -V 2dF.
0

D.8 PROOF OF PROPOSITION[3]

Proof. Fix N € N. By definition, we have
1
C(Fn) = = N.
(Fiv) T(Fy)7 +Fn(1—7)

Then the expected accuracy of rejection sampling is

ACC(g"*~) = N -7 -T(Fy).

By Proposition|/} due to concavity of the ROC, BoN accuracy is given by:

1—-7T(0)
ACC(gn) =1— (1 —m)(N? — N)/ Y (a)a™ 2 da,
0
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where (F) = (1 —7)(1 — F) + w(1 — T(F)) is the probability that a sample is rejected.

To compare the two accuracies, we rewrite the inequality to be shown:
1—7T(0)
N-7-T(Fy)>1—-(1—-7)(N?—N) / Y a)aN ?da.
0

Since we know that:

1
T(FN)+(1—7T) -y = N,
we can rewrite the left-hand side:

NTFT(FN) = 1—N(1—7T)FN

So it is sufficient to prove:

1—7T(0)
L-NI-mEy 210 -aNW -1 [ e @ 2
0

which is equivalent to proving:
1—=T(0)
Fy < (N - 1)/ Y~ a)a" 2da.
0

We rewrite Fy in terms of . Recall that
1
C(Fn) = = N.
(Fiv) T(Fy)m+Fny(1—m)

Using the identity ¢)(F) = 1 — (T(F)m + F(1 — 7)), we obtain:

zD(FN):l—i:E, SO FN:wfl (Nl)

N N N
In particular, this implies that ¢)~!(x) is defined for 0 < x < Y=L and it suffices to show:

_ 1—7T(0)
¢*1(NN 1) < (N — 1)/0 ¢71(a)aN72da.

We observe that the right hand side nearly matches the expected value of i_l(a) under a Beta
distribution with parameters (N — 1,1):

Lemma 6 (Beta expectation form of layer-cake integral). Let f : [0,1] — [0, 1] be a function, and
let N > 2. Then:

1
N — 1)/O fla)- a2 da = Equpetav—1,1) [f(a)] .

Proof. Recall that the probability density function of the Beta(«, 3) distribution on [0, 1] is given
by

21— 2)P71 forz € [0,1],

1
7o) = Blarp)

where B(a, ) is the Beta function.

For the case « = N — 1 and 8 = 1, since B(N — 1,1) = we have:

e
pa(z) = (N —1)zV72 z€[0,1]

Therefore, the expectation of f(a) under a ~ Beta(N — 1,1) is

EaNBeta(N—l 1) / f ) N-2 da.
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Now, since that the ROC curve T'(F') is concave, it follows that 1)(F') is convex, and hence 1)~ ! is
convex on its image. We extend the domain by setting

1, [Yv™Ya) fa<M
v (a)_{o ifa>M"

The extended function @ZAfl remains convex on [0, 1] because 1)~ was decreasing with value 0 at
the right end of its domain.

We can therefore apply Jensen’s inequality to obtain:

N-1 5 N-1 7
e (N) =t (N) =" (BanBeta(v—1,1)[a])

1 1—-7T(0)
< Epav- 10l @) = (V=) [ 5@ Pda= (V-1 [ 6 @e .
0 0
This concludes the proof. O

D.9 PROOF OF THEOREM[2|

Proof. We begin by considering alternative equivalent characterizations of concave ROC curves:

Claim 2. Ler T : [0,1] — [0, 1] be an ROC curve for a score f. Then the following are equivalent:

(a) T is piecewise linear, strictly increasing, and concave withT(1) = 1, and for all F € [0, 1],
F<T(F)<1.

(b) The function : [0,1] — [0,1 — #T(0)] witho(F) = (1 —m)(1 = F)+n(1 = T(F)) is
piecewise linear, convex, strictly decreasing with (1) = 0, and satisfies

1-m(1-F) <yYF) <1—-F  foral F€[0,1].

(¢) The inverse function =1 : [0, 1 — xT(0)] — [0,1] is piecewise linear, convex, strictly
decreasing with 1)~*(0) = 1, and satisfies

a

— <y Ya) < 1—a  forallac|0,1—7T(0)].

