
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING TO CONTEXTUALIZE WEB PAGES
FOR ENHANCED DECISION MAKING BY LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have led to a growing inter-
est in developing LLM-based agents for automating web tasks. However, these
agents often struggle with even simple tasks on real-world websites due to their
limited capability to understand and process complex web page structures. In
this work, we introduce LCoW, a framework for Learning language models to
Contextualize complex Web pages into a more comprehensible form, thereby en-
hancing decision making by LLM agents. LCoW decouples web page under-
standing from decision making by training a separate contextualization module to
transform complex web pages into comprehensible format, which are then utilized
by the decision-making agent. We demonstrate that our contextualization module
effectively integrates with LLM agents of various scales to significantly enhance
their decision-making capabilities in web automation tasks. Notably, LCoW im-
proves the success rates of closed-source LLMs (e.g., Gemini-1.5-flash, GPT-4o,
Claude-3.5-Sonnet) by an average of 20%, and demonstrates a 33.5% average
improvement in success rates for open-source LMs (e.g., Llama-3.1-8B, Llama-
3.1-70B) on the WorkArena benchmark. Moreover, the Gemini-1.5-flash agent
with LCoW achieves state-of-the-art results on the WebShop benchmark, outper-
forming human experts.

1 INTRODUCTION

Raw observation
Contextualized by GPT-4o

Contextualized by Ours

Succes rate (%)
0 20 40 60

Figure 1: Success rate of the Gemini-1.5-
flash agent on 40 WorkArena tasks. We
selected a subset of 40 tasks by simply
choosing the first 40 tasks based on the
task indices. When the agent leverages ob-
servations contextualized by GPT-4o (yel-
low), its success rate improves by 31%,
with further improvements achieved with
our method (green).

Large language models (LLMs) have demonstrated
strong potential in automating web tasks by treating
web browsing as a sequential decision-making pro-
cess, where web pages serve as observations and user
interactions, such as clicking and typing, function as
actions (Yao et al., 2022a;b). Various approaches
have been developed to enhance the performance of
LLM agents in these tasks. One such method in-
volves fine-tuning open-source LLMs using demon-
stration data from web browsing tasks (Furuta et al.,
2023; Lai et al., 2024). While promising, this ap-
proach requires extensive data collection and signifi-
cant computational resources for effective fine-tuning.
Alternatively, several studies have utilized advanced
closed-source LLMs, such as GPT-4o (OpenAI, 2024),
with carefully designed prompting techniques (Drouin
et al., 2024; Zhou et al., 2023a; Sodhi et al., 2024; Pan
et al., 2024). By leveraging the general world knowl-
edge and reasoning capabilities of these models, the methods enhance web automation but at the
cost of reduced controllability.

However, despite the advancements, state-of-the-art LLM agents often struggle to process complex
raw web content, such as HTML and accessibility trees, posing significant challenges for their effec-
tive use in web task automation. While LLMs excel in tasks that require detailed reasoning, such as
solving mathematical problems or coding, we hypothesize that their underperformance in seemingly

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

RootWebArea 'Users | ServiceNow', focused
 generic '', live='assertive', atomic, relevant='additions text'
 generic '', live='polite', atomic, relevant='additions text'
 generic '', live='polite', atomic, relevant='all'
 [56] navigation 'Global skip links'
 [57] link 'Skip to main content'
 [58] link 'Open accessibility preferences'
 region 'There are 0 announcements displayed', live='polite', relevant='additions text'
 generic '', live='polite', atomic, relevant='additions text'
 [62] navigation 'Primary'
 navigation 'Unpinned All menu', live='polite', relevant='additions text'
 navigation 'Unpinned Favorites menu', live='polite', relevant='additions text'
 navigation 'Unpinned History menu', live='polite', relevant='additions text'
 navigation 'Unpinned Workspaces menu', live='polite', relevant='additions text'
 navigation 'Unpinned Admin menu', live='polite', relevant='additions text'
 navigation 'More menus', live='polite', relevant='additions text'
 [66] button 'My ServiceNow landing page', describedby='logo-tooltip'
 [67] image 'ServiceNow Service Management'
 [79] button 'All', expanded=False
 [80] button 'Favorites', expanded=False
 [81] button 'History', expanded=False
 [82] button 'Workspaces', expanded=False
 [84] button 'More menus', expanded=False
 generic '', describedby='title-tooltip'
 StaticText 'Users'
 [97] button 'Create favorite for Users', live='polite', relevant='additions text', pressed='false'
 [109] search ''
 [113] combobox 'Search', autocomplete='both', hasPopup='listbox', expanded=False
 [114] region '', live='polite', relevant='additions text'
 StaticText 'No exact match. Press Enter for full results.'
 [115] combobox 'Choose search context', hasPopup='listbox', expanded=False
 [126] button 'Scope selectors', expanded=False
 [133] button 'Sidebar discussions', expanded=False
 [139] button 'Show help', expanded=False

 [167] button 'Show notifications', expanded=False
 [179] button 'Lindsey Sexton: available', expanded=False
 [182] image 'Lindsey Sexton is Available'
 StaticText 'LS'
 [a758] button 'First page', disabled=True
 [a761] button 'Previous page', disabled=True
 [a764] textbox 'Skip to row' value='1',
 StaticText 'Showing rows 1 to 20 of 817'
 [a769] button 'Next page'
 [a771] button 'Last page'
 [a780] gridcell ''
 [a919] status '', live='polite', atomic, relevant='additions text'
 generic '', live='polite', relevant='additions text'
 [a922] complementary 'Timing details'
 [a924] button 'Response Time', controls='glide:timing_widget'
 StaticText '\uf1f6’
 [a935] table 'Timing details breakdown'

Focused Observation

 [a237] combobox 'Quantity'
This combobox allows us to select the
quantity of laptops to order. It currently
has a value of '1' and contains options
from 1 to 10.
2. [a183] checkbox 'Adobe Acrobat'
This checkbox is currently unchecked.
3. [a190] checkbox 'Adobe Photoshop'
This checkbox is also unchecked.
4. [a203] textbox 'Additional software
requirements'
This textbox is where we can input the
additional software requirements
specified by the user.

I have satisfied all requirements.

Action: click(‘order item’)

The quantity is set to 1.
I have to select the quantity as
5 and order the product.

Action: select(‘quantity’,5)

LLM agent making decision based on raw observation

LLM agent making decision
 based on

contextualized observation

Contextualization

Web page observation

…

…

Figure 2: (Top) In the conventional pipeline, LLM agents decide on the next action based on raw,
complex web page observations (e.g., HTML, accessibility trees), which often hinder accurate de-
cision making. (Bottom) In our proposed pipeline, a contextualization module transforms these
complex web page observations into a more comprehensible format, thereby enabling LLM agents
to make more accurate decisions by enhancing their understanding of the web page.

simple decision-making tasks like web browsing is not due to a lack of decision-making capabilities
but rather to difficulties in understanding and processing complex web page observations.

To validate our hypothesis, we conducted an initial experiment that demonstrated an LLM agent
based on Gemini-1.5-flash can achieve substantial improvements in web browsing tasks when
equipped with a module designed to contextualize complex web page observations (i.e., contex-
tualization module). This module enhances task performance by removing irrelevant UI elements
and highlighting key components with explanations, thereby simplifying the decision-making pro-
cess. We evaluated the performance of this agent on 40 tasks from WorkArena (Drouin et al., 2024),
a benchmark designed to assess web agents on real-world, enterprise-related websites. As shown in
Figure 1, utilizing GPT-4o as the contextualization module (yellow) resulted in a 31% absolute im-
provement in the agent’s success rate compared to direct processing of raw observations (red). These
results support our hypothesis that the difficulty in understanding web pages is a major bottleneck
for LLM-based web agents.

In this work, we propose LCoW, a framework that includes a contextualization module and a train-
ing algorithm to fine-tune this module to enhance the decision-making capabilities of LLM agents
in web automation. As illustrated in Figure 2, the contextualization module transforms complex
web page observations into a comprehensible format, enabling LLM agents to make more accurate
decisions. Furthermore, to enable the contextualization module to provide context more grounded
in real websites, we propose an iterative algorithm designed to train the contextualization module.
Our training algorithm consists of three phases: (i) trajectory collection, (ii) sampling contextualized
observations, and (iii) updating the contextualization module. Notably, the proposed method does
not depend on manually curated data for training; instead, it gathers data through the agent’s inter-
actions within the web browsing environment. For each observation from the collected trajectories,
we generate multiple contextualized observations using the current contextualization module. Each
observation is then assigned a reward based on whether a set of LLM agents can accurately predict
the correct action given the contextualized observation. Finally, we select the one with the highest
reward as the target and train the contextualization module to maximize the likelihood of the target
given the original raw observation.

As demonstrated in our initial experiment using the Gemini-1.5-flash (see Figure 1), LCoW signif-
icantly enhances the decision-making capabilities of LLM agents, even beyond the improvements
seen with state-of-the-art LLMs like GPT-4o used as a contextualization module. In our experi-
ments, we conduct comprehensive evaluations of our proposed approach on WebShop (Yao et al.,
2022a) and WorkArena (Drouin et al., 2024), two popular benchmarks for evaluating agent perfor-
mance in web environments. First, we demonstrate that LCoW significantly enhances the overall
performance of LLM agents with varying scales (Llama-3.1-8B, Llama-3.1-70B, Gemini-1.5-flash,
GPT-4o, Claude-3.5-Sonnet) across both benchmarks. In particular, LCoW achieves state-of-the-art

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

results on the WebShop benchmark, outperforming human experts. Second, we analyze how the
contextualization module refines complex web pages and how the contextualization enhances the
decision-making of LLM agents.

2 BACKGROUND

In this section, we describe the formulation of web browsing as a sequential decision-making prob-
lem and the use of LLMs as decision-making agents.

Web browsing can be formulated as a Partially Observable Markov Decision Process (POMDP), de-
fined by ⟨S,O,A, T,R⟩. The state st ∈ S represents the internal configuration of the web browser
at time step t, which is only partially observable. The observation ot ∈ O corresponds to the web
page rendered by the web browser given st, which can take various forms (e.g., screenshot, HTML,
accessibility trees). The action space A is the set of all possible interactions with the UI elements
(e.g., clicking, typing). The state transition function T defines the probability of transitioning from
state s to state s′ after performing an action at ∈ A, such as clicking a link or scrolling. While tran-
sitions are typically deterministic, occasional stochastic events (e.g., pop-ups, network errors) can
occur. The reward function R assesses the functional correctness, evaluating whether the resulting
state st satisfies pre-defined criteria for successful task completion.

Leveraging their ability to interpret web pages and generate actions in text form, LLMs are increas-
ingly employed as agents for automating web-based tasks. In this framework, an LLM agent π
generates an action at to interact with UI elements at each time step t, based on the user instruc-
tion [TASK], the current web page observation ot, and the history of previous actions a<t. The
objective of the agent is to complete the given task in order to maximize the reward.

3 METHOD

In this section, we present LCoW, a framework for enhancing the capability of LLM agents by con-
textualizing complex web pages. Section 3.1 outlines the concept of the contextualization module
and its integration with LLM agents for web automation tasks. Section 3.2 introduces an iterative
algorithm for training the contextualization modules to improve decision making of LLM agents.

3.1 CONTEXTUALIZATION MODULE

In this work, we decouple web page understanding from decision making of LLM agents. Our
hypothesis is that while LLM agents possess strong decision-making capabilities, their performance
can significantly degrade when the observations they rely on are lengthy and non-contextualized,
such as HTML and accessibility trees. To address this limitation, we introduce a contextualization
module, a separate language model designed to enhance LLM agents by contextualizing complex
web page observations into a form that is more easily processed and comprehensible. Intuitively,
a proper contextualization of observations can enhance the agent’s understanding of web content
and its decision making based on that understanding (see Figure 3 for an example of the input and
output of the module). Formally, given a web page observation ot at time step t, the objective
of our contextualization module fθ is to generate a contextualized observation ocot that serves as
input to the LLM agent π to enhance its decision making. Specifically, fθ uses the task instruction
[TASK], the previous actions of the agent a<t, and the current web page observation ot to generate
a contextualized observation:

ocot = fθ([TASK], a<t, ot).

The LLM agent π then predicts the next action based on the contextualized observation:

at = π([TASK], a<t, o
co
t).

While an arbitrary language model can serve as a contextualization module fθ, it is important for
the module to learn from experience in the web environment to provide more grounded context for
decision making, such as role of a particular button or interaction with specific UI elements.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: An example of a input of contextualization module including lengthy web page observa-
tion (left) and an observation contextualized by the contextualization module trained using LCoW
(right). The module converts raw observations into a more concise form to enhance decision mak-
ing in agents. The prompt used is provided in Appendix A.4.

3.2 ALGORITHM FOR TRAINING THE CONTEXTUALIZATION MODULE

We now describe an iterative algorithm for training the contextualization module fθ to enhance
decision making of LLM agents. In a nutshell, the algorithm involves an iterative process of col-
lecting paired input-output data for training the contextualization module and subsequently updating
the module based on the collected data. For data collection, we begin by gathering trajectories of
successfully completed tasks from the web browsing environment. For each observation ot in the
collected trajectories, we sample multiple candidate contextualized observations, and select the one
that best provides the relevant context for multiple LLM agents to accurately predict the next action
at. Based on the chosen target observations, we update fθ via supervised fine-tuning. We now out-
line a single iteration of LCoW, followed by a detailed explanation of the design of the reward used
for evaluating the candidate contextualized observations.

Single iteration A single iteration of LCoW starts with the contextualization module fθ(i) and
aims to update this module to fθ(i+1) . This process consists of three phases:

Step 1 (Trajectory collection). Given a set of training tasks, we roll out the LLM agent π
in the web environment to collect trajectory data. Specifically, the agent determines the next
action based on the contextualized observation produced by fθ(i) until the episode terminates.
We collect only those trajectories that end in the successful completion of the tasks.

Step 2 (Sampling optimal contextualization). As illustrated in Figure 4, we start by
sampling multiple candidates ocot from the current contextualization module fθ(i) (i.e.,
ocot ∼ fθ(i)(· | [TASK], a<t, ot)) for each web page observation ot in the collected tra-
jectories. Each candidate is then assigned a reward based on whether a set of LLM agents
can accurately predict the ground-truth action at given ot, with the candidate receiving the
maximum reward selected as the optimal contextualized observation. If all candidates receive
a zero reward, we retry the sampling process with the ground-truth action at provided as ad-
ditional context to fθ(i) (i.e., ocot ∼ fθ(i)(· | [TASK], a<t, ot, at)) to guide the generation of
valid contextualized observations.

Step 3 (Model update). We update the current module fθ(i) by fine-tuning it with the optimal
contextualized observations collected in Step 2. With the updated module fθ(i+1) , we return
to Step 1 and repeat the process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

GPTClaude Gemini

Contextualization
module

Sampling candidates of contextualized observations Computing action matching rewards

Rewards

Figure 4: Illustration of sampling optimal contextualization. First, we sample multiple candidates of
contextualized observations, given user instruction [TASK], previous actions a<t , and observation
ot. Subsequently, multiple LLM agents predict the next action based on each candidate, and the
reward for each candidate is computed according to how many LLM agents correctly predict the
ground-truth action at. In the figure, ocot,2 receives the highest reward and is therefore used as the
target data for updating fθ(i) .

Algorithm 1 One iteration of LCoW
Require: a contextualization module fθ(i) , an LLM agent π, a set of LLM agents for computing

the reward Π = {πi}Ki=1, an empty trajectory buffer T , an empty data buffer D, and a set of
training tasks Gtr

1: // Trajectory collection
2: for [TASK] ∈ Gtr do ▷ Collect successful trajectories from training environment
3: τ,R ∼ π(· | [TASK], fθ(i))
4: if R = 1.0 then
5: T .append(τ)
6: // Sampling optimal contextualizations
7: for (ot, at) in T do
8: for n← 1 to N do ▷ Sample N candidate contextualized observations and assign rewards
9: ocot,n ∼ fθ(i)(· | [TASK], a<t, ot)

10: rt,n =
∑

π∈Π ActionMatchingScore(π([TASK], a<t, o
co
t,n), at)

11: if maxn(rt,n) = 0 then
12: for n← 1 to N do ▷ Retry the sampling if rewards are zero for all candidates
13: ocot,n ∼ fθ(i)(· | [TASK], a<t, ot, at)
14: rt,n =

∑
π∈Π ActionMatchingScore(π([TASK], a<t, o

co
t,n), at)

15: ocot,∗ = argmaxn(rt,n)
16: D.append([([TASK], a<t, ot), o

co
t,∗])

17: // Parameter update
18: θ(i+1) := argmaxθ(i) E([TASK],ocot,∗,a<t,ot)∼D[fθ(i)(ocot,∗|[TASK], a<t, ot)]

19: return fθ(i+1)

Algorithm 1 outlines the steps for a single iteration of the training algorithm. Starting with an initial
contextualization module fθ(0) , we iteratively train the module through M iterations. After each
iteration, the module updates from fθ(i) to fθ(i+1) until reaching the final fθ(M) .1

Reward for contextualized observations The reward for the contextualized observation ocot is
defined as the sum of the action-matching scores computed using multiple LLM agents. Each action
matching score evaluates whether an LLM agent π correctly predicts the ground-truth action at given
the contextualized observation ocot . By leveraging multiple LLM agents to compute the reward, we
ensure that the module produces contextualized observations that generalize across a diverse set
of agents, preventing overfitting to the behavior of any single agent and enhancing the module’s

1In the initial iteration, we assume a limited set of seed demonstrations and use relatively strong LLMs to
sample candidate contextualized observations to accelerate training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

adaptability to arbitrary LLM agents. Section 4.2 presents empirical results on the generalization
capabilities of the contextualization module.

4 EXPERIMENTS

We design our experiments to investigate the following questions:

• How effective is LCoW in training a contextualization module for improving decision making of
LLM agents?

• Can the contextualization module trained with LCoW generalize to aribtrary LLMs with varying
scales?

• What form do the web page observations take after contextualization and how the contextualized
observation aid the decision making of LLM agents?

4.1 EXPERIMENTAL SETUP

Benchmarks WebShop (Yao et al., 2022a) and WorkArena (Drouin et al., 2024) are two popular
benchmarks designed to evaluate the capabilities of web agents in completing various web tasks.
WebShop provides a simulated online shopping environment with real-world product data, consist-
ing of 500 evaluation tasks and 5,500 training tasks, each defined by natural language instructions
to purchase products that meet specific criteria. During each decision-making step, the agent re-
ceives HTML input to predict the next action, and at the end of an episode, it receives a reward
ranging from 0 to 1 based on how well the attributes of the purchased item align with the intended
product criteria. WorkArena, on the other hand, focuses on assessing web agents’ ability to complete
enterprise-related tasks, such as creating user accounts and ordering products from a service catalog,
on real-world websites. This benchmark comprises 33 task types, with each type containing up to
1,000 individual task instances, where agents must navigate websites by following natural language
instructions and receive rewards based on successful task completion.