Proof. Going from a) to b) is simple: Since ¢ (F') is a convex combination of the piece-wise linear,
strictly decreasing and convex functions (1 — F') and 1 — T'(F), it has the same properties. The
bounds follow directly from the bounds on T'(F'). The reverse follows from the same argument,
again using that ¢(F') and T'(F') are linear transformations of each other. Lastly, it is easy to see
that ¢(1) = 0 is equivalent to 7'(1) = 1.

For the equivalence of b) and c), we first note that the inverse of a strictly decreasing piece-wise
linear function always exists and is piece-wise linear. In addition, ¥(1) = 0 is clearly equivalent
to ’l/J_l (1) = 0. Next, we need that the inverse of any convex, decreasing function f is convex and
decreasing. We begin with the decreasing part: Consider f(x) > f(y). Then since f was decreasing

[T @) =e<y= ()
Now for convexity, we need to show that
FTHOS (@) + (1 =N f(@) S ATHf (@) + (=N ()

for any A € [0, 1]. We use the convexity of f and that f~! is decreasing to calculate:

FH @)+ A =N f (@) < FHFOe+ (1= N)y)
=X+ (1-Ny

=71 @)+ Q=N W)
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It remains to show the equivalence of the bounds. For this, we note that the respective bounds for
1 and ¢~ (F) are inverse of each other, so it is sufficient to show that for decreasing f, g, we have
f(x) S g(x) < f'(y) < g *(y). For this, consider y = f(x). Then,

Tl <97 'y) = ' (f@) <g ' (f(=)
= g(f7'(f@) = glg” " (f(2)))

= g(x) = f(z)

and analogous for >. O

With this, we set 7 := 1 — 77(0) € [1 — 7, 1] and extend 1/~ by zero to

0= {710 2€07)

0, a € (t,1].
By Proposition
1
ACCy-1(gn) =1— (1= m)N(N — 1)/ ¥ Ya) oV 2 da. (12)
0
The extension preserves convexity and monotonicity, with ¢)=2(0) = 1, ¢y"*(1) = 0, and the

pointwise bounds

max{o, 1- @ } <P Ya)<1l-a (ac0,1)). (13)

™

In particular, ACC,,—1 (gn) is linear and (L )-continuous in ¥ =1, such that whenever we can express
o0
$Ha) =) wib;}(a)
i=0
as the L;-limit of sums of basis functions 3;1, we get

ACCy-1(gn) = ZwiAcc,;;il (gn).
=0

For the basis functions ZA);}, we consider the family of ’hinge” functions:

Definition 2 (Hinge family). For « € (0, 1], define the hinge function as

a
R 1——, a<lu,
bl (a) = x - a € [0,1]. (14)
0, a>ux,
With these, we have that
?}f_lﬁ(a) = max{0,1 — 1 ¢ } <y Ha) < 1—a:l;f1(a). (15)
—m

We now claim that 1&‘1 fulfills the layed-out conditions if and only if it can be written as a con-
vex combination ¢~ = 3 w;b; ! with positive weights w; adding up to one, z; < 1 and
oo 1 1.
Dimo Wiy < 1
=0 T 1—7

Lemma 7 (Characterization of 1)~ 1). A function )= : [0,1] — [0, 1] satisfies the convexity, mono-
tonicity, and slope constraints if and only if it can be written as

'(/A}_l(a) = Zwi l;;il(a)v a € [Oa 1]v
=0

where by (a) := max{1 — a/x, 0} are the hinge functions, and the parameters satisfy

wi 2 0, Yowi=1  x<l, ZQT S
i=0 i=0 "t
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Proof. (=:) We begin by showing that any such convex combination gives us a valid 1/3_1:
Since the b 1 are piece-wise linear, decreasing, convex, and fulfill the boundary conditions, the
same is true for any convex combination. Similarly, the b, ! are point-wise increasing in x, such
that b1_1 is an upper bound for any such convex combination. Lastly, any convex combination
Y = 3 jwby !t with Y7 w%% < L has its derivative lower bounded by fﬁ while

being a positive function, such that 1/3_1 is lower bounded by Ef_lﬂ.

(<:) Now, we want to show that any valid 1[)_1 can be written as such a convex combination. We
thus fix any piece-wise linear, convex and strictly decreasing ¢~ with ¢»=1(0) = 1, as well as

a
11— —— <y Ha)<1-—
——<v'@<1-a
forall a € [0,1 — «T(0)].
We explicitly construct the sum representation as follows, for now ignoring the constraints: Let
(I,)nen be an enumeration of the pieces of 1) ~1, ordered from right to left. We build the sum
inductively, matching the behavior of 1) ~! on the intervals (I,,), < at the kth step.

For the base case, we start with the empty sum, matching 1[3*1 on the empty set.

Now for the induction case, we assume that

k

- Zwif);l

i=0
on the intervals (I;,)x<n. We now simply pick z11 = ag, where ay, is the left endpoint of I;, and
pick

k

- 1
Wet1 = Tpyr(Qper — Y w;—
k1 = Try1(arpr Z Zﬂii)’
1=0
where a4 is the slope of 1&‘1 on the interval I such that
B
Qg1 =— Y w;—
k+1 Z i ;
1=0
is indeed equal to the slope of the constructed sum ¢)~! = Zfiol wiI;;il. Because b}, ., (a) =0 for

a > x, this does not change the sum’s behavior on the previous intervals, so that the sum matches
yp~Yonall I, fornuptok + 1.

There thus exists sequences w; and x; such that
oo
51 .
M a) = wiby !,
i=0

where the series converges point-wise, and thus in L; via dominated convergence (because both the
b~! and 1)~!) are bounded.

We now claim that the constructed wy and x; fulfill our constraints: By construction, we have
z; < 1. Furthermore, because 1&_1 is convex and the slopes « thus increase (we go from right
to left!), all wy, are positive. Next, if Y.~ w; # 1, the boundary condition ¢~1(0) = 1 would be
violated. Lastly, for the sake of contradiction, assume that Z;’io wzx% > ﬁ Then, we can find a

finite k such that Zf:o w; mi > ﬁ There then exists an interval I such that IA);} (a) =1- %a for

all @ € I and 7 < k. But that means that fora € I
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P Ha) =D wib, N a)
=0
k oo
=> wiby a)+ > wib, ! (a)
=0 i=k+1
k 00
< Zwif);l (a) + Z wj
=0 i=k+1
k a 9]
=D will=—)+ > wi
i=0 ¢ i=k+1
k
=1- Z wzg
i=0
a
<1 T
which contradicts Equation (T3)). O

By Proposition [7, ACC( g]J:,) only depends on the function ¢)~! induced by f. By Lemma (7| there
are scores f with concave ROC curves induced by any

1

1—m

)=1(a) = b=1(a) in L'([0,1 ;> =1, 3 %< 4 1).
v~ (a) ;wszi (a) in L7([0,1]), wl_O,zi:wZ ,zi:wi_ , z; € (0,1]

Now, using linearity, L'-continuity, and slightly abusing notation by parameterizing the BoN accu-
-1
racy as ACC(Q% ), we get

7—1

-1 i > 1 ~
ACC(gy ) =Y wiACC (gfv ) =1-(1—-7)N(N-1) Zw/ b, (a) a2 da.
i=1 0

=1

For each hinge b; ' (a) = max{1 — a/x,0} we can write

1 x
71 N—2 ; _ _O8\ N2, _ T
/0 b, (a)a da—/o (1 x)a da NN-TD)

Hence the accuracy simplifies to the closed form

ACC(gd ) =1-(1-m wizN (16)

i
=1

Remark 1. The operator norm of Ax on L'([0,1]) equals (1 — )N (N — 1), therefore, while the
passage to the limit above is valid for each fixed N, the convergence need not be uniform in N.