Training details For the WebShop benchmark, we fine-tune Phi-3-mini-Instruct as a contextual-
ization module, setting the learning rate, warmup ratio, and batch size to 1e-5, 1e-2, and 32, respec-
tively. The module is trained for a single epoch over the collected data for each LCoW iteration, and
we utilize demonstrations corresponding to 397 individual tasks provided in the WebShop bench-
mark as seed demonstrations. In the WebShop environment, we employ Gemini-1.5-flash as the
LLM agent, combined with the contextualization module during the trajectory collection phase. It is
also utilized for sampling optimal contextualization at the initial iteration of LCoW. For WorkArena,
we fine-tune Llama-3.1-8B-Instrcut as an observation contextualization module. Here, we set the
learning rate, warm-up ratio, and batch size as 1e-5, 1e-1, and 128 respectively, training the model
for 4 epochs. Since no demonstrations are provided in this benchmark, we collect 264 seed demon-
strations across 23 task types using Claude-3.5-Sonnet and GPT-4o, while no demonstrations were
collected for the remaining 10 task types. Summary statistics of the collected seed demonstrations
can be found in Appendix 8. Additionally, as determination of action matching based on parsing
is infeasible due to open-ended actions (e.g., sending message to user), we exploit GPT-4o as an
action-matching evaluator. Detailed prompt for the action-matching evaluator is provided in Ap-
pendix A.4. For WorkArena, we use Claude-3.5-Sonnet as the agent LLM for trajectory collection
and we utilize the same LLM for the sampling optimal contextualization at the initial iteration.

Evaluation setup In WebShop, we train the contextualization module using LCoW on environ-
ments associated with 500 of the 5,500 training tasks in WebShop. After training, we evaluate the
module on 500 evaluation tasks, measuring both the success rate and average reward, with a task
considered successful if the reward equals 1. To prompt the agent, we utilize a one-shot examplar
as described in Yao et al. (2022b). The maximum number of state transitions is limited to 10, and
episodes are terminated if the same action is repeated more than twice. In the WorkArena, we sam-
ple 5 task instances for evaluation and 15 for training from each task type. As we were not able
to collect valid seed demonstrations from 10 among 33 task types, we conduct evaluation in 5 task
instances for each remaining 23 task types (i.e., 115 individual evaluation tasks as a total). Here,
the maximum number of state transitions is set to 20, and episodes are also terminated if the same

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

WebN-T5 (Gur et al., 2023)
ASH (Sridhar et al., 2023)

ReAct (Yao et al., 2022b)
WebGUM (Furuta et al., 2023)

LASER (Ma et al., 2024)
AgentQ (Putta et al., 2024)

Ours

29.8 30.2
40.0

45.0
50.0 50.5

62.8

Human expert (59.6%)
Su

cc
es

 ra
te

 (%
)

0

20

40

60

Figure 5: Success rate on 500 evaluation tasks from WebShop. Average human performance and ex-
pert human performance are 50% and 59.6%, respectively (Yao et al., 2022a). The Gemini-1.5-flash
agent with the contextualization module trained for three iterations achieves a state-of-the-art suc-
cess rate of 62.8%, outperforming the human expert performance, as well as previous baselines (Yao
et al., 2022b; Furuta et al., 2023; Putta et al., 2024; Sridhar et al., 2023; Ma et al., 2024; Gur et al.,
2023).

GPT-4o Gemini-1.5-flash Claude-3.5-Sonnet Llama-3.1-70B
(Unseen)

Success Reward Success Reward Success Reward Success Reward

Base prompt 34.8% 0.496 43.6% 0.693 26.6% 0.336 34.2% 0.590
Self-ctx 26.2% 0.459 46.4% 0.608 12.4% 0.146 40.2% 0.547
LCoW (iter 1) 27.8% 0.545 46.4% 0.705 39.4% 0.600 39.2% 0.666
LCoW (iter 2) 46.0% 0.647 58.2% 0.796 58.8% 0.780 55.0% 0.781
LCoW (iter 3) 50.6% 0.666 62.8% 0.803 59.8% 0.771 59.6% 0.803

Table 1: We investigate the efficacy of LCoW across multiple LLM agents in WebShop. For all
LLM agents, LCoW consistently improves both success rate and reward over iterations, surpass-
ing self-contextualization (self-ctx) and even human expert-level success rate by the third iteration.
Additionally, LCoW is also effective when combined with Llama-3.1-70B, which was not used for
computing the action-matching reward (i.e., unseen) during training the contextualization module.

action is repeated more than twice. For prompting the LLM agent, we use the prompt provided by
BrowserGym (Drouin et al., 2024), a unified framework for the development and evaluation of web
agents. The complete prompts used can be found in Appendix A.4.

4.2 MAIN RESULTS

We first demonstrate the effectiveness of LCoW on the WebShop and WorkArena benchmarks. Fur-
thermore, we show that the contextualization module trained via LCoW enhances performance even
for an LLM agent that was not involved in the LCoW training process, such as Llama-3.1-70B and
Llama-3.1-8B. We evaluate against two baselines: (i) decision making based solely on raw obser-
vations without the contextualization module (i.e., base prompt), and (ii) decision making based on
the observation contextualized by the LLM agent itself (i.e., self-contextualization).

Effectiveness of LCoW As shown in Table 1, both the GPT-4o and Claude-3.5-Sonnet agents
perform poorly on the WebShop benchmark, frequently struggling to complete the tasks. Instead of
selecting an item from the search results and reviewing its details, the agents often browse through
multiple options in an attempt to find an exact match to the instructions, which frequently results in
unsuccessful episode terminations. Although self-contextualization improves the success rate with
Gemini-1.5-flash and Llama-3.1-70B, the performance of both the Claude-3.5-Sonnet and GPT-4o
agents declines. In contrast, both the success rate and the average reward achieved by all three LLM
agents improve substantially when integrated with the contextualization module trained with LCoW.
Particularly, both the Gemini-1.5-flash and Claude-3.5-Sonnet agents surpass the average human
performance of 50.5% when combined with the contextualization module trained for 2 iterations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

GPT-4o Gemini-1.5-flash Claude-3.5-Sonnet Llama-3.1-70B
(Unseen)

Llama-3.1-8B
(Unseen)

Base prompt 50.9% 14.2% 69.6% 36.8% 2.6%
Self-ctx 33.0% 17.4% 73.0% 29.6% 9.5%
LCoW (iter 1) 58.3% 59.2% 77.4% 56.5% 50.4%

Table 2: We evaluate the success rate of five LLM agents with varying scales on 115 tasks in the
WorkArena benchmark, which is based on real-world website.

When the contextualization module is trained for 3 iterations, the agents exceed the expert human-
level performance of 59.6%. As illustrated in Figure 5, the Gemini-1.5-flash agent combined with
LCoW achieves state-of-art performance on the WebShop benchmark, outperforming prior methods
in success rate by more than 12%. Notably, the Claude-3.5-Sonnet agent, lower performing than
the other agents on WebShop, achieves superhuman performance at 59.8% when integrated with our
contextualization module, demonstrating that LCoW can effectively enhance the decision-making
capabilities of LLM agents.

As shown in Table 2, on WorkArena, the Claude-3.5-Sonnet agent outperforms the GPT-4o agent,
achieving a success rate of 69.6% in our evaluation setup. When integrated with LCoW, Claude-
3.5-Sonnet agent achieves an even higher success rate of 77.4%, which is higher than all baselines
evaluated. GPT-4o and Gemini-1.5-flash also improve 7.4% and 45%, respectively, when combined
with LCoW.

Generalization to arbitrary LLM agents We evaluate the Llama-3.1-8B agent and Llama-3.1-
70B agent integrated with LCoW to assess its effectiveness with LLM agents not involved in the
training process (i.e., those not used for computing action-matching rewards). As shown in Table 1,
the Llama-3.1-70B agent combined with the contextualization module trained for two iterations out-
performs average human performance (50.0%) on WebShop and achieves the success rate of human
experts (59.6%) when trained for three iterations. Furthermore, Table 2 shows that the contextual-
ization module also enhances Llama-3.1-8B and Llama-3.1-70B agent on WorkArena, improving
the success rate by approximately 47% and 20%, respectively. It is noteworthy that a relatively
small LLM agent (i.e., Llama 3.1-8B) struggles to perform tasks when given raw observations, but
when combined with LCoW, its success rate rises on par to GPT-4o. This result further supports
our hypothesis that the bottleneck in LLM agents performing web automation tasks lies in their ob-
servation understanding capability rather than decision-making capability. It also demonstrates that
LCoW can elicit a significant level of decision-making capability even from smaller models at the
8B scale.

4.3 ANALYSIS

iter 1 iter 2 iter 3

R
ew

ar
d

0

1.0

2.0

0.5

1.5

Figure 6: Average action-matching
rewards across three iterations on
WebShop show a consistent in-
crease, suggesting that the contex-
tualization module is optimized to
generate observations that enhance
decision-making in LLM agents.

Can LCoW optimize the contextualization module for spe-
cific LLM agents? We demonstrate that LCoW effectively
optimizes the contextualization module to generate context
that leads to more accurate decision making by LLM agents. In
the WebShop benchmark, we used the contextualization mod-
ule checkpoint from each LCoW training iteration to gener-
ate contextualized observations for the 1,372 raw observations
present in the 397 seed demonstrations. We then calculated the
action-matching reward by comparing the actions predicted
from these contextualized observations with the ground-truth
actions derived from the demonstrations. Figure 6 shows
the average action-matching reward across three iterations,
demonstrating that with each round of training, the contex-
tualization module learns to increasingly produce contextual-
ized observations that enhance decision making of the LLM
agents used in data collection (i.e., GPT-4o, Gemini-1.5-flash,
Claude-3.5-Sonnet). This shows the effectiveness of LCoW
in optimizing the contextualization module for specific LLM

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Contextualized observation:
The AXTree observation shows we are on the Shipping
Report page. The page contains a filter section with date
range inputs, order status options, and other report
parameters. There's also an export function and a table
to display the report results.

...
Following elements are crucial for completing the user
instruction:
 [753] LabelText ''
 StaticText 'From'
 StaticText '*'
 [756] textbox 'From *' value='08/05/2022'
 [757] button 'undefined \ue627'
 [760] LabelText ''
 StaticText 'To'
 StaticText '*'
 [763] textbox 'To *' value='03/01/2023', focused
 [764] button 'undefined \ue627'
This section contains the filter parameters for the
shipping report. The date range inputs (From and To) have
already been filled with the specified dates (08/05/2022
and 03/01/2023, respectively).

Contextualized observation:
The AXTree observation shows a list of forums on a
website called Postmill. Each forum is presented as an
article with its name, number of subscribers, and number
of submissions. The forums are sorted by the number of
submissions in descending order.

...
Additionally, for context, we can include the first forum
in the list to show where we are currently:
[141] article ''
 [143] heading 'AskReddit — AskReddit'
 [144] link 'AskReddit — AskReddit'
 [149] paragraph ''
 [152] Section ''
 [154] button 'Subscribe No subscribers'
 StaticText '0'
 [160] paragraph ''
 StaticText '10,041 submissions'
This extraction shows the first forum in the list, which
is "AskReddit" with 10,041 submissions. It confirms that
we are currently on the first page of forums and need to
navigate to the next page to continue our search for the
UpliftingNews subreddit.

Figure 7: Examples of how the contextualization module refines complicated web pages into com-
prehensible format. As indicated by blue color, the contextualization module provides comprehen-
sible context by verbally explaining the web page and UI elements relevant to the given task.

agents. Furthermore, it suggests the potential to extend LCoW as a method for indirectly tuning
the behavior of closed-source LLM agents, where direct optimization is not feasible, across a wide
range of text-based decision-making tasks.

How web pages are contextualized? We qualitatively analyze how the contextualization module,
trained via LCoW, processes real-world web page observations and how the contextualization en-
hance decision making of LLM agents on web tasks. We observe that the contextualization module
simplifies web page content by extracting UI elements relevant to the given task and providing clear
descriptions of their functionalities and interaction methods. These contextualized explanations aid
LLM agents significantly in making more accurate decisions, while reducing the selection of inad-
missible or redundant actions, which is the main failure mode of the LLM agent for web browsing.
For example, as shown in Figure 7, the contextualization module provides the explanation that to in-
teract with a checkbox element, the LLM agent must click the associated LabelText element, an
action that may not be immediately intuitive. Based on this information, the agent avoids redundant
actions, such as repeatedly clicking the checkbox itself and instead makes more informed decisions.
Additional examples are provided in the Appendix A.5. Such knowledge about the functionality
and interaction of UI elements ground to the real website appears to have been learned during the
LCoW training process, where the contextualization module explores various observation contex-
tualizations and learns to generate contextualized observations that lead to more accurate decision
making by LLM agents. Figure 8 shows that, with the contextualization module, the average num-
ber of decision-making steps by the agent decreases in both Claude-3.5-Sonnet and Llama-3.1-70B
agent, allowing tasks to be completed more efficiently. More detailed examples are also provided in
the Appendix A.5.

Comparison to directly training LLM agents One might argue that, given available demon-
strations, it would be more straightforward to train the LLM agent directly rather than using the
demonstrations to train a contextualization module. To demonstrate the superiority of training the
contextualization module with an equivalent amount of demonstration data, we conduct comparative
experiments against directly training LLM agent. In this analysis, we fine-tune Llama-3.1-8B with
264 seed demonstrations using behavior cloning (BC) as the baseline. To ensure a fair comparison
in terms of model scale, we define a Llama-3.1-8B agent that performs tasks based on the output
of a contextualization module trained using LCoW as the direct comparison group. As shown in
Figure 9, both smaller LLM agents, such as Llama-3.1-8B, and larger LLM agents achieve higher
success rates when using the LCoW-trained contextualization module compared to the BC baseline.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Raw observation LCoW

5

10

15

Llama-3.1-70B

Raw observation LCoW

5

10

15

Claude-3.5-Sonnet

nu
m

be
r o

f s
te

ps
 (1

~2
0)

Figure 8: Comparison of the number of steps
required to complete tasks in WorkArena. We
only consider tasks that LCoW and baseline
both succeed. Claude-3.5-Sonnet and Llama-
3.1-70B agent both demonstrate efficient deci-
sion making by avoiding erroneous or redun-
dant actions when the contextualization mod-
ule is utilized.

w/o contextualization LCoW (iter 1)
0

20

40

60

80

Su
cc

es
s r

at
e

(%
)

BC (33.9%)

GPT-4o
Gemini-1.5-flash
Claude-3.5-sonnet

Llama-3.1-70B
Llama-3.1-8B

Figure 9: Comparison to training LLM
agent via behavior cloning (BC). We fine-tune
Llama-3.1-8B with demonstrations as a BC
baseline. LLM agents combined with LCoW
achieves much higher performance compared
to BC baseline.

Limitations While the contextualization module trained using LCoW has shown to enhance LLM
agents by converting web pages into a comprehensible format, it was hard to expect generaliza-
tion to UI elements too specific to certain functionalities unseen during the training. More detailed
analysis is provided in Appendix A.2. Although our experiment utilized small scale self-generated
dataset for training the contextualization module, we believe that scaling up LCoW can be an inter-
esting future direction. Additionally, we believe that trajectory collection can be further improved in
order to collect successful trajectories from diverse open-ended tasks, thereby facilitating iterative
training process. For example, applying search algorithms to collect more successful trajectories
from complicated tasks or synthesizing novel tasks over iteration might be an interesting research
direction.

5 RELATED WORK

LLM agents for web automation As LLMs continue to improve and demonstrate remarkable
performance across diverse domains, developing web automation agents based on LLMs is gaining
growing interest (Zhou et al., 2023a; Drouin et al., 2024). Recent works have explored various
methods to utilize LLMs as agents for automating real-world web tasks. Pan et al. (2024) propose to
apply a self-refine mechanism (Madaan et al., 2023) to improve decision making of agents through
self-generated feedback. Sodhi et al. (2024) enhance web automation by using LLMs to manage
low-level workflows handcrafted by humans, while Wang et al. (2024) extend this approach by
introducing agent workflow memory, which extracts reusable routines from past experiences.

Similar to our work, a promising direction for enhancing web automation involves integrating a sum-
marization module that condenses web page observations, enabling agents to predict actions based
on these summarized inputs. For example, Deng et al. (2024) propose MindAct, which consists of
an HTML extraction module and an action prediction module. The HTML extraction module ranks
individual HTML elements using a ranking language model trained to assess relevance based on
user instructions and past actions. Additionally, Gur et al. (2024) introduce HTML-T5, a special-
ized language model for web page understanding pre-trained on a large corpus of HTML documents
and fine-tuned for extractive summarization. In contrast, we propose training language models to
contextualize complex web page observations to enhance decision making in LLM agents.

Automated prompting for closed-source models The quality of outputs from closed-source
LLMs heavily depends on the prompts used, leading to a substantial body of research dedicated
to prompt engineering to elicit more effective responses from these models. (Kojima et al., 2022;

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yao et al., 2022b; Lightman et al., 2024). For example, several recent studies have explored au-
tomating the discovery of more effective prompting formats (Shin et al., 2020; Zhou et al., 2023b).
Mañas et al. (2024) demonstrate that prompt refinement can yield more consistent responses from
closed-source models, especially with text-to-image models. Also, Xu et al. (2024) have suggested
compressing the input content for LLMs, focusing on the task of retrieval-augmented generation.
In this work, we focus on contextualizing the raw observations for agents performing sequential
decision making and introduce a novel training algorithm.

6 CONCLUSION

In this work, we introduce LCoW, a novel approach to enhancing LLM agents in completing web
tasks by leveraging language models to contextualize complex web pages into a more comprehen-
sible form. Our approach separates the understanding of web content from the decision-making
process by training a specialized module that generates contextualized representations of complex
web pages, which are utilized by LLM agents for enhanced decision making. Through extensive
experiments, we demonstrate that this contextualization module significantly improves the decision-
making capabilities of LLM agents of varying scales.

ETHICS STATEMENT

We introduce LCoW, a framework for improving decision-making capability of LLM agents for
web automation. We caution that LLM agents may cause safety issues such as cybersecurity or
risks regarding private information, while we believe that LCoW can be valuable for guiding the
agents from potential mistakes by providing more contextualized information on the UI elements.
Additionally, we believe the improved efficiency and capability of LLM agents with our methods
can provide social opportunities to improve user interactions of using digital devices for those with
disabilities.

REPRODUCIBILITY STATEMENT

For the reproducibility of our results, we have provided a detailed description of our methods and
experimental setups in Section 4.1. Additionally, to further facilitate the reproduction, we will
release our codes and the model checkpoints in the final version.

REFERENCES

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena:
How capable are web agents at solving common knowledge work tasks? arXiv preprint
arXiv:2403.07718, 2024.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
arXiv preprint arXiv:2305.11854, 2023.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language
models, 2023.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. In International Conference on Learning Representations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and reinforce a large lan-
guage model-based web navigating agent. arXiv preprint arXiv:2404.03648, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International
Conference on Learning Representations, 2024.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual
foundation agents. arXiv preprint arXiv:2408.06327, 2024.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiaoman Pan, Wenhao Yu, and Dong Yu. Laser:
Llm agent with state-space exploration for web navigation, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023.

Oscar Mañas, Pietro Astolfi, Melissa Hall, Candace Ross, Jack Urbanek, Adina Williams, Aish-
warya Agrawal, Adriana Romero-Soriano, and Michal Drozdzal. Improving text-to-image con-
sistency via automatic prompt optimization. arXiv preprint arXiv:2403.17804, 2024.