O

D.10 PROOF OF PROPOSITION[§]

Consider any ¢ > 0. Assume, that there is a convex combination of hinge functions e
Yo w;b, ! such that

P | €
— <

where 1)~ is defined as in Appendix
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Repeating the steps from Theorem 2] we get
T—1 T—1 k
ACC(giy4,) —ACC(gy ) =(1—-m)> wia¥ ' —aN)>0
=0
Since ACC(gy) — ACC(g%),,) is 2N (N + 1)—Lipschitz in the L; norm via the representation

from Proposition this means that ACC(g%;ll) + € > ACC g%il). Because € was arbitrary, we
thus have
ACCy-1 (gn+1) = ACCyo1(gn).

It remains to show that we can indeed L; approximate any 1/3_1 by convex combinations of hinge
functions. This is established by the following lemma:

Lemma 8. The set of convex combinations of hinge functions is L1-dense in the set of all decreasing,
convex functions 1)~ on [0, 1] with the boundary conditions 1)=1(0) = 1, ~1(1) = 0.

Proof. The key idea is that we can write piecewise linear decreasing convex functions as convex
combinations of hinge functions (Step 1), and those are already dense in the space of convex func-
tions (Step 2):

1. (Step 1): For any convex piece-wise linear function 1~ with finitely many pieces and
values in [0, 1], we use the construction from the proof of Lemmato explicitly write ¢!
as a convex combination of hinge functions. Because )~! has finitely many pieces, the
resulting convex combination is finite.

2. (Step 2): Now, given any convex function 1/3_1 with the boundary conditions, we can fix
n and evaluate 1)~! on the points K = {% :k € NAO < k < n}. Then the linear
interpolator ¢)~! of {a,¢)"'(a) : = € K} is a convex piece-wise linear function with
finitely many pieces that fulfills the boundary conditions. In addition,

1 n—1 k+1
[ 1@ = alda= Y [T 1 @ - o @)lda
0 k

k=0""n

n—1
1 =1 -1
< - _
<>y, @) = v @)

k=0 n

n—1

2L

<>

k=0

2L
=— =0,

n

where L is the (uniform) Lipschitz constant of f, which exists for all convex real functions
on compact intervals Lan| (2020).

O

D.11 PROOF OF PROPOSITION[@]

Proof. We first focus on the non-concave case: There, via Propositiond BoN accuracy is given by:

ACC(gf) =1~ (1 - mN / ()N,

where ¥(F) = (1 — 7m)(1 — F) + w(1 — T;(F")) is the probability that a sample is rejected given
FPR F for the score f.

For § > 0 consider f with
T/F) :F>6
T:(F) = .
f() {0 :F<$§
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Then by theorem limy oo ACC(g]f;,) =0.
But ¢ (F') = 1 for F > 4, such that

IACC(gl) — ACC(eh) = (1= mIN| [ wpB)Y 1 aF = [yt ar
0 0
=(1—7T)N|/ b (F)YNTH =g (F)N 1)

1—wN|/ Ur(F)N = (F) Y

because 1)+ is between zero and one. In particular, this is smaller than ¢ whenever 6 < m For

a fixed upper bound on N < n, we can simply choose § = ﬁ
Now, consider f’ with

T;

f,(F)_{Tf(F) :F>6

Tj((S) IFS(S’

which leads to lim y_ o ACC(ng/ ) = 1 according to the second case of Theorem

In this case,
o 5
IACC(5h) — ACC()| = (1 = mIN| [ g (F)Y" =y, ()" aF)
= 1—71'N|/ ¢f _wf(5)N_1dF|

<(1-m)N2§

from where we proceed as before, this time setting § = ﬁ

For the concave case, our argument has two steps: First, we show that there is a convex, decreasing
piece-wise linear 1) ~! with 1) =1(0) = 1 and 1)~ *(1) = 0 such that

p1 $t
[ACC(gy ) —ACC(gy )| <

N

for all N < n. Then, we show that for any piece-wise linear 1/) 1. there is another convex decreasing
piece-wise linear ¢~ with ¢y~1(0) = 1 and ¢y~ (1) = 0 such that limy _, o ACC(gN ) =1and

7—1

J-1 -
|ACC(gy ) — ACC(gly )| <

N N

Then by Theorem |2} there is a score with concave ROC that induces 1;_1, and by the triangle
inequality that score meets the theorem statement.

The first step directly follows from Lemma|[8|combined with the (uniform) N (N —1)—Lipschitzness
in Ly of ACC(,y(gn) for N < n. We note that the 1)~ constructed that way fulfills the linear con-
straints from Equation , as a linear interpolation of the function v~ that fulfills the constraints.

For the second step using Theorem | we can write ACC(g}%,ﬁl) 1-(1-m)Y.2, wzb1 N 1,
where b; = - and the x; fulfill the constraints from Theorem 2|because 1/1 ! fulfilled Equation (1

Without loss of generality, we assume all b; > 1 to be distinct as well as b; = 1 and wy > 0.

33



Under review as a conference paper at ICLR 2026

Then we have
1 Pt
c= lim ACC(gy )
1N 1
= lim 1—(1—m) sz

N —o0

=1-(1- ﬂ')w1
N—-1 . . -
where we used bl — 0 and applied dominated convergence to exchange the sum and limit,
N—1 . L
using that w; - < w; which sum up to one. This implies that wy = +=¢ > 0. Then for

. N-1

fixed e > 0 and n € N, there is a constant § > 0, such that |%+6 and
N-1 | N-1

|b27ﬂ6 T by | < 4wz (1 )

¢ in a way that guarantees by — 26 > 1.

B 1| < 4w-(61 )
for all N < n. In particular, because b, > 1, we can find such

With this, we define by = 1406, by = by — %26 and b; = b; fori > 2, as well as &; = L. With this,
sz(bz — Bz) = —w15 + wgﬂ(S = O7
: w2
such that b; fulﬁlls the constraints from Theoreml 2| This means there is a score f with concave ROC
such that ACC(g% ) =1— (1 — ) S, w; blN !

Because all b; are strictly larger than one, we have

S ) 1N—1
JimACC(g )—lf(lfﬁ)ZwiA}gnool;—i =1.
At the same time for N < n,

’Lﬁ_l 12}_1 1 N 1 N-1 1N—1
ACC — ACC < |(1— -1 1-— - —
ACClal) —ACCER I < M-y — DIl -mhueg =g g |

<E4f
- 4

[ NN e NS e}

E RELAXING ABSOLUTE CONTINUITY

Verbally prompting LLMs for risk score estimates has been shown to effectively produce calibrated
and accurate scores (Cruz et al.}|2024), but can also lead to limited score resolution (since in practice
only a few discrete score values are generated by the model). However, many of our proofs require
the score to be absolutely continuous. Despite this, empirically, our theoretical predictions remain
valid across the board. In this section, we resolve this discrepancy, showing how our theory extends
to discrete scores via a small modification to the definition of the ROC curvd'l

Assumption I requires the score f(x) to be continuous and have a density. However, in practice
such as for our experiments in Section @ the scores f(z) are often discrete, taking on values
in a finite set S. In this section, we show that a small modification of the ROC curve, which
results in a smoothed version of f which we call f, happens to coincide with how ROC curves are
plotted in the popular sk1learn package and makes our theoretical results work in the discrete case:

!This modification happens to coincide with the way the popular sk1earn package plots ROC curves

34



Under review as a conference paper at ICLR 2026

Definition 3 (Smoothed Score f ). Let f(x) be a discrete scoring function that takes on finitely many
values s € S, and let € > ( denote the smallest difference between any two distinct values in S. We
define the smoothed score f as:

J@) = f(@:) + 56

where each &; ~ Unif[—1, 1] is an independent random variable. The resulting function f (z) has a
density.

We will show that a) the ROC curve of f is achieved by linearly interpolating the points
(FT(F) = max {T(g,h) : h € H(f). Flg,h) = F}),

exactly as done in sklearn, that b) f induces the same accuracy for BoN as f, and c) that the

scaling of rejection sampling for f is the same as the scaling for rejection sampling, allowing for
mixtures of adjacent thresholds 7.

f interpolates the ROC curve of f We now show that the ROC curve induced by f is a linear
interpolation of the stepwise ROC curve defined by f. For discrete scores, the ROC curve

max {T(g, h) : h € H(f), F(g,h) < F}

is a step function, since it only increases at values of F corresponding to thresholds h™ where 7 € S
is one of the finitely many values taken by f(z).