OpenAI. https://openai.com/index/hello-gpt-4o/, 2024.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. In First Conference on Language Modeling, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2020.

Paloma Sodhi, S. R. K. Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for
web actions, 2024.

Abishek Sridhar, Robert Lo, Frank F. Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation, 2023.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory,
2024.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with com-
pression and selective augmentation. In International Conference on Learning Representations,
2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023a.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In International Confer-
ence on Learning Representations, 2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 WEBARENA-LITE

In this section, we provide experimental results in WebArena-Lite (Liu et al., 2024), consisting of
diverse tasks spanning over 6 websites. WebArena-Lite is a benchmark composed of 165 tasks
filtered from original WebArena benchmark (Zhou et al., 2023a). Out of entire 812 tasks in We-
bArena, we consider 165 tasks in WebArena-Lite as an evaluation split, and remaining 647 tasks as
a training split. As a seed demonstration, we collect 363 successful trajectories from the training
split via utilizing GPT-4o and Claude-3-5-sonnet. As a next step, we train the contextualization
module via LCoW, and evaluate it on WebArena-Lite benchmark. As shown in the 3, LCoW results
in remarkably better performance compared to the baseline, implying LCoW is effective in learning
contextualization in broad ranger of websites.

GPT-4o

Raw observation 29.7%
LCoW 35.8%

Table 3: We evaluate the success rate of GPT-4o-2024-08-06 and LCoW + GPT-4o-2024-08-06 on
WebArena-Lite benchmark. Contextualizing web page observation via LCoW results in improved
success rate.

Additionally, we analyze whether LCoW effectively generalizes to task types that were unseen dur-
ing the training. Specifically, the 812 tasks in the WebArena benchmark are all different but are
created based on 190 task templates. Therefore, tasks created from the same task template are dif-
ferent but similar. For example, “What is the top-1 best-selling product in 2022” and “What is
the top-3 best-selling product in 2023” are from the same task template. Our research question is
whether LCoW can generalize to unseen task templates that are not included in the 363 successful
trajectories used for training. Among 165 WebArena-Lite evaluation tasks, 48 tasks belongs to un-
seen task templates, while 117 tasks belongs to seen task templates. Based on the information, we
evaluate success rates on 117 tasks corresponding to seen task templates and 48 tasks correspond-
ing to unseen task templates, respectively. As shown in Table 4, LCoW also generalizes to tasks
corresponding to unseen task templates.

GPT-4o

Seen-task-template (117 tasks) Unseen-task-template (48 tasks)

Raw observation 35.9% 14.5%
LCoW 41.9% 20.8%

Table 4: LCoW also generalizes to unseen tasks, demonstrating more than 6% improvement in suc-
cess rate on 48 tasks corresponding to the unseen-task-template, as well as 117 tasks corresponding
to the seen-task-template.

A.2 GENERALIZATION AT DIFFERENT LEVELS

In this section, we conduct systematic evaluation of LCoW’s genealization capabilities in
WorkArena. WorkArena features a two-level task hierarchy: categories at the top level and types
within each category. WorkArena provides 7 categories of tasks (i.e., Dashboard, Menus,
Service catalog, Knowledge base, Forms, Sort list, and Filter list). Al-
though Sort list and Filter list are sub-category under the List task category, we determine to
consider them as a discrete seperate task category in order to avoid confusion. For instance, “Form”
is a task category, and within it, “creating and submitting an incident report” and “creating new user
information” are task types. We consider two levels of generalization: 1) Unseen-type tasks, tasks of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

a different type within the same category (i.e., medium generalization) and 2) Unseen-category tasks,
tasks of a different type and category (i.e., hard generalization). Detailed information about seen and
unseen tasks are provided in Table 5. In our experiments, we trained the contextualization module
on 13 different tasks types and evaluated its performance on 100 individual tasks corresponding to
14 unseen-type tasks and 6 unseen-category tasks. As shown in the Table 5, LCoW demonstrated
strong generalization to unseen-type tasks, achieving a 22.6% improvement when using Gemini 1.5-
flash as the LLM agent. For example, knowledge learned from tasks of writing change requests and
submitting can be generalized to creating new user account. However, we found LCoW struggles
to generalize to unseen-category tasks (i.e., Filter-list), highlighting the need for greater task
diversity in training or enhanced contextual reasoning to address completely new task types.

GPT-4o Gemini-1.5-flash

Unseen-type Unseen-category Unseen-type Unseen-category

Raw observation 35.7% 0.0% 14.5% 0.0%
LCoW 42.9% 0.0% 37.1% 0.0%

Table 5: LCoW shown to be generalized to unseen task types within the same task category on
both GPT-4o and Gemini-1.5-flash backbone, but it struggles to generalize to tasks corresponding
to unseen category.

A.3 COMPARISON WITH LLM-BASED PARSER

In this section, we provide experimental results comparing pre-trained LLM-based HTML parser
and LCoW. As a LLM-based HTML parser, we utilize Reader-LM-1.5B, an LLM pre-trained to
generate concise markdown given complicated HTML. Although Reader-LM generates reasonable
summary when given non-lengthy HTML input (i.e., less than 2048 tokens), it tends to generate non-
meaningful continuation given HTML longer than 20K tokens, which is prevalent in WorkArena
benchmark. Therefore, we utilized accessibility tree observation, a textual web page representa-
tion with reduced noisy and enhanced readability. However, Reader-LM tend to repeat the given
accessibility tree observations, rather than summarizing or rephrasing them, until it reaches maxi-
mum output token limit (i.e., 2048). As a result, as shown in 7 Reader-LM degrades success rates
compared to using raw observation directly. Additionally, typical failure cases of Reader-LM are
described in 10.

A.4 ENTIRE PROMPTS

In this section, we provide entire prompts used across entire experiments in WorkArena and Web-
Shop.

A.4.1 WORKARENA & WEBARENA

Prompt for contextualization module

<system prompt>
You are an agent tasked with extracting and refining a subset of the
webpage’s observations based on the content of the page and user
instructions.

<main prompt>
You are currently on the {domain_info} website.
Your task is to generate a "Reasoning" and a "Refined observation"
based on the provided inputs.

First, review the "User instruction" and "History of interactions"
and, then, generate the "Reasoning".
Analyze the progress made so far, and provide a rationale for the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Task type Seen / Unseen

Single-chart-value-retrieval seen
Single-chart-minmax retrieval seen
Multi-chart-value retrieval unseen-type
Multi-chart-minmax retrieval unseen-type

Create change request seen
Create problem seen
Create incident unseen-type
Create hardward asset unseen-type
Create user unseen-type

Knowledge base search seen

Sort user list seen
Sort hardware list seen
Sort asset list unseen-type
Sort change request list unseen-type
Sort incident list unseen-type
Sort service-catalog list unseen-type

All menu seen
Impersonation unseen-type

Order developer laptop seen
Order iPad mini seen
Order iPad pro seen
Order apple watch seen
Order standard laptop seen
Order sales laptop unseen-type
Order apple Macbook pro unseen-type
Order development laptop PC unseen-type
Order loander laptop unseen-type

Filter asset list unseen-category
Filter change request list unseen-category
Filter hardware list unseen-category
Filter incident list unseen-category
Filter service catalog item list unseen-category
Filter user list unseen-category

Table 6: Task type split for systematic evaluation of generalization at different levels in WorkArena
benchmark.

GPT-4o

Raw observation 38.2%
Reader-LM 9.7%
LCoW (iter 1) 44.2%

Table 7: We compare the LCoW and Reader-LM, an LLM pre-trained to summarize web page into
markdown format in WorkArena benchmark. However, we observed that Reader-LM struggles to
summarize web page observations in WorkArena benchmark.

next steps needed to efficiently accomplish the user instruction on
the {domain_info} website.

Second, refine the "AXTree observation at the current time step"
into a "Refined observation".
Select a subset of the AXTree observation that is essential for
completing the user instruction and provide explanations for the
corresponding elements in the selected subset.

[Information source]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

RootWebArea 'Search Results | iPad mini | ServiceNow', focused
\[46\] generic, live='assertive', atomic, relevant='additions text'
\[55\] navigation 'Global skip links'

\[56\] link 'Skip to main content'
\[57\] link 'Open accessibility preferences'

\[234\] region 'There are 0 announcements displayed', live='polite',
relevant='additions text'

\[58\] generic, live='polite', atomic, relevant='additions text'
\[61\] navigation 'Primary'

navigation 'Unpinned All menu', live='polite', relevant='additions text'
* * *
* [AX Tree](https://www.ax.com/ax-tree)
* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

* [Accessibility Tree](https://www.ax.com/accessibility-tree)

RootWebArea 'Users | ServiceNow', focused
\[47\] generic, live='assertive', atomic, relevant='additions text'
\[48\] generic, live='polite', atomic, relevant='additions text'
\[53\] generic, live='polite', atomic, relevant='all'
\[56\] navigation 'Global skip links'

\[57\] link 'Skip to main content'
\[58\] link 'Open accessibility preferences'

\[236\] region 'There are 0 announcements displayed', live='polite',
relevant='additions text'

\[59\] generic, live='polite', atomic, relevant='additions text'
\[62\] navigation 'Primary'

navigation 'Unpinned All menu', live='polite', relevant='additions text'
navigation 'Unpinned Favorites menu', live='polite', relevant='additions text'
navigation 'Unpinned History menu', live='polite', relevant='additions text'
navigation 'Unpinned Workspaces menu', live='polite', relevant='additions

text'
navigation 'Unpinned Admin menu', live='polite', relevant='additions text'
navigation 'More menus', live='polite', relevant='additions text'
\[66\] button 'My ServiceNow landing page', describedby='logo-tooltip'

\[67\] image 'ServiceNow Service Management'
\[79\] button 'All', expanded=False
\[80\] button 'Favorites', expanded=False
\[81\] button 'History', expanded=False
\[82\] button 'Workspaces', expanded=False
\[84\] button 'More menus', expanded=False
generic, describedby='title-tooltip'

StaticText 'Users'
\[97\] button 'Create favorite for Users', live='polite',

relevant='additions text', pressed='false'
\[109\] search ''

\[113\] combobox 'Search', autocomplete='both', hasPopup='listbox',
expanded=False

\[114\] region '', live='polite', relevant='additions text'
StaticText 'No exact match. Press Enter for full results.'

\[115\] combobox 'Choose search context', hasPopup='listbox',
expanded=False

\[126\] button 'Scope selectors', expanded=False
\[133\] button 'Sidebar discussions', expanded=False
\[139\] button 'Show help', expanded=False

Figure 10: Reader-LM occasionally generates meaningless summarization of given web pages
(Left), and mainly re-generates given web pages until the maximum output token limit has reached
(Right).

User instruction
{goal}

History of interactions
{history}

AXTree observation at the current time step
{observation}

Prompt for contextualization module in retry phase

<system prompt>
You are an agent tasked with extracting and refining a subset of the
webpage’s observations based on the content of the page and user
instructions.

<main prompt>
You are currently on the {domain_info} website.
Your task is to generate a "Reasoning" and a "Refined observation"
based on the provided inputs.

First, review the "User instruction" and "History of interactions"
and, then, generate the "Reasoning".
Analyze the progress made so far, and provide a rationale for the
next steps needed to efficiently accomplish the user instruction on
the {domain_info} website.

Second, refine the "AXTree observation at the current time step"
into a "Refined observation".
Select a subset of the AXTree observation that is necessary for
completing the user instruction.

You may refer to the Hints, which consists of the ground truth next
action, but do not explicitly mention these hints in your output.

[Information source]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

User instruction
{goal}

History of interactions
{history}

AXTree observation at the current time step
{observation}

Hint
Ground-truth next action: {action}

Prompt for self-contextualization

<system prompt>
You are an agent tasked with extracting and refining a subset of the
webpage’s observations based on the content of the page and user
instructions.

<main prompt>
[General instructions]
You are currently on the {domain_info} website.
Your task is to generate a "Reasoning" and a "Refined observation"
based on the provided inputs.

First, review the "User instruction" and "History of interactions" and,
then, generate the "Reasoning".
Analyze the progress made so far, and provide a rationale for the next
steps needed to efficiently accomplish the user instruction on
the {domain_info} website.

Second, refine the "AXTree observation at the current time step"
into a "Refined observation".
Extract a subset of the AXTree observation (e.g., chart, table,
menu items) that contains necessary information for completing
the user instruction, and explain the extracted elements.
Ensure that the information on the elements (e.g., numeric element ID)
are correctly included.

Please follow the format in the [Reasoning & Refinement example]
carefully.

[Information source]
User instruction
{goal}

History of interactions
{history}

AXTree observation at the current time step
{observation}

[Reasoning & Refinement example]
Abstract example
Here is an abstract version of the answer, describing
the content of each tag.
Make sure you follow this structure, but replace the
content with your own answer:

<reasoning>
Think step by step. Based on the "User instruction,",
"History of interaction," and "AXTree observation at the
current time step":

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1. Provide a high-level description of the "AXTree observation at the
current time step."
2. Based on the "User instruction" and "History of interaction,"
track your progress and provide your reasoning on the next action
needed to accomplish the "User instruction."
</reasoning>

<extraction>
Based on your reasoning, identify the elements
(e.g., links, buttons, static text, table row, chart) to focus on.
Then, explain the semantics and functionalities of
each extracted element.
Ensure that:
You do not alter the structure of the AXTree observation.
You extract the element ID (id in []) accurately without any errors.
When extracting chart or table, you must extract the entire chart
or table to avoid any confusion or loss of information.
</extraction>

Prompt for LLM agent

<system prompt>
You are an agent trying to solve a web task based on the content of
the page and a user instructions.
You can interact with the page and explore.
Each time you submit an action it will be sent to the browser and you
will receive a new page.

<main prompt>
Instructions
Review the current state of the page and all other information to find
the best possible next action to accomplish your goal.
Your answer will be interpreted and executed by a program, make sure
to follow the formatting instructions.

Goal:
{goal}

{history}

Refined observation of current step:
{refined observation}

Action space:
13 different types of actions are available.
noop(wait_ms: float = 1000)

Description: Do nothing, and optionally wait for
the given time (in milliseconds).
Examples:

noop()
noop(500)

send_msg_to_user(text: str)
Description: Send a message to the user.
You should send a short answer as a message and
do not ask questions through message.
Examples:

send_msg_to_user(\’the city was built in 1751.\’)
send_msg_to_user(\’Yes\’)
send_msg_to_user(\’No\’)
send_msg_to_user(\’31112\’)
send_msg_to_user(\’Yoshua Bengio\’)

scroll(delta_x: float, delta_y: float)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Description: Scroll horizontally and vertically.
Amounts in pixels, positive for right or down scrolling,
negative for left or up scrolling. Dispatches a wheel event.
Examples:

scroll(0, 200)
scroll(-50.2, -100.5)

fill(bid: str, value: str)
Description: Fill out a form field.
It focuses the element and triggers an input event
with the entered text. It works for <input>,
<textarea> and [contenteditable] elements.
Examples:

fill(’237’, ’example value’)
fill(’45’, ’multi-line\nexample’)
fill(’a12’, ’example with "quotes"’)

select_option(bid: str, options: str | list[str])
Description: Select one or multiple options in a <select> element.
You can specify option value or label to select.
Multiple options can be selected.
Examples:

select_option(’48’, ’blue’)
select_option(’48’, [’red’, ’green’, ’blue’])

click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’,
modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]]
= [])
Description: Click an element.
Examples:

click(’51’)
click(’b22’, button=’right’)
click(’48’, button=’middle’, modifiers=[’Shift’])

dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] =
’left’, modifiers: list[typing.Literal[’Alt’, ’Control’, ’Meta’,
’Shift’]] = [])

Description: Double click an element.
Examples:

dblclick(’12’)
dblclick(’ca42’, button=’right’)
dblclick(’178’, button=’middle’, modifiers=[’Shift’])

hover(bid: str)
Description: Hover over an element.
Examples:

hover(’b8’)

press(bid: str, key_comb: str)
Description: Focus the matching element and press a combination of
keys.
It accepts the logical key names that are emitted in the
keyboardEvent.
key property of the keyboard events: Backquote, Minus, Equal,
Backslash, Backspace, Tab, Delete, Escape, ArrowDown, End, Enter,
Home, Insert, PageDown, PageUp, ArrowRight, ArrowUp, F1 - F12,
Digit0 - Digit9, KeyA - KeyZ, etc. You can alternatively specify a
single character you’d like to produce such as "a" or "#".
Following modification shortcuts are also supported: Shift,
Control, Alt, Meta.
Examples:

press(’88’, ’Backspace’)
press(’a26’, ’Control+a’)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

press(’a61’, ’Meta+Shift+t’)

focus(bid: str)
Description: Focus the matching element.
Examples:

focus(’b455’)

clear(bid: str)
Description: Clear the input field.
Examples:

clear(’996’)

drag_and_drop(from_bid: str, to_bid: str)
Description: Perform a drag & drop.
Hover the element that will be dragged.
Press left mouse button.
Move mouse to the element that will receive the drop.
Release left mouse button.
Examples:

drag_and_drop(’56’, ’498’)

upload_file(bid: str, file: str | list[str])
Description: Click an element and wait for a "filechooser" event,
then select one or multiple input files for upload.
Relative file paths are resolved relative to the current working
directory.
An empty list clears the selected files.
Examples:

upload_file(’572’, ’my_receipt.pdf’)
upload_file(’63’, [’/home/bob/Documents/image.jpg’,
’/home/bob/Documents/file.zip’])

Only a single action can be provided at once. Example:
fill(’a12’, ’example with "quotes"’)
Multiple actions are meant to be executed sequentially without any
feedback from the page.
Don’t execute multiple actions at once if you need feedback from the
page.

Abstract Example
Here is an abstract version of the answer with description of the
content of each tag.
Make sure you follow this structure, but replace the content with your
answer:

<think>
Think step by step.
If you need to make calculations such as coordinates, write them here.
Describe the effect that your previous action had on the current
content of the page.
</think>

<action>
One single action to be executed.
You can only use one action at a time.
</action>

Concrete Example
Here is a concrete example of how to format your answer.
Make sure to follow the template with proper tags:

<think>
My memory says that I filled the first name and last name, but I can’t

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

see any content in the form.
I need to explore different ways to fill the form.
Perhaps the form is not visible yet or some fields are disabled.
I need to replan.
</think>

<action>
fill(’a12’, ’example with "quotes"’)
</action>

A.4.2 WEBSHOP

Prompt for contextualization module

<system prompt>
You are an agent tasked with extracting and rephrasing a subset of
the webpage’s observations based on the content of the page and user
instructions.

<main prompt>
You are currently on the online shopping website.
Your task is to generate a "Reasoning" and a "Refined observation"
based on the provided inputs.

First, review the "User instruction" and "History of interactions"
and, then, generate the "Reasoning".
Analyze the progress made so far, and provide a rationale for the
next steps needed to efficiently accomplish the user instruction on
the online shopping website.

Second, rephrase the "AXTree observation at the current time step"
into a "Rephrased observation".
Select a subset of the AXTree observation that is essential
for completing the user instruction and provide explanations
for the corresponding elements in the selected subset.