First, we show that f exactly recovers the endpoints of each step in the ROC curve induced by
f. Suppose f(x1) < f(x2) are two adjacent values in S. Setting the threshold 7 = f(x1) — §
ensures that all  with f(x) > f(x1) are accepted (with probability 1), while all others are rejected.
This yields the same T/F point as thresholding at 7 = f(z1) on the original function f. Similarly,
thresholding at 7 = f(x2) — § recovers the ROC point corresponding to f(x2). Hence, f retains
the same step endpoints as f.

Next, consider any threshold 7 that lies strictly between f(x1) and f(x2), namely

7= f(z1) + <q - ;) e forsome ¢ € [0,1].

This threshold induces the following acceptance behavior:

o any 2’ such that f(2’) > f(x2) will be accepted with probability one.

» z7 will be accepted if and only if the corresponding noise & exceeds 2g — 1, which happens
with probability q.

Thus, using this threshold for fis equivalent to using the threshold f(z1) with probability ¢ and
the threshold f(z2) with probability 1 — ¢ for the original score f, which is equivalent to using a
randomized threshold.

This random threshold behavior leads to the convex combination of ROC points, i.e., linearly inter-
polates between them Fawcett| (2006).

BoN Accuracy is unchanged with f We condition on the event that k out of N samples x achieve
the (sample) maximum of the score f(x). Then, BoN on f picks one of these = uniformly at random.

Thus, we need to show that BoN on f does the same.

By construction of the noise, only samples z; that maximize f(x;) can maximize f(z;) with nonzero

probability. Among these, BoN on f picks the one for which the noise variable ¢; is maximized.
But because the &; are IID, this amounts to picking one of the x; maximizing f(z;), uniformly at
random.
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F ADDITIONAL EMPIRICAL RESULTS

This section provides additional empirical evidence to support our theoretical results, using different
generator models, different verifier models, and different GSM8K test questions. These questions
were chosen by running the Qwen3-1. 7B generator on the whole GSM8K test set and selecting
the first questions that were answered incorrectly.

Implementation  details. Generator model responses are evaluated using the
lm-evaluation-harness (Gao et al) [2024) package. Verifier models receive the task
description, the test question, and the generator model’s chain-of-thought and answer. For each
generator response x, the verifier is prompted to reason over it step-by-step and to output a
correctness risk score f(x) at the end of its response. On MATHS00, both generator and verifier
models are capped to produce at most 5K output tokens for each answer. Model outputs are
uncapped for GSMS8K, as answers were generally much shorter, hence generation length was not an
issue. In some cases, we sample multiple risk scores f(x) for the same verifier and average them in
order to obtain a less noisy score. Prompt templates and examples are shown in Appendix [G}

For GSMB8K, we evaluate y(z) via exact match of the bracketed answer. As MATH500 often allows
for multiple correct phrasings of the same answer, we use the math-verify package to parse
answers and compare them to the ground truth in order to obtain y(z).

For the aggregate results in Figure i} we cap RS compute at 25 and output a “null” with label
y(z) = 0if no sample is accepted after sampling 25 times.

Verifier ROC Rejection Sampling Best-of-n

N
o

L, AR, S . S X Q1.7B
£ o8 e 09 ) 0.9 = Q4B
© . =
Py e 208 of 0.8 /x/ X Q14B
208 7 8 P X Q328
§ 04 § 0.7 07 X —— Predicted
o <06 - 06 /

2 0.2 /
= 0.5 05  /
0.0
0.0 0.5 1.0 1 2 3 1 2 3 4 5

False Positive Rate Number of Generations Number of Generations
Figure F.1: Empirical performance (lines) of rejection sampling (middle) and BoN (right) on a
GSMBEK test question (¢ = 2), overlaid with predicted theoretical performance (x markers). Verifi-
cation score obtained from a single chain of thought. Generator: Qwen3-1. 7B.
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Figure F.2: Empirical performance (lines) of rejection sampling (middle) and BoN (right) on a
GSMSK test question (¢ = 7), overlaid with predicted theoretical performance (x markers). Verifi-
cation score obtained from a single chain of thought. Generator: Qwen3-1.7B.