[Information source]
User instruction
{goal}

History of interactions
{previous_actions}

AXTree observation at the current time step
{obs}

Prompt for self-contextualization

<system prompt>
You are an agent tasked with extracting and rephrasing a subset of
the webpage’s observations based on the content of the page and user
instructions.

<main prompt>
The current webpage on the web shopping site is described
in the observation.
Evaluate the current progress based on previous actions
and current observation.
Determine the next action by reasoning based on
goal and progress.
Condense the observation into a concise format, highlighting
clickable buttons indicated by [].
Ensure the summary includes only elements relevant to the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

goal and not already covered in previous actions.
Focus on clickable buttons indicated as [].

Here are a few examples.

goal: i would like a 3 ounce bottle of bright citrus
deodorant for sensitive skin, and price lower than 50.00 dollars
previous actions:
1. search[3 ounce bright citrus deodorant sensitive skin]
current observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Natural and Safe
for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
$10.99
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for
Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic
Calendula 3-Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men,
Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &
Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage,
2.7 oz, 2-Pack)
$15.95

rephrased observation:
Progress: I searched the keyword ’3 ounce bright citrus deodorant
sensitive skin’ to see the relvant items, And now I am looking at
the item list.
Reasoning: the next step is to choose an item satisfying the
specification of bright citrus deodorant.
I can focus on:
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for
Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic
Calendula 3-Ounce
$10.99

goal: i would like a 3 ounce bottle of bright citrus deodorant
for sensitive skin, and price lower than 50.00 dollars
previous actions:
1. search[3 ounce bright citrus deodorant sensitive skin]
2. click[B078GWRC1J]
current observation:
[Back to Search]
[< Prev]
size
[travel set (4-pack)]
[3 ounce (pack of 1)]
[3-ounce (2-pack)]
scent
[assorted scents]
[bright citrus]
[calming lavender]
[ginger fresh]
[simply non-scents]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic
Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

rephrased observation:
Progress: I searched and and clicked the item seems to be most
relevant to the goal specification. I am looking at the option list.
Reasoning: As the goal requires 3-ounce bottle, I can focus
on the size option.
I can focus on:
size
[travel set (4-pack)]
[3 ounce (pack of 1)]
[3-ounce (2-pack)]

goal: i would like a 3 ounce bottle of bright citrus deodorant
for sensitive skin, and price lower than 50.00 dollars
previous actions:
1. search[3 ounce bright citrus deodorant sensitive skin]
2. click[B078GWRC1J]
3. click[3 ounce (pack of 1)]
current observation:
You have clicked 3 ounce (pack of 1).
[Back to Search]
[< Prev]
size
[travel set (4-pack)]
[3 ounce (pack of 1)]
[3-ounce (2-pack)]
scent
[assorted scents]
[bright citrus]
[calming lavender]
[ginger fresh]
[simply non-scents]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for
Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic
Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

rephrased observation:
Progress: I searched and and clicked the item id.
Among the option list, and I clicked size option.
Reasoning: According to the progress, I have to focus
on the scent option as a next step.
I can focus on:
scent
[assorted scents]
[bright citrus]
[calming lavender]
[ginger fresh]
[simply non-scents]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

goal: i would like a 3 ounce bottle of bright citrus
deodorant for sensitive skin, and price lower than 50.00 dollars
previous actions:
1. search[3 ounce bright citrus deodorant sensitive skin]
2. click[B078GWRC1J]
3. click[3 ounce (pack of 1)]
4. click[bright citrus]
current observation:
You have clicked 3 ounce (pack of 1).
You have clicked bright citrus.
[Back to Search]
[< Prev]
size
[travel set (4-pack)]
[3 ounce (pack of 1)]
[3-ounce (2-pack)]
scent
[assorted scents]
[bright citrus]
[calming lavender]
[ginger fresh]
[simply non-scents]
Bright Citrus Deodorant by Earth Mama | Natural and Safe
for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

rephrased observation:
Progress: Based on **observation** and **previous actions**,
I clicked size option and scent option.
Reasoning: As there is no more options to select and I met
all requirements specified in the goal, next step is to buy the item.
I can focus on:
[Buy Now]

Here is the task.

goal:
{goal}
previous actions:
{previous_actions}
current observation:
{obs}

rephrased observation:

Prompt for LLM agent

Webshop
Instruction:
i would like a 3 ounce bottle of bright citrus deodorant for sensitive
skin, and price lower than 50.00 dollars
[Search]

Action: search[3 ounce bright citrus deodorant sensitive skin]

Observation:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Progress: I searched the keyword ’3 ounce bright citrus deodorant
sensitive skin’ to see the relvant items, And now I am looking at the
item list.
Reasoning: Based on the Progress and current observation, the
next step is to choose an item satisfying the specification.
I can focus on:
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive
Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-Ounce
$10.99
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive
Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-Ounce
$10.99

Action: click[B078GWRC1J]

Observation:

Progress: I searched and and clicked the item seems to be most
relevant to the goal specification.
I am looking at the option list.
Reasoning: As the goal requires 3-ounce bottle, I can focus on
the size option.
I can focus on:
size
[travel set (4-pack)]
[3 ounce (pack of 1)]
[3-ounce (2-pack)]

Action: click[3-ounce (pack of 1)]

Observation:

Progress: I searched and and clicked the item id.
Among the option list, and I clicked size option.
Reasoning: According to the progress, I have to focus on the
scent option as a next step.
I can focus on:
scent
[assorted scents]
[bright citrus]
[calming lavender]
[ginger fresh]
[simply non-scents]

Action: click[bright citrus]

Observation:

Progress: Based on **observation** and **previous actions**, I clicked
size option and scent option.
Reasoning: As there is no more options to select and I met all
requirements specified in the goal, next step is to buy the item.
I can focus on:
[Buy Now]

Action: click[Buy Now]

Now Here is the task.

Instruction:
{instruction}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

{History of observations and actions}

Observation:
{observation}

Action:

A.4.3 ACTION MATCHING EVALUATION PROMPT

Prompt for model-based evaluation of action matching

<system prompt>
Your task is to evaluate whether the given two action commands are
semantically aligned.

<main prompt>
You will be given
1). **reference action** which indicates an correct action.
2). **predicted action** which is predicted by assistant agent

Your task is to assess whether the message in **predicted action**
is semantically aligned with message in the **reference action**.
Please make sure you read and understand these instructions
carefully.
Please keep this document open while reviewing, and refer to it as
needed.

Evaluation Criteria:
Alignment = 1: the predicted action is semantically aligned with the
reference action.

send_msg_to_user(’30%’) and send_msg_to_user(’The percentage of
amount of pending orders among entire orders is 30%’) are
semantically aligned.
click(’a34’) and click(’a34’, button=’left’) is semantically
aligned.

Alignment = 0: the predicted action is semantically not aligned with
the reference action.

send_msg_to_user(’$25’) and send_msg_to_user(’The requested
value is $29’) are not semantically aligned.
click(’a34’) and click(’a34’, button=’left’) are semantically
aligned.

Evaluation Steps:
1. Write a simple feedback that assess whether the predicted action
is semantically aligned with the reference action.
2. After writing a feedback, write a score that is 0 or 1. You
should refer to the Evaluation Criteria.
3. The output format should look as follows: "Feedback: (write a
feedback for criteria) [RESULT] (an integer number among 0 or 1)"
4. Please do not generate any other opening, closing, and
explanations.

reference action: {ref_action}
predicted action: {pred_action}

Feedback:

A.5 QUALITATIVE ANALYSIS

In this section, we provide 1) concrete examples of webpages contextualized by LCoW and 2)
examples of action sequence of LLM agents with and without LCoW.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A.5.1 WEB PAGE CONTEXTUALIZATION

As demonstrated in the following examples, contextualization model trained via LCoW provides
contexts (e.g., role of the UI elements specific to the website) that enables more accurate decision
making of LLM-based web agent.

Example 1

Instruction: Sort the “users” list by the following fields:- Updates (descending)

Contextualized web page observation:
[a183] grid ’Users.’, multiselectable=False
This is the main table containing the list of users.
We need to focus on this element to find ways to interact
with the column header.
[a186] rowgroup ’’
[a187] row ’’

[a188] columnheader ’Select All’
[a193] columnheader ’\uf1e4 Show column search row’
[a197] columnheader ’User ID User ID column options’
[a204] columnheader ’Name Name column options’
[a211] columnheader ’Email Email column options’
[a218] columnheader ’Avatar Avatar column options’
[a225] columnheader ’Title Title column options’
[a232] columnheader ’Company Company column options’
[a239] columnheader ’Department Department column options’
[a246] columnheader ’Location Location column options’
[a253] columnheader ’Time zone Time zone column options’
[a260] columnheader ’Business phone Business phone column options’

These are the column headers in the users table.
We need to focus on one of these elements to trigger
the sorting action.
However, the AXTree does not show any direct options to
sort these columns.

[a77] button ’\uf13e Personalize List’
This button might provide options to customize
the list view, potentially including sorting options.

Example 2

Instruction: Go to the hardware store and order 10 “Developer Laptop (Mac)” with configuration ‘Ad-
ditional software requirements’: ‘Trello, Zoom, Microsoft Office 365, HubSpot, Adobe Creative Cloud’,
‘Adobe Acrobat’: True, ‘Adobe Photoshop’: True, ‘Eclipse IDE’: True

Contextualized web page observation:
[a184] group ’’

[a187] Legend ’’
[a189] heading ’Optional Software’

[a194] LayoutTable ’’
[a195] checkbox ’Adobe Acrobat’, checked=’true’
[a196] LabelText ’’

[a201] LayoutTable ’’
[a202] checkbox ’Adobe Photoshop’, checked=’false’
[a203] LabelText ’’

[a208] LayoutTable ’’
[a209] checkbox ’Eclipse IDE’, checked=’true’
[a210] LabelText ’’

This section contains checkboxes for optional software.

The "Adobe Acrobat" checkbox [a195] is already checked,
which aligns with the user’s requirements.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

The "Adobe Photoshop" checkbox [a202] is currently unchecked,
and we need to check it to meet the user’s specifications.

The "Eclipse IDE" checkbox [a209] is already checked, which
is correct according to the user’s requirements.

The LabelText elements [a196], [a203], and [a210] associated
with each checkbox are likely the clickable areas to toggle
the checkbox state. We should interact with the LabelText for
"Adobe Photoshop" to check the box.

Example 3

Instruction: What is the value of ”broken” in the chart (in percent)?

Contextualized web page observation:
we should focus on the pie chart elements.
The relevant section is:

[a962] region ’Pie on Change Request table by Reason
created by Henry Turner: 2024-09-26 05:41:16.
Highcharts interactive chart.’
[a963] region ’Chart screen reader information,

Pie on Change Request table by Reason created by
Henry Turner:

2024-09-26 05:41:16.’
StaticText ’Pie chart with 2 slices.’

generic ’’, live=’polite’, relevant=’additions text’
generic ’’, live=’assertive’, relevant=’additions text’
generic ’’, live=’polite’, relevant=’additions text’
[a973] SvgRoot ’Interactive chart’
group ’’
group ’’
image ’1. (empty), 30.’
image ’2. broken, 3.’

[a977] region ’Toggle series visibility,
Pie on Change Request table by Reason created by Henry
Turner: 2024-09-26 05:41:16’

[a978] list ’’
[a979] listitem ’’
[a980] button ’Show (empty)’, pressed=’true’

[a981] listitem ’’
[a982] button ’Show broken’, pressed=’true’

[a984] button ’View chart menu, Pie on Change Request
table by Reason created by Henry Turner:
2024-09-26 05:41:16’, expanded=False

StaticText ’End of interactive chart.’

This section contains the pie chart. The chart has two
slices: "(empty)" with a value of 30, and "broken" with a
value of 3.
The "broken" slice is the one we need to focus on to answer
the user’s question.

Example 4

Instruction: Sort the ”users” list by the following fields: - Language (ascending)

Contextualized web page observation:
we should focus on the following elements:

1. [a1053] button ’\uf135 Add selected options to the Selected listbox’
This button is used to add the selected Language field to

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

the Selected list in the personalization dialog.

2. [a1108] button ’OK’
This button is used to close the personalization dialog
and apply the changes.

3. [a246] columnheader ’Location Location column options’
[a248] button ’Location’
[a252] button ’Location column options’, hasPopup=’menu’
These elements represent the sorting control for the
Location column, which might include the Language
information.
We’ll need to interact with this to sort the list after
closing the personalization dialog.

Note: The Language column is not directly visible in the
current AXTree observation, likely because it hasn’t been
added to the list yet.
After adding it and closing the dialog, we would need to find
the newly added Language column header to sort it.

Example 5

Instruction: Create a new user with a value of ”8273378363827782819” for field ”User ID”, a value
of ”Webster-Richard” for field ”Last name”, a value of ”Lynn-David” for field ”First name”, a value
of ”lynn-david.webster-richard@workarena.com” for field ”Email”, a value of ”false” for field ”Internal
Integration User”, a value of ”Outlook” for field ”Calendar integration”, a value of ”(514) 357-8997” for
field ”Mobile phone”, a value of ”false” for field ”Password needs reset”, a value of ”English” for field
”Language”, and a value of ”false” for field ”Web service access only”.

Contextualized web page observation:
we should focus on the following elements:

[a298] LabelText ’’
[a299] note ’’
StaticText ’Internal Integration User’

[a305] checkbox ’Internal Integration User’, checked=’false’

This element represents the "Internal Integration User" field.
It’s a checkbox that is currently unchecked (false), which
aligns with the user instruction.
No action is needed for this field.

[a353] LabelText ’’
[a354] note ’’
StaticText ’Calendar integration’

[a359] combobox ’Calendar integration’ value=’Outlook’,
hasPopup=’menu’, expanded=False

[a360] menuitem ’-- None --’, selected=False
[a361] menuitem ’Outlook’, selected=True

This element represents the "Calendar integration" field.
It’s a combobox that is already set to "Outlook", which
aligns with the user instruction.
No action is needed for this field.

[a429] LabelText ’’
[a430] note ’’
StaticText ’Mobile phone’

[a435] textbox ’Mobile phone’

This element represents the "Mobile phone" field.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

It’s a textbox where we need to enter "(514) 357-8997" as per
the user instruction.

[a327] LabelText ’’
[a328] note ’’
StaticText ’Language’

[a333] combobox ’Language’ value=’-- None --’,
hasPopup=’menu’, expanded=False

[a334] menuitem ’-- None --’, selected=True
[a335] menuitem ’English’, selected=False

This element represents the "Language" field.
It’s a combobox where we need to select "English" as per the
user instruction.

[a285] LabelText ’’
[a286] note ’’
StaticText ’Web service access only’

[a292] checkbox ’Web service access only’, checked=’false’

A.5.2 ACTION SEQUENCE

In this subsection, we provide the action sequences obtained by rolling out the LLM agent on eval-
uation tasks in Figure 11. For a given instruction, we compare the rollouts with and without the
application of LCoW, highlighting the differences in decision-making behavior and task completion
efficiency.

Instruction:
Create a new problem with a value of "Email system is down again" for field "Problem statement", a value of "" for field "Service
offering", a value of "" for field "Service", a value of "3 - Low" for field "Urgency", a value of "Software" for field "Category", a value
of "pompier Glathsheim subscribe putty bionomist" for field "Description", a value of "" for field "Configuration item", a value of "" for
field "Assignment group", and a value of "3 - Low" for field "Impact"

Llama-3.1-70B
1. fill Email system is down again in [a487] textbox '\uf1ddProblem statement'
2. select 'Software' from [a225] combobox 'Category'
3. fill pompier Glathsheim subscribe putty bionomist in [a504] textbox 'Description'
4. fill Email system is down again in [a487] textbox 'Field value has changed since

last update Problem statement'
5. select '3 - Low' from [a410] combobox 'Urgency'
6. fill Email system is down again in [a487] textbox 'Field value has changed since

last update Problem statement'
7. fill Email system is down again in [a487] textbox 'Field value has changed since

last update Problem statement'
8. fill pompier Glathsheim subscribe putty bionomist in [a504] textbox 'Description'
9. click [a1350] button 'Submit'

LCoW + Llama-3.1-70B

1. fill Email system is down again in [a487] textbox '\uf1ddProblem statement'

2. select 'Software' from [a225] combobox 'Category'

3. fill pompier Glathsheim subscribe putty bionomist in [a504] textbox
'Description'

4. click [a90] button 'Submit'

Instruction:
Go to the hardware store and order 9 "iPad pro" with configuration {'Choose the colour': 'Silver', 'Choose the storage': '128'}

Llama-3.1-70B

1. click [a252] link 'Hardware'
2. click [a268] link 'iPad pro'
3. select 'Silver' from [a198] radiogroup 'Mandatory'
4. click [a184] radio '\uf137 Silver'
5. hover the cursor on [a184] radio '\uf137 Silver'
6. click [a185] LabelText ''
7. select '9' from [a244] combobox 'Quantity'
8. click [a285] button 'Order Now'

LCoW + Llama-3.1-70B

1. click [a252] link 'Hardware'

2. click [a268] link 'iPad pro'

3. click [a184] radio '\uf137 Silver'

4. click [a185] LabelText ''

5. select '9' from [a244] combobox 'Quantity'

6. click [a285] button 'Order Now'

Figure 11: Llama-3.1-70B agent making decisions based on raw observations (left) completes the
task but exhibits inefficient behavior, such as repeating actions it has already performed or deciding
on redundant actions, which are indicated as a red color. In contrast, the Llama-3.1-70B agent mak-
ing decisions based on contextualized observations via LCoW (right) completes the task efficiently,
with few or no mistakes and minimal repetition of redundant actions.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

A.6 EXPERIMENTAL DETAILS

Task type Number of seed demonstrations

Multi-chart-value retrieval 8
Multi-chart-minmax retrieval 12
Single-chart-value-retrieval 12
Single-chart-minmax retrieval 11
Create change request 8
Create incident 0
Create hardward asset 0
Create problem 14
Create user 11
Knowledge base search 12
Filter asset list 0
Filter change request list 0
Filter hardware list 0
Filter incident list 0
Filter service catalog item list 0
Filter user list 0
Sort asset list 0
Sort change request list 0
Sort hardware list 3
Sort incident list 3
Sort service-catalog list 5
Sort user list 4
All menu 15
Impersonation 12
Order developer laptop 15
Order iPad mini 14
Order iPad pro 15
Order sales laptop 15
Order standard laptop 15
Order apple watch 15
Order apple Macbook pro 15
Order development laptop PC 15
Order loander laptop 15

Total 264

Table 8: We collected trajectories from 15 individual tasks for each 33 task types in WorkArena
benchmark using GPT-4o-0806 and Claude-3.5-sonnet agent, thereby collecting 264 successful tra-
jectories. We utilized them as a seed demonstrations for LCoW.

32

	Introduction
	Background
	Method
	Contextualization module
	Algorithm for training the contextualization module

	Experiments
	Experimental setup
	Main results
	Analysis

	Related work
	Conclusion
	Appendix
	WebArena-Lite
	Generalization at different levels
	Comparison with LLM-based parser
	Entire Prompts
	WorkArena & WebArena
	WebShop
	Action matching evaluation prompt

	Qualitative Analysis
	Web page contextualization
	Action sequence

	Experimental details