36



Under review as a conference paper at ICLR 2026

Verifier ROC Rejection Sampling Best-of-n
0.90 0.90 X X X Q1.7B
o 3‘ y x
E ....... B o ¥ M o e = X % Q48
« 2085 # 0.85 [ X Q14B
2 © 4 / X Q328
a = / o
8 9 0.80 0.80 — Predicted
a < f /
|‘_:-, 0.75 0.75 -/
,&7 X Vx—x—x—x
0.0 0.5 1.0 1.0 1.2 1.4 1.6 1 2 3 4 5
False Positive Rate Number of Generations Number of Generations

Figure F.3: Empirical performance (lines) of rejection sampling (middle) and BoN (right) on a
GSMSK test question (¢ = 7), overlaid with predicted theoretical performance (x markers). Verifi-
cation score obtained from a single chain of thought. Generator: Qwen3-4B.
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Figure F4: Empirical performance (lines) of rejection sampling (middle) and BoN (right) on a
GSMSK test question (¢ = 8), overlaid with predicted theoretical performance (x markers). Verifi-
cation score obtained from a single chain of thought. Generator: Qwen3-4B.
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Figure E.5: A version of Fig. 3| on a different test question, ¢ = 7. The same trend is observed:
rejection sampling uses significantly less average compute than BoN for the same accuracy gain.
Verification score obtained from a single chain of thought. Generator: I.1ama-3.2-3B, with 6.7%
generation accuracy.
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G GENERATION AND VERIFICATION PROMPTS

Listing [T| shows boiler-plate Python code used to encode GSM8K input document questions with
few-shot examples. The output of this function will be tokenized and sent to the LLM gener-
ator model. The boxes that follow show the system prompt used for the LLM generator mod-
els, and task definition prompt used for the LLM verifier models. We use the HuggingFace
transformers package for LLM completions. Note, that we use the same
prompting strategy for Llama and Qwen3 models; in particular, we do not make use of Qwen3’s
thinking” mode.

def encode_with_chat_template(
self: Generator,
question: str,
task: Task,
num_fewshot: int,
) —> str:
"""Encode the input question and few-shot examples using a chat
template. """
conversation: list[dict] = []
if self.system_prompt:
conversation = [
{"role": "system", "content": self.system_prompt}

# Add fewshot examples
for fewshot_example in task.fewshot_examples (num_fewshot, self.rng):

# Add question as user message
conversation.append ({
"role": "user",
"content": f"Question: {fewshot_example[’question’]}",

b

# Add answer as assistant message
conversation.append ({

"role": "assistant",

"content": f"Answer: {fewshot_example[’answer’]}",

b

# Finally, add the task question as a user message
conversation.append ({

"role": "user",

"content": f"Question: {question}",

})

# Apply prompt template.

# > add_generation_prompt=True will add the tokens to signal the
start

# > of the assistant’s turn.

prompt_up_to_assistant_turn = self.tokenizer.apply_chat_template (
conversation=conversation,
tokenize=False,
add_generation_prompt=True,

)

# Append the desired prefix for the assistant’s response
encoded_prompt = prompt_up_to_assistant_turn + "Answer:"

return encoded_prompt

Listing 1: Generator GSMS8K chat-template encoding function, using the transformers
package.
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Generator GSMS8K System Prompt

You are a helpful assistant that solves math problems. Think step by step. After reasoning,
provide your answer in a separate line using the format: #### <answer>

.

Generator MATHS500 System Prompt

You are a helpful assistant that solves math problems. Think step by step. After reasoning,
provide your answer in a separate line using the format: \\boxed{answer}

(. J

Verifier Score Prompt

You are a helpful assistant that verifies the correctness of a response to a question. Think
step by step, carefully reasoning over each step of the response. Finally, your assessment
should end with a score between 0 and 10 indicating how likely the response is to be correct.
Your correctness score must strictly follow the format ”[[ <number>]]"; for example, [[0]]”
means the response is definitely incorrect and ”’[[10]]” means the response is definitely cor-
rect.

&
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